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ABSTRACT 

 

Fluid transients result in a substantial amount of data as pressure waves propagate throughout 

pipes.  A new generation of leak detection and pipe roughness calibration techniques has 

arisen to exploit those data.  Using the interactions of transient waves with leaks, the 

detection, location and quantification of leakage using a combination of transient analysis and 

inverse mathematics is possible using inverse transient analysis (ITA).  This paper presents 

further development of ITA and experimental observations for leak detection in a laboratory 

pipeline.  The effects of data and model error on ITA results have been explored including 

strategies to minimize their effects using model error compensation techniques and ITA 

implementation approaches.  The shape of the transient is important for successful application 

of ITA.  A rapid input transient (which may be of small magnitude) contains maximum 

system response information, thus improving the uniqueness and quality of the ITA solution.  

The effect of using head measurements as boundary conditions for ITA has been shown to 

significantly reduce sensitivity, making both detection and quantification problematic.  Model 

parsimony is used to limit the number of unknown leak candidates in ITA, thus reducing the 

minimization problem complexity.  Experimental observations in a laboratory pipeline 

confirm the analysis and illustrate successful detection and quantification of both single and 

multiple leaks. 
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INTRODUCTION 

 

Throughout the world, pipelines efficiently transport fluids.  When a leak occurs in such a 

pipeline, there is an associated loss of product and increased pumping and treatments costs 

arising from the additional fluid needed to fill the loss.  For fluids such as oil and gas, 

detrimental environmental impacts are potential consequences of any loss.  Under certain 

transient conditions leaks may allow passage of contaminants into the pipeline causing 

concerns about purity and, in some cases, health.  For these reasons, increasing both the 

accuracy and efficiency of detection and location of leaks is essential. 

 

Wang et al. (2001) presented a review of many alternative leak detection techniques; 

however, the focus of this paper is on inverse transient analysis (ITA) for leak detection in 

pipelines.  This paper examines ITA in greater detail including the general analysis of inverse 

problems, types of error and their effect (in particular model error), and strategies to deal with 

some error types.  Additionally, the importance of transient shape for successful ITA 

application, use of measured boundary conditions for simulation, and a model parsimony 

approach are investigated.  Finally, experimental observations in a laboratory pipeline 

illustrate successful single and multiple leak detection. 

 

INVERSE TRANSIENT ANALYSIS 

 

Liggett and Chen (1994) proposed calibration and leak detection in pipe networks using fluid 

transients.  Their methodology used pressure head measurements made during a transient 

event.  Using inverse mathematics the pipe parameters—leak areas, friction coefficients, wave 

speeds—were adjusted to match observed pressures in the numerical model.  The solution 
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parameter set was determined by minimizing an objective function that represents the match 

between the numerically modeled heads and measured heads.  The objective function is 

derived from maximum likelihood estimators (Press et al. 1992) giving rise to the least-

squares criterion, 
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where E = objective function, Hi
m = measured head, Hi = numerically modeled head and M = 

total number of measurements.  The most important assumption is that the model is a good 

representation of the system behavior.  The residuals of the fit should also be normally 

distributed, of zero mean, of stationary variance, and not correlated.  Violation of any of these 

assumptions will result in ITA fits that are not of maximum likelihood. 

 

Numerical aspects of ITA that have been studied are algorithmic efficiency (Nash and Karney 

1999, Vítkovský 2001, and Vítkovský et al. 2002), minimization algorithms (Vítkovský et al. 

2000, Kapelan et al. 2003), optimal sampling designs (Vítkovský et al. 2003), and prior 

information use (Kapelan et al. 2001).  Tang et al. (2000), Vítkovský et al. (2001), Covas and 

Ramos (2001), Covas et al. (2003) performed experimental validations of ITA for leak 

detection in pipelines.  Experimental validations of ITA in pipe networks have been 

undertaken by Covas and Ramos (2001) and Wang (2002).  Field testing of ITA for leak 

detection has been performed in a trunk main by Stephens et al. (2002), Stephens et al. 

(2004), Covas et al. (2004) and Stephens et al. (2005). 

 

APPLICATION OF INVERSE ANALYSIS 

 

For any inverse calculation the basic properties of the particular inverse problem should be 

considered.  A set of questions should be asked of any inverse analysis result.  The inverse 
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problem should be well-posed, meaning that a solution (a) exists, (b) is unique and (c) 

depends continuously on its data (Tarantola 1987).  Ill-posed cases are not considered herein, 

although in pipe and network flows, as in other fields, useful information can be obtained 

from such cases (through singular value decomposition; see Press et al. 1992) even though a 

complete solution is not possible. 

 

A common problem in ITA occurs when the transient event contains little information.  In this 

situation the effect of a leak in one position can resemble the effect of a leak in a different 

position along the pipeline.  In the presence of noisy data, the result of ITA is typically a non-

unique solution that can be identified by decomposing the curvature matrix using singular 

value decomposition (SVD) to determine singular, or near-singular, values.  The case of near-

singular values represents an ill-conditioned problem and is associated with a large difference 

in the sensitivities between parameters, and it results in a set of simultaneous equations with a 

high condition number (e.g., 106 for single precision calculations).  Kapelan et al. (2001) 

better conditioned the inverse problem for ITA resulting in a more clearly defined minimum 

in the objective function.  For a number of parameters, a poorly conditioned problem or a 

non-unique solution causes the inverse problem to be unsolvable unless techniques like 

regularization are employed (Press et al. 1992), whereby supplementary data or relationships 

can render the inverse problem solvable.  In many inverse applications, larger amounts of 

information can be used to reduce the effect of measurement noise, and limiting the parameter 

search space can make the problem solvable, techniques that are used in magnetic resonance 

imaging (MRI) (Kak and Slaney 1988).  Another approach is to better locate the measurement 

stations or improve the transient event characteristics (the sampling design problem—

