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Abstract

The flow records of arid zone rivers are characterised by a high degree of seasonal variability, being dominated by long periods of very low
or zero flow. Discrete flow events in these rivers are influenced by aseasonal factors such as global climate forcings. The atmospheric

circulations of the EI-Nifio Southern Oscillation (ENSO) have been shown to influence climate regimes across many parts of the world.

Strong teleconnections between changing ENSO regimes and discharges are likely to be observed in highly variable arid zones. In this paper,
the influence of ENSO mechanisms on the flow records of two arid zone rivers in each of Australia and Southern Africa are identified. ENSO
signals, together with multi-decadal variability in their impact as identified through seasonal values of the Interdecadal Pacific Oscillation
(IPO) index, are shown to influence both the rate of occurrence and the size of discrete flow episodes in these rivers.
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Introduction

The El Nifio Southern Oscillation (ENSO) is known to
induce climatic variation throughout much of the world. The
warming and cooling of equatorial sea-surface waters in
the Pacific, known as El Nifio and La Nifia events, and
related changes in air pressures of the South Pacific known
as the Southern Oscillation, are part of a global climate
system. These large-scale interactions between the ocean
and atmospheric circulations are related to global
temperature, rainfall and streamflow anomalies (Chiew and
McMahon, 2003; Ropelewski and Halpert, 1987; Mason,
1997). Climate indices are a suitable method to assess the
ENSO phenomenon, by measuring changes in key
atmospheric variables. The Troup Southern Oscillation
Index (SOI) (Troup, 1965) is a widely used index, based on
the Tahiti-Darwin mean sea level pressure difference across
the Pacific Ocean. Furthermore, indices based on changes
in sea-surface temperatures in key regions of the Pacific,
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such as the NINO3 region (5°S to 5°N, 90°W to 150°W;
Kaplan et al., 1998), have been shown to be accurate
indicators of ENSO variability. A more recent development
is the Multivariate ENSO Index (MEI) (Wolter and Timlin,
1998). This, being integrated from multiple climate
parameters, is less vulnerable to non-ENSO related
variability (Kiem and Franks, 2001) because it is able to
reflect the complex nature of ocean—atmospheric interactions
better than indices based on a single variable. The variables
used in the MEI include sea-level pressure, sea surface
temperature, zonal and meridional components of the surface
wind, surface air temperature and total cloudiness fraction
of the sky.

Although ENSO dominates interannual variability in the
Pacific climatic regime, there is strong evidence (Power et
al., 1999; Salinger et al., 2001) that related climate features
also operate on decadal to inter-decadal time scales. This
low frequency variability in Pacific sea surface temperatures
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(SSTs) has been termed the Interdecadal Pacific Oscillation
(IPO) (Power et al., 1999), and has been shown to modulate
strongly the effect of ENSO upon both precipitation
variability (Power ef al., 1999) and flood risk (Kiem et al.,
2003) over Australia. Indices for the IPO have been derived
from a number of sources, with the longest series obtained
from global SST sets (Folland et al., 1998).

Correlations between ENSO and rainfall occurrence
across North America have also been identified (Gershunov
and Barnett, 1998), with a multi-decadal variability that is
in line with a multi-decadal persistence in North Pacific SSTs
that is very similar to the IPO (i.e. Pacific Decadal
Oscillation, PDO)(Mantua et al., 1997). Three major phases
of the IPO were observed during the 20th century, positive
phases between 1921-1944 and 1978—1998 and a sustained
negative phase between 1945-1977. In the positive IPO
phase, interannual relationships between ENSO and
Australian rainfall have been shown to weaken (Power et
al., 1999), and teleconnections between SSTs and the SOI
in the South West Pacific around New Zealand have been
amplified (Salinger et al., 2001).

