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Unlike other tracking algorithms the probabilistic

multi-hypothesis tracker (PMHT) assumes that the true source

of each measurement is an independent realisation of a random

process. Given knowledge of the prior probability of this

assignment variable, data association is performed independently

for each measurement. When the assignment prior is unknown,

it can be estimated provided that it is either time independent,

or fixed over the batch. This paper presents a new extension of

the PMHT, which incorporates a randomly evolving Bayesian

hyperparameter for the assignment process. This extension

is referred to as the PMHT with hysteresis. The state of the

hyperparameter reflects each model’s contribution to the

mixture, and thus can be used to quantify the significance of

mixture components. The paper demonstrates how this can be

used as a method for automated track maintenance in clutter.

The performance benefit gained over the standard PMHT is

demonstrated using simulations and real sensor data.
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I. INTRODUCTION

Multi-target tracking is a problem comprised
of two parts: a tracking algorithm must be able to
both associate ambiguous observations with dynamic
models, and estimate the parameters of these models.
In general, the estimation part of the tracking task
is performed in much the same way for different
tracking algorithms, depending on the specific models
chosen. The data association task is then the portion in
which competing algorithms differ [1, 2].
The probabilistic multi-hypothesis tracker (PMHT)

is a relatively recent tracking approach derived by
the application of expectation maximisation (EM)
to multi-target tracking [3]. The PMHT offers an
attractive alternative to more traditional tracking
approaches because it easily accommodates model
complexity (such as multiple target dynamics models
for manoeuvring targets) [4—6], and because its
computation requirements scale linearly with the
problem size [3].
The main difference between the PMHT and other

tracking algorithms is the assumed measurement
model. Under the usual measurement model, there
is an assumed prior processing stage that ensures
that every target present produces, at most, one
measurement. If the target is distributed over several
sensor bins, a quasi-sufficient statistic is assumed
to be achieved through locating the peak of this
distributed response, its centroid, or some other
summarising point. The result of this assumption is
that there is, at most, one measurement belonging
to each track. This makes the track-to-observation
association process dependent between measurements
because the assignment of one observation may alter
the possible assignment options for the next. Joint
assignment hypotheses must therefore be formed,
and the number of these hypotheses grows more
than combinatorially with the number of tracks and
measurements, and exponentially with time.
The PMHT uses a different model, which treats

the measurements as a collection of independent
observations of a mixture. The PMHT assumes
that the true assignment of each measurement is
an independent random variable with a possibly
unknown prior probability mass function. The result
of this assumption is that the track-to-observation
association is independent for each different
observation. This independence leads to linear
complexity in the problem size, and allows the PMHT
to simply perform batch processing, which is a more
complicated task under the standard model, due to
the prohibitive growth in computational requirements.
The independent assignment assumption conflicts with
the more usual assumption of a single measurement
per target. However, it should be recognised that the
single measurement assumption is usually a choice,
and results from the design of data preprocessing.
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Fig. 1. Measurement model BINs. (a) Standard measurement
model. (b) PMHT measurement model.

In problems where the the targets of interest are
large compared with the sensor resolution, it may be
advantageous to remove this preprocessing (e.g. see
[7]).
The difference between the assumed measurement

process for the standard tracking paradigm and the
PMHT is highlighted by the Bayesian inference
networks (BINs) shown in Fig. 1. Each random
variable is represented by a circle in the BIN and the
directed lines linking the circles show the conditional
dependence of the variables. In the figure, there are
two target models, x1t and x

2
t , and nt measurements,

zt1 : : :ztnt . Under the standard tracking measurement
model, there is an assignment variable for each target
model, i.e., k1t and k

2
t , as illustrated in Fig. 1(a).

All measurements are dependent on these indices.
Unless merged measurements are considered, each
measurement can be assigned to only one target.
Hence the assignments are also dependent on each
other. For the PMHT model, there is different
assignment for each measurement, i.e., kt1,kt2, : : : ,ktnt ,
as illustrated in Fig. 1(b). These assignment indices
are independent of each other. Under the standard
model, all measurements must be used to jointly
estimate each assignment. Under the PMHT model,
each measurement is used independently to estimate
the single assignment variable associated with it.
The assignment variables in the PMHT are treated

as independent realisations of a random process. The
probability mass function of the assignments is a
possibly unknown prior. The standard PMHT restricts
the prior to be either constant, or time independent.
Existing PMHT research does not address the
assignment prior; effort has instead focussed on the
target dynamics model [4, 8, 6, 9], more sophisticated
measurement models [10—12], and matters of practical
significance for realistic implementations [7, 13, 14].
A model is proposed here which allows the
assignment prior to be a randomly evolving quantity.
This model is referred to as hysteresis and employs
a scalar parameter per target to quantify each target’s
contribution to the measurement mixture. Each scalar
parameter follows a Markov chain whose statistics are
known. The set of scalar parameters can be viewed

as a Bayesian hyperparameter for the assignment
process.
In earlier work [15], it was shown that the

existence model used for track maintenance with
probabilistic data association based trackers such
as [16, 17, 18, 19] can be incorporated into the
PMHT through the assignment prior. A track that
corresponds to a real target has a non-zero probability
of producing a measurement, whereas a track that
does not correspond to a target cannot produce a
measurement. The work presented here demonstrates
that the target existence model is actually the simplest
possible realisation of a hysteresis model, where the
scalar parameter for each target is binary.
In the remainder of this paper, the problem of

track maintenance and the target existence model
used to address it is reviewed. The standard PMHT
algorithm is also reviewed to highlight the changes
made here. The hysteresis model is introduced,
and target existence is used as a special case to
demonstrate its application. The PMHT with
hysteresis is derived by treating the assignment
hyperparameter as missing data and incorporating it
into the PMHT assignment weights. The PMHT with
hysteresis is then demonstrated on the track initiation
problem, and compared with two maintenance
schemes based on the standard PMHT (one similar
to an M of N rule, and one motivated by model
order estimation). The discrimination between valid
and false tracks for each approach is measured for
simulated scenarios and for recorded sensor data.

II. TRACK MAINTENANCE

An important problem in realistic tracking
applications is that of track maintenance. The number
of targets in the scene will be a dynamic quantity,
requiring an automated tracking system to be able
to initiate tracks when new targets appear, and
terminate tracks when existing targets disappear. Most
tracking algorithms are not able to perform these tasks
without incorporating ancillary functions [2, 1]. The
typical tracking algorithm addresses the problem of
recursively updating the state estimates for various
targets under ambiguous measurement conditions. The
temporal recursion formulation implicitly assumes that
the algorithm is provided with prior information for
each target, that each target has a corresponding track,
and that there are no false tracks (i.e., tracks which do
not correspond to targets).
The track maintenance problem is essentially

one of model order estimation. One way to perform
model order estimation is to overmodel the system,
and then attempt to reject extraneous models using
a statistical significance test. In the multi-target
tracking framework, this amounts to forming more
tracks than there are targets in the scene, and then
rejecting the false tracks based on a track significance
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Fig. 2. General track maintenance flow diagram.

test. Under this approach, there will be established
tracks which exist from some previous time, and
which have previously been accepted as belonging
to targets. There will also be candidate tracks, which
are new tracks, initialised on whichever measurements
are deemed to be likely to be target orientated. The
candidate tracks are then accepted or rejected, based
on a statistical test, and if accepted they become
established tracks. Candidate tracks are not shown
to the user, and act as method of vetting false tracks
while keeping good detection performance. A general
framework for track initiation by this method is
illustrated in Fig. 2. In the figure, established tracks,
which were initiated at some earlier time, get the first
pickings of the sensor measurements. These tracks
remove measurements that have a high assignment
probability and the remaining measurements (the
residual measurements) are used to form candidate
tracks. The candidate tracks perform association and
state estimation using the residual measurements.
This prevents the candidate tracker from running a
candidate track on the same target as is represented by
an established track.
This is the approach used by the integrated

probabilistic data association filter (IPDAF) which
augments the target state to include a track quality
variable, variously referred to as observability [16],
existence [17], perceivability [18], and visibility [19].
The probability of this quality variable (which is
binary) is used as a test statistic for track maintenance
decisions, e.g. [20]. Under this strategy, track initiation
is the same process as track termination, possibly with
different thresholds for track significance.
The PMHT, in its standard form, does not provide

for track maintenance [3]. It assumes that the number
of targets is fixed over the data batch, that this number
is known, and that prior information is available
for each target. Two of these assumptions are easily
relaxed: prior information can be approximated from
data, and the fixed number of targets over a batch
is unimportant if the PMHT is run using a small
sliding window, or in time recursive form. However,
the number of targets must be known. Using the

above framework, the assumption of a known number
of targets can be relaxed, by over modelling and
rejecting extraneous tracks. All that is required is
a method for gauging the significance of candidate
tracks.
The significance test for candidate tracks is a

crucial part of the track initiation method, because
it ultimately determines the delay statistics for
establishing track on new targets, and the rate of
false tracks. The hysteresis model provides an in-built
significance test for candidate tracks with the PMHT:
the assignment state quantifies the contribution
of each model to the total mixture, and hence the
significance of candidate tracks. For comparison,
two approaches for track initiation with the standard
PMHT are also considered.