Vítkovský et al. 2003). 
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In certain situations pressure waves—for example those that have not reached the suspected 

leak location and returned to a measurement site—do not carry useful information.  In this 

situation the measured behavior has no dependence on leak parameters, a situation that can be 

identified by zero-valued columns (and corresponding rows) in the curvature matrix.  In some 

cases, a portion of the parameter set can be determinable while the remainder is indeterminate 

(a mixed-determinate problem).  Where some parameters are determinable while others are 

not, SVD can be used to identify those parameters that are determinable by eliminating the 

parameters with singular and near-singular values from the inverse analysis, thus making the 

problem solvable.  Alternatively, Kuczera (1983a) used an approach whereby initial 

information is incorporated in the parameters’ prior distributions, then a Bayesian technique is 

used to calculate the parameters’ posterior distributions given the measured data.  The result is 

that the solutions for those parameters that are determinate are improved. 

 

A final question, which is approached by an analysis of the confidence of each solution 

parameter, is the plausibility of the inverse solution.  If a normal error distribution is assumed 

in the solution parameters and the search space is approximately linear in the neighborhood of 

the solution, then computationally efficient methods, such as the first-order second-moment 

(FOSM) method (Press et al. 1992), can be used.  In general the true error distributions of the 

solution parameters are difficult to parameterize easily and other techniques, such as the 

efficient Monte Carlo Markov Chain sampling methods (like the Metropolis algorithm) must 

be employed (Kavetski et al. 2002).  If the parameter error is similar in magnitude to the value 

of a parameter, then that parameter has been poorly determined and the ITA result is likely to 

have a large error. 
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ERROR IN INVERSE TRANSIENT ANALYSIS 

 

Sometimes, even though an apparently good fit may have been found using the least-squares 

objective function, the solution parameters are poorly determined.  This situation can be due 

to a number of sources, such as violation of assumptions made in the derivation of the 

objective function and the presence of different types of error in the data or model.  A 

classification has been developed of three main and eight sub-types of error in inverse 

analysis, which are: 

I. Data Error: 

Ia. Random Data Error (e.g., random noise in measured data). 

Ib. Systematic Data Error (e.g., poorly calibrated measuring instruments). 

II. Model Input Error: 

IIa. Parameter Input Error (e.g., poorly defined model parameters). 

IIb. Random Input Error (e.g., random noise in boundary condition data). 

IIc. Systematic Input Error (e.g., poorly calibrated/measured boundary condition 

data). 

III. Model Structure Error: 

IIIa. Inconsistent Model Error (e.g., incorrectly modeled process). 

IIIb. Incomplete Model Error (e.g., unaccounted for model process). 

IIIc. Numerical Model Error (e.g., numerical algorithm error). 

 

Any inverse solution should be tested for the presence of these errors.  Typically the residuals 

of the fit or unrealistic solution parameters can be used to diagnose different types of error.  

The following sections detail the different error types. 
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Data Error 

 

There has been considerable research into the diagnosis and solution to Type Ia errors, most 

of which are based on the violation of assumptions made when deriving the maximum 

likelihood objective function.  Type Ia errors are identified by: (i) residuals that are not 

normally distributed, (ii) residuals with non-zero mean, (iii) non-stationary residuals, and (iv) 

correlated residuals.  The diagnosis of Type Ia errors and their solution is relatively 

straightforward and outlined in Kuczera (1983a). 

 

Type Ib errors can be difficult to identify and commonly involve incorrectly calibrated 

measurement devices resulting in a common mode error or systematic under- or over-

estimation of data values.  Additionally, interference from electrical and mechanical sources, 

such as from AC current and pump vibration, may cause error.  Solutions to this type of error 

are the use of reliable measurement equipment, careful calibration of measurement devices 

and filtering undesirable signal content.  The rest of this paper assumes that the measured data 

contain no systematic error (Type Ib error). 

 

Model Input and Model Structure Errors 

 

Model input and model structure errors introduce auto-correlated errors into the residuals, 

thus violating the assumption that the numerical model reasonably approximates reality and 

those assumptions made in the derivation of the standard maximum likelihood function (Eq. 

1).  Kavetski et al. (2002) presented the effect of, and a solution to, a systematic error in input 

data (Type IIc error) for rainfall-runoff model calibration.  An effect of model error on the 

inverse problem solution is to produce data-inconsistent parameter estimates (different 
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parameter estimates are determined for different data sets) and unrealistic parameter values 

and parameter confidence estimates.  Kuczera (1982, 1983b) investigated the effect of 

different data sets yielding different parameter estimates in rainfall-runoff model calibration.  

However, the problem is complex in inverse transient analysis in that the parameter estimates 

may change given different data length and location.  The symptoms of model input and 

structure errors can be used as a diagnostic for their identification.  These symptoms are (a) 

parameter estimates outside of a reasonable range, (b) structure in the residuals that relates to 

model processes, and (c) parameter estimates that vary with data length and data location 

(data-inconsistent results).  In the case of unsteady pipe flow, significant peaks or structure in 

the partial auto-correlation function (PACF) of the residuals, especially with lags equal to 

multiples of L/a (where L is pipe length, a is wave speed and where L/a is a characteristic 

time period relating to the wave travel time in the pipe), are symptomatic of model error. 

 

Tang et al. (2000), Covas and Ramos (2001) and Covas et al. (2001) provided three examples 

of Type IIIb model error in ITA where the viscoelastic behavior of the pipe material was not 

accounted for.  In the first case, the transient model performance was poor and only allowed 

very short simulation periods before the model and measured data diverged.  In the second 

and third cases, the instantaneous acceleration-based unsteady friction model (Bergant et al. 

