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Annual rainfall time series for Sydney from 1859 to 1999 is analysed. Clear evidence of non-stationarity is presented, but substantial evidence
for persistence or hidden states is more elusive. A test of the hypothesis that a hidden state Markov model reduces to a mixture distribution
is presented. There is strong evidence of a correlation between the annual rainfall and climate indices. Strong evidence of persistence of one
of these indices, the Pacific Decadal Oscillation (PDO), is presented together with a demonstration that this is better modelled by fractional
differencing than by a hidden state Markov model. It is shown that conditioning the logarithm of rainfall on PDO, the Southern Oscillation
index (SOI), and their interaction provides realistic simulation of rainfall that matches observed statistics. Similar simulation models are
presented for Brisbane, Melbourne and Perth.
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Various studies have identified the influence of the El Niño/
Southern Oscillation (ENSO) phenomenon upon the
Australian climate and in particular on its rainfall. Although
being a process shown to have global effects, the axis of
ENSO is the tropical Pacific Ocean, where strong ocean-
atmosphere interactions can produce climatic changes that
have been linked to rainfall across Australia. Chiew et al.
(1998) describe the Southern Oscillation as a ‘see-saw’ of
atmospheric pressure differences between the Australian-
Indonesian region and the eastern tropical Pacific Ocean.
The strength and frequency of the El Niño phenomenon is
modulated by anomalies in Pacific sea surface temperatures.
McBride and Nicholls (1983) showed that the variability of
rainfall across Australia is strongly influenced by ENSO on
interannual time scales.

El Niño events bring shifts in the circulation patterns of
the Australian climate systems, which can be monitored by
differences in both air pressure and temperature. One of the
most commonly used indicators of ENSO variability is the
Southern Oscillation Index (SOI), which is a measure of
the normalised monthly anomalies of the difference between
the mean sea level pressures in Darwin, Australia and Tahiti.
Alternative indicators of the El Niño phenomenon are direct

measurements of anomalous sea surface temperatures
(SSTs), such as the NINO3 index, which the International
Research Institute for Climate Research defines as being
measured in the region 5oN–5oS, 90oW–180oW of the
Pacific.

The effects of ENSO vary on inter-decadal time-scales
(e.g. Allan et al., 1996). Furthermore, various studies (e.g.
Zhang et al., 1997) demonstrate an inter-decadal variability
in patterns of Pacific sea surface temperatures that is
associated with variations in Australian rainfall (e.g. Latif
et al., 1997). This anomalous warming and cooling of the
Pacific Ocean, termed the Interdecadal Pacific Oscillation
(IPO) influences the ENSO phenomenon in Australia
(Franks, 2002). Results published by Power et al. (1999)
suggest that the influence of ENSO upon the Australian
climate fluctuates on inter-decadal time-scales in connection
with the IPO. Chiew and McMahon (2003) demonstrate a
link between ENSO and Australian rainfall and streamflow
for 284 catchments throughout Australia.

Mantua et al. (1997) identified a multi-decadal persistence
in North Pacific sea surface temperatures, termed the Pacific
Decadal Oscillation (PDO), which has been correlated to
weather patterns across North America. This climate index
was derived from an approach that was independent of
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methods used to obtain the IPO time series, although Franks
(2002) indicates that the two indices are highly correlated.
This correlation increases confidence that the two
approaches are reflecting legitimate variability in the
climate. To investigate the influence of climatic variability
on annual rainfall in this paper, the PDO index has been
used in place of the IPO, as stronger relationships were found
when using this index.

When observing Australian rainfall on a regional scale,
Simmonds and Hope (1997) identified statistically
significant persistence on monthly, seasonal and annual
time-scales, together with significant correlation with SOI.
This paper will assess whether there are any practically
important correlations with climate systems in the point
rainfall time series of selected Australian capital cities, and
if so, whether these are useful for simulations of rainfall.
Simulated rainfall is needed for diverse purposes such as
reservoir design, assessment of control systems for the
release of water from reservoirs, and flood defences.
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Long-term continuous rainfall data, recorded at monthly
intervals were available for four Australian capital cities:
Sydney (1859–1999), Melbourne (1856–1999), Brisbane
(1860–1996) and Perth (1876–1991). Monthly rainfall totals
were added to obtain time series of anual rainfall totals for
each of these cities. Some statistics from these annual data
are shown in Table 1.The location of these cities indicate
the variable climatic conditions that exist along the
Australian coast.This variation is demonstrated in Fig. 1
which indicates the different distributions of monthly rainfall
totals for each of these cities. The large standard deviations
of the monthly totals, indicated by the semi-lengths of the
lines in Fig. 1 indicate high variability of rainfall in these
Australian cities.