A. Track Termination

Track maintenance requires the ability to start a
track on a new target, and the ability to terminate
track on an old target that no longer exists. This
second problem is very similar to the first: to give
good performance for track termination, the filter
needs to discriminate between a valid track, and
one that was valid but is now false. There are
two differences between this and track initiation:
firstly, the previous life of the track means that the
termination problem starts with good initialisation,
and secondly in termination one prefers to keep a
track unless the filter is sure that it is gone, whereas
in initiation one prefers to discard tracks unless the
filter is sure they are valid. Overall this means that
the same testing approach can be used, but that a
different threshold is applied. Receiver operating
characteristic (ROC) curves for track initiation show
the discrimination of a particular test statistic, and so
also quantify performance for termination.

III. PMHT PARLANCE

The PMHT is formulated for a batch of T scans,
where scan t contains nt measurements collected at
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time ¿t. A time recursive algorithm can be obtained
by using a batch length of T = 1. Let ztr denote
the rth measurement in scan t, and define the set
Zt ´ fzt1 : : :ztntg for each scan, and the batch set
Z´ fZ1 : : :ZTg.
There are M state models, which include target

models and false measurement (clutter) models. The
state of model m at scan t is denoted by xmt . Define
the set Xt ´ fx1t : : :xMt g for each scan t, and the batch
set X´ fX0 : : :XTg. The states are assumed to be
first-order Markov processes with known transition
probabilities denoted as Ãmt (x

m
t j xmt¡1), and prior

densities denoted as Ãm0 (x
m
0 ). Each model has a known

measurement probability density function, which is
denoted by ³mt (ztr j xmt ) for the rth measurement at
scan t.
Let the assignment index ktr denote the model

that gave rise to measurement ztr and define the sets
Kt ´ fkt1 : : :ktntg and K´ fK1 : : :KTg. The value of
each assignment index is unknown, and the estimation
of them, or their probabilities is the data association
problem.
The key difference between PMHT and other

tracking algorithms is that the assignments ktr are
now treated as identically distributed independent
realisations of a prior probability mass. The prior
probability that the rth measurement at scan t is
due to model m is denoted by ¼mt . Notice that this
is independent of r since the ktr are identically
distributed (r is an arbitrary ordering of the
measurements). Let ¦t ´ (¼1t , : : : ,¼Mt ) and ¦ ´
(¦1, : : : ,¦T) be the per scan and batch sets of the
prior values, respectively. Under the standard PMHT,
the values of ¦t are assumed to be independent of
those of ¦s for t 6= s.
The standard PMHT algorithm proceeds as

follows.

1) Assume an initial state sequence, x̂mt , and an
initial prior probability mass function, ¼̂mt , for all
models at each scan, i.e., t= 0 : : :T, m= 1 : : :M.
2) Calculate assignment probabilities for each

model and measurement combination for every scan
in the batch.
3) Refine the state and prior estimates using

the measurement assignments, obtaining new x̂mt
and ¼̂mt .
4) Repeat steps 2 and 3 until convergence.

When the state statistics are linear and Gaussian
(i.e., Ãmt (x

m
t j xmt¡1), Ãm0 (xm0 ), and ³mt (ztr j xmt ) are linear

Gaussian functions), then the state estimate can be
calculated using a Kalman smoother [3]. When the
¼mt are temporally independent, then their values are
estimated using the relative frequency:

¼̂mt =
1
nt

ntX
r=1

wmtr (1)

where wmtr is referred to as the assignment weight
for measurement ztr and model m. This weight is the
probability of the missing data (the assignment ktr)
given the observations, that is the posterior probability
that ktr =m, whereas ¼

m
t is the prior. The weight is

given by

wmtr =
¼m(i)t ³mt (ztr j xm(i)t )PM
s=1¼

s(i)
t ³st (ztr j xsi)t )

(2)

where ¼m(i)t and xm(i)t are the estimated values from
the ith (previous) iteration. The calculation of these
weights is the second step in the algorithm description
above.

IV. ASSIGNMENT STATE MODEL WITH HYSTERESIS

A state model for the assignment prior ¦ is
now introduced to give the PMHT the capability of
tracking correlated dynamic changes in its values. This
state model can be viewed as a hyperparameter for
the assignment index ktr. Let the scalar assignment
state for model m at scan t be dmt . It will be seen
to be convenient to choose the assignment state to
be discrete (in order to achieve a problem solution).
However, this is not a fundamental requirement of the
hysteresis model. In the track existence problem, dmt is
binary, corresponding to a target that does or does not
exist.
Define the per scan set Dt ´ fd1t : : :dMt g and the

batch set D´ fD0 : : :DTg. The assignment state is
assumed to be a first-order Markov random process
with known evolution probability density (or mass)
function ¢mt (d

m
t j dmt¡1). The prior distribution for

the assignment state of each model is also assumed
known and is denoted as ¢m0 (d

m
0 ).

For the target existence problem, ¢mt (d
m
t j dmt¡1) is

a two by two matrix, with elements corresponding
to the probability that an existing target continues
to exist, the probability that a nonexistent target
remains nonexistent (often chosen to be unity) and
their complements. ¢m0 (d

m
0 ) is the prior probability that

a new track corresponds to a target that exists.
There are two main approaches which can now

be used to relate the dmt to the priors ¼
m
t . These

result from the normalisation requirement of the ¼mt
values. Effectively, the introduction of M independent
hyperparameters is incongruous with the M ¡ 1
degrees of freedom in the prior itself. The first option
is to ensure proper normalisation by choosing the
relation

¼mt (Dt) =
Ámt (d

m
t )PM

s=1Á
s
t (dst )

(3)

where the functions Ámt (d
m
t ) are assumed to be known.

The functions Ást (d
s
t ) represent scaled probabilities and

so must be positive semi-definite functions, namely
they may not give negative values for any dst . The
¼mt values will form a valid probability mass when
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Ámt (d
m
t )¸ 0, for all models m, and

PM
s=1Á

s
t (d

s
t ) 6= 0.

The problem with this approach is that continuity
in the dmt does not necessarily translate to smoothly
varying ¼mt values. As an example, consider a mixture
with ten models, each of which has discrete dmt¡1 = 1
and Ámt (d

m
t ) = d

m
t =10. All of the prior values at scan

t¡1 are equal, ¼mt¡1 = 1=10. If the ¢mt (dmt j dmt¡1) are
chosen so that steps of more than one have zero
probability, then the dmt values can evolve over time
only very slowly, a unity step being the smallest
change possible for a discrete variable. Yet, if dmt = 0
for m= 2 : : :M and d1t = 1 then the result is ¼

1
t = 1,

and ¼mt = 0 for m= 2 : : :M . Small transitions in
the state may translate to rapid ¼mt variations. The
problem is that the value of ¼mt depends on all of
the Dt through normalisation. This means that the
individual element dmt is not indicative of the relative
importance of model m on its own: all of the Dt are
required. This is an undesirable property.
The second approach is to use additive

normalisation. For the track maintenance problem,
there are two types of models in the mixture: target
models, which produce at most one measurement,
and false detection models, which may produce
many measurements. Assuming that there are
many more false detections than target-originated
measurements, the ¼mt values for target models
will be low compared with the values for clutter
models. Also, the targets will be expected to provide
a persistent set of measurements, whereas the number
of false measurements may fluctuate, so there is little
value in trying to model dynamics in the clutter priors.
Consequently, assume that MX of the models have
correlated prior values (i.e., are target models), and the
remaining MY =M ¡MX are independent from scan to
scan, conditioned on the dmt (corresponding to clutter
models). Arbitrarily, index the independent prior
models m= 1 : : :MY and the dependent prior models
m=MY+1 : : :M. Assuming that the temporally
dependent models have relatively low priors, write

¼mt (Dt) =

8>><>>:
Ámt (d

m
t ) MY <m·M

¾mt

241¡ MX
s=MY+1

Ást (d
s
t )

35 1·m·MY

(4)

where the parameters ¾mt are the relative mixing
proportions of the independent models, which are
assumed to be unknown. The ¾mt represent the prior
probability that a measurement is due to independent
model m given that it is due to one of the independent
models, and are constrained by

0· ¾mt · 1 (5)

MYX
m=1

¾mt = 1: (6)

Fig. 3. BIN for PMHT with hysteresis.