2001) was used to attempt compensation for the missing viscoelastic model component with 

the result being an improved, but still a poor, match between model and measured data.  

Covas et al. (2004) showed an example of a Type IIIc error where the Trikha unsteady 

friction model (Bergant et al. (2001)), which is known to produce numerical dispersion and 

attenuation error, was used.  However, in that case viscoelastic damping dominated unsteady 

friction damping; thus, the numerical error produced by the Trikha model was relatively small 

and not overly detrimental to ITA. 
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In terms of ITA, it is impossible to know every parameter of the model exactly for the whole 

pipeline system (Type II errors).  Additionally, there are often unknown local defects like air 

pockets, blockages, vibration, or construction changes that are not recorded (Type IIIb error).  

It is also unrealistic to model the pipeline system down to the smallest components, such as 

water connections to individual houses (Type IIIb error).  For these reasons the modeler has to 

accept some degree of unavoidable model error.  The following section outlines some 

approaches to minimize the effect of model errors. 

 

Dealing with Model Error in Inverse Transient Analysis 

 

Once some form of model error has been identified, complete correction is difficult (if not 

impossible in most cases).  However, there are arguably two last-resort strategies that can be 

employed to attempt correction: (1) how the model deficiency is addressed, and (2) the 

application of inverse analysis under model error. 

 

Two broad approaches may be used to address model deficiencies such as uncertainties in 

model parameters (Type IIa error), a missing process or poorly modeled process (Type III 

errors).  The first approach is parameter set expansion (PSE) where certain parameters in the 

existing model are included in the ITA parameter set for fitting.  The second approach is 

model error compensation (MEC) in which an artificial model (with parameters) is introduced 

to compensate for model deficiencies.  Both approaches can cause problems due to the choice 

of an inappropriate MEC model or inappropriate PSE parameters interacting unfavorably with 

ITA parameters.  The choice of PSE parameters or MEC model should be logically or 

physically based.  Additionally, adding too many parameters to the ITA parameter set could 
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result in over-fitting, a process that apparently improves the model because correlation 

coefficients are improved but the predictive ability of the model is actually degraded. 

 

Two ITA implementation approaches under model error, after addressing the model 

deficiency, are pre-calibration (PC) and concurrent calibration (CC).  The PC approach splits 

ITA into two separate tasks.  The first task uses data from a known state (e.g., a leak-free 

state, or a historical state) to fit the parameters of the transient model.  Alternatively, the 

unknown state data could be subtracted from the known state data and ITA applied to the 

difference of the two data sets.  The second task uses data from the current state for the fitting 

of leak parameters using the now calibrated model.  The PC approach can only detect changes 

from the known state and produces better results if the known state and current state transient 

events and system configurations are similar.  The CC approach fits both the parameters of 

the transient model and the leak parameters simultaneously from the one set of measured data.  

The CC approach has the advantage of requiring only one set of measured data.  However, 

care must be taken to ensure that there is little correlation between transient model parameters 

and leak parameters. 

 

Wang (2002) employed a MEC-PC approach whereby a transient model for an experimental 

pipe network was pre-calibrated using the kA & kP unsteady friction model (Vítkovský 2001) 

to account for suspected model deficiencies from unsteady mixing, trapped air, and rubber 

materials used in flanged connections.  Leak detection was achieved using an identical 

transient event as used in the pre-calibration, although it is uncertain whether the MEC model 

was satisfactory.  Covas et al. (2003) employed a PSE-CC approach whereby the parameters 

of the viscoelastic model component were included in the ITA leak parameter set.  In this 

case, unsteady friction and defects in the model were incorporated into the viscoelastic model.  
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The result was the smearing of the detected leak location, which may have been caused by 

lumping all model deficiencies into the viscoelastic model.  Additionally, the correlation 

between model parameters and leak parameters was not analyzed. 

 

EXPERIMENTAL OBSERVATIONS IN INVERSE TRANSIENT ANALYSIS 

 

All analyses performed in this paper use experimental data from a laboratory pipeline.  The 

following sections outline details of the experimental apparatus and the forward transient 

model as well as observations and improvements to ITA. 

 

Experimental Apparatus 

 

The experimental apparatus is a single pipeline located in the Robin Hydraulics Laboratory in 

the School of Civil and Environmental Engineering at the University of Adelaide (Bergant 

and Simpson 1995).  Figure 1 shows a schematic of the pipeline.  It is comprised of a 37.2 m 

sloping copper pipe with an inside diameter of 22.1 mm and a wall thickness of 1.6 mm.  The 

roughness height was estimated as 0.0015 mm—a relative roughness of 7×10–5—making the 

pipe hydraulically smooth given the low Reynolds numbers of flows that were tested. 

 

The pipeline connects two pressurized tanks that are computer controlled using an air 

compressor that can supply a maximum pressure of 700 kPa.  A quarter-turn ball valve is 

located in the pipeline next to tank 1 that is used to generate transient events.  Pressure in the 

pipeline is measured at five equidistant locations at nodes 1, 5, 9, 13 and 17.  The pressure 

transducers exhibit minimal noise (type Ia error).  In addition, the valve position is measured 

using a potentiometer connected to the valve handle.  The pressure regulation units at either 
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end can be set to provide a pressure difference for the initialization of flow.  Measuring the 

rate of change in tank levels and then converting to the flow rate into or out of the tank 

provides the steady-state velocity.  Leaks can be positioned in the pipeline at nodes 5, 9 and 

13. 

