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The effect of disturbances on the flows under a
sluice gate and past an inclined plate
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2School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK

(Received 8 March 2006 and in revised form 7 November 2006)

Free surface potential flows past disturbances in a channel are considered. Three
different types of disturbance are studied: (i) a submerged obstacle on the bottom
of a channel; (ii) a pressure distribution on the free surface; and (iii) an obstruction
in the free surface (e.g. a sluice gate or a flat plate). Surface tension is neglected,
but gravity is included in the dynamic boundary condition. Fully nonlinear solutions
are computed by boundary integral equation methods. In addition, weakly nonlinear
solutions are derived. New solutions are found when several disturbances are present
simultaneously. They are discovered through the weakly nonlinear analysis and
confirmed by numerical computations for the fully nonlinear problem.

1. Introduction
We consider nonlinear two-dimensional potential free-surface flows past distur-

bances in a channel. As reviewed below, many results have been obtained for flows
past a single disturbance. The focus of this paper is on flows past multiple disturbances.
This enables us to generate new families of solutions which do not have an equivalent
when there is only one disturbance. In particular, it was found in Binder & Vanden-
Broeck (2005) that there are no steady potential flows past a sluice gate or wavy
flows past a flat plate which satisfy the radiation condition (this condition which
requires that there is no energy coming from infinity, implies that the flow is not
wavy upstream). In this paper, it is shown that such solutions can be obtained by
introducing a second disturbance in the flow. The disturbances can be submerged or
on the free surface. We consider three types of disturbance: (i) an obstacle on the
bottom of a channel (e.g. a triangle); (ii) a pressure distribution on the free surface (e.g.
a ship); and (iii) an obstruction in the free surface (e.g. a sluice gate or a flat plate).

As x∗ → ∞, the flow is assumed to approach a uniform stream with constant velocity
U and constant depth H , (figure 1a). We define the dimensionless downstream Froude
number as

F =
U

(gH )1/2
. (1.1)

Here, g is the acceleration due to gravity. As x∗ → −∞, the flow can be uniform or
be characterized by a train of waves of constant amplitude. When it is uniform, we
introduce an (additional) upstream Froude number

F ∗ =
V

(gD)1/2
, (1.2)

where V and D are the uniform velocity and uniform depth as x∗ → −∞.
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Figure 1. (a) Sketch of flow in physical coordinates (x∗, y∗). The three types of disturbance
are illustrated. The first is a submerged triangle at the bottom of the channel. The second is a
distribution of pressure centred at x∗

p (only the centre is shown in the sketch). The third is a
gate BC in the free surface. (b) Sketch of flow in the plane of the complex potential (f -plane).
(c) Sketch of flow in the lower half-plane (ζ -plane).

Free-surface flows past a single disturbance have been studied by many previous in-
vestigators. For example, flows past the first two types of disturbance (submerged dis-
turbances and pressure distributions) were investigated by Lamb (1945), Forbes (1981),
Forbes & Schwartz (1982), Vanden-Broeck (1987), Forbes (1988), Dias & Vanden-
Broeck (1989), Asavanant & Vanden-Broeck (1994), Shen (1995) and others. Three
different types of flow were found. The first type is characterized by uniform streams
both far upstream and far downstream (i.e. as x∗ → ±∞) with F =F ∗ > 1. The second
type has a uniform stream as x∗ → ∞ with F < 1 and a train of waves as x∗ → −∞.
The third type is characterized by uniform flows as x∗ → ±∞ with F > 1 and F ∗ < 1.

Dias & Vanden-Broeck (2002) identified a fourth type of flow characterized by a
uniform stream with F > 1 as x∗ → ∞ and by a train of waves as x∗ → −∞. These
flows do not satisfy the radiation condition if the flow is oriented as in figure 1(a).
Therefore, the physical relevance of these new flows appears to be limited in the case
of one obstacle.

Many calculations were also performed for the third type of disturbance
(obstruction in the free surface). For free-surface flows under sluice gates and past
plates (see for example Binnie 1952; Benjamin 1956; Frangmeier & Strelkoff 1968;
Larock 1969; Chung 1972; Vanden-Broeck & Keller 1989; Asavanant & Vanden-
Broeck 1996; Vanden-Broeck 1996; Binder & Vanden-Broeck 2005). The flow under
a sluice gate (with the flow orientation of figure 1a) is defined by uniform streams
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as x∗ → ±∞ with F > 1 and F ∗ < 1. Experiments show that eddying motion in front
of the gate and wave generation by upstream conditions may occur (see Benjamin
1956). However, such effects are neglected in most investigations and steady potential
solutions are sought. Unfortunately, Vanden-Broeck (1996) and Binder & Vanden-
Broeck (2005) showed that there are no such flows. The only possible ‘solutions’ for
flows under a sluice gate are characterized by a uniform stream with F > 1 as x∗ → ∞
and a train of waves as x∗ → −∞. These ‘solutions’ are similar to the fourth type of
solutions past a submerged disturbance calculated by Dias & Vanden-Broeck (2002)
in the sense that they do not satisfy the radiation condition.