One of the most important climatic features in the
subtropical Southern Hemisphere is the South Pacific
Convergence Zone (SPCZ), which delivers rain-bearing
cloud bands to eastern and central Australia. Small shifts in
the location of the SPCZ can produce large rainfall
anomalies (Salinger et al., 2001); alterations in the latitude
of'the SPCZ due to ENSO events in the Austral summer are
an obvious mechanism by which ENSO alters rainfall
patterns across the Australian continent. Warm EI-Nifio
events disrupt the propagation of the SPCZ over southern
latitudes, causing reduced rainfall across the Australian
continent, while cold La Nifia periods produce an enhanced
southern movement of the zone, which results in higher
rainfall. Furthermore, Folland ef al. (2002) showed that
alterations in the latitude of the SPCZ were related
significantly to multi-decadal IPO variability, independent
of ENSO influences. During La Nifia events that occur in
IPO negative epochs, the SPCZ is at its south-western
extreme, bringing higher amounts of rain to Australia. As
Franks (2004) states, this rationalises the results of Power
et al. (1999) who showed the enhancement of La Nifia
conditions in IPO negative phases. Moreover, this suggests
the use of indicator variables for climate categories rather
than continuous predictor variables when relating climate
variability to hydrological responses.

Multi-decadal modulation in the influence of ENSO upon
Indian Ocean sea-surface temperatures has also been
characterised, with Landman and Mason (1999) describing
a weakening of this ENSO signal since the late 1970s.
Anomalous warming and cooling in the Indian Ocean are

related, strongly, to seasonal rainfall variability across
southern Africa (Jury and Courtney, 1995; Mason, 1997).
This region is predominantly arid or semi-arid with high
interannual rainfall variability and the influence of ENSO
is greatest during the peak rainfall months of December to
March (Mason and Jury, 1997). During Pacific El-Nifio
conditions, the northern Indian Ocean is warmer than
normal, playing an important role in the transmission of the
El-Nifio signal to southern Africa. El Nifio events are usually
associated with below average rainfall across much of Africa
south of about 10°S (Mason, 2001); however, the variance
in African rainfall totals explained by ENSO is rarely more
than about 20% (Lindesay, 1988). In their review of the
relationships between ENSO and rainfall and streamflow
records across Australia, Chiew and McMahon (2003)
demonstrated that the EI Nifio-streamflow teleconnection
is almost always stronger than the El Nifio-rainfall
teleconnection.

The present study investigates the role that the ENSO
phenomenon has upon flow events in arid zone rivers. The
hydrology of arid zones is particularly interesting, being
characterised by high seasonal variation in the flow regime
with dominant patterns of zero or very low flows. Other
factors, including those associated with irregular
atmospheric circulations such as ENSO, have been shown
to influence flow patterns strongly (Puckridge ef al., 2000).
Furthermore, the highly variable flow regimes of these
regions potentially amplify the ENSO teleconnections
observed in the less-extreme flow records of other rivers.
Relationships between flooding episodes in arid areas and
climate patterns have been investigated (Kotwicki and Allan,
1998), and this study demonstrates that the timing and size
of distinct flow events can also be linked closely to ENSO
phases. McMahon et al. (1992) highlighted that the most
variable flow regimes across the world were located in
Australia and southern Africa, and flow records from two
rivers in each of these regions are used in this study.
Cigizoglu et al. (2002) developed point process models to
characterise the discrete flow episodes of two neighbouring
arid zone rivers in Africa; however, the roles of large-scale
climatic regimes on such episodes were not considered.

Data and working assumptions

This study examines the flow records from four rivers
located within arid zones of the southern hemisphere. The
Omatako and Omaruru Rivers are both located in the
Kalahari Sandveldt in Namibia, southern Africa, shown in
Fig. 1. Annual runoff in this region rarely exceeds 10 mm.
Both rivers originate in the high central plateau of the
country, with the Omatako flowing north-east as a tributary
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Fig. 1. Locations of the Omatako and Omaruru rivers, together with
their sampling sites shown as triangles (after Cigizoglu et al., 2002)

ofthe endorheic Okavango Basin, and the Omaruru flowing
west to the Atlantic. The country has a subtropical desert
climate, and ephemeral flow events in both rivers are
generally confined to the wet season between January and
April, which are also the hottest months. Mean daily flows
for the Omatako River at Ousema are available for 29 years
(1962-1990) and for the Omaruru at the town of Omaruru
for 22 years (1965-1986).