 

Three different valve closure times are considered in the experimental tests.  The valve 

closure speeds were tc = 0.07, 0.70 and 1.40 s corresponding to 2.5×L/a, 25×L/a and 50×L/a, 

respectively.  The valve closure times relate to the full closure of the valve handle.  The 

effective closure times for the ball valve are less than these values due to the geometry and 

action of the valve (most of the head loss through the valve occurs in the last quarter-turn of 

the stem).  The details of the system properties for each valve closure speed are shown in 

Table 1.  Larger initial velocities were used for the slower valve closure tests to increase the 

size of the transient event. 

 

Experimental ITA results consider three leak sizes of orifice diameters 1.0, 1.5 and 2.0 mm 

with corresponding lumped leak coefficients calibrated as 5.0×10−7, 1.1×10−6 and 1.7×10−6 m2 

respectively located at node 5.  Also, a multiple leak test with two 1.0 mm leaks with 

calibrated lumped leak coefficients as 5.0×10−7 and 7.1×10−7 m2 were located at nodes 5 and 

17.  Table 2 shows a summary of the properties of the leaks. 

 

Forward and Inverse Transient Modeling 

 

The transient event is modeled using the measured valve position at node 1 as the forcing 

input and the measured (constant) tank head at node 17.  Random errors in the measured valve 

position dictated that these data be filtered to prevent contamination of the transient 
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simulation results (type IIb error).  A Savitsky-Golay smoothing filter (Press et al. 1992) was 

used.  The effect of valve position noise was greater for the slower transient tests because the 

valve position was located in the near-closed region of the valve closure profile where the 

effect of noise on the transient simulation was the greatest. 

 

The pipeline was divided into 32 computational reaches and a method of characteristics 

(MOC) simulation was performed on the resulting diamond grid.  For each inverse transient 

analysis, 15 leak candidates were assigned at nodes along the pipeline.  Additionally, global 

wave speed was treated as an unknown in the inverse problem, as was a multiplier for the 

unsteady friction.  No pre-calibration of the model was performed (i.e., no dealing with model 

error using PC-type approaches).  The leak parameters were sought in logarithmic space, 

allowing the minimization algorithm an efficient means to search for leaks of vastly different 

scale and, additionally, to limit the leak parameters to positive values.  The shuffled complex 

evolution (SCE) algorithm was used for the minimization of the objective function.  The 

parameter error estimates and parameter correlations were determined using the first-order 

second-moment (FOSM) method. 

 

The behavior of friction in the experimental pipeline is unsteady dominant (Bergant et al. 

2001); thus, modeling the unsteady friction effects is crucial.  The weighting function-type 

model (Zielke 1968) was used to model the unsteady friction with the smooth-pipe turbulent 

flow weighting function from Vardy and Brown (2003). 

 

A small amount of model error will exist for a number of reasons.  Some of those reasons are: 
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1. The pipeline, although anchored at every meter, does vibrate to a small degree, thereby 

transmitting energy to the pipeline restraints that is lost to the flow (fluid-structure 

interaction).  This effect is difficult to model and is neglected (type IIIb error). 

2. The unsteady friction model is only approximate (type IIIa error). 

3. Both steady and unsteady minor losses at the entrance and exit to the tanks are not 

modeled.   This effect is expected to be minor and not modeled (type IIIb error). 

4. The leaks in the pipelines do not exactly behave as an ideal orifice, i.e., approximately 

HQ ∆∝  (type IIIa error). 

5. The brass blocks used to contain the leaks and pressure transducers have a different 

impedance to the pipeline that cause small reflections.  This effect is expected to be minor 

and not modeled (type IIIb error). 

6. Other aspects (e.g., non-uniform velocity distribution, energy transmission through the 

pipe walls) of the process are not modeled by the water hammer equations (type IIIc 

error). 

 

Impact of Transient Shape for Parameter Estimation 

 

An important issue for the application of ITA concerns the shape of the transient used for 

analysis.  In practice, there is a limit to the rate of pressure increase that can be generated due 

to practical constraints of the generating mechanism.  In addition, water utilities are less likely 

to approve the use of overly large rapid pressure changes due to well-founded concerns about 

pipe bursts for large transients.  This section presents an experimental investigation into the 

effect of transient sharpness on the ITA solution. 
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The transient is generated by the full closure of the in-line valve next to tank 1 using a steady 

change in the valve aperture.  Three valve closure times are considered for analysis; they are 

0.07, 0.70 and 1.40 s corresponding to 2.5×L/a, 25×L/a and 50×L/a s.  A single leak is located 

at node 5 of size CdAL = 5.0×10−7 m2.  Figure 2 shows the experimental and ITA solution 

pressure responses at node 1 (the differences are barely distinguishable).  Note that the 

dimensionless pressure head, H*, is used and is equal to the pressure head divided by the 

Joukowsky pressure head rise based on the initial velocity preceding the transient event.  As 

observed, the pressure responses become smaller and less sharp as the valve closure times 

increase.  Figure 3 shows the solution of the leak parameters for each valve closure speed.  

Only the rapid valve closure case (tc = 2.5×L/a) determined the correct location and size of the 

leak.  The ITA solutions for the two slower valve closure cases (tc = 25×L/a and 50×L/a) were 

not correct.  An analysis of each leak parameter’s error (also in Figure 3) shows that the 

parameter error estimates for the two slower closure times are of similar size or larger than the 

parameter value, meaning that the slower valve closure results are not statistically well 

founded and little can be concluded from these results.  The bandwidth of information of the 

slower closures is insufficient to carry the necessary information.  Using frequency analysis, 

Lee (2005) has shown that a sharp transient contains considerably more bandwidth (i.e., 

information) than a slow transient. 