For the case of target existence in clutter, the ¾mt
represent the relative strengths of different clutter
models. If the clutter is homogenous, then it may be
possible to use a single model for false measurements,
and the ¾mt variables are not required.
Define the sets §t ´ f¾1t : : :¾MYt g and § ´

f§1 : : :§Tg.
Equation (4) ensures that the ¼mt sum to unity for

any values of Ást (d
s
t ), provided that the constraint (6)

holds. However, if some of the Ást (d
s
t ) take values that

are too large, then some of the ¼mt will not correspond
to legal probabilities. For example, if the sum of
the Ást (d

s
t ) is greater than unity, the independent

model priors will all be negative. This is why it is
necessary to assume that the priors for the dependent
models are small. This assumption then corresponds
to constraining the maximum values of each of the
Ámt (d

m
t ) to be sufficiently low to ensure that all the ¼

m
t

are positive.
The second approach ensures that dynamic

constraints on the dmt translate to dynamic constraints
on the ¼mt with Á

m
t (d

m
t ) acting as a mapping.

The assumption of small Ámt (d
m
t ) is acceptable if

the dependent models are target models and the
independent models are clutter models in a dense
clutter multi-target tracking environment. These
difficulties in normalisation arise because the priors of
the various models are being modelled as independent
entities, whereas the prior probability mass is
inherently joint. However, using independent models
simplifies the prior transition dynamics.
The PMHT with hysteresis uses the second

approach derived above. Fig. 3 shows a one scan
slice of the BIN for the PMHT with hysteresis. The
BIN demonstrates how the assignment state variables
provide a dynamic model for the probability mass of
K. This dynamic model is the key contribution of this
work.
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The assignment state parameter is assumed
to occupy a finite discrete space. Without loss of
generality, this space is assumed to contain MD
elements, with the assignment state taking an integer
value between 0 and MD ¡ 1. The particular forms of
the functions Ámt (d

m
t ) and ¢

m
t (d

m
t j dmt¡1) are chosen

according to the specific problem to be solved. The
PMHT algorithms derived here are applicable for
any functions, when dmt is discrete. This is because
discrete problems are solved in a direct numerical
manner by algorithms such as the Viterbi algorithm,
or the hidden Markov model smoother, without the
problematic analytic integration required for optimal
solution of continuous problems.
For the case of target existence, where the dmt is

binary, then the functions Ámt (d
m
t ) are given by

Ámt (0) = 0

Ámt (1) =
Pd

nt
:

(7)

A. PMHT with Hysteresis

The PMHT with hysteresis is derived in
substantially the same way as the standard PMHT.
The full derivation of the standard PMHT is given
in [3]. Therefore, the derivation of the PMHT with
hysteresis is merely outlined here, although detail is
given where it deviates from the derivation in [3].
There are two approaches that can be used to

develop an algorithm based on this model. Firstly, the
assignment states D can be treated as further missing
data in an EM context. This means that the auxiliary
function will be the expectation over the assignments
K and the assignment states D. In this case, the
algorithm calculates the probabilities of the dmt , much
as the standard PMHT calculates the probabilities of
the assignments, ktr (these are the weights, wmtr).
The second method of solution is to estimate

the assignment states. In this case, the auxiliary
function becomes a function of the target states and
the assignment states, dependent on their values
from a previous iteration. Under this approach, the
assignment state is treated in a similar way to the
target state estimates. An initial assignment state
sequence is assumed, and this sequence is iteratively
refined based on the measurement assignment weights.
One could view this approach as augmenting the state
vector to include the dmt .
Each of the above approaches was explored in

[21], but only the first is presented here. The problem
with the second approach, is that it requires the joint
state estimation of MX discrete variables, each of
which occupies a state space with MD elements. The
joint state space thus has MMX

D elements, which will
be impracticably large for all but the smallest MD.
For the hysteresis model to provide something useful,
the MD needs to be large in this case, and so the

algorithm is infeasible. In contrast, when the dmt are
treated as missing data, then the algorithm calculates a
probability mass, whose values are continuous even in
the extreme case of dmt being binary.

V. HYSTERESIS AS MISSING DATA

The assignment states are treated as additional
missing data. This means that the EM auxiliary
function [3] for the modified PMHT will be the
conditional expectation over the assignment states, and
the assignments. Namely,

Q(X,§ jX(i),§(i))
=
X
D

X
K

logfP(X,D,K,Z)gP(D,K jX(i),Z)

(8)

where the summation denoted
P
D is the sum over

all possible permutations of the assignment states D.
Explicitly,X

D

f¢g ´
MD¡1X
d
MY+1
0 =0

MD¡1X
d
MY+2
0 =0

: : :

MD¡1X
dM0 =0

MD¡1X
d
MY+1
1 =0

: : :

MD¡1X
dMt =0

f¢g:

(9)

The BIN in Fig. 3 illustrates the independence
assumptions of the filter. These assumptions are that
the state models are independent of each other and
that the assignment states are independent of each
other. Under these assumptions, the complete data
likelihood is

P(X,D,K,Z) = P(X)P(D)P(K jD)P(Z jK,X):
(10)

The assignments ktr are conditionally independent
given the assignment state vector for scan t, Dt. Hence

P(K jD) =
TY
t=1

ntY
r=1

¼ktrt (Dt) (11)

where ¼ktrt (Dt) is defined by (4).
The assignment states are independent of each

other and are each first-order Markov processes, so

P(D) =
MY

m=MY+1

(
¢m0 (d

m
0 )

TY
t=1

¢mt (d
m
t j dmt¡1)

)
: (12)

The remaining terms in (10) are the same as the
standard PMHT and are given by

P(Z jK,X) =
TY
t=1

ntY
r=1

P(ztr j ktr,xktrt ) (13)

and

P(X) =
MY
m=1

(
Ãm0 (x

m
0 )

TY
t=1

Ãmt (x
m
t j xmt¡1)

)
: (14)
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The conditional probability of the assignment
states and the assignments in (8) can be expanded via
Bayes rule as

P(D,K jX(i),Z) = P(K jD,X(i),Z)P(D jX(i),Z):
(15)

It is important to note that (15) is implicitly
dependent on the clutter parameters §(i) from the
previous EM iteration. It is not a function of the
unknown parameters §.
Substituting (10) and (15) into (8) gives

Q(X,§ jX(i),§(i))

= logfP(X)g+
X
D

logfP(D)gP(D jX(i),Z)

+
X
D

X
K

logfP(K jD)gP(K jD,X(i),Z)P(D jX(i),Z)

+
X
D

X
K

logfP(Z jX,K)gP(K jD,X(i),Z)P(D jX(i),Z):

(16)

The first term in (16) is the log likelihood of
the state sequence. This term is the same as for the
standard PMHT. The second term is independent of
X and § and can be ignored. The third and fourth
terms in (16) both involve a double sum over D
and K. Note that the dependence upon § is implicit
in the probability masses of the assignments
P(K jD).