Binder & Vanden-Broeck (2005) also showed that there are no flows past a flat plate
with a uniform stream with F < 1 as x∗ → ∞ and a train of waves as x∗ → −∞. Only
solutions with trains of waves as x∗ → ±∞ can be calculated. Again these solutions
cannot satisfy the radiation condition.

Dias & Vanden-Broeck (2004) examined further the flows of the fourth type past an
obstacle. They consider flows past two obstacles and obtain new solutions which are
characterized by a train of waves trapped between the two obstacles. These solutions
satisfy the radiation condition. The flows of the fourth type were shown to describe
locally the flow over one of the obstacles when the distance between the obstacles is
large. This work was extended by Binder, Dias & Vanden-Broeck (2005).

In this paper, we examine further the two solutions of Binder & Vanden-Broeck
(2005) which do not satisfy the radiation condition (i.e. the flow under a sluice gate
and the wavy flow past a flat plate). The results of Dias & Vanden-Broeck (2004)
suggest that placing a second disturbance in front of the gate or the plate might
generate physical flows which satisfy the radiation condition. The idea is to trap the
waves (which appear as x∗ → −∞ in the solutions of Binder & Vanden-Broeck 2005)
between the two disturbances so that the flow becomes uniform as x∗ → −∞. The
radiation condition is then satisfied. In this paper, we provide conclusive analytical and
numerical evidence that such solutions exist. This provides a physical interpretation
of the solutions of Binder & Vanden-Broeck (2005), which do not satisfy the radiation
condition: they describe locally the flow near the sluice gate or plate when the second
obstruction is far away. In addition, we compute new families of solutions.

The numerical solutions are obtained via a boundary-integral-equation formulation
of the fully nonlinear problem. The analytical results are based on a weakly nonlinear
theory. Both approaches are described in § 2.

When presenting the results, we shall use the following terminology. The flow of
figure 1(a) is called supercritical, if it is uniform both far upstream and far downstream
(i.e. as x∗ → ±∞ with F =F ∗ > 1). It is called subcritical if it is uniform as x∗ → ∞
with F < 1 and characterized by a train of waves as x∗ → −∞. If the flow is uniform
as x∗ → ±∞ with F > 1 and F ∗ < 1, the flow is called critical. Finally, it is called a
generalized critical flow if the flow is uniform with F > 1 as x∗ → ∞ and characterized
by a train of waves as x∗ → −∞.

2. Formulation
We consider the steady two-dimensional irrotational flow of an inviscid and

incompressible fluid in a channel. The fluid has constant density ρ. We define Cartesian
coordinates (x∗, y∗) with the x∗-axis on the horizontal bottom and the y∗-axis directed
vertically upwards, (see figure 1a). Gravity is acting in the negative y∗-direction and
surface tension is neglected. As x∗ → ∞, the flow approaches a uniform stream with
constant velocity U and constant depth H .
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We denote the equation of the free surface by y∗ = H + η∗(x∗) where η∗(x∗) is the
elevation of the free surface on top of the level y∗ =H .

We assume that the flow is perturbed by disturbances. The first type is an obstacle
on the channel bottom. In this paper, we consider isosceles triangles with angle
180◦ − 2σt at their apexes. Qualitatively similar results could be obtained for other
shapes. We denote the position of the triangle’s apex by x∗

t and the position of the
corners on the bottom by x∗

do and x∗
up , (see figure 1a). Here, do and up refers to

downstream and upstream, respectively. The triangle has height h∗. The equation for
the shape of the channel bottom is denoted by y∗ = σ ∗(x∗).

The second type is a pressure distribution P ∗(x∗) with bounded support. This could
model the effect of the wind or a ship for example. In the sketch of figure 1(a), there
is a distribution of pressure with centre at x∗

p on the upstream free surface AB . The
third type is an obstruction in the free surface. An example is a sluice gate or a
surfboard, length L∗, inclined at angle σc to the horizontal. In figure 1(a), there are
two free surfaces AB and CD with a vertical sluice gate BC.