The seasonal shift of a belt of high air pressure that brings
easterly-moving air disturbances over the Australian
continent is the dominant force in the climate of this country

Table 1. Summary of rainfall data from selected Australian capital cities

Location BOM rain gauge Period Length Annual Statistics (mm)
identification number (Years) (Mean (sd))

Sydney 066062 Jan. 1859 – Dec. 1999 141 1226 (331)
Brisbane 040214 Jan. 1860 – Dec. 1993 134 1154 (358)
Melbourne 086071 Jan. 1856 – Dec. 1999 144 657 (129)
Perth 009034 Jan. 1876 – Dec. 1991 116 868 (162)
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Fig. 1. Monthly averages of rainfall data for selected Australian
capital cities; the heights of the bars are the mean monthly totals
and the lines represent two standard deviations of monthly totals
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(Harrison and Dodson, 1993). When located at 29–32o S in
winter, this system brings rainfall to the south of the
continent in the form of Southern Ocean cold fronts. This
pattern is contrasted with conditions in summer, during
which the high-pressure belt moves further south to 37–38o

S, allowing tropical low-pressure systems to influence the
country, bringing hot, dry conditions to the south of the
continent and summer rainfall to the north. This northern
Australian summer rain is derived from the influence of
tropical monsoonal airflows originating in the Pacific.

The predominantly summer distribution of rainfall in
Brisbane, shown in Fig. 1b can be contrasted with the strong
winter rainfall distribution in Perth, Fig. 1d, both of which
indicate the influence of this high pressure belt on the
distribution of rainfall. The rainfall records in both Sydney
(Fig. 1a) and Melbourne (Fig. 1c) show more uniform
distributions across the twelve calendar months than either
Brisbane or Perth. The climate of Sydney, situated on the
eastern coast of Australia at latitude of approximately 34o,
is influenced by both moist easterly winds from the Pacific
and Southern ocean air flows. Melbourne, situated further
south than Sydney, at latitude 37o S, is under less influence
from the tropical systems of the Pacific and is thus affected
by Southern Ocean cold fronts for much of the year.
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Figure 2a– d show the rainfall time series for the four cities.
The regression of annual rainfall {x

t
} on time (t, in years

from start of record) is shown in Table 2 for each city.
Although there is no evidence of a consistent linear trend
over the past century, the time series plot for Sydney, Fig.
2a, shows periods during which rainfall is either consistently
above or below the long-term mean value. In particular, the
40-year period between 1905 and 1944 shows a reduction
in both the mean annual rainfall and the variation about this
mean. The mean annual rainfall in this period is 1096 mm
compared to 1298 mm in the period 1945–1999 and
1252 mm prior to 1905. Similarly, the standard deviation
of the period 1905–1944 is 235 mm compared to 349 mm
for the period prior to this and 353 mm for the period
following. This apparent step change in rainfall was
discussed by Cornish (1977) and is associated with a
dramatic increase in flood risk across New South Wales from
1945 (Franks, 2002).

CUSUM chart analysis is a standard technique used to
show changes in the underlying mean of a system. The
CUSUM were calculated from
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Fig. 2. Time series of annual rainfall in Sydney (a), Brisbane (b),
Melbourne (c) and Perth (d)
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where nxx
n

1t
t∑

=

=  and n is the number of years.
Positive slopes on these charts indicate a period of above

average values (hence a ‘wet’ period in this context) with a
negative slope indicating a below-average period. The
rainfall time series for the four Australian capital cities
clearly show periods during which the annual rainfall is
either persistently below or above the long-term mean. The
CUSUM charts for the four capital cities are shown together
in Fig. 3, over the common length of 116 years (1876–1991),
which can allow for the comparison of period changes
between the various cities.

The number of statistically significant (2% level,
Montgomery (1991) for example) changes in the mean for
Sydney, Brisbane, Melbourne and Perth were 11, 7, 8 and 7
respectively. Table 3 shows the correlations between the
annual rainfall time series in the four selected capital cities.
The italicised values indicate correlations that are
statistically significant at the 5% level.
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The time series plot of both the Sydney data and the Brisbane
data show clear sustained changes in their mean level. The
change in the annual Sydney data is now analysed in more
detail.
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An important guide to determining the properties of a time
series is the correlation between data points at different
intervals. The autocorrelation at lag k in a time series is
estimated by
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Correlations that decay very slowly to zero suggest that
separated observations are related and ‘long-memory’ or