In central Australia, in the large Lake Eyre Basin, flow
data from two rivers, the Todd at Alice Springs and Cooper
Creek at Cullyamurra have also been examined. The Lake
Eyre Basin covers over 1.1 million km? of the generally
arid central zone of Australia, having the lowest mean annual
runoff of any major drainage basin in the world (Kotwicki

Table 1. Summary flow statistics for the four rivers investigated

Todd River |
[ ]

Fig. 2. Locations of Cooper Creek and Todd River in Australia

and Allan, 1998). Located at the north-western edge of this
basin, in the geographical centre of the continent, the sub-
catchment of the Todd River above Alice Springs covers
some 450 km?. The Cooper Creek sub-catchment, however,
is considerably larger, approximately 306 000 km?, most of
which is located upstream of the observation point (Fig. 2).
Both rivers display high variability in the duration and
volume of their discharges. Daily flows are available for
37 years for the Todd (1962—1998) and for 29 years for the
Cooper (1973-2001). In later models that incorporate
climatic influences, flows in the Cooper recorded after 1998
are not used, to be consistent with the period of available
IPO data.

All four rivers are characterised by periods of very little
or no flow that separate distinct flow events. This feature is
more pronounced in the Omatako and Omaruru, where such
flow events have an average duration of 8.5 and 5.5 days
respectively. In contrast, flows in the Todd continue for an
average of 41 days, and the Cooper 155 days, most likely
due to its large catchment size. In this study, flow events
are referred to as ‘spates’, defined as a continuous sequence

River Sample Catchment Total annual flow (x10° m?) Number of annual spates
(vears) (km?) Minimum Median Mean Maximum Mean Variance

Omatako 29 4970 1 20 35 144 4.45 5.61

Omaruru 22 2520 0 23 28 110 2.59 4.54

Todd 37 450 0 6 11 94 3.27 4.65

Cooper 29 306 000 21 392 1636 14 360 1.66 0.88
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Fig. 3. Boxplots of annual flows in the Omatako, Omaruru and Todd
(shown as x10° m?) and the Cooper (x10% m?), with asterisks showing
outlying values beyond interquartile range

of days over which non-zero flow is recorded. Annual
summary statistics of the flow records from the four rivers
are presented in Table 1, with water years beginning October
1st. Boxplots of the annual flow records of the four rivers,
shown in Fig. 2, display the median and the interquartile
(IQ) range between the first quartile (Q1) and third quartile
(Q3). The whiskers shown on these plots extend from the
IQ range to an upper limit (defined as 1.5(Q3-Q1)+Q3),
and a lower limit (Q1-1.5(Q3-Q1)), with values outside
these limits shown as asterisks. Daily flow exceeded the
sample average on 9% of the time for the Cooper, 7% for
the Omatako and 3% for both the Todd and Omaruru. The
distinctive patterns of flow in these rivers and the association
between the two African rivers and also between the two
Australian rivers are shown in Figs. 4 and 5 respectively,
using two-year samples of daily flow.

' Variability in the ENSO signal is assessed through the
MEI and IPO data. Kiem and Franks (2001) showed that
the MEI outperformed the more traditional SOI and NINO3
indices in identifying ENSO-related changes in rainfall and
runoff observations. The MEI can be used to classify ENSO
events in various ways, including the approach of Chiew et
al. (1998), who used mean index values over twelve-month
periods from April to March to define both El Nifio and La
Nifia phases. The method used in this study follows one of
the approaches of Kiem and Franks (2001); they used
averages of monthly index values over six-month periods
from October to March to distinguish annual ENSO phases
and claim that this method is the most robust for identifying
ENSO variability over the time period being investigated.
In this manner, El Nifio years are characterised as any year
in which the six-month MEI average beginning in the
previous October is above 0.5 and La Nifia events as years
in which this average is below —0.5. Six-month averages of
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Fig. 4. A typical sequence of daily flows in the Omatako and
Omaruru rivers (1983-1985)
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Fig. 5. A4 typical sequence of daily flows in Cooper Creek and the
Todd River (1994-1996)
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the IPO, provided in seasonal totals, are also taken in this
study.