 

One important property to consider when evaluating the probable success of leak detection is 

the sensitivity of the head to the leak area.  Figure 4 shows the sensitivity of head with respect 

to the leak size, ∂H/∂CdAL, (numerically calculated using measured boundary conditions) in 

which large magnitude sensitivities indicate likely success at correctly detecting, locating and 

sizing the leak.  As expected, as the time of closure of the valve increases, the head becomes 

less sensitive to the leak, suggesting that sharper transients are better for leak detection.  
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Whereas Figure 4 shows the sensitivity with respect to the leak size, there is also sensitivity 

with respect to the leak location.  This sensitivity is difficult to calculate when the transient 

analysis can only model leaks at discrete locations due to the discretization of the 

characteristic grid in which leaks can only be simulated at nodal positions.  An indicator of 

estimated parameter confidence is to use the estimated error in the solution for leak 

coefficients.  The error in the leak coefficients can be estimated given the residuals of the ITA 

fit using a first-order error analysis (Vítkovský 2001).  The residuals, which represent the 

error between the measured and fitted data, are used as a surrogate for an “effective 

measurement error” in the first order analysis.  Additionally, if all of the measurement data 

have a similar level of error, then the error in the solution parameters can be related to the 

error in the measurements by 

 mLd HAC Kσ=σ  (2) 

where K = error transmission multiplier, 
Ld ACσ  = standard deviation of the parameter error 

and mH
σ  = standard deviation of the measurement error (see Vítkovský et al. 2003).  Small 

values of K for a particular leak parameter correspond to low levels of error in that parameter.  

Figure 5 shows a plot of K for different leak positions and valve closure times.  The parameter 

error increases markedly as the leak position approaches Tank 2.  Also, the error in the 

parameters increases as the valve closure time increases.  For simplicity, the analysis 

presented in Figure 5 only considers searching for a single leak with a single leak parameter 

in the application of ITA.  This analysis says nothing about the level of correlation exhibited 

between parameters when applying ITA with a number of leak parameters.  A similar error 

analysis is considered, but with two unknown leak parameters at nodes 2 and 6.  Table 3 

shows the results of such an analysis that, in this case, includes not only an error transmission 

multiplier for each parameter, but also a correlation coefficient between the error in each 

parameter.  The correlation coefficient, ρ, between a pair of leak parameters is 
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ba

b,a
b,a σσ

σ
=ρ  (3) 

where σa,b = covariance of the errors in parameters a and b, and σa ,σb = standard deviations 

of the error in parameters a and b.  If the parameters are highly correlated then a unique 

solution is not possible.  Table 3 shows that as the valve closure time increases, the two 

parameters become more correlated (the correlation coefficient approaches ±1).  As the valve 

closure time is decreased, the transient response becomes more like a damped sinusoid.  As 

the response becomes more sinusoidal, it approaches a damped single-frequency disturbance 

(at the natural frequency of the pipeline).  Analysis by Wang et al. (2002) shows that if 

damping information alone from a single-frequency event is used to detect and locate a leak, 

then no unique solution exists for both the size and location of the leak.  In this respect, as the 

valve-closure time increases, less information is contained in the pressure response leading 

towards a non-unique solution as indicated in Table 3 by the extremely high correlation 

between the two leak parameters for the slowest valve closure considered.  Thus, the 

observation that a fast transient provides a more accurate analysis is based firmly on both 

empirical observation and theoretical analysis. 

 

Use of Measured Pressure Boundary Conditions 

 

In many practical applications of transient modeling, and hence the application ITA, the 

accurate specification of boundary conditions for a transient model can be difficult.  One 

seemingly elegant method to specify a boundary condition is to measure the pressure close to 

a boundary and then use that measured pressure as the boundary condition.  The following 

example considers both independent and measured boundary condition use in ITA. 
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Consider the detection of a leak in the pipeline shown in Figure 1 with a fast in-line valve 

closure (tc = 2.5×L/a) initiating the transient event.  The leak of size CdAL = 5.0×10−7 m2 is 

located at node 5.  Two types of boundary condition specification are considered: (1) a valve 

with measured closure profile, the “independent” boundary condition, and (2) the head 

measured next to the valve, the “measured” boundary condition.  For an application of ITA in 

a leaking system, the measured boundary condition data include the effects of the leak; they 

are not independent of the ITA leak coefficients.  The measured boundary condition data were 

the measured pressure head at the valve from the experimental apparatus.  Two cases are 

considered, being modeling with a leak at node 5 and modeling with no leak.  Figure 6(a) 

shows the results when modeling with a leak at node 5 for the two boundary condition types.  

There is little difference between the two pressure responses (which are nearly identical to the 

experimental measured trace).  In an ITA analysis a first guess may be that there are no leaks 

in the pipe.  Figure 6(b) shows the pressure response at node 9 using both independent and 

measured boundary conditions.  Although both models contain “no leaks,” the pressure 

responses from each boundary-condition case are decidedly different.  Figure 6(c) shows the 

sensitivity in the modeled pressure response to a leak using both independent and measured 

boundary conditions.  The measured boundary condition results in less sensitivity by almost 

an order of magnitude.  Figure 7 shows the solution ITA leak coefficients when using both 

independent and measured boundary conditions.  The leak is successfully located using both 

types of boundary condition.  Although ITA should still detect leaks when using measured 

pressure boundary conditions, leak detection under the error sources previously discussed plus 

low sensitivity results in low-confidence solutions.  From an intuitive standpoint, the 

boundary conditions used for ITA should be independent of the parameters to be determined 

by ITA.  Finally, for successful application of ITA the sensitivity of the head with respect to 
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the parameters must be maximized; therefore, independent boundary conditions (such as a 

valve-closure profile) are used herein. 