X
D

X
K

logfP(K jD)gP(K jD,X(i),Z)P(D jX(i),Z)

=
X
D

X
K

(
TX
t=1

ntX
r=1

logfP(ktr jDt)g
)
P(K jD,X(i),Z)P(D jX(i),Z)

=
TX
t=1

(X
Dt

X
Kt

ntX
r=1

logf¼ktrt (Dt)gP(Kt jD,X(i),Z)P(Dt jX(i),Z)
)

=
TX
t=1

(X
Dt

ntX
r=1

MX
ktr=1

logf¼ktrt (Dt)gP(Kt jD,X(i),Z)P(Dt jX(i),Z)
)

=
TX
t=1

X
Dt

MX
m=1

logf¼mt (Dt)g
ntX
r=1

P(ktr =m jD,X(i),Z)P(Dt jX(i),Z)

=
TX
t=1

X
Dt

(
MX

m=MY+1

logfÁmt (dmt )g
ntX
r=1

wmtr(Dt) +
MYX
s=1

"
logf¾st g+ log

(
1¡

MX
m=MY+1

Ámt (d
m
t )

)#
ntX
r=1

wstr(Dt)

)
P(Dt jX(i),Z)

(17)

The logfP(K jD)g term is the only part of
(16) that is dependent on the clutter parameter §.
Substituting (4) and (11), the logfP(K jD)g term in
(16) can be written as shown in (17) where wmtr(Dt) is
defined as

wmtr(Dt)´ P(ktr =m jD,X(i),Z): (18)

Note that wmtr(Dt) is implicitly dependent on the
iteration index i, but this index is suppressed to
somewhat simplify notation.
The terms involving Ámt (d

m
t ) in (17) are constant,

since they are summed over dmt . So, the only term in
(17) that is significant is the one involving ¾st . Let

Qt¼ ´
MYX
s=1

(
logf¾st g

ntX
r=1

wstr

)
(19)

where

wmtr =
X
D

wmtr(Dt)P(Dt jX(i),Z)

=
X
D

P(ktr =m jD,X(i),Z)P(Dt jX(i),Z):

(20)
Then, (17) can be written asX
D

X
K

logfP(K jD)gP(K jD,X(i),Z)P(D jX(i),Z)

=
TX
t=1

Qt¼ +AK (21)

where AK is an irrelevant constant.
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The final term in (21) depends on the
measurement likelihood, logfP(Z jX,K)g, and can
be written asX

D

X
K

logfP(Z jX,K)gP(K jD,X(i),Z)P(D jX(i),Z)

=
MX
m=1

TX
t=1

ntX
r=1

logf³mt (ztr j xmt )gwmtr: (22)

The auxiliary function can now be written as

Q(X,§ jX(i),§(i)) =
MX
m=1

QmX +
TX
t=1

Qt¼ +QD (23)

where QD is constant, and the model term QmX is given
by

QmX = logfÃm0 (xm0 )g+
TX
t=1

logfÃmt (xmt j xmt¡1)g

+
ntX
r=1

logf³mt (ztr j xmt )gwmtr: (24)

Equation (24) is the same expression as is
achieved for the standard PMHT except that the
weights are obtained using (20). As is described in
[3], (24) can be optimised using a Kalman smoother
when the processes are linear and the random
elements are Gaussian.
The Qt¼ term in (23) is a function of the relative

clutter probabilities § and is essentially the same as
the prior auxiliary function for the standard PMHT.
This is to be maximised subject to the constraint (6),
namely

MYX
m=1

¾mt = 1:

The maximisation can be achieved by using the
Lagrangian Lt¼ =Qt¼ +¸t(1¡

PMY
k=1¾

k
t ). Setting the

derivative dLt¼=d¾
k
t = 0 gives

¾kt =
1
¸t

ntX
r=1

wktr (25)

and reapplying the constraint gives the estimate for ¾kt
as

¾kt =
Pnt
r=1wktrPMY

m=1

Pnt
r=1wmtr

: (26)

This is the same form as the solution for ¼mt in the
standard PMHT except that the weights are implicitly
dependent on the assignment state probabilities, and
the expression only includes the independent models
m= 1 : : :MY.

A. Assignment Weights

To complete the algorithm, an expression for the
assignment weight wmtr is required. The weight, as

defined in (20), is comprised of two terms

wmtr =
X
D

P(ktr =m jD,X(i),Z)P(Dt jX(i),Z):

The first term in (20) is the conditional probability
of the assignments, and the second term is the
posterior probability of the assignment states.
The conditional probability of the assignments is

found via Bayes rule

P(ktr =m jX(i),D,Z) =
P(ktr =m,X

(i),D,Z)PM
s=1P(ktr = s,X(i),D,Z)

=
P(X(i),D,Z n ztr)¼mt (Dt)³mt (ztr j xm(i)t )PM
s=1P(X(i),D,Z n ztr)¼st (Dt)³st (ztr j xs(i)t )

=
¼mt (Dt)³

m
t (ztr j xm(i)t )PM

s=1¼
s
t (Dt)³

s
t (ztr j xs(i)t )

(27)

where Z n ztr is the set of all measurements in the
batch except the measurement ztr. Equation (27) is the
same as the standard PMHT weight equation except
that the prior distribution of the assignments ¼mt (Dt) is
dependent on the assignment state Dt.
The posterior probability of the assignment state

vector Dt given all of the batch measurements and
the state estimates at the previous iteration, namely
P(Dt jX(i),Z), can be determined by using the hidden
Markov model (HMM) smoother [22].
Using Bayes rule write

P(Dt jX,Z)/ P(Dt,X,Z)
= P(Dt,X t

1,X T
t+1,Z t1,ZTt+1)

= P(Dt,X t
1,Z t1)P(X T

t+1,ZTt+1 jDt,X t
1,Z t1)

´ ®t(Dt)¯t(Dt)´ °t(Dt) (28)
where

X t2
t1
´ fXt1 : : :Xt2g (29)

Z t2t1 ´ fZt1 : : :Zt2g: (30)

The required probabilities are the °t(Dt) and these
are found by deriving recursive relations for ®t(Dt)
and ¯t(Dt).

®t(Dt) = P(Dt,X t
1,Z t1)

=
X
Dt¡1

P(Dt,Dt¡1,X t
1,Z t1)

=
X
Dt¡1

P(Dt jDt¡1)P(Xt jXt¡1)P(Zt jDt,Xt)®t¡1

/
X
Dt¡1

P(Dt jDt¡1)P(Zt jDt,Xt)®t¡1

=
X
Dt¡1

8<:
MY

m=MY+1

¢mt (d
m
t j dmt¡1)

9=;P(Zt jDt,Xt)®t¡1
(31)
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where the dependence of ®t¡1 on Dt¡1 is suppressed
for compactness, and ®t(Dt) is normalised by dividing
by
P
Dt ®t(Dt).

¯t¡1(Dt¡1) = P(X T
t ,ZTt jDt¡1,X t¡1

1 ,Z t¡11 )

=
X
Dt

P(X T
t ,ZTt ,Dt jDt¡1,X t¡1

1 ,Z t¡11 )

=
X
Dt

P(Dt jDt¡1)P(Xt jXt¡1)P(Zt jDt,Xt)¯t

/
X
Dt

P(Dt jDt¡1)P(Zt jDt,Xt)¯t

=
X
Dt

(
MY

m=MY+1

¢m
t (d

m
t j dmt¡1)

)
P(Zt jDt,Xt)¯t

(32)

where the dependence of ¯t on Dt is again suppressed
for compactness, and ¯t(Dt) is normalised by dividing
by
P
Dt ¯t(Dt).

Both ®t(Dt) and ¯t(Dt) depend on the incomplete
conditional data likelihood P(Zt jDt,Xt) which is
given by

P(Zt jDt,Xt) =
ntY
r=1

P(ztr jDt,Xt)

=
ntY
r=1

(
MX
m=1

¼mt (Dt)³
m
t (ztr j xmt )

)
:

(33)

B. Statement of Hysteresis PMHT Algorithm

The hysteresis PMHT algorithm is mostly the
same as the standard PMHT. Where it differs, is that
the hysteresis PMHT has an additional step where
the assignment state probabilities are calculated via
the HMM smoother, and the assignment weights
are dependent on these probabilities. The algorithm
proceeds as follows.