Two theories are used in this paper to solve the flow problem in figure 1(a). The first
is a nonlinear numerical theory based on boundary-equation methods. The second is
an analytical weakly nonlinear theory using the Korteweg–de Vries equation (KdV)
and forced Korteweg–de Vries equations (fKdV). The numerical method used to
compute nonlinear solutions is described in the next subsection.

2.1. Boundary-integral equation

The numerical procedure is derived as a combination of the methods used by Binder
et al. (2005) to compute flows past submerged obstacles and by Vanden-Broeck (1996)
and Binder & Vanden-Broeck (2005) to compute flows under sluice gates or past flat
plates. Some of the details are repeated for completeness and further details can be
found in these papers.

We define dimensionless variables by taking H as the reference length
and U as the reference velocity. Thus, we define the dimensionless quantities
(x, y, η, σ, L, h)= (x∗, y∗, η∗, σ ∗, L∗, h∗)/H and (u, v) = (u∗, v∗)/U . Here, u∗ and v∗

are the dimensional horizontal and vertical components of the velocity. We also
define the dimensionless pressure P (x) = P ∗(x∗)/ρgH .

The dynamic boundary condition, on the two free surfaces AB and CD, then takes
the form

1

2
(u2 + v2) +

1

F 2
(P + y) =

1

2
+

1

F 2
on y = 1 + η. (2.1)

We introduce the complex potential function, f = φ + iψ and the complex velocity,
w = df/dz = u − iv. Without loss of generality, we choose ψ =0 on the streamline
ABCD. It follows that ψ = −1 on the channel bottom streamline ÁD .́ We also choose
φ = 0 and x = 0 at the point B on the streamline ABCD. We denote by φ =φc the
value of φ at the point C where the downstream free surface separates from the gate.
Similarly, we denote the values of φ at the corners of the triangle by φup , φdo and φt .
In the complex potential plane, the fluid is in the strip −1 < ψ < 0 and −∞ <φ < ∞
(see figure 1b).

We then map the strip of figure 1(b) onto the lower half of the ζ -plane by the
transformation

ζ = α + iβ = exp(πf ). (2.2)

The flow in the ζ -plane is shown in figure 1(c), where αc =exp(πφc), αp = exp(πφp),
αup = −exp(πφup), αt = −exp(πφt ) and αdo = −exp(πφdo). The objective now is to derive
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integral equation relations that only involve unknown quantities on the free surface,
subject to the kinematic boundary conditions on the free surface, the gate and the
bottom of the channel.

We first define the function τ − iθ by

w = u − iv = exp(τ − iθ). (2.3)

Following Binder et al. (2005) and Binder & Vanden-Broeck (2005), we obtain the
following relation for τ in terms of the unknown function θ on the free surfaces AB

and CD

τ (φ) = −σt

π
ln

(αt − exp(πφ))2

|(αup − exp(πφ))(αdo − exp(πφ))| − σc

π
ln

|αc − exp(πφ)|
|1 − exp(πφ)|

+

∫ 0

−∞

θ(φ0)exp(πφ0)

exp(πφ0) − exp(πφ)
dφ0 +

∫ ∞

φc

θ(φ0)exp(πφ0)

exp(πφ0) − exp(πφ)
dφ0. (2.4)

Parametric relations for the shape of the upstream free surface, AB , in terms of τ (φ)
and θ(φ) are

x(φ) =

∫ φ

0

exp(−τφ0) cos θ(φ0) dφ0 for −∞ < φ < 0 (2.5)

and

y(φ) = y(0) +

∫ φ

0

exp(−τφ0) sin θ(φ0) dφ0 for −∞ < φ < 0. (2.6)

Those on the downstream free surface CD are

x(φ) = x(φc) +

∫ φ

φc

exp(−τφ0) cos θ(φ0) dφ0 for φc < φ < ∞ (2.7)

and

y(φ) = 1 +

∫ φ

∞
exp(−τφ0) sin θ(φ0) dφ0 for φc < φ < ∞. (2.8)

The quantities y(0) and x(φc) in (2.6) and (2.7) can be evaluated as follows. If the free
surface separates tangentially at B then

y(0) =
(
1 + 1

2
F 2

)
γ,

where the value γ < 1 fixes the position of the separation point. If B is a stagnation
point, then γ =1. For a vertical gate x(φc) = 0 and for a inclined gate x(φc) = (y(0) −
y(φc))/ tan σc.