 

An Auto-Regressive Model Error Compensation Approach 

 

Ideally, if the source of the model error can be determined, then remediation of the model is 

possible.  However, in many cases the model error source is either unknown or known and 

cannot be realistically addressed.  Model error is difficult to correct without knowing the 

exact origin and details of the error.  Ultimately, if model error is allowed to persist, the ITA 

results are adversely affected no matter what correction is used.  Different modes of model 

error lend themselves to certain model error compensation (MEC) strategies through the 

introduction of extra (latent) variables or sub-models.  The solution of the partial differential 

equations that describe unsteady pipe flow can be expressed by an auto-regressive (AR) time 

series model of second order with lags based on the resonant frequency of the system 

(following from the free-vibrational solution, Wylie and Streeter 1993).  As a result, it is 

reasonable that the model error may be approximated using an AR process of lag n×2L/a, 

where n = 1, 2, 3, … (i.e., the harmonics).  For a single pipeline modeled using the method of 

characteristics with a diamond grid and measurement at the valve (see Figure 1), the lags 

correspond to multiples of the number of pipe reaches (Nr) used in the transient model, i.e. 

lags of n×Nr time steps.  An example of the objective function re-written to include the AR 

model for the first lag (n = 1) is 

 ( ) ( )[ ]∑
=

−− −φ−−=
M

i
Nri
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NriNri

m
i HHHHE

1

2  (4) 

where φNr = AR parameter for a lag of Nr time steps.  A diagram best explains the effect of 

this auto-regressive MEC approach.  As an example, Figure 8 shows the ITA fit for a pipeline 
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with a leak at node 5 and an (unknown) air pocket at node 11 (pipeline as in Figure 1).  

However, the air pocket is not incorporated into the numerical model since only leaks are 

being detected and the presence of the air pocket is assumed unknown.  The effect of the air 

pocket on the head trace is first noticed as an initial model discrepancy due to interaction of 

the air with the transient wave traveling away from the valve.  A secondary model error 

occurs as the transient wave is reflected off the boundary and interacts with the air pocket 

when returning to the valve.  Finally, the transient wave again traveling away from the valve 

reflects off the air pocket.  These reflections occur at time intervals of 2L/a.  The transient 

model tries to compensate by modifying the leak size or putting leaks at incorrect (phantom) 

locations.  The MEC approach accounts for the discrepancy between model and data in the 

next time period (2L/a later) by not allowing the effect of the air pocket to be reinforced (by 

the use of the AR model).  Thus, the model error does not grow.  As the parameters of the 

MEC model are unknown prior to ITA application they must be included in the unknown 

parameter set (along with leak coefficients, etc.) and solved for concurrently, i.e., a CC-MEC 

approach. 

 

The model error is mimicked by neglecting unsteady friction in the forward transient model 

and using experimental data from the pipeline shown in Figure 1.  Two cases are considered 

for the determination of the leak parameter at node 5 using the standard ITA approach with 

the transient model (i) including unsteady friction and (ii) not including unsteady friction 

(representing systematic model error).  Figure 9 shows the solution ITA leak coefficient 

versus amount of data used.  The leak coefficient derived using ITA with model error changes 

with different lengths of data (a hallmark of inverse analysis affected by model error), and the 

ITA solution becomes increasingly incorrect as more data are used in the analysis until there 

is no information contained in the transient. 
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Even with the inclusion of unsteady friction in the forward transient model there remains an 

amount of model error due to factors stated earlier in this paper.  The model error is addressed 

using the auto-regressive model error compensation (MEC) approach with a lag of 32 time 

steps (equivalent to a lag of 2L/a, referred to as the AR[32] model).  Figure 10 shows the ITA 

pressure responses for each case, both of which show seemingly good matches to the 

experimental data.  Also shown in Figure 10 are the residual traces (measured minus the 

modeled data) for the same ITA fits, in which an amount of structural error is observed.  The 

PACFs for both cases are shown in Figure 11, which shows that there is high degree of 

structure left in the residuals for the case in which the data contain model error (and thus the 

maximum likelihood derivation assumption is violated).  This violation results in a solution 

parameter value that is not of the maximum likelihood and is incorrect.  Figure 12 shows the 

leak parameter estimate after application of ITA, showing that the MEC approach (the 

AR[32] model) has an improved solution.  As a confirmation of the appropriateness of the 

AR[32] model, the residuals and the PACF of the fit show less structure and are of less 

magnitude, thus, do not violate the maximum likelihood assumptions.  Although not shown 

here, inverse analysis using AR models with non-harmonic lags resulted in very high 

correlations between AR model coefficients and leak parameters (ruining the ITA result).  

Moreover, the addition of higher harmonic lags in the AR model further reduced any structure 

left in the residuals. 

 

Further experimental ITA results consider three leak sizes of orifice diameters 1.0, 1.5 and 2.0 

mm with corresponding lumped leak coefficients calibrated as 5.0×10−7, 1.1×10−6 and 

1.7×10−6 m2 located at node 5.  Additionally, a multiple leak test with two 1.0 mm leaks with 

calibrated lumped leak coefficients as 5.0×10−7 and 7.1×10−7 m2 were located at nodes 5 and 
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17.  Only rapid valve closure speeds (0.07 s or tc = 2.5×L/a) were considered.  Figure 13 

shows that ITA correctly determines both the size and location of the single leak cases and the 

multiple leak case. 

 

The use of non-harmonic AR model lags interferes with the ITA leak coefficients and is not 

suited to this problem.  This is because other non-harmonic lags are related to the timing of 

the leak reflections.  The use of an auto-regressive model with lags based on harmonics of the 

pipeline system may be only applicable to the current ITA problem.  Other systems, such as 

networks, have complicated and unevenly spaced harmonics that will generally require a 

different MEC approach.  Finally, MEC approaches are most likely problem dependent and 

should not be used unless properly tested. 