1) Initialise the model state estimates X(0), and the
mixing proportion estimates §(0).
2) Determine the posterior probability of

assignment state using

P(Dt jX(i),Z) =
®t(Dt)¯t(Dt)P

U®t(Dt =U)¯t(Dt =U)
:

where ®t(Dt) and ¯t(Dt) are defined using (31) and
(32). This probability is implicitly iteration dependent
through the conditioning on the state X(i).
3) Calculate the assignment weights for each

measurement and model,

w(i)mtr =
X
Dt

P(Dt jX(i),Z)¼mt (Dt)³mt (ztr j xm(i)t )PM
p=1¼

p
t (Dt)³

p
t (ztr j xp(i)t )

:

4) Update the state estimates using the maximum
likelihood estimator to give X(i+1). This part of the
algorithm is identical to the standard PMHT. Update
the mixing proportion estimates using (26).
5) Repeat steps 2: : :4 until convergence.

C. Unknown Assignment State Parameters

The derivation of the hysteresis PMHT assumes
that the parameters of the assignment state model are
known. Namely, ¢m0 (d

m
0 ), ¢

m
t (d

m
t j dmt¡1), and Ámt (dmt )

are all known. The validity of this assumption depends
on the application. If the assignment state model is
adopted simply as a means of smoothing the estimated
¼mt then these parameters are design variables, chosen
to ensure the desired behaviour of the estimated ¼mt .
However, if it is believed that the true underlying prior
follows a Markov chain, then it is not appropriate to
choose arbitrary values. Under this circumstance it
may be desirable to estimate the true assignment state
parameters.
Firstly, consider the family of functions Ámt (d

m
t ).

These functions are part of the measurement function.
However, they do not control the measurements
directly, but influence the probability of selecting
different models. Effectively, this function acts as a
discretisation of the ¼mt function. Thus, the designer
can always choose the Ámt (d

m
t ).

In contrast, the ¢mt (d
m
t j dmt¡1) represent the true

underlying dynamic behaviour of the ¼mt . This
function can be incorporated in the same way as the
unknown confusion matrix in [5]. In a similar way,
the optimal estimate for each matrix element is given
by

¢mt (d
m
t = i j dmt¡1 = j) =

°t(d
m
t = i,d

m
t¡1 = j)

°t¡1(d
m
t¡1 = j)

(34)

where the probability °t(d
m
t = i,d

m
t¡1 = j) is determined

using an HMM smoother with forwards and
backwards recursions similar to those used for °t(d

m
t )

as given in (31) and (32). The above estimate for ¢
suffers from a scarcity of data, and it would probably
be prudent to assume that the transition function is
stationary. This leads to temporal averaging and the
estimated ¢ is then given by

¢mt (d
m
t = i j dmt¡1 = j) =

PT
t=1 °t(d

m
t = i,d

m
t¡1 = j)PT

t=1 °t¡1(d
m
t¡1 = j)

:

(35)

VI. MAINTENANCE USING THE HYSTERESIS MODEL

Track maintenance has already been identified as
a special case of the hysteresis model. The specific
models required for maintenance are now presented
fully. When a candidate track is valid, then it is
detected with probability Pd and if it is detected, then
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it forms one measurement. Thus, for a valid candidate,
the true a priori probability that the rth measurement
at scan t is due to model m, i.e., ¼mt , is Pd=nt. If
the candidate is false, then the true ¼mt is zero. This
means that the true ¼mt has two possible values, one
corresponding to valid candidates, and one to false
candidates. The assignment state space will therefore
be chosen to have two values, i.e., dmt is binary. This
is the simplest possible model, and has the benefit
of minimising the computational requirements of the
algorithm. Under this model,

Ámt (0) = 0

Ámt (1) =
Pd

nt

as presented earlier in (7).
This special case, with a binary assignment state

model, is the same as
the visibility/existence/perceivability model used for
initiation with the PDAF and other filters [16—18, 23].
The hysteresis PMHT calculates the posterior

probability mass P(dmt = 1), which is the probability
that the candidate has a prior consistent with a valid
track. This then provides a natural quality statistic.
Since the probability mass of the assignment state
variable can change over the batch, the candidate test
statistic is

qmy =
1
T

TX
t=1

P(dmt = 1 j X,Z): (36)

All that remains is the selection of the transition
probability matrix and the prior probability mass.
Since the model is binary, these are fully specified
by three parameters: ¢m0 (d

m
0 ) has two elements,

one of which is constrained by normalisation, and
¢mt (d

m
t j dmt¡1) has four elements, two of which are

constrained by normalisation. These parameters are
design parameters which can be chosen either by
subjective belief, or by optimising particular criteria.
In [20] a set of heuristic rules is optimised in

order to select parameters of the perceivability model.
Although other authors use the same model (by other
names), [20] is the only work to address the issue
of parameter selection. Other authors either present
quantities with no explanation, or do not provide
these numbers due to propriety issues. The parameters
derived in [20] are

P(dm0 = 1) = 0:5

P(dmt = 1 j dmt¡1 = 1) = 0:988
P(dmt = 1 j dmt¡1 = 0) = 0:0:

Notice that the above parameters make the dmt = 0
state absorbing. This is a reflection of the philosophy
that a false track cannot become a valid target track,
but a valid target track can become false if the target

disappears. The choice of P(dmt = 1 j dmt¡1 = 0) = 0
turns out to be a poor one for the hysteresis PMHT.
Choosing this to be zero means that if a measurement
is found at time tk then the values of d

m
t for all t < tk

must be unity. This means that the contributions of
measurements at earlier times are swamped by those
of measurements near the decision time. A single
clutter measurement falling close to the track will
cause the algorithm to be highly confident in the
track. To avoid this, the prior

P(dmt = 1 j dmt¡1 = 0) = 0:1
is chosen. The behaviour discussed above does not
occur with PDAF based algorithms because they use a
recursive estimate of the existence probability.
Two candidate tests using the standard PMHT are

now presented.

A. Sum of Weights Quality Statistic

A common test for promoting candidate tracks
is referred to as an M of N rule [1]. Under an M of
N rule, candidates are promoted if they receive M
validated measurements in N scans. This rule is also
used to select potential measurements with which to
create candidates. In this case, a candidate is formed
if there are M measurements within a gate volume
in N scans. Rather than simply counting the number
of measurements that are within an arbitrary distance
of the track, a more intuitively appealing approach is
to test the sum of the association probabilities. This
has the advantage of not promoting a track simply
because it is in a high clutter environment. Also it
gives a greater choice of promotion threshold, since
the test statistic is no longer integer valued. This leads
to a simple ad hoc quality statistic given by the sum
of the association weights:

qmw =
TX
t=1

ntX
r=1

wmtr: (37)

This statistic can be interpreted as the estimated
number of measurements caused by model m. When
normalised by the total number of measurements
in the batch, qmw is also the maximum likelihood
estimator for the prior probability of a measurement
being caused by model m if this prior is time
invariant.
This simple quality statistic is referred to as the

sum of weights quality statistic (for obvious reasons)
and is used as a benchmark for other proposed
initiation schemes. The sum of weights test could
be implemented with no alteration to the PMHT
algorithm and carries very little overheads.

B. Cost Function Increment

Track initiation was previously mentioned to be
a problem of model order estimation. One method
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for solving the model order estimation problem is
to find the maximum likelihood model fit where the
likelihood is penalised by a model order term. This
penalty term is necessary because the likelihood
can always be increased by adding further model
complexity until the order of the model equals the
number of data. The criteria due to Akaike [24],
Rissanen [25], and Schwartz [26] can be written (for
large data sets) as

L̃(d) = logfL(X(d),Z)g¡ d² (38)

where ² varies depending on the selection criterion,
and d is the order of the model.
This is equivalent to choosing a model of

order d over a model of order d¡ 1 when the log
likelihood under model d is at least ² more than the
log likelihood under model d¡1:

L̃(d)¡ L̃(d¡ 1)> 0
logfL(X(d),Z)g¡ logfL(X(d¡ 1),Z)g> ²:

(39)

The objective function for the PMHT (the EM
auxiliary function) is the conditional expectation of
the log likelihood, so an obvious analogous candidate
test statistic would be

qcQ =Q(X,X
c,Z;¦)¡Q(X,Z;¦): (40)

Thus, the candidate test statistic is the increase in
the EM auxiliary function by the incorporation of the
candidate track. The addition of the candidate model
is guaranteed to increase the auxiliary function, and
the amount of this increase provides a measure of
how much the candidate model adds to the overall
data description. This approach was used to estimate
the number of components and the parameters of a
static Gaussian mixture with an unknown number of
components by Vlasis et al. in [27] and [28].
Notice that the statistic implicitly combines

three criteria for candidate merit: the scatter of
measurements associated with the track, the prior
likelihood of the estimated state sequence, and the
likelihood of the associated measurements without
the candidate. The previous test, sum of weights
test, which is based on the assignment weights, only
addresses the first of these. This test is also similar to
the cumulative log likelihood measure of track merit
[29]. Where it differs is that it measures the increase
in likelihood due to the new track, not simply the
likelihood of the new track. In principle, this should
make this test automatically resilient to forming
duplicate tracks on the same measurement sequences,
and it will tend to penalise tracks formed in heavy
clutter.
This candidate test statistic is referred to as the

cost increment in the following analysis.