-6000

-4000

-2000

0

2000

4000

6000

8000

1880 1900 1920 1940 1960 1980

Sydney
Brisbane
Melbourne
Perth

C
um

ul
at

iv
e 

d
ep

ar
tu

re
s 

fr
om

 th
e 

m
e

an
Table 2. Summary of regressions of annual rainfall on time

Location Constant Coefficient Standard T-ratio P value
for t error

Sydney 1198 0.391 0.687 0.57 0.570
Brisbane 1218 -0.949 0.798 -1.19 0.237
Melbourne 654 0.035 0.259 0.14 0.892
Perth 887 -0.319 0.451 -0.71 0.481

Table 3. Correlations between annual rainfall time series in selected
capital cities

Location Brisbane Melbourne Perth

Sydney 0.424 0.190 0.038
Brisbane – 0.141 0.162
Melbourne – – 0.152

Fig. 3. CUSUM (1876-1991) for the annual rainfall in selected Australian capital cities
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‘long-range dependence’ is present. Beran (1994) provides
mathematical definitions of persistence in terms of both the
correlogram and the spectrum of a time series. Persistence
causes correlograms to decay hyperbolically, with r(k)
approximating k-α as the lag increases. Time series can show
both short term and long term correlations, in which case a
fractional autoregressive integrated moving average model
(FARIMA (p,d,q)), with the differencing parameter d
between 0 and 0.5, is a suitable model. However, many
hydrological time series can be modelled reasonably well
by autoregressive processes of order 1 (AR(1) processes).
These are characterised by a significantly large r

1
 value

followed by an approximate exponential decay.
Figure 4 shows the correlogram with 5% lines of

significance included. Since no correlations lie beyond these
lines, there is no convincing evidence of persistence when
the rainfall is aggregated at an annual level. Nor, with r(1)
equal to just 0.10, r(3) equal to 0.14 and  r(2) and r(4) being
negative (equal to –0.01), is there any suggestion that an
AR(1) model is appropriate.

The spectral density of a persistent stochastic process is
asymptotic to the vertical, as the frequency tends to zero.
The sample power spectrum can be estimated through a
variety of methods. Estimated from the sample
autocovariance, the smoothed sample spectrum was
calculated from
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where M is the bandwidth of the window.
The sample power spectrum for the Sydney annual rainfall

data series, with M equal to n2 , is shown in Fig. 5. There
is no suggestion of a peak at a frequency of zero, the two
peaks correspond approximately to one cycle per 13 years
and one cycle per three years.

Although CUSUM charts showed non-stationarity in the
annual rainfall of Sydney, no convincing evidence of the
40-year ‘dry’ period (1905–1944) being indicative of long-
term persistence was found in either autocorrelation or
spectral analysis. These statistics do provide clear evidence
of persistence in well known persistent time series such as
the River Nile annual flows, which are well modelled by
fractional differenced autoregressive (FAR) models (Beran,
1994). Hidden state Markov (HSM) models have been
shown to provide realistic simulations of time series that
appear to have jumps in the mean level. Such time series do
not necessarily have marked autocorrelations; however they
typically have Hurst coefficients that are significantly higher
than realisations of independent variates (discrete white
noise (DWN)).
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In results published in 1951, Hurst outlined his detection of
long-range dependence in sequences of hydrological and
geophysical data. In particular, this persistence was detected
in the annual minima of the River Nile. By noticing in
various series a tendency for deficits and surpluses of inflows
to persist (Hurst, 1951), a statistic known as the rescaled
adjusted range (R

m
) was used to quantify the long-range

dependence in the time series.
From the mean ( x ) of a time series (x

t
) of length n, the

adjusted partial sums (S
k
), which are equivalent to

cumulative sums, can be calculated for k=1,…,n as
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Fig. 4. Correlogram for the time series of annual rainfall in Sydney
(1859 – 1999)

Fig. 5. Power spectrum for the time series of annual rainfall in
Sydney (1859–1999)
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The rescaled adjusted range, R
m
, is the standardised

difference between the maximum and minimum values of
S

k
 over a ‘block’ size of length m < n as shown:

( ) ( ){ } sS,...,SminS,...,SmaxR m1m1m −= (5)

For each block size m, adjusted partial sums are successively
generated at S

2
, S

3
,…, S

n-m
, producing (n–m) values for each

R
m
. The average R

m
 is then determined for values of m taken

at regular intervals up to a maximum of n. Beran (1994)
provides details of estimation.

By plotting ln(R
m
) against ln(m), where m is the block

size of this statistic, the slope of the line around which data
points are scattered is equivalent to H, the Hurst coefficient.
This linear logarithmic relationship is equivalent to:

H
m mR ∝ (6)

Persistence can be characterised by the rescaled adjusted
range behaving as a function mH, H > ½ of the sample size
m, rather than as the m1/2 that is characteristic of short-
memory processes (Hosking, 1984). Sequences of
independent Gaussian variables (sequences with an absence
of long-term memory) will have a value of H of
approximately 0.5 and higher values of H directly relate to
a higher intensity of persistence.