As we shall see in § 2.2, the weakly nonlinear theory approximates the pressure P

by a delta function. In the nonlinear computations we choose

P (x) = A
β√
π

exp(−β2(x − xp)2), (2.9)

where A and β are constants. It can be shown that

P (x) → Aδ(x − xp) as β → ∞. (2.10)

The fact that P (x) is close to a delta function for β large, will be convenient when
comparing nonlinear results with weakly nonlinear results. Equations (2.1), (2.4), (2.6)
and (2.8) define a nonlinear integral equation for the unknown function θ(φ) on the
free surfaces −∞ <φ < 0 and φ >φc.
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This integral equation is solved numerically by following the numerical procedures
outlined in Binder et al. (2005) and Binder & Vanden-Broeck (2005). Other equations
for the length of the gate, L, and height of triangle, h, can also be found in these
papers.

2.2. Weakly nonlinear theory

The determination of the number of independent parameters required to obtain a
unique solution to a free-surface problem is often delicate and counter intuitive. There
are two ways to find them. The first is by careful numerical experimentation (fixing
too many or too few parameters fails to yield convergence); the second is to perform a
weakly nonlinear analysis in the phase plane. This second approach has the advantage
of allowing a systematic determination of all the possible solutions (within the range of
validity of the weakly nonlinear analysis). In all the examples presented in this paper,
we checked that both approaches lead to the same number of independent parameters.

Shen (1995), Dias & Vanden-Broeck (2002), Binder et al. (2005) and others derived
a forced Korteweg–de Vries equation (fKdV equation) to model the flow past
disturbances of the first two types (i.e. an obstacle at the bottom of the channel
and a distribution of pressure). They showed that the forcing can be approximated
by a jump in ηx . More precisely, they showed that the flow past an isosceles triangle
of height h characterized by σt = 45◦ and centred at x = xt can be modelled by

ηxx + 9
2
η2 − 6(F − 1)η = 0 for x �= xt , (2.11)

with the vertical jump condition

ηx(x
+
t ) − ηx(x

−
t ) = −3h2. (2.12)

Similarly, they showed that the flow past the distribution of pressure (2.9) (with β

large) can be modelled by

ηxx + 9
2
η2 − 6(F − 1)η = 0 for x �= xp, (2.13)

with the vertical jump condition

ηx(x
+
p ) − ηx(x

−
p ) = −3A. (2.14)

These approximations are valid for small disturbances and F close to 1.
We define the jumps due to a submerged triangle and pressure distribution as

jt = −3h2, jp = −3A, (2.15)

respectively. These relations imply that a triangle and a distribution of pressure
satisfying

h2 = A, (2.16)

produce the same weakly nonlinear solution.
Binder & Vanden-Broeck (2005) derived corresponding weakly nonlinear solutions

for flows past a sluice gate or surfboard. They showed that the flow is described on
the free surfaces AB and CD of figure 1(a) by the KdV equation

ηxx + 9
2
η2 − 6(F − 1)η = 0, (2.17)

with the conditions

ηB − ηC = L sin σc, (2.18)

ηB
x = ηC

x = −tanσc. (2.19)



Effect of disturbances on flows under a sluice gate 481

0

dη
—
dx

dη
—
dx

η η =    (F – 1)

(a)

η0

(b)

4–
3

η =    (F – 1)4–
3

Figure 2. Weakly nonlinear phase portraits, dη/dx versus η. (a) Supercritical flow, F > 1.
There is a saddle point at η = 0, ηx = 0 and a centre at η = 4/3(F − 1), ηx = 0. (b) Subcritical
flow, F < 1. There is a saddle point at η = 4/3(F − 1), ηx = 0 and a centre at η = 0, ηx = 0.

Here, the superscripts B and C refer to the points B and C in figure 1(a) and L is the
length of the plate. Since ηB

x = ηC
x , (2.18) and (2.19) imply that the gate is represented

in the phase plane by a horizontal segment of length L sin σc. Following Binder &
Vanden-Broeck (2005), we refer to that segment as a horizontal jump.

The free-surface flows considered in this paper involve multiple disturbances. The
weakly nonlinear theory is obtained by combining the analysis for single disturbances
developed by Dias & Vanden-Broeck (2002) (submerged disturbances) and by
Binder & Vanden-Broeck (2005) (sluice gates). To construct weakly nonlinear solutions
for flows past multiple disturbances we must combine the trajectories of the phase
plane of figure 2 with both vertical jumps (submerged objects) and horizontal jumps
(sluice gates or plates). Such analysis is performed in the next sections for supercritical,
subcritical, (waveless) critical and generalized critical flow.
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Figure 3. Supercritical flow past a pressure distribution and an inclined plate for given values
of F = 1.10, A = 0.02 and σc = 2.30◦. (a) Fully nonlinear free-surface profile for γ = 0.72,
L =2.61 and xp = −6.77. (b) Values of dy/dx = tan(θ ) versus y − 1 = η, showing the fully
nonlinear phase trajectories for (a). (c) Weakly nonlinear profile for γ = 0.73, L = 2.70 and
xp = −6.32. (d) Weakly nonlinear phase portrait for (c), dη/dx versus η.