Modelling numbers of spate flows

The first aspect of this investigation is to examine the
influence of the ENSO signals on the record of spate flow
numbers across the four rivers. If the underlying random
processes can be considered the same from one year to the
next, the annual spates would follow a Poisson distribution.
The alternative considered is that the underlying processes
depend on slowly varying global climate conditions that
result in greater variability in the number of annual spates
than are expected from a Poisson distribution. Flows in the
Cooper tend to have longer durations because its catchment
is considerably larger than those of the other rivers, hence
fewer spates are observed at the observation point each year.

POISSON REGRESSION MODELS

Initially, interactions between ENSO and the number of
observed flow episodes were modelled using a Poisson
regression function, which includes explanatory variables
such as the MEI and the IPO. In this model, it is assumed
that the dependent variable Y has a Poisson distribution given
the independent variables X, X,..., X ,, that is
K

P = KX, X X, ) = & A

o k=012.. (1)

where u is the mean of the Poisson process. The logarithm
of this mean value is assumed to be a linear function of the
explanatory variables, i.e.

In(u)=ay+a, X, +a, X, +ota, X, )

The choice of a logarithm as the link function to relate
the mean of the process to its predictor variables has the
result of ensuring fitted values of y remain positive. The
deviance is a measure of the variability of Y. If ¥ has a
Poisson distribution, the expected value of the deviance will
equal the degrees of freedom, with a substantially larger
value being evidence for Y being over-dispersed. Therefore,
a best model is selected on the basis of smallest deviance.

By using the average of climate index values over October
to March periods as being indicative of annual conditions,
the model with the lowest standard deviation of residuals
from fitting these predictors to the Omatako record was the
following:

In(u) =1.456-0.284x MEI (3)

This equation, which was not improved by the inclusion
of the PO, produces a residual deviance of 26.96 on 27
degrees of freedom, consistent with the hypothesis of a
Poisson variable. This can be compared with a residual
deviance of 36.38 on 28 degrees of freedom for a null model
without climate predictors, corresponding to an R* 025.9%.
Consequently, the regression of MEI averages (calculated
from observations over six-month periods) on the number
of Omatako spates can be regarded as a suitable fit, with
this index alone being able to explain the excess variability
in the Poisson-distributed response.

For the time series of annual spates in the Omaruru and
Todd rivers, the MEI and IPO predictors are unable to
explain sufficiently the excess variability in the records of
annual spates, with residual deviance remaining in excess
of the number of degrees of freedom. Although these index
values failed to be significant indictors of spate flows in
these rivers, ENSO impact can be identified through an
alternative method. As stated earlier, six-month MEI
averages classify each year as being in the El Nifio, La Nifia
or neutral phase. The modulation of these ENSO phases by
the interdecadal variability of the IPO can be exploited by
using six-month averages of the PO index also to categorise
years as being in either /PO negative (IPO < -0.5), IPO
neutral (=0.5 < IPO < 0.5) or IPO positive (IPO > 0.5)
phases. The combination of both the ENSO and the IPO
effects can then be incorporated into the nine climate
categories that are shown in Table 2; these are then used to
classify each year of observations. By considering the central
category, which represents neutral [PO and neutral ENSO
conditions as a base condition, eight indicator variables then
categorise the other climate states. For each annual period,
the category corresponding to the specific combination of
MEI and IPO in that year takes a value of one, with each of
the other seven variables taking a value of zero.

Table 2. Annual climate indicator categories based on MEI and IPO values

IPO < 0.5

MEI <-0.5 (La Nifia)
—0.5 <MEI < 0.5 (Neutral)
MEI > 0.5 (El Nifio)

-0.5<IPO<05 IPO=>0.5
8 7
6
4 5
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Table 3. Comparison of the optimum Poisson regression models for number of annual spates in the Omatako, Omaruru and Todd rivers
using both six-month averages of MEI and IPO values as indicative of annual totals, and category indicator variables (shown in bold) as

predictors

River Best predictive models for In(u) Residual deviance Degrees of freedom AIC
with standard errors of coefficients in brackets