Fig. 4. Example tracker ROC curve.

VII. QUANTIFYING INITIATION PERFORMANCE

Three methods for track initiation with PMHT
have now been presented. The performance of these
methods is compared through simulation and with
recorded radar data. The performance measure for
track initiation should quantify how well the candidate
test discriminates between valid and false candidate
tracks. This will be done by using an ROC curve.
The ROC curve for a decision process plots the true
positive probability as a function of the false positive
probability. For the case of track initiation, this is
the probability of promoting a valid candidate as
a function of the probability of promoting a false
candidate, i.e., a clutter track. Each point in the locus
of the curve represents a particular detector setting
(threshold).
Fig. 4 shows an example ROC curve for track

initiation. The ROC curves to follow, plot the
probability of promoting a valid track on a linear scale
and the probability of promoting a clutter track on a
logarithmic scale. This is because the probability of
promoting a clutter track is required to be very low.
Commonly there are many more false detections than
valid target detections and consequently the majority
of the candidate tracks will be clutter tracks. In Fig. 4,
test A gives superior performance at high probability
of promoting clutter tracks, but test B gives better
performance for low probabilities. In such a case,
neither test is universally preferred, and the design
choice depends on the operating point at which the
system will work.
Although the ROC curve has been used to quantify

track initiation performance (e.g. [30—32]), it is not
common. Rather, authors tend to choose to fix the
false track rate (equivalent to choosing a particular
probability of promoting a clutter track) and observe
the valid track initiation performance. This may result
in misleading conclusions. In Fig. 4 dotted lines
show the performance obtained when a mediocre
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probability of promoting clutter tracks is specified.
In this case, the curve corresponding to test A would
give better results than the curve for test B, leading to
the conclusion that test A is a superior test. Clearly
this is not universally true, and in fact test B is
preferable when very low probability of promoting
clutter tracks is required (which it usually is). In order
to show results representative of the algorithm under
test and independent of the particular operating point
chosen, the ROC curve is used as the primary ruler for
measuring track initiation performance.
The complicated data association process

involved makes it impractical to analytically derive
the probabilities required for the curve. Instead,
the curves presented here have been formed by
approximating the probability densities with a finite
set of observations. A kernel estimate [33] is used
to approximate the probability densities to avoid
excessive fluctuations on the resulting curves.

A. Other Performance Assessment Approaches

The ROC curve is a good method for assessing
track initiation performance, but this is only one facet
of the tracking algorithm. Aspects such as manoeuvre
handling, estimation error, overshoot, and false track
duration are all important factors in overall tracker
rating. In [34], 17 metrics for tracker performance are
used to compare competing algorithms. This approach
is more appropriate to gain an overall indication of
tracking performance. However, the main focus of this
paper is track initiation performance quantified via the
ROC curve. Other studies have already considered
the performance of PMHT under established track
criterion, such as estimation accuracy (for example,
[35—38]).

VIII. SIMULATED TRACK INITIATION
PERFORMANCE

The performance of the three PMHT track
initiation approaches presented above is now
examined through simulation.
A crucial factor in the production of the initiation

ROC curves is a knowledge of the underlying truth.
The statistics are conditioned on knowledge of
whether each track is valid or false. In order to
guarantee this knowledge, two test scenarios are
used. To estimate the candidate statistics of false
tracks, a scene containing no target is used. The
statistics of valid tracks are estimated using a scene
with a single target, and a valid target measurement
is used to initialise the track. The valid candidate is
discarded if the final state estimate deviates from the
true target state by more than a prescribed amount.
This approach avoids the possibility of coincident
tracks, and false tracks being assigned valid target
measurements.

The simulated target model is the two-dimensional
almost constant velocity model. This is a Cartesian
model, with target motion independent in the two
coordinate axes. The target state is two-dimensional
position and velocity, and the state evolution pdf
is given by Ãmt (x

m
t j xmt¡1)»N(Fxmt¡1,GQGT) where

N(¹,§) is a multivariate Gaussian probability density
function (pdf) with mean ¹ and covariance §. The
matrices F and G are determined by dynamics and are
given by

F=

26664
1 ¿ 0 0

0 1 0 0

0 0 1 ¿

0 0 0 1

37775 and G=

26664
1
2¿
2 0

¿ 0

0 1
2¿
2

0 ¿

37775
where ¿ is the sampling interval, and is assumed
constant for convenience (irregular sampling requires
a different form of the Q matrix for consistency). The
model assumes random fluctuations in the velocity
components, and the matrix Q (often referred to as
the process noise covariance) gives the covariance of
these fluctuations. It is set to Q= 0:001I(2), where
I(n) is the n-dimensional identity matrix. This low
process noise ensures that the target trajectory is
approximately straight. When a target is present,
it begins in the middle of the sensor footprint with
an initial state given by x0 = [0,0:35,50,0:35]

T

(corresponding to a velocity vector of magnitude 0.5).
The sensor provides a two-dimensional

measurement vector which contains an observation of
the target position in each dimension, corrupted with
independent Gaussian noise. Thus the measurement
pdf for the target is given by

³mt (ztr j xmt )»N(Hxmt ,R) where H=
·
1 0 0 0

0 0 1 0

¸
and the measurement noise covariance is set to
R= I(2). When a target is present, it is detected with
probability Pd = 0:6. The sensor detects measurements
over a footprint arbitrarily labelled from ¡50 to 50 in
the x direction and from 0 to 100 in the y direction.
Measurements are collected over a batch of T = 11
scans.
Different distributions of the clutter measurements

are considered, although each consists of only a single
model. Thus, MY = 1 and ¾

1
t = 1.

Tracks are initialised using a single measurement
at zero velocity. The initial state distribution is
assumed to be Ãm0 (x

m
0 )»N(x̄0,P0) with

x̄0 = [z1r[x],0,z1r[y],0]
T (41)

where z1r[x] and z1r[y] are the two components
of the rth measurement at the first scan, i.e., z1r ´
[z1r[x],z1r[y]]

T. The initial covariance assigned to the
tracks (i.e., the assumed covariance of the initial state
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Fig. 5. Track initiation ROC curves with uniform clutter. (a) Low rate of false detections. (b) High rate of false detections.

distribution) is

P0 =

26664
1 0 0 0

0 0:1 0 0

0 0 1 0

0 0 0 0:1

37775 : (42)

The covariance of the position part of the initial
state is the covariance of the measurement used to
initialise it. The covariance of the velocity part of the
initial state is chosen so that the true target velocity is
several standard deviations from the initial estimate.
For the challenging scenarios chosen, 10000

Monte Carlo trials are used for each statistic to be
tested. The cost increment statistic and the weights
sum statistic are both derived from the standard
PMHT algorithm. Thus, each plot in the following
analysis is generated using 40000 random trials
(10000 each of valid and false tracks for the standard
PMHT and the hysteresis PMHT).

A. Divergent Tracks

On some valid track trials, the state estimate will
diverge from the true target trajectory. This may
occur because the track is seduced by clutter, or it
may be that the track is not able to recover from
its poor initialisation (perhaps due to early missed
detections). Such tracks are no longer valid. The
candidate track is effectively false, and they are not
included in the analysis. To test for this condition,
the distance between the track position and the true
target position is measured through the batch. If this
distance exceeds a particular threshold, then the track
is deemed divergent, and not included. The distance
in each dimension is normalised by the measurement
variance, and the total squared distance is compared
with a threshold of 9 (approximately a 99 percent

confidence interval). This means a track is divergent
if

T
max
t=1
(x̂t¡ xt)THTR¡1H(x̂t¡ xt)> 9: (43)

The number of divergent tracks is used
independently as a measure of initialisation
robustness, and is presented after the ROC curve
analysis.

