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Background. Recent studies in mice have suggested that T cell immunity may be protective against pneu-
mococcal infection.

Methods. CD4 T cell proliferative responses to the pneumococcal proteins pneumolysin (Ply), Ply toxoid
(F433), and choline-binding protein A were investigated in peripheral blood mononuclear cells (PBMCs) and
adenoidal mononuclear cells (MNCs) obtained from children undergoing adenoidectomy.

Results. Ply and F433 induce significant proliferation of CD4 T cells in both PBMCs and adenoidal MNCs,
and both memory and naive phenotypes of CD4 T cells proliferated after stimulation. In PBMCs, CD4 T cell
proliferation induced by Ply and F433, which was associated with increased production of interferon (IFN)–g and
tumor necrosis factor (TNF)–a, was significantly lower in children who were culture positive for pneumococcus
than in those who were culture negative for pneumococcus ( ). Between groups, no such difference wasP ! .05
observed in adenoidal MNC CD4 T cell proliferation, which was associated with production of IFN-g and inter-
leukin (IL)–10. The CD4 T cell proliferation induced by Ply and F433 was inhibited by antibodies to Toll-like
receptor 4.

Conclusion. These data suggest that Ply induces CD4 T cell proliferative responses with production of IFN-
g and TNF-a in PBMCs or of IFN-g and IL-10 in adenoidal MNCs, which may be important in modulating
pneumococcal carriage in children.

Streptococcus pneumoniae (pneumococcus) causes com-

munity-acquired meningitis, septicemia, pneumonia,

and otitis media in children [1]. Pneumococcal carriage

precedes pneumococcal disease and is the source of

horizontal transmission [2]. The effectiveness of poly-
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saccharide and protein-conjugated polysaccharide vac-

cines is limited by their poor immunogenicity in young

children and by limited serotype coverage and non-

vaccine serotype replacement, respectively [3]. Recent

efforts have been made to find alternative protein an-

tigen vaccine candidates, including pneumolysin (Ply)

and choline-binding protein A (CbpA) [4, 5], because

they have the potential to induce protection in all age

groups and against most serotypes of pneumococcus.

Pneumococcus