 

A Model Parsimony Approach 

 

Traditionally, ITA has been applied by defining a large number of leak candidates and then 

solving for all leak parameters at once.  Leak candidates with no actual leak should give near 

zero leak sizes.  However, having a large number of parameters can produce large and 

complicated search spaces.  Additionally, the greater the number of parameters, the harder the 

inverse problem becomes, increasing the computational time required for a solution.  In 

essence, too many parameters can almost guarantee a fit to any data even though the 

predictive value of the fit is nil.  Also, a high number of parameters promote high correlation 

between those parameters, potentially making the inverse problem ill-conditioned or even ill-

posed.  Generally, there are vastly fewer actual leaks than there are leak candidates.  The 

following approach uses this fact to simplify and speed up ITA application based on a model 

parsimony argument. 
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The model parsimony approach assumes that a lower number of leak parameters is more 

likely to lead to the correct solution than a large number.  The procedure is outlined 

schematically in Figure 14 and begins with one leak parameter tested at all possible leak 

candidate positions.  First, the minimum objective function (E) value is used to identify the 

most likely single leak location.  Then two simultaneous leaks are assumed to exist in the 

system for all possible combinations of locations.  The configuration with the smallest 

objective function value is stored.  The process is continued for larger numbers of 

simultaneous leaks.  For a small number of possible leak candidates or suspected actual leaks, 

the most efficient searching method is a full enumeration.  For a large number of leak 

candidates some algorithm could supervise the combinatorial search, e.g., a genetic algorithm.  

However, there are a number of leak candidates, above which there is little additional 

improvement in the inverse transient fit for the addition of extra leak parameters.  A method 

to limit the number of significant parameters required to adequately model a process (and not 

over-fit the data) is to use information criteria.  A commonly used information criterion is the 

Akaike's information criterion (AIC) (Shumway and Stoffer, 2000), which is defined as 

 ( )
M
NAIC N

2ln 2 +σ=  (5) 

where 2
Nσ  = variance of the fit (calculated from the residuals), N = number of parameters, and 

M = number of measurement data points.  The AIC penalizes the fit for additional parameters 

and is at a minimum for an adequate number of parameters.  Other information criteria based 

on Bayesian arguments and corrections to AIC tend to favor slightly lower-numbered 

parameter models or are more appropriate for higher numbers of sample points.  The 

minimum AIC corresponds to an adequate number of leak parameters in the transient model.  

Although the AIC was used for determining parsimonious time series models, application to 

ITA could reduce a large parameter set to a more manageable smaller parameter set. 
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The model parsimony approach for ITA is applied to experimental data with a 1.0 mm leak 

located at node 5 and a rapid valve closure generates the transient event (0.07 s or tc = 

2.5×L/a).  A total of 4.0 s of measured data was used and model error compensation was 

applied (an AR model with harmonic lags of 32 and 64).  Table 4 shows that applying model 

parsimony gives a minimum Akaike’s information criterion (AIC) value for three leak 

candidates.  Consideration of greater numbers of leak candidates than three does not 

significantly improve the ITA solution.  The model parsimony approach gives a comparable 

solution to the traditional ITA approach (simultaneous search for leaks at all nodes), as 

compared to Figure 13, with only a small number of leak candidates considered, simplifying 

the problem and making it more manageable.  For combinations of one and two leaks, the 

leak size is overestimated; however, if more possible leaks are considered the computed leak 

size approaches the actual leak size.  Additionally, the estimated parameter variances for the 

model parsimony approach are lower than those in Figure 13 when searching for leaks at all 

nodes simultaneously, suggesting fewer parameters were determined with greater confidence. 

 

CONCLUSIONS 

 

This paper presents experimental observations of inverse transient analysis (ITA) for leak 

detection in a laboratory pipeline.  Both single and multiple leaks were successfully detected, 

located and sized.  A number of considerations that promote better inverse transient 

performance have been identified and tested in this paper.  The performance of ITA was 

found to improve for more rapid transients, suggesting that devices that can generate such 

rapid transients (but of small magnitude) should be used.  An analysis has been presented that 

modeling using measured boundary conditions should be discouraged in favor of independent 
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boundary conditions.  Finally, a reduction of problem complexity was achieved using a model 

parsimony approach that favors a lower number of leak candidates making the ITA problem 

easier. 

 

One disadvantage of ITA is that all boundary conditions, system properties and the transient 

model must be well defined.  This can be an advantage in that people must get to know their 

system well.  In some cases these properties may not be known to a sufficiently high accuracy 

and could severely affect the success of ITA.  This suggests that a greater emphasis should be 

directed towards analysis of errors and strategies to deal with uncertainties in general.  In 

particular there are many forms of model error, some of which could be included as 

parameters to be determined by ITA.  A model error compensation approach, based on an 

auto-regressive function, has been presented in this paper to address the effect of model error 

in ITA. 

 

Given the relative ease and precision that measurements of pressure can be made in transient 

systems, input error should not be a major component to the overall error.  Additionally, 

random error can be minimized by selectively testing at night or using repeated testing.  