Omatako 1.456 — 0.284 x MEI 26.962 27 124.37
(0.091) (0.094)
1.585 — 1.026 x FIVE 26.834 27 124.24
(0.091) (0.389)

Omaruru 0.935 — 0.259 x MEI + 0.237 x IPO 38.241 19 95.87
(0.135) (0.154) (0.127)
0.606 + 0.616 x (FOURorFIVEorSIX) 36.993 20 92.62
(0.212) (0.272)

Todd 1.104 + 0.174 x IPO 54.409 35 160.23
(0.104) (0.088)
1.317 — 1.066 x (ONEorTWO) 45.508 35 151.33

(0.094) (0.345)

Poisson regressions for the time series of spates in the
Omatako, Omaruru and Todd are now fitted with the eight
indicator series. Table 3 compares the best models for each
river, using only the indices, and their interaction, as
predictors, with the best models obtained from fitting the
category indicators (shown in bold). The Akaike Information
Criterion (AIC) (Akaike, 1974), which is a standard
statistical criterion that penalises likelihoods based on
numbers of fitted parameters, is used to compare the fit of
each model, with better models having a lower AIC value.
The results in this table show that category predictors can
provide better regression models than those based solely
on climate index predictors.

In the Omaruru, the best regression model on index values
shown in Table 3 was not improved by the inclusion of the
cross product of the MEI and IPO. The optimum model from
fitting climate categories used one index that combined
categories four, five and six. Categories four and five
represent El Nifio conditions, which is a similar result to
that gained from the Omatako record. In the Todd, a
regression of spates on the IPO was not improved by the
MEI, yet is surpassed by a model using categories one and
two. These categories represent La Nifia conditions is /PO
negative periods, a result that is consistent with observations
made by Power et al. (1999) concerning the impact of this
interdecadal modulation of ENSO impact across Australia.
These results indicate that ENSO influence is responsible
for most of the clustering of spates when these rivers are
modelled as individual series.

BIVARIATE POISSON MODELS

A regional influence of ENSO upon isolated flows in these
arid rivers will be more apparent if the observations from
two rivers in the region are considered together. With the
Omatako and Omaruru located in close vicinity (and
similarly with the Todd and Cooper), both rivers will be
under similar climatic influences and, thus, models of their
spates may be improved by incorporating this common
effect. A plausible model that allows for dependence within
the two pairs of rivers is the bivariate Poisson distribution;
this retains a Poisson assumption for the number of annual
spates recorded in each of two rivers, together with
dependence between flows in these rivers. This bivariate
framework has been fitted to annual spates in the African
rivers over their common period of 1965—-1986, and to the
Australian rivers over the period 1973-1998.

The bivariate distribution allows for dependence between
the Poisson-distributed variables ¥, and Y,, which have the
expected values EN)=pu=(4+A4) and

E(Y,) =4, =(1,+ ;). The dependence between the
variables is included in the model by the parameter 4., which
is the covariance between Y, and Y,. If A, equals zero, the
model reduces to the product of two independent Poisson
distributions. The joint density of the bivariate Poisson
distribution, as presented by Karlis and Ntzoufras (2003) is

Y1 Y2
_ L et A1 Ay
PM,=y,Y,=Y,)=¢€ T

R A TANE Y
2 [k J[k jk(mj @

The influence of ENSO on the spate occurrence is
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incorporated in this bivariate model by allowing the natural
logarithm of the expected number of observations in river i,
In(4), to be a linear function of climatic predictors such as
the category indicators, or six-month averages of the MEI
and IPO as shown in Eqn. (5). This assumption is, thus,
consistent with the univariate Poisson regression model of
Eqn. (2):

In(x) = ay; +a ;MEI +a,;IPO i=12 %)

The dependence parameter A, is estimated by the
covariance between the annual numbers of spates in the two
rivers. The remaining parameters are then fitted by a method
of maximum likelihood. Alternatively, the expectation-
maximisation algorithm developed by Karlis and Ntzoufras
(2003) could be used for parameter estimation. The Adaptive
Metropolis algorithm (Haario ef al., 2001), a Monte Carlo
Markov Chain (MCMC) method, is employed to evaluate
parameter uncertainty in the form of posterior distributions
for the set of unknown parameters. These posteriors are
important in the application of Bayesian model selection as
a method of comparing the fit of a range of models to each
pair of observations. Bayes Factors (BFs) are a useful
implementation of Bayesian model selection, and the method
of Gelfand and Dey (1994) is applied here, with the full
posterior distributions being utilised in the relevant
calculations. When presented with a range of models
(M, : i=0,1,2..), the BFs are ratios between the marginal
likelihoods of each model, or