The rescaled adjusted range for the Sydney annual rainfall
time series was calculated at block sizes from 5 up to the
record length of 141 years, and shown in Fig. 6. The estimate
of the Hurst coefficient from this diagram is H=0.76, which
is significantly higher than the 0.5 expected of an
independent process (one-sided 0.02P ≈ , from Monte Carlo
simulation), providing evidence that the rainfall time series
is persistent.
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Thyer and Kuczera (2000) applied the hidden state Markov
(HSM) model to the simulation of annual rainfall time series
in this country. An HSM model, which simulates data in
either one of two climate states, is presented here as a method
of data simulation that may reproduce the statistical
characteristics of the Sydney annual rainfall. A two-state
model in which underlying climate characteristics fluctuate
between ‘wet’ (W) and ‘dry’ (D) states is assumed.
Simulation between these states is determined by transition
probabilities that are dependent only on the previous state
yet independent of time. The former feature realises a central
property of the Markov chain and the latter produces a
homogeneous data set.

Although Markov processes are used to simulate the data
set, the Markov chain is not observed directly, instead being
hidden within an observation process that is a noisy function
of the chain (Elliot et al., 1995). The two states are assumed
to be independent Gaussian distributions, which requires
six parameters to be defined – the mean m and variance s2

of each state and two transition probabilities P(W→D) and
P(D→W). The probability that the simulated data remains
in the same state for consecutive sampling periods is found
as the complement of the respective transition probability.
The histogram of the annual Sydney rainfall is shown in
Fig. 7, and it is assumed that this distribution separates into
twostate distributions in the HSM structure. Markov Chain
Monte Carlo (MCMC) simulation techniques are used to
determine the posterior distributions for the model
parameters, the posterior distribution of estimates for the
mean and standard deviation of each state being shown in
Fig. 8.

Figure 8 suggests that a two-state HSM model could be a
suitable representation of the annual rainfall time series of
Sydney. The posterior distributions of the mean rainfall in
the two states separate well in Fig. 8a, suggesting that annual
rainfall has means of 1444 mm and 1076 mm within the
two climate states, with the two standard deviations
estimated from Fig. 8b as approximately 327 mm and
222 mm for the wet and dry states respectively. The posterior
distributions for the estimates of the two transition
probabilities in Fig. 9 are more dispersed than either the
means or standard deviations, evidence that the HSM model
is unable to make a strong estimate of these probabilities.
The posterior for P(W→D) has a mean 0.420 and standard
deviation 0.198, with P(D→W) having a mean 0.306 and
standard deviation 0.148.

From the application of the two-state HSM model to the
annual rainfall time series for Sydney, the posterior
probability of a year existing in either climate state can be
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Fig.6. Rescaled adjusted range for the time series of annual rainfall
on Sydney (1859 – 1999). Slope of regression line, H = 0.76
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Fig. 9. Posterior distributions of the two HSM transition probabilities, P (W    D) (a) and P (D    W) (b)
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calculated by using the Baum–Welch forwards and
backwards recursion (see Bengio, 1999). From this
algorithm, the probability of the climate in year t existing in
a “wet” state, conditional upon the entire rainfall series, P
(s

t
=W | Y

1
T) is calculated for the length of the annual rainfall

time series, with the results shown in Fig. 10.
From Fig. 10, the period 1905–1945, which was identified

as being a ‘dry’ epoch in the time series of Fig. 2a, has a
mean value of 0.37 for P (s

t
=W | Y

1
T), which is lower than

the mean of 0.59 from across the entire time series. This
suggests that the HSM model is able to model this period as
predominantly a ‘dry’ state.

By using the mean values of the posterior distributions of
HSM model parameters to simulate 1000 separate HSM
chains, the behaviour of the Hurst coefficient can be

→ →
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obtained. This Monte Carlo process displays a mean Hurst
coefficient of 0.596, with 5% and 95% quantiles of 0.44
and 0.77 respectively. This interval just includes the value
of the Hurst coefficient for the Sydney rainfall, 0.76.
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A mixture of two normal distributions can often closely
approximate a skewed distribution. An HSM model includes
a mixture as the special case of state transitions that are
independent of the current state. In this special case, there
is no persistence in states. Let P

D
 and P

W
 be the proportion

of dry and wet states respectively. Then

1PP WD =+ (7a)

Define P
WD

 as P(W→D) , and similarly for the other
transition probabilities. If the HSM model is merely a
mixture,

WDWWW

DDDWD

PPP

PPP

==
== (7b)

and it follows from (7a) that

1PP DWWD =+ (7c)

If there is a tendency to persist in the states, the sum of P
WD

and P
DW

 will be less than 1, whereas the sum being greater
than 1 would correspond to a tendency to fluctuate between
states.