3. Results
3.1. Supercritical flow past a pressure distribution and an inclined plate

The main purpose of this paper is to construct weakly nonlinear and nonlinear
solutions for subcritical flow past a plate and for critical flow under a sluice gate
that satisfy the radiation condition. To complement these solutions we include here
(see figure 3) weakly nonlinear and nonlinear solutions for supercritical flow past a
pressure distribution and an inclined surfboard.

Supercritical flows are characterized by F =F ∗ > 1 and no waves as x → ±∞.
Figure 3(a) is a typical nonlinear free-surface profile for F =1.10, A= 0.02, σc = 2.30◦,
L =2.61, γ = 0.72 and xp = −6.77. We now derive an analytical weakly nonlinear
profile, (figure 3c) to compare with the our nonlinear computed profile (figure 3a). It
is obtained by combining the phase plane of figure 2(a) with a vertical jump (modelling
the pressure distribution) and a horizontal jump (modelling the plate). For example,
in figure 3(d), we start at the origin in the phase plane moving along the solitary
wave orbit in a clockwise direction until we come to the first disturbance (pressure
distribution). There is then a vertical jump, given by (2.15), onto an inner periodic
orbit in the phase plane. We then continue to move along this inner periodic orbit in
a clockwise direction until we come to the second disturbance (inclined plate). There
is then a horizontal jump, given by (2.18) and (2.19), onto the solitary wave orbit. We
then continue to move along the solitary wave orbit until we return to the origin in
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Figure 4. Subcritical flow past a pressure distribution and an inclined plate for given values
of F = 0.76, γ = 0.81, A =0.04 and σc = −5.4◦. (a) Fully nonlinear free-surface profile for the
values, L = 1.92 and xp = −3.60. (b) Values of dy/dx = tan(θ ) versus y − 1 = η, showing the
fully nonlinear phase trajectories for (a). (c) Weakly nonlinear profile for the values L = 1.41
and xp = −4.03. (d) Weakly nonlinear phase portrait for (c), dη/dx versus η.

the phase plane. The corresponding weakly nonlinear free-surface profile is shown in
figure 3(c). The parameters for this weakly nonlinear solution are F = 1.10, A= 0.02,
σc =2.30◦, L =2.70, γ = 0.73 and xp = −6.32. The weakly nonlinear and nonlinear
solutions are qualitatively similar. In particular, the weakly nonlinear portrait of
figure 3(d) is close to the curves of figure 3(b) where we plot nonlinear values of
dy/dx versus y − 1 along the free surface. We note that the same weakly nonlinear
solution is obtained if the pressure distribution is replaced by a triangle of height
h = A1/2 = 0.1 (see (2.16)).

The analysis in the weakly nonlinear phase plane (figure 3d) determines the number
of independent parameters we need to fix to obtain a unique solution (namely four: F ,
A, σc and xp). The length of surfboard is given by L and elevation of the free-surface
by γ , In the next subsection, we consider subcritical flow, F < 1, past an inclined plate.

3.2. Subcritical flow past pressure distributions and an inclined plate

Binder & Vanden-Broeck (2005) showed that there are no solutions for subcritical
flow (F < 1), past a plate, that satisfy the radiation condition. All solutions have trains
of waves both far upstream and far downstream (i.e. as x → ±∞).

We first introduce a pressure distribution to eliminate the train of waves extending
to x → ∞. The flow has then to be reversed to obtain a physically realistic solution
(such a reversal was done in figure 4 of this paper.). Figures 4(a) and 4(c) are nonlinear
and weakly nonlinear solutions for a given value of F = 0.76. The length L of the
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plate and position xp of the pressure distribution came as part of the solution. If
these two parameters are fixed, there are, in general, three trains of waves (one far
upstream, one far downstream and one between the two disturbances). We could
obtain solutions that satisfy the radiation condition with two trains of waves on the
free surface. In figures 4(a) and 4(c), we chose to eliminate two of the trains of waves
and to allow one train of waves to remain on the free surface.

The nonlinear and weakly nonlinear profiles (figure 4a, c) are in good agreement for
F =0.76. The agreement improves when values of F closer to 1 are chosen. The ana-
lysis in the weakly nonlinear phase plane is shown in figure 4(d). The nonlinear phase
trajectories in figure 4(b) provide a check that the weakly nonlinear analysis is correct.