_ b(YIM,) (6)
" p(Y M)

High positive values of BF|  indicate strong evidence that
model M, is a better fit than Mg to the series of observations,
and vice versa for high negative values. Kass and Raftery
(1995) provide scales for interpreting BF values, in terms
of twice the value of the natural logarithm of the BF,
2 x In(BF ), which is on the same scale as traditional
likelihood ratio tests. Values of 2 x 1n(BF ) can then fall
into the following categories of evidence against M) 0to2
— ‘weak’, 2 to 6 — ‘positive’, 6 to 10 — ‘strong’, >10 —
‘very strong’.

The results from fitting bivariate Poisson models to both
the Australian and African rivers are compared to those from
independent models using BF analysis. The results in Table
4 show the best bivariate models from fitting ENSO indices,
together with Bayes Factors from comparing these models
to bivariate Poisson models with constant parameters. The
model fitted to the Australian rivers was not improved by
the addition of the MEI. Table 5 displays the results from
the best models obtained from fitting climate categories
rather than indices to these bivariate spate records. To
maintain consistency with the results in Table 3, the category
predictor for the Omatako and Omaruru combines categories
four, five and six and the predictor for the Todd and Cooper
combines categories one and two. The BF results in Table 5
are acquired from comparing climate category models to
independent models and, with these being larger than BF
totals in Table 4, it is apparent that the categories provide a

Table 4. Coefficients and standard errors (SE) for optimum bivariate Poisson models, using climate indices as predictor variables,
together with Bayes Factors (BF) from comparing to fixed parameter models

River Constant (SE) Coefficient of MEI (SE) Coefficient of IPO (SE) 2 xIn(BF, )
Omatako 1.465 (0.106) —0.214 (0.111) —0.144 (0.099) 3.56
Omaruru 0.936 (0.135) —0.266 (0.150) 0.234 (0.126)

Todd 0.860 (0.192) - 0.332 (0.149) 2.59
Cooper 0.502 (0.190) - —0.005 (0.157)

Table 5. Coefficients and standard errors (SE) for optimum bivariate Poisson models, using climate categories as predictor variables,
together with Bayes Factors (BF) from comparing to fixed parameter models

River Constant(SE) Coefficient of categories Coefficient of categories 2 xIn(BF, )
(1 or2)(SE) (4 or 5 or6) (SE)

Omatako 1.660 (0.125) - -0.419 (0.211) 9.49

Omaruru 0.608 (0.208) - 0.632 (0.272)

Todd 1.286 (0.111) -1.197 (0.850) - 8.80

Cooper 0.486 (0.165) 0.130 (0.422) -
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slightly improved description of spate flows than the climate
indices. Therefore, models of bivariate flow patterns in both
arid regions are improved by using indicators of ENSO
variability and its multi-decadal modulation.

Modelling total annual flows

The second stage of this study is to identify whether the
ENSO phases are related to total annual flows in each river.
Having previously shown that these indices are related to
the occurrence of discrete flow episodes in all four rivers, it
is pertinent to investigate whether the total flows in each
river are also influenced by similar climatic processes.

MULTIPLE LINEAR REGRESSION

The total variability attributed to the ENSO in the time series
of annual flow of the four rivers is first analysed through
regressing flows on the MEI and IPO. Table 6 gives the
coefficients (with standard errors) for the regression models
with the lowest standard deviation of residuals for flows (in
quantities of 1 x 10° m?) in each river. For the Todd and
Cooper, the addition of a (MEI x IPO) term improved the
regression, reducing the standard deviation of residuals from
17.73 to 16.57 and from 2905 to 2674 respectively. The
ENSO indices are shown to account for the least amount of
variation in Omaruru flows, with its regression significant
only at a P-value of 0.259. The regression of Omaruru flows,
however, was vastly improved by including the time series
of annual numbers of spates as a predictor together with the
ENSO indices; the standard deviation of residuals was
reduced from 28.60 to 22.05, R? increased to 51.2% and the
P-value was reduced to 0.004.