B. Uniform Clutter Distribution

The first case considered is the ubiquitous uniform
clutter distribution. The performance of the three
proposed initiation schemes is examined for two
different rates of false detections. The first of these
corresponds to 10 clutter measurements per scan. This
is quite a low concentration of false measurements,
and all of the schemes have a fairly easy time in
discriminating between false and valid tracks. In
this example there is little to distinguish the different
approaches. The estimated ROC curve for each of the
initiation schemes on this relatively low false detection
rate is shown in Fig. 5(a). The weights sum and cost
increment quality measures are shown as a dashed
line and a dotted line, respectively. The hysteresis
performance is shown as a solid line.
The second clutter false detection rate corresponds

to 50 clutter measurements per scan. The estimated
ROC curves for this relatively high concentration
clutter are shown in Fig. 5(b). As is expected, the
performance of all approaches is degraded from that
obtained on the lower concentration clutter. Of the
three approaches, the hysteresis PMHT gives the
best performance, although the difference between
it and the weights sum approach is not significant.
The cost increment approach gives significantly
worse performance than the other two. This is a
little surprising, since the cost increment approach
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is linked to established model order estimation
techniques, whereas the weights sum approach is
purely an intuitive, ad hoc method. This performance
is expected, however, if the nature of the two statistics
is more closely examined.
1) Relationship Between Cost Increment and

Weights Sum for a Uniform Clutter Distribution:
It may have been intuitively expected that the
weights sum (being an ad hoc test) would give the
worst initiation results. However, the cost function
increment has worse performance. By manipulating
the expression for the cost increment quality statistic,
this result can be predicted.
In this experiment, there is only one target model,

and one clutter model. If the target model is removed,
then the cost function is

Q(X) =
TX
t=1

n
tX

r=1

logf³1t (ztr j x1t )g

=
TX
t=1

nt logf³1t g (44)

since all of the measurements have the same
probability when the clutter pdf is uniform.
With the target model, the cost function is

Q(X,Xc) =Q2X +
TX
t=1

Qt¼ +
TX
t=1

n
tX

r=1

w1tr logf³1t g:

(45)Thus

qcQ =Q(X,X
c)¡Q(X)

=Q2X +
TX
t=1

Qt¼ +
TX
t=1

ntX
r=1

w1tr logf³1t g¡
TX
t=1

nt logf³1t g

=Q2X +
TX
t=1

Qt¼ +
TX
t=1

ntX
r=1

(1¡w2tr) log³1t ¡
TX
t=1

nt logf³1t g

=Q2X +
TX
t=1

Qt¼ ¡
TX
t=1

TX
r=1

w2tr logf³1t g

=Q2X +
TX
t=1

Qt¼ ¡ logf³1t gqcw (46)

where Q2X is the model cost for the candidate track.
The statistic clearly consists of a scaled version

of the weights sum qcw plus two other terms. The Qt¼
term is relatively small and has secondary effect. The
candidate term Q2X is negative definite since it consists
of the sum of the norms of the random errors in the
model scaled by their corresponding covariances
and by a factor of ¡1=2. The assignment weights
also scale the measurement orientated error terms.
The term proportional to qcw is positive definite since
³1 < 1. Thus the Q

2
X acts against the q

c
w term. When

the track corresponds to a valid target, it is likely that

many measurements will be assigned to it, and this
makes the Q2X term larger.
The cost increment statistic can be decomposed

into two terms: the first term is the reduction in
the clutter measurement cost due to assigning
measurements to the candidate track. The second
term penalises this cost improvement based on
the discrepancy between the candidate track and
the assumed model. When the clutter is uniformly
distributed, then the first term is simply proportional
to the sum of the candidate assignment weights.
However, when a nonuniform clutter distribution
is present, the first term acts to reduce the quality
statistic of tracks in highly cluttered regions and
increase the quality statistic of those in sparsely
cluttered regions. Thus the cost increment approach
is more suited to nonuniform clutter distributions.

C. Nonuniform Clutter Distribution

The performance of the algorithms changes if
the clutter distribution is nonuniform. To illustrate
this, a scenario is now considered where the clutter
is exponentially distributed in the y coordinate
direction, and uniform in the x coordinate direction.
The exponential distribution is chosen for simplicity,
and because the decaying response loosely emulates
the behaviour of the amplitude of false measurements.
The clutter distribution is thus given by

³1t (ztr) =
1

2000
exp

½
¡ztr[y]
20

¾
: (47)

As with the uniform distribution, two different
rates of false detections are considered. Fig. 6 shows
an example trial. All of the measurements for the
batch are shown in a spatial plot. The nonuniform
distribution of clutter measurements in the vertical
axis is clearly seen. The target is present in the trial,
and the target detections can be seen in the middle
of the plot. The target measurements are shown as
circles, and false detections as crosses.
Fig. 7 shows the ROC curves generated

for nonuniform distributed clutter. Again, the
hysteresis-based algorithm shows better performance
than the weights sum. In this case, the performance
difference is more significant than in the uniform
clutter example. In contrast to the uniform case, the
cost increment approach now performs almost as well
as the hysteresis approach.
The weights sum approach performs particularly

poorly for this example. Also, the ROC curve exhibits
a staircase appearance. The staircase effect occurs
because the PMHT weights tend to converge to
extreme values: close to unity, or close to zero. This
means that the weights sum statistic tends to have
a pdf with peaks around integer values, for both
valid and false tracks. The false track peaks are more
broad because the false measurements have a higher
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Fig. 6. Example trial with target for nonuniform clutter.

scatter. Each point on the ROC curve corresponds to a
possible promotion threshold setting. As this threshold
increases, the resulting promotion probabilities
follow the ROC curve from the top right corner (zero
threshold where all tracks are promoted) to the bottom
left corner (an extremely high threshold where all
tracks are denied promotion). When this threshold
changes from slightly less than a particular integer
to slightly more, then a large number of tracks are
no longer promoted, since there are peaks in the pdf
at integer values. When many valid tracks are thus
suppressed, this causes an almost vertical drop in the
ROC curve. Conversely, when the threshold is varied
between integer values, very few valid tracks are
suppressed, but false tracks may be rejected because
the false track peaks have more spread. This causes an
almost horizontal segment in the curve. The result is a
staircase appearance which is somewhat smoothed by
the kernel pdf estimator.

Fig. 7. Track initiation ROC curves with nonuniform clutter. (a) Low rate of false detections. (b) High rate of false detections.

The overall poor performance of the weights
sum occurs because the approach only considers
the number of measurements which are assigned
to a track, and does not take account for how well
these measurements may have been described by
the existing model without the new candidate. It
is a track-orientated approach, not a total system
one. In contrast, the cost increment statistic is the
increase in the log likelihood by the addition of the
candidate. Thus if the candidate assigns measurements
in a high clutter density region the statistic will
be small: those measurements already have a high
likelihood under the hypothesis that they are due
to clutter. If the candidate assigns measurements
in a lower density region, then the statistic will be
higher: those measurements had a low likelihood
under the clutter hypothesis. Notice that the true target
trajectory lies through a lower density part of the
clutter distribution. If it were in the highest density
part, the tracker would have no hope of following
the target. Similarly, the hysteresis algorithm uses
an HMM smoother to estimate the probability of the
assignment state. This smoother is driven by a gain
term which is the conditional measurement likelihood
under each assignment state hypothesis, P(Zt jDt,Xt).
When there is only one target, it can be seen that the
HMM smoother is driven by the conditional likelihood
ratio of the measurements with and without the
candidate. If the candidate makes little change to the
measurement likelihood (for reasons described above)
then this ratio will be close to unity. If the likelihood
is greatly increased, then the ratio is large and this
drives the HMM smoother to give a high probability
of the candidate track corresponding to a valid target.
The cost increment and hysteresis approaches

perform better than the weights sum because they both
take account of the likelihood that the measurements
assigned to the candidate track were due to clutter,
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TABLE I
Percentage of Divergent Trials

Cutter Type Uniform Nonuniform

False Alarm Rate Low High Low High

standard PMHT 6.0% 31.2% 2.6% 5.0%
Hysteresis PMHT 6.2% 23.5% 2.9% 5.6%

whereas the weights sum effectively counts the
number of measurements close to the candidate
trajectory. The cost increment and the hysteresis
should thus be expected to always outperform the
weights sum in nonuniform clutter densities. The
hysteresis gives better performance than the cost
increment, because it also exploits the temporal
history of the track. Candidates which assign
measurements in many scans are given higher
credence than those who assign a few outlier
measurements.