We note that qualitatively similar profiles could be obtained by replacing the
pressure distribution with a triangle in figures 4(a) and 4(c).

In the next subsection, we consider generalized critical flow, F > 1, past a pressure
distribution and under an inclined sluice gate.

3.3. Generalized critical flow past a pressure distribution and under
an inclined sluice gate

Binder & Vanden-Broeck (2005) showed that the only possible flows under an inclined
sluice gate are generalized critical flows ( i.e. flows with F > 1 and a train of waves
as x → −∞). There are therefore no solutions that satisfy the radiation condition. By
introducing another disturbance such as pressure distribution, we now show that we
can eliminate these waves, thus satisfying the radiation condition.

Figure 5(a) is a computed free-surface profile for flow past a pressure distribution
and under an inclined sluice gate for given values of F = 1.30, σc = 3.4◦, γ = 0.79
(tangential separation at x = 0), A= 0.01 and xp = −16.44. The length of the gate
L =6.92, came as part of the solution. In general, there are two trains of waves on
the upstream free surface and the radiation condition is not satisfied as x → −∞.

The weakly nonlinear phase plane is obtained by combining the phase portrait of
figure 2(a) with a horizontal jump modelling the gate, a vertical jump modelling the
distribution of pressure. This is illustrated in figure 5(c) which is a weakly nonlinear
phase portrait for figure 5(a). These weakly nonlinear results are in good agreement
with the corresponding nonlinear results of figure 5(b).

Now by allowing two of the independent parameters to come as part of the solution
(e.g. A and xp) we can force the free surface to be flat as x → −∞. Figure 6(a) is a
computed nonlinear free-surface profile for a given value F = 1.30. We also derived
analytically a similar weakly nonlinear profile for, F = 1.30, in figure 6(c). The flow
in figure 6(a, c) is critical (F > 1, F ∗ < 1) and the radiation condition is satisfied as
x → −∞.

So far, we have considered only flows in a channel disturbed by two of our three
different types of disturbance (i.e. a gate and a distribution of pressure). We consider
in the next subsection the flow past an obstacle on the bottom of the channel and
under a vertical sluice gate.

3.4. Generalized critical flow past a triangle and under a vertical sluice gate

Vanden-Broeck (1996) considered the flow under a vertical sluice gate. In accordance
with the findings of Binder & Vanden-Broeck (2005), he found that there are always
waves as x → −∞. Therefore there are no solutions satisfying the radiation condition.
In this subsection, we show how to eliminate the waves as x → −∞ by introducing a
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Figure 5. Generalized critical flow past a pressure distribution and under an inclined sluice
gate. (a) Fully nonlinear free-surface profile for values of F = 1.30, L = 6.92, γ = 0.79, σc =3.4◦,
A = 0.01 and xp = −16.44. (b) Values of dy/dx = tan(θ ) versus y−1 = η, showing the fully non-
linear phase trajectories for (a). (c) Weakly nonlinear phase portrait for (a), dη/dx versus η.

second disturbance. We choose this disturbance to be the submerged obstacle since
results with the pressure distribution have already been described in the previous
subsection.

Figure 7(a) is a profile for the flow past a triangle on the bottom of the channel
and under a vertical sluice gate for given values of σc = 90◦, γ =1.00 (stagnation
point at the separation point B), L =1.00, σt =45◦, h = 0.55 and xt = −11.53. The
downstream Froude number F = 1.84 came as part of the solution. In general, there
are two trains of waves of different amplitude on the upstream free surface for the
flow past a submerged obstacle and a vertical sluice gate (see figure 7a). The radiation
condition is not satisfied far upstream as x → −∞.

By allowing the triangles height h and position xt to come as part of the solution
and forcing the free surface flat as x → −∞, the waves can be eliminated far upstream
and the radiation condition is then satisfied. We moved the triangle along the bottom
of the channel, closer to sluice gate in figure 7(b), before allowing h and xt to come
as part of the solution. This allowed us to eliminate all the waves appearing on the
free surface.

We also found that the shape or geometry of the disturbance on the bottom of the
channel did not affect qualitatively the solutions. This is illustrated in figures 7(b),
7(c) and 7(d) for different values of σt , h and xt .
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Figure 6. Critical flow past a pressure distribution and under an inclined sluice gate. (a) Fully
nonlinear free-surface profile for values of F = 1.30, L = 6.92, γ = 0.79, σc = 3.4◦, A = 0.02
and xp = −16.41. (b) Values of dy/dx = tan(θ ) versus y − 1 = η, showing the fully nonlinear
phase trajectories for (a). (c) Weakly nonlinear free surface profile for values of F = 1.30,
L =8.23, γ = 0.79, σc = 2.9◦, A = 0.02 and xp = −13.13. (d) Weakly nonlinear phase portrait for
(c), dη/dx versus η.