REGRESSION OF BIVARIATE FLOW DATA

With multiple linear regressions identifying the inter-
relationships between ENSO phases, interdecadal SST
modulation in the Pacific and arid zone streamflows, the
regional impact of these climatic processes can also be
investigated. The bivariate Poisson model showed that by
considering the observations from two rivers in a region
together, modelling of the ENSO influence on arid flows
could be enhanced. To examine whether a similar result is
achieved with time series of annual flow volumes, bivariate
distributions are used to describe the residuals from
regression functions of flows in the Omatako and Omaruru,
and the Todd and Cooper. The common periods of flow used
in the bivariate Poisson modelling are also used here.

The natural logarithm of total annual flow in river , In(Y)),
is assumed to follow the relationship

In(Y,) = a,; +a;;MEl +a, IPO+a,, (MEI < IPO)+ E,  (7)

where the residuals £ are generated from a bivariate normal
distribution. Equation 7 uses the MEI and IPO as predictors
of annual flows in each river, together with the product of
these indices, which takes into account the interaction of
the MEI and IPO. Different coefficients for these predictors
are estimated for flows in each of the two rivers. The natural
logarithm of flows is used in Eqn. (7) to produce marginal
residuals that more closely approximate a series of random
draws from a normal distribution. Table 7 gives the
coefficients of the best regression models from using
combinations of the predictor variables in Eqn. (7), together
with the estimated correlation of the errors. The best models
are identified as those that produce the largest Bayes Factors

Table 6. Coefficients and standard errors (SE) for regression of annual flows against climate indices, with R? values, standard deviation

of residuals (S) and overall P-value

River Constant Coefficient of MEI ~ Coefficient of IPO Coefficient of MEI x IPO  R? S P-value
(SE) (SE) (SE) (SE)

Omatako 35.49 —17.43 - - 20.9% 34.89 0.013
(6.48) (6.53)

Omaruru 28.63 -9.46 8.06 - 13.3% 28.60 0.259
(6.12) (6.42) (5.86)

Todd 9.80 -2.62 -2.93 6.64 243% 16.02 0.025
(2.96) (2.85) (2.64) (2.27)

Cooper 1533.5 —1986.4 —354.8 1317.4 44.1% 2674  0.004
(918.7) (743.7) (745.7) (580.2)

Correlation of residuals for Omatako and Omaruru over the period (1965-1986) is 0.568 (p=0.006) and the correlation of residuals for

Cooper and Todd over the period (1973—-1998) is 0.475 (p=0.014)
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Table 7. Coefficients and standard errors (SE) for optimum regression models of bivariate flow records, with bivariate normal distributions

fitted to residuals from each pair of rivers

River Correlation Constant Coefficient of MEI ~ Coefficient ofIPO Coefficient of MEI x IPO
(SE) (SE) (SE) (SE)

Omatako 0.785 11.300 —0.458 —-0.309 -

Omaruru (0.105) (5.740) (0.221) (0.207) -

Todd 0.326 11.032 —0.674 0.198 (0.448) 0.466

Cooper (0.166) (5.755) (0.374) —0.209 (0.412) (0.292)

when compared to bivariate models in which the ENSO
indices have no influence on annual flows (in which case
the two flow series are approximated by a standard bivariate
normal distribution).

As shown in Table 7, the best regression model for the
African rivers included values for ¢, o, and «, that were
equal for each of the two rivers, and was not improved by
the addition of an (MEI x IPO) term. This model form
produced a2 x In(BF, ) value of 10.68 when compared to
a standard bivariate normal distribution on the logarithm of
flows. The best model for the Cooper and Todd also included
values for o, @, and «; that were equal for the two rivers,
and values for ¢, that were fitted separately for flows in
each river. This model produced a 2 x In(BF 1’0) value of
7.89.