Figure 11 shows the posterior distribution of the sum of
the two transition probabilities for the two-state HSM model
applied to the Sydney annual rainfall time series, which has
a skewness of 0.6072. Dashed lines show the 5% and 95%
quantiles for this estimate, which are at 0.336 and 1.143

respectively. As this interval includes 1, there is no evidence
that the estimates of the HSM parameters are different from
a mixture distribution at a 10% significance level.

However, Thyer and Kuczera (2000) found that the
estimates of transition probabilities were sensitive to the
definition of the water year, which are equated with the
calendar year. There is some justification, based on climatic
indices (as discussed later), to prefer an April to March water
year for New South Wales. In this case, the 95% and 98%
confidence intervals for (P

WD 
+ P

DW
) are [0.285, 0.976] and

[0.196, 1.116] respectively.
Although a two-state HSM model shows potential as a

method of reproducing the apparent persistence in the annual
rainfall time series of Sydney, it might be claimed that the
fitted model is merely a normal mixture.
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autocorrelation from Monte Carlo simulations of AR (1) models,
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The cumulative sums provide evidence of non-stationarity.
The Hurst coefficient provides some evidence that the
rainfall time series is persistent, but this is not supported by
the correlogram, or spectrum. It is worth noting that
realisations of AR(1) series, which do not satisfy the
mathematical definition of persistence, also exhibit Hurst
coefficients that exceed 0.5, as shown in Fig. 12. In this
figure, estimates for H from 1000 simulations each of length
100 are determined over a range of autocorrelation
coefficients. From Fig. 12, the average value of the estimator
of H in samples of discrete white noise of length 100 is
0.58. This bias reduces as the length of the time series
increases.
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The climate indices SOI, NINO3,  IPO and PDO are related
to rainfall across Australia. Their influence upon selected
point rainfall can be investigated through observing
correlations at annual scales, as shown in Table 4, where
5% significance is shown in italics. Annual values for each
climate index are attained from the average of the January
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to December monthly totals for each year. Continuous data
sets for SOI are available from 1876-2001, NINO3 from
1856–2000, IPO from 1857–1999 (data set from Folland et
al., 1998) and PDO from 1900-2000.

If variables are correlated, averaging tends to give higher
correlation. This accounts for the regional rainfall statistics
having higher correlations to climate indices than point
rainfall. By aggregating rainfall over the 107 Australian
rainfall districts and distributing this into four regions across
the continent, Simmonds and Hope (1997) showed that
annual rainfall across New South Wales and Victoria had a
correlation of 0.58 with annual SOI for the period 1913–1991.

Regression analyses of point rainfall at Sydney (y
t
) on

Fig. 12. Time series of annual rainfall Sydney rainfall (solid line), annual PDO index and annual SOI (both dotted lines)

Location SOI NINO3 PDO IPO

Sydney 0.279 -0.211 -0.314 -0.239
Brisbane 0.423 -0.417 -0.281 -0.275
Melbourne 0.201 -0.277 -0.149 -0.156
Perth 0.294 -0.201 -0.087 0.038

Table 4. Correlations between annual totals of rainfall and climate
indices
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Table 5. Coefficients and standard errors for regression of annual rainfall for four capitals against climate indices, with R2 values,
standard deviation of residuals and overall P-value.

City Constant (SE) Coeff of  t (SE) Coeff of PDO Coeff of SOI Coeff of PDO R2 S P-value
(SE) (SE) ×SOI (SE)

Sydney 1072.00 (60.23)  2.576 (1.044) -98.52 (43.92)   7.724 (4.942) -5.374 (4.427) 18.6% 295.4 0.001
Brisbane  928.04 (60.02)  3.272 (1.107) -42.55 (43.86) 16.111 (4.958) -2.274 (4.422) 23.3% 284.9 0.000
Melbourne  655.65 (27.07)  0.0383 (0.4693) -9.52 (19.74)   3.81 (2.221) -1.294 (1.989) 5.6% 132.7 0.236
Perth  932.3 (33.68) -1.2001 (0.6294)  1.89 (24.62)   5.87 (2.763)  0.825 (2.485) 10.4% 157.8 0.046

SOI, PDO and NINO3 and all their possible interactions,
together with time, led to the following equation which had
the smallest estimated standard deviation of errors:

(37.5SOI72.7 PDO98.5t 2.581072yt ×−×+×−×−=
(8)

where t is the time in years from the beginning of the record.
This equation is statistically significant ( 0.001P ≈ ).
Although the PDO is the most statistically significant
predictor variable, this regression is better than a regression
of only the PDO index against the annual rainfall in Sydney
inasmuch as the standard deviation of the residual errors
was reduced from 305.9 to 295.4.