Model error is the most likely limiting factor in successful field application of ITA.  Overall 

there appears to be a lack of rigorous verification of forward transient analysis in field 

pipelines and almost no verification in field networks.  This knowledge gap could provide a 

major hurdle for inverse transient analysis.  Additionally, the computational burden of 

applying ITA in a large network, general uncertainties in system properties and non-random 

environmental noise might also be limiting factors.  Importantly, ITA should never be 

performed without standard inverse mathematics diagnostic checks and ITA results should 

never be presented without quantification of their uncertainty.  Successful application of ITA 
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in field pipelines and pipe networks will require rigorous study of the assumptions made in 

the forward model and inverse fitting. 
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APPENDIX II. NOTATION 

 

 AP = pipe cross sectional area; 

 a = wave speed; 

 CdAL = lumped leak coefficient; 

 E = objective function; 

 H = head; 

 Hi = numerically modeled head; 

 Hi
m = measured head; 

 H* = normalised head (divided by Joukowsky pressure rise); 

 L = pipe length; 
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 K = error transmission multiplier; 

 K* = error transmission multiplier for normalised head; 

 M = number of measurements; 

 N = number of parameters; 

 Nr = number of computational reaches; 

 r = residual of model fit to data; 

 t = time; 

 tc = valve closure time; 

 σa = standard deviation of error in parameter a; 

 σa,b = covariance of errors between parameters a and b; 

 ρa,b = correlation of errors between parameters a and b; 

 φk = auto-regressive parameter for kth lag. 
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Table 1.  Experimental inverse transient analysis test details 

 Valve Closure Time (tc) 
System Property 2.5×L/a 25×L/a 50×L/a 
Closure time (s) 0.07 0.70 1.40 

Initial Velocity (m/s) 0.143 0.360 0.484 
Reynolds Number 3,148 7,901 10,614 

Initial Head at Tank 1 (m) 26.0 26.0 26.0 
 

 

 

 

Table 2.  Experimental inverse transient analysis leak details 

 Leak Diameter 
Leak Property 1.0 mm 1.5 mm 2.0 mm 1.0 mm* 

Calibrated CdAL (m2) 5.0×10−7 1.1×10−6 1.7×10−6 7.1×10−7 
CdAL/AP (%) 0.13 0.29 0.44 0.18 

Steady Orifice Flow (L/s) 0.0113 0.0248 0.0384 0.0158 
Steady Orifice Velocity (m/s) 14.4 14.1 12.2 20.1 

* Second leak used for multiple leak detection. 
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Table 3.  K* and ρ for different sharpness events 

 Valve Closure Time 
Property 2.5×L/a (s) 25×L/a (s) 50×L/a (s) 

K* for (CdAL)2 (m2) 1.44×10−7 1.46×10−6 1.82×10−5 
K* for (CdAL)6 (m2) 2.02×10−7 1.26×10−6 2.07×10−5 

Correlation ρ2,6 -0.8827 -0.9919 -0.9992 
 

 

 

Table 4.  ITA of experimental results using model parsimony approach (1.0 mm leak at 

node 5, tc = 2.5×L/a) 

Number of Leak 
Candidates 

AIC* Leaking 
Node 

Leak Parameter 
CdAL (×106  m2)** 

Actual - 5 0.5 
1 −4.2933 5 0.606 (0.007) 
2 −4.3531 5 

15 
0.600 (0.007) 
0.123 (0.018) 

3 −4.3749 4 
5 
16 

0.064 (0.027) 
0.533 (0.030) 
0.126 (0.044) 

4 −4.3747 3 
4 
5 
16 

0.011 (0.031) 
0.046 (0.057) 
0.540 (0.035) 
0.121 (0.046) 

Estimated standard deviation of leak parameter error in brackets. 
*Minimum AIC solution in bold.  **Maximum size of leak in italics. 
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Figure 1.  Experimental pipeline apparatus. 
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Figure 2.  Transient event sharpness investigation: Experimental and ITA pressure 

responses. 
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Figure 3.  Transient event sharpness investigation: Experimental ITA parameter 

estimates.  Error bars represent parameter error (±σa) estimated using the FOSM 

method. 
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Figure 4.  Transient event sharpness investigation: Head sensitivity at node 1 with 

respect to leak at node 5. 

 



 

 41

 

 

 

10-7

10-6

10-5

2 4 6 8 10 12 14 16

2.5×L/a
25×L/a
50×L/a

K
*  

(m
2 )

Leak Position Node Number  
 

Figure 5.  Transient event sharpness investigation: Error transmission multiplier for 

leak located along pipeline. 
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Figure 6.  Independent and measured boundary condition use investigation: (a) 

simulation with leak at node 5, (b) simulation with no leak, and (c) head sensitivity to 

leak at solution. 
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Figure 7.  Independent and measured boundary condition use investigation: 

Experimental ITA parameter estimates.  Error bars represent parameter error (±σa) 

estimated using the FOSM method. 
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Figure 8.  Example of systematic model error in a transient pipeline system. 
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Figure 9.  Model error investigation: ITA leak coefficient estimate versus data length. 
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Figure 10.  Model error investigation: Comparison of pressure response and residuals 

for ITA estimation. 
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Figure 11.  Model error investigation: Comparison of PACF of residuals for ITA fit. 

 



 

 48

 

 

 

0.0
0.2
0.4
0.6
0.8
1.0

Actual ITA Solution
C
d 
A
L  (

×1
06   m

2 )

No Model Error Compensation  (a)

Spurious Leak
Identified

 

0.0
0.2
0.4
0.6
0.8
1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
d 
A
L  (

×1
06   m

2 )

Node Number

With Model Error Compensation  (b)

 
 

Figure 12.  Model error investigation: Comparison of parameter estimates using a 

model error compensation approach.  Error bars represent parameter error (±σa) 

estimated using the FOSM method. 
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Figure 13.  Experimental ITA parameter estimates using an AR model for a 2.5×L/a 

valve closure for single and multiple leaks.  Error bars represent parameter error (±σa) 

estimated using the FOSM method. 
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Figure 14.  Schematic of the model parsimony approach (AIC = Akaike's information 

criterion). 

 