The weakly nonlinear theory assumes that the slope of the streamline ABCD in
figure 1(a) is small. Therefore, the weakly nonlinear theory cannot be used to model
the flow under a vertical sluice gate and no comparisons with weakly nonlinear results
can made in this subsection.

In the next subsection we consider flow in a channel past all three types of
disturbance.

3.5. Generalized critical free-surface flows with multiple disturbances in a channel

In this section, we discuss results with all three types of disturbance (sluice gate,
pressure distribution and triangle) included. To illustrate that the results are qualita-
tively independent of the precise form of the distribution of pressure, we present
results for a different pressure distribution from the one defined by (2.9), namely

P = Ae[1/[(x−xp)2−β2
p]] for xp − βp < x < xp + βp,

P = 0 otherwise.

}
(3.1)
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Figure 7. Generalized critical flow and critical flow past a disturbance on the bottom of a
channel and under a vertical sluice gate for the values of F = 1.84, γ = 1.00, σc = 90◦ and
L = 1.00. (a) The values for the triangle are h = 0.55, xt = −11.53 and σt = 45◦. (b) The values
for the triangle are h = 0.36, xt = −4.18 and σt = 45◦. (c) The values for the triangle are
h = 0.22, xt = −11.57 and σt = 6.3◦. (d) The values for the triangle are h = 0.41, xt = −11.45
and σt = 82.8◦.

We first discuss solutions for an inclined sluice gate, a triangle and a pressure
distribution upstream of the gate. In general, there are three trains of waves on the
upstream free surface and a uniform supercritical stream as x → ∞. Two of the trains
of waves are ‘trapped’ between the disturbances (pressure distribution, obstacle and
gate) and one train of waves extends far upstream. Figure 8(a) is a computed profile.
The downstream Froude number F = 1.87 came as part of the solution. We note that
the radiation condition is not satisfied since there is a train of waves as x → −∞.

Since the flow separates tangentially from the sluice gate at x = 0 (γ = 0.95) in
figure 8(a), we can analyse the solution in the weakly nonlinear phase space (see
figure 8b). The vertical and horizontal lines in figure 8(b) correspond to the triangle
or pressure disturbances and inclined sluice gate, respectively. The bold inner periodic
orbits in figure 8(b) correspond to the three trains of waves in figure 8(a). We are
outside the expected range of validity of the weakly nonlinear analysis since F is not
close to 1. However, the agreement between nonlinear and weakly nonlinear theories
is still good.

Following the analysis of the flow past two disturbances of figure 6(a), we can
eliminate the train of waves that appears upstream of the last disturbance on the free
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Figure 8. Generalized critical flow and critical flow past a pressure distribution, triangle and
inclined sluice gate. (a) The values for the Froude number and gate are, F = 1.87, L = 4.65,
γ = 0.95 and σc =18◦. The values for the pressure distribution are, xp = −9.63, A = 3.50 and
βp = 0.45. The values for the triangle are h = 0.35, xt = −4.97 and σt = 45◦. (b) Sketch of
the weakly nonlinear phase portrait for (a). (c) The values for the Froude number and gate
are, F = 1.87, L = 4.65, γ =0.95 and σc = 18◦. The values for the pressure distribution are,
xp = −9.90, A = 3.50 and βp = 0.49. The values for the triangle are h =0.35, xt = −4.96 and
σt =45◦. (d) Sketch of the weakly nonlinear phase portrait for (c).

surface. Figure 8(c) is a computed profile for F = 1.87 and the radiation condition is
now satisfied as x → −∞. Figure 8(d) illustrates the analysis in the phase plane for
the solution of figure 8(c).

We can also construct solutions where the disturbances are a pressure distribution a
triangle and a vertical sluice gate (see figures 1a and 9a, b). In general, these solutions
have three trains of waves and do not satisfy the radiation condition far upstream (see
figure 1a). By allowing two of the given parameters to come as part of the solution,
one of the trains of waves can be eliminated.

In figure 9(a), we have eliminated the waves between two of the disturbances
(pressure distribution and triangle). The solution lacks physical meaning in figure 9(a)
as the radiation condition is not satisfied as x → −∞. However, by introducing
another disturbance upstream of the last disturbance (pressure) in figure 9(a), we
could eliminate the waves as x → −∞. In figure 9(b), the waves have been eliminated
far upstream and the radiation condition is satisfied.