D. Initialisation Robustness

The empirical ROC curves are generated using
only those valid tracks which remain within an
error tolerance of the true target state. This ensures
that tracks which have diverged from the correct
trajectory do not adversely affect the initiation metric.
However, the number of these divergent tracks is
also of interest. If the initiation algorithm is able to
perfectly discriminate valid tracks from clutter tracks,
but diverges from the true trajectory most of the
time, then it is much less effective than the ROC will
suggest.
The number of divergent trials is therefore listed

here to demonstrate that the different schemes have
similar performance in this area, and that each only
diverges in an acceptably small number of trials. Since
the cost increment and weights sum approaches both
use information provided by the standard PMHT, they
have the same number of divergent trials.
Table I lists the percentage of divergent trials for

each of the scenarios.
The uniformly distributed clutter has the

highest number of divergent tracks. This is because
the nonuniform clutter densities concentrate the
false detections away from the simulated target.
The higher density clutter in this region makes
discrimination between valid and false tracks more
difficult because it produces false tracks with more
matching measurements. However, the total number of
measurements is the same, so the density around the
target is lower for the nonuniform clutter. Since most
divergent tracks occur when the track is seduced by
clutter detections, this lower density around the target
leads to a lower rate of divergence.
In general, the rate of divergent tracks is

approximately the same for the PMHT with and

without hysteresis, with the hysteresis showing a
marginally higher rate. This happens because the
parameter choice for the hysteresis model was to use
a very low prior probability that the target is visible.
In Section VI, the prior probability of a target being
valid was chosen to be ¢0(d

m
0 = 1) = 0:1. This means

that the algorithm may decide that some difficult
trials, where early measurements are missed, do
not contain a valid track. When the probability that
dmt = 1 is very low, then the track is not updated by
measurements and the track is marked as divergent
because it never recovers from initialisation. This
effect can be reduced by choosing a higher initial
probability, but that degrades the ROC performance.
Since the increase in the rate of divergent tracks
is only marginal, it was preferred to tolerate it, in
preference for superior ROC performance.
The exception to the above trend is the high false

detection rate uniform clutter, where the hysteresis
model performs much better than the standard
PMHT. This is the only case where the two show a
significant difference in performance. In this case, the
hysteresis model gives better performance because it
constrains the allowable values of ¼mt . If more than
one measurement is close to the candidate track in one
scan, then the standard PMHT will give an estimated
¼̂mt > 1=nt. The hysteresis model limits the prior to
Pd=nt. Thus the converged assignment weights for
the standard PMHT will be higher than those for
the hysteresis PMHT in such a case. Since the true
measurement model used for the simulation can only
produce one valid measurement per scan, the multiple
measurement case only occurs due to false detections.
These false detections can seduce the track away from
the true path, and by limiting the value of ¼mt , the
hysteresis PMHT is made somewhat more resilient
to this factor. This behaviour is not observed for any
of the other data conditions because the nonuniform
clutter pdfs concentrate the false detections in a
different area to where the target is present. So, the
high rate uniform clutter pdf is the case where the
valid track is faced with the highest rate of false
detections in its immediate vicinity.
An important point to raise is that the divergent

track rate reflects the probability that the candidate
track will remain within a tolerance gate of the true
target position, given that it starts on a valid target
measurement. In the implementation used here,
candidate tracks were formed on all unassigned
measurements. That is, all measurements for which
the largest ¼mt for target models was less than a
threshold level of 0.1. Additional tests, such as
requiring sequential scans with measurements within
a gate distance, can be used to reduce the number of
candidates considered, and this reduces the system
load (since less tracks are formed) but does not affect
the performance in terms of false track rate or target
detection ability.
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IX. RADAR DATA PERFORMANCE

The simulation results of the previous section
are now verified by running the three track initiation
approaches through recorded radar data. The
performance of the algorithms is quantified through
an empirical ROC curve for track initiation. The
difference between the recorded data and simulation
is that each of the tracks used in the simulated
examples is known to be either valid or false, since
this is predetermined by the simulation. When data
from a real sensor is used, it is not axiomatic which
measurements are valid and which are false. This
underlying truth is difficult to obtain, yet it is vital
to the analysis. Mislabelled tracks with high or low
quality might easily lead to incorrect ROC curves.
The first step required in the production of real

data ROC curves is the generation of truth. In a
coordinated experiment, this might be done using
accurate position logging devices, such as a Global
Positioning System (GPS). However, the data sets
used here contain targets of opportunity, for which
no secondary data source is available. Therefore the
validity of measurements is determined by direct
examination of the data using displays which are
capable of overlaying track reports with the radar
image. This approach is used to form a set of valid
tracks, and then the candidates are correlated against
these, rather than ground truth.

A. Data Set Features

Two data sets have been selected for use in this
analysis. The first data set was collected in early
evening. Due to the propagation conditions, and the
waveform parameters used, it contains large amounts
of interference, in the form of spread Doppler clutter.
The radar noise suppression algorithm rejects some
of this interference, but not enough to prevent a
tracker from producing numerous false tracks. It
is known that no targets are present, and the only
valid measurements are those due to the calibration
track. This data is primarily a test of false track
performance. It presents a particularly difficult clutter
scenario because the spread Doppler clutter occupies a
particular spatial region and false detections produced
by it are concentrated in this area–in effect the spatial
clutter distribution is nonuniform.
The second data set was recorded under more

amiable propagation. The data contains a single target
of opportunity which is supported by a single mode of
propagation. This target is of relatively low amplitude
and is sometimes undetected due to signal fading. This
data provides a low detectability valid target. The data
sets are combined to produce a single ROC curve for
each algorithm tested.
Both data sets also contain high amplitude targets

of opportunity which are relatively easy to track. The

Fig. 8. Track initiation ROC curves for radar data.

effect of these two classes of target can be seen in
some of the ROC curves, where an initial decline in
promotion probability is followed by a plateau. In this
plateau region, the difficult target has been suppressed,
but the tracks on the strong targets are still promoted
with quality levels much higher than the threshold.
ROC curves generated using radar data for the

three approaches are shown in Fig. 8. As was the
general trend in the simulations, the hysteresis PMHT
gives the best performance.
The clutter pdf for this data is nonuniform, so

the weights sum approach is expected to give the
worst performance, and this is confirmed by the
results. The weights sum also has a step drop off
in performance. This occurs because the strong
targets are detected in almost all scans. If there are
no nearby clutter measurements, the weights sum
will thus be approximately equal to the batch length.
Once it becomes necessary to raise the promotion
threshold above this level, all of those tracks become
suppressed.

X. SUMMARY

This paper has introduced a dynamic model
for the assignment prior probability for the PMHT
algorithm. This model uses a Bayesian hyperparameter
that is assumed to follow a Markov chain, and is
referred to as hysteresis. The hysteresis model uses
an independent discrete state variable for each target
model, and the state variable for a particular model
represents its significance in the measurement mixture
distribution.
A PMHT algorithm was derived by treating the

assignment state variables as missing data in an
EM sense, and this algorithm is referred to as the
hysteresis PMHT. The hysteresis PMHT determines
the probability of the assignment state, in much the
same way as the standard PMHT determines the
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probability of the assignments. This probability can
be calculated using the HMM smoother.
The hysteresis assignment model for PMHT

was then applied to the important problem of
track initiation. The initiation performance of the
hysteresis-based algorithm was compared with
two alternatives based on the standard PMHT and
common initiation approaches. The hysteresis-based
track initiation scheme was found to give the best
performance for various simulated clutter conditions,
and for data from a real sensor.
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