Table 5 shows the coefficients (with standard errors) for
regression models of each of the four capital cities against
the predictor variables used in Eqn. (6).

The influence of these regression variables on rainfall in
Australia supports the work of various authors (e.g. Power
et al., 1999) who have shown inter-relationships between
changes in the SOI, Australian climate variables and the
inter-decadal SST modulation in the Pacific, identified by
the PDO index. By including PDO in the regression of the
annual rainfall of Sydney on SOI, a better fit was achieved,
suggesting that similar relationships are still statistically
significant when observing only point rainfall.

Figure 12 compares the time series of annual rainfall in
Sydney with annual values of the SOI and PDO index,
multiplied by minus one, over the period 1900–1999.

The correlations between the time series of Fig. 12 are
shown in Table 6, with P-values shown in brackets. The
five-year variance of the annual rainfall series was calculated
over consecutive five-year periods, centred at 1900, 1905,
etc. and this series is also correlated to the climate indices
and shown in Table 6.

Table 6 indicates that not only is the annual rainfall of
Sydney significantly correlated with the PDO index, but so
is the variability in the annual rainfall. Although the SOI is
also significantly correlated with the annual rainfall, it does

not show evidence of being significantly related to the
variance in the annual rainfall time series. Regression
analysis of the log transform of the five-year variance in
the mean annual rainfall on PDO and time (t) yields the
following equation:

1n (Five year variance of y
t
) = 10.7 + 0.0299 × t

 – 0.420 × PDO (9)

which is statistically significant ( 0.038P ≈ ). The inclusion
of SOI and the interaction between PDO and SOI did not
improve the regression model of variances in y

t
.

The significant correlations between the mean annual
rainfall in Sydney and climate indices suggests that long-
term simulation of rainfall would be improved when
including the role of the climate indices. A regression model
of the mean annual rainfall of Sydney on time, the SOI,
PDO index and their interaction is a possible method of
long-term simulation. Such simulation requires the
development of forecast models for the two climate indices,
together with a suitable model for residuals.

�
		
����������	����
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Forecast models for the annual SOI and PDO indices over
the period 1900–1999 require the investigation of both the
short and long-term persistence behaviour of these time
series. The correlograms for these indices are displayed in
Figs. 13 and 14. There is no suggestion of autocorrelation

Table 6. Performance of the regression model in equation 10 for
the simulation of annual Sydney rainfall (1900-1999) over 10000
simulations, with mean and 5% and 95% quantiles provided

Variable Annual PDO Annual SOI
index

Sydney annual rainfall -0.314 (0.001) 0.253 (0.011)
Five year variances of rainfall -0.322 (0.001) -0.005 (0.961)

SOI)(PDO ×
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in the SOI, but the PDO index has substantial
autocorrelations up to lag 7.

The Hurst coefficients are 0.668 for the SOI and 0.946
for the PDO respectively. There is evidence to reject the
null hypothesis that the PDO index is a realisation of
independent variables. The fractional ARIMA (0, d, 0)
model had a lower AIC value than either the AR(1) model,
or a MA(7) model, which is suggested by Fig. 14.
Furthermore, the FARIMA(0, d, 0) model is capable of
simulating the high Hurst coefficient of the annual PDO
index.

A two-state HSM model is an alternative to a FARIMA(0,
d, 0) model for simulating annual totals of the PDO index.
After applying a two-state HSM model to annual values of
the PDO index for the period 1900–1999, Figs. 15 and 16
show the posterior distributions for the two state means and
the sum of the two transition probabilities. Figure 16
suggests that the HSM model can successfully identify two
states in the annual data, with means for the two state
posteriors of 0.4082 and –0.6157. The posterior distribution
of the sum of the two transition probabilities has a mean of
0.200 and a standard deviation of 0.092, providing strong
evidence for persistence rather than a mixture.

Table 7 shows a comparison between the performance of
a two-state HSM model and a FARIMA(0,d,0) to simulate
annual totals of the PDO index. Three diagnostic tests have
been used to compare the performance of these two
processes. The autocorrelation function and the Hurst

Table 7. Comparison of the performance of HSM and FARIMA(0,d,0) models for the simulation of the annual
PDO index (1900–1999)