Another qualitatively different type of solution is shown in figures 9(c) and 9(d).
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Figure 9. Generalized critical flow and critical flow past a pressure distribution, triangle and
vertical sluice gate. The values for the gate are L = 1.00, γ = 1.00 and σc = 90◦. (a) The values
for the Froude number and pressure distribution are, F = 1.84, xp = −20.11, A = 3.39 and
βp =0.50. The values for the triangle are h = 0.36, xt = −11.54 and σt = 45◦. (b) The values
for the Froude number and pressure distribution are, F = 1.84, xp = −20.58, A = 6.09 and
βp =0.43. The values for the triangle are h = 0.50, xt = −11.45 and σt =45◦. (c) The values
for the Froude number and pressure distribution are, F = 1.88, xp = −14.55, A = 2.47 and
βp =0.48. The values for the triangle are h =0.50, xt = 2.59 and σt =45◦. (d) The values for the
Froude number and pressure distribution are, F = 1.88, xp = −14.47, A = 1.76 and βp = 0.46.
The values for the triangle are h = 0.50, xt = 2.59 and σt = 45◦.

4. Conclusion
In previous work, fully nonlinear numerical solutions and analytical weakly

nonlinear solutions were obtained for free-surface flows under a sluice gate or past
a plate in a channel. It was found that there were no subcritical flows or critical
flows satisfying the radiation condition. In both cases, there were trains of waves
which did not satisfy the radiation condition. In this paper, we showed that these
unphysical waves can be eliminated by introducing further disturbances in the flow. In
addition, new families of free-surface flows past multiple disturbances were identified
and studied.

REFERENCES

Asavanant, J. & Vanden-Broeck, J.-M. 1994 Free-surface flows past a surface-piercing object of
finite length. J. Fluid. Mech. 273, 109–124.



490 B. J. Binder and J.-M. Vanden-Broeck

Asavanant, J. & Vanden-Broeck, J.-M. 1996 Nonlinear free-surface flows emerging from vessels
and flows under a sluice gate. J. Austcal. Math. Soc. 38, 63–86.

Benjamin, T. B. 1956 On the flow in channels when rigid obstacles are placed in the stream. J. Fluid
Mech. 1, 227–248.

Binder, B. J. & Vanden-Broeck, J.-M. 2005 Free surface flows past surfboards and sluice gates.
Eur. J. Appl. Maths 16, 601–619.

Binder, B. J., Dias, F. & Vanden-Broeck, J.-M. 2005 Forced solitary waves and fronts past
submerged obstacles. Chaos 15, 037106.

Binnie, A. M. 1952 The flow of water under a sluice gate.

Chung, Y. K. 1972 Solution of flow under a sluice gates. ASCE J. Engng Mech. Div. 98, 121–140.

Dias, F. & Vanden-Broeck, J.-M. 1989 Open channel flows with submerged obstructions. J. Fluid
Mech. 206, 155–170.

Dias, F. & Vanden-Broeck, J.-M. 2002 Generalized critical free-surface flows. J. Engng Maths 42,
291–301.

Dias, F. & Vanden-Broeck, J.-M. 2004 Trapped waves between submerged obstacles. J. Fluid Mech.
509, 93–102.

Forbes, L.-K. 1981 On the resistance of a submerged semi-elliptical body. J. Engng Maths 15,
287–298.

Forbes, L.-K. 1988 Critical free-surface flow over a semi-circular obstruction. J. Engng Maths 22,
3–13.

Forbes, L.-K. & Schwartz, L. W. 1982 Free-surface flow over a semicircular obstruction. J. Fluid
Mech. 114, 299–314.

Frangmeier, D. D. & Strelkoff, T. S. 1968 Solution for gravity flow under a sluice gate. ASCE J.
Engng Mech. Div. 94, 153–176.

Lamb, H. 1945 Hydrodynamics , 6th edn, chap. 9. Dover.

Larock, B. E. 1969 Gravity-affected flow from planar sluice gate. ASCE J. Engng Mech. Div. 96,
1211–1226.

Shen, S. S.-P. 1995 On the accuracy of the stationary forced Korteweg–de Vries equation as a model
equation for flows over a bump. Q. Appl. Maths 53, 701–719.

Vanden-Broeck, J.-M. 1987 Free-surface flow over an obstruction in a channel. Phys. Fluids 30,
2315–2317.

Vanden-Broeck, J.-M. 1996 Numerical calculations of the free-surface flow under a sluice gate.
J. Fluid Mech. 330, 339–347.

Vanden-Broeck, J.-M. & Keller, J. B. 1989 Surfing on solitary waves. J. Fluid Mech. 198, 115–125.