The results in Tables 6 and 7 demonstrate that ENSO
processes influence annual flow volumes in the arid zone
rivers studied here. Although the characteristics of flow vary
dramatically across these rivers, with the Omatako and
Omaruru showing much shorter flow episodes and longer
dry periods between such episodes, ENSO phases explain
a large amount of flow variability in each river. Furthermore,
with the bivariate analysis providing an improved
description of the relationship between streamflow and
climate processes, it is evident that the regional extent of
the ENSO phases is an important feature.

Conclusions

This study has concentrated on the linkage between the
quasi-periodic El Nifio/Southern Oscillation (ENSO), its
potential modulation by the Interdecadal Pacific Oscillation
(IPO) and the multivariate hydrological response in arid
regions. In particular, it has shown a teleconnection between
the rate of occurrence, and volume of, short flow episodes
(spates) in two disparate southern hemisphere arid regions
and ENSO with IPO. These associations have been
incorporated into multivariate stochastic models that could
be applied to streamflow data from other arid areas.
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The combined influence of ENSO and IPO is modelled
either by linear terms in these two variables and their
interaction or by indicator variables for nine broad climate
categories, and is demonstrated to be statistically significant
despite relatively short records. The use of categories gave
a slightly better fit to the models for occurrences of spates.
Since the dominant climate category influencing spate
occurrences in the Todd and Cooper corresponds to La Nifia/
IPO negative periods, the results of this study supported
those of Power ef al. (1999) for rainfall. Such results suggest
that the influence of ENSO and the IPO on spate occurrences
is non-linear. In contrast, the influence of ENSO and the
IPO on volumes is rather better modelled as linear in the
MEI and the IPO indices and possibly their product,
representing their interaction.

Power et al. (1999), amongst others, have demonstrated
a linkage between ENSO, IPO and rainfall. Kiem et al.
(2003) and Kiem and Franks (2004) demonstrated a link
with flooding and drought risk respectively. The results from
the present study show similar relationships, for the
frequency and volume of spates that provide the water
resources for arid regions. The relationship appears to be
stronger than that with point or spatially averaged rainfall.
Realistic models for multivariate prediction of spate
characteristics are required for flow prediction up to one
year ahead, and for longer-term simulations that can direct
the management of these resources in terms of water storage
and economic development. With streamflow representing
the complex integration of climatic and landscape responses
that arguable amplify ENSO effects, a practical method for
forecasting available water resources is to provide
hydrological models with ENSO input.

Ghil and Jiang (1998) showed that recent progress in
understanding the dynamics of ENSO has produced
techniques that have useful forecasting skill over periods
of up to 12 months. ENSO prediction techniques include
dynamical approaches such as the use of general circulation
models (GCMs) and purely statistical approaches such as
the use of canonical correlation analysis (Barnston and
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Ropelewski, 1992). Ghil and Jiang (1998) showed the
predictive skill for both dynamical and statistical approaches
to be comparable, and forecasts of SSTs over the NINO3
regions can achieve a correlation skill against observed
anomalies of up to 0.75 (Barnston et al., 1994). More
recently, Berliner et al. (2000) used Bayesian dynamic
modelling for predictions of Pacific SSTs at lead times of
up to seven months, achieving comparable results to larger
deterministic models. Also, Ghil et al. (2002) showed that
the combination of singular spectrum analysis (SSA) with
the maximum entropy method (MEM) of spectral analysis
provides a robust method of predicting the doubly periodic
variability of ENSO.

The relationship between ENSO variability and
hydrological responses is almost always stronger than its
relationship to rainfall (Chiew and McMahon, 2003). In
focusing upon the highly variable arid regions of Australia
and southern Africa, this paper concentrates upon
hydroclimatic variables that demonstrate the most detectable
response to ENSO modulation. Moreover, the statistical
methods used in this analysis maximise the utility of the
available hydrological data in arid zones by integrating the
various facets of the hydrology in space and time. With the
results of the current study showing both the rate of
occurrence and the volume of short flow episodes in these
rivers to be influenced by ENSO variability, the
incorporation of ENSO and IPO predictors could potentially
improve existing hydrological models.
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