Test PDO values Equation Used HSM simulations FARIMA simulations

Autocorrelation Function 0.53
(Using first six lags) 0.28

0.24
0.29 Mean, 5% and 95%
0.35 quantiles from
0.29 1000 sims shown

Hurst coefficient 0.946 Mean, 5% and 95% quantiles 







0.947

0.558
  ,  0.752 








1.065

0.716
  ,  0.906

from 1000 sims shown

Gold’s length of runs P<0.001 0.078P ≈ 0.002P ≈

coefficient for 1000 simulations of length 100 years, for
each of these two models have been compared with the
annual PDO index over the period 1900–1999. Thirdly, the
length-of-runs test (see Srikanthan et al., 1983) has been
used to compare the ability of both processes to simulate
any “runs” (consecutive values either side of the mean) in
the PDO time series. If m(s) denotes the total number of
runs of length s above and below the median, then for a
random process, the expected value of m(s) is:

1s2 / s]3[nE[m(s)] +−+= (10)

The sum Q shown in Table 7 is distributed as chi-square
with (L-1) degrees of freedom, where L is the maximum
run length. High values for Q are evidence that the sequence
is a non-independent random variation. The results of
diagnostic testing in Table 7 indicate that a FARIMA (0,
0.446, 0) model is superior to a two-state HSM model for
the simulation of annual values for the PDO index over the
period 1900–1999.

The SOI shows a statistically significant correlation of
–0.492 with the annual PDO index over the period 1900-
1999. A linear regression model is used to simulate the SOI,
conditioned upon the PDO. The fitted model is

PDO4.400.204SOI ×−= (11)

The standard error of the coefficient of PDO is 0.786. There
is no evidence that the residuals are autocorrelated and they

( )
26

1k
simPDO (k)r(k)r∑

=

−








0.459

0.039
  ,  0.194








0.545

0.074
  ,  0.263

( )∑
=






 −=
L

1s

2

E[m(s)]

E[m(s)]m(s)
Q
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Fig. 13. Correlogram for annual SOI (1900 – 1999)

Fig. 14. Correlogram for annual PDO index (1900 – 1999)
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Fig. 15. Posterior distribution of the two state means for annual
PDO index (1900 – 1999)
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Fig. 16. Posterior distribution of the sum of the two transition
probabilities for annual PDO index (1900 – 1999)

are realistically modelled as Gaussian, with mean = 0 and
standard deviation = 6.097.
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In a regression model for the long-term simulation of annual
Sydney rainfall, a log transform of the annual rainfall data
was used to obtain residuals that were approximately
Gaussian (Anderson-Darling statistic = 0.246 compared with
1.001 for untransformed data). Furthermore, regression of
the logarithm of the 5-year variances of the log-transform
of the rainfall was not statistically significant. The
correlogram of these residuals is shown in Fig. 17, and is
consistent with independence. Residuals have a Hurst
coefficient of 0.53, which suggests that there is no long-
term dependence in the time series of residuals. Any
persistence in the annual Sydney rainfall (y

t
) is expected to

arise from conditioning on the PDO index.
It should be noted that cross-correlation between a

stochastic process (Y
t
) and a persistent stochastic process

(X
t
) does not imply Y

t
 must itself be persistent. This follows

from the fact that a persistent stochastic process can be
constructed from a sum of AR(1) processes if the parameters
α have an approximate beta distribution (Beran, 1994).

A set of 10000 simulations of y
t
 were calculated using

the regression model:

t S0.00638 PDO0.077-t 0.0026.96)ln(y ×+××+=
(12)

where tε  are Gaussian residuals, mean = 0 and standard
deviation = 0.2433.

The performance of this model over 10 000 simulations
of length 100 is outlined in Table 8, in which the mean, 5%
and 95% quantiles are provided for the three time series
characteristics: mean, standard deviation and Hurst
coefficient. The results shown in Table 8 indicate that the
simulation model is capable of reproducing important
characteristics of the annual rainfall time series from Sydney,
including its persistence. Figure 18, which is a probability
plot of y

t
 with 5% and 95% bounds determined from the
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Table 8. Performance of the regression model in Eqn.(10) for the
simulation of annual Sydney rainfall over 10 000 simulations, with
mean and 5% and 95% quantiles provided.

Characteristic Annual Sydney Regression model
rainfall simulations
(1900-1999)

Mean 1211.6 1250.9    [1152.6, 1434.2]
Standard Deviation 320.6 324.8    [267.9, 407.9]
Hurst Coefficient 0.781 0.683    [0.527, 0.837]

10000 simulations shown either side of the y
t
, gives a further

indication of the ability of the simulation model to reproduce
the structure of the rainfall time series.

Table 9a gives the regression of the log-transform of the
rainfall against PDO, SOI and their interaction for all four
state capitals. The standard errors of the coefficients are
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Fig. 18. Probability plot for annual Sydney rainfall (1900-1999),
with 5% and 95% confidence bounds estimated from Monte Carlo
simulation

Table 9(a)  Coefficients and standard errors for regressions of log transform of annual rainfall (January–December) in
four capitals against climate indices, with R2 values, standard deviation of residuals and overall P-value

City Constant (SE) Coeff of  t Coeff of PDO Coeff of SOI Coeff of PDO R2 S P-value
(SE) (SE) (SE) ×SOI (SE)

Sydney 6.960 0.0020 -0.077 0.0064 -0.0032 16.9% 0.2433 0.001
(0.050) (0.0009) (0.036) (0.0041) (0.0036)

Brisbane 6.798 0.0030 -0.049 0.015 -0.0026 22.7% 0.2752 0.000
(0.058) (0.0011) (0.042) (0.005) (0.0043)

Melbourne 6.467 0.0000 -0.015 0.0061 -0.0018 5.6% 0.2111 0.241
(0.043) (0.0007) (0.031) (0.0035) (0.0032)

Perth 6.820 -0.0013 0.0033 0.0075 0.0014 10.9% 0.1865 0.038
(0.040) (0.0007) (0.0291) (0.0033) (0.0029)

Table 9(b)  Coefficients and standard errors for regressions of log transform of annual rainfall (April–March) in four capitals against
climate indices, with R2 values, standard deviation of residuals and overall P-value

City Constant (SE) Coeff of  t Coeff of PDO Coeff of SOI Coeff of PDO R2 S P-value
(SE) (SE) (SE) ×SOI (SE)

Sydney 6.947 0.0022 -0.0555 0.0061 -0.0065 16.3% 0.2389 0.002
(0.049) (0.0009) (0.0357) (0.0040) (0.0036)

Brisbane 6.822 0.0025 -0.0751 0.0053 -0.0033 12.5% 0.300 0.018
(0.064) (0.0012) (0.0467) (0.0053) (0.0047)

Melbourne 6.4525 0.0002 -0.0036 0.0071 -0.0040 8.2% 0.1934 0.088
(0.040) (0.0007) (0.0289) (0.0032) (0.0029)

Perth 6.823 -0.0015 0.0208 0.0100 -0.0003 16.6% 0.1733 0.003
(0.037) (0.0007) (0.0272) (0.0031) (0.0027)
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given in brackets. Allan et al. (1996) indicated that
significant changes in climatic indices tend to occur in the
Austral autumn. This suggests that using water years of
April to March may be more informative as there will be
less averaging out of any change in such indices over a year.
Table 9b gives the corresponding regressions.

�����������

A 40-year ‘dry’ period in the time series of annual Sydney
rainfall is apparent in the time series plot and the ending of
this period has been shown to correspond to an increase in
flood risk in New South Wales. This non-stationarity was
formally demonstrated to be statistically significant by
CUSUM analysis. Although this phenomenon might
reasonably be described as persistence, the correlogram and
spectrum provide no evidence for the mathematical
persistence that is so noticeable in the time series of Nile
River flows. The Hurst coefficient however is higher than
expected for a realisation of independent variables,
suggesting that a two-state HSM model might be
appropriate.

HSM models provide a good fit to the annual Sydney
rainfall data but the evidence that this is anything more than
a mixture of normals well approximating a skewed
distribution is not overwhelming and depends on the
definition of water year.

Various climate indices, including the SOI, NINO3 and
the PDO index are related to rainfall across Australia.
Regressions of the annual point rainfall in Sydney, Brisbane
and Perth on the time since the start of their records, found
that the SOI, the PDO index and their interaction were all
statistically significant. The influence of both the SOI and
the PDO index on the annual point rainfall records supports
the views of other authors (eg Power et al., 1999) who have
identified inter-relationships between changes in the SOI,
rainfall in Australia and changes in Pacific SSTs.

A regression of the log-transform of the rainfall series on
the same predictor variables was used for the long-term
simulation of annual Sydney rainfall. By simulating annual
values of the PDO index with a FARIMA(0,d,0) model and
the SOI from a linear relationship with the PDO, a suitable
simulation model was established. Statistical characteristics
such as the mean and standard deviation of simulated time
series were significantly close to those of the Sydney rainfall,
together with persistence identified by the Hurst coefficient.
Similar models were formulated for the other capital cities.
The standard deviation of rainfall was also related to the
PDO index.

Power et al. (1999) distinguished thresholds of –0.5 and
0.5 in the monthly IPO time series as marking significant

changes in the relationships between the IPO index and
Australian rainfall. Correlations between all-Australian
averaged rainfall and the IPO were identified by Power et
al. (1999) as being significantly higher for months in which
the IPO were less than –0.5. Although monthly rainfall
regressions for Sydney were more significant for certain
months (i.e. January, February, June, July, November), no
evidence of a similar threshold was observed in the annual
point rainfall series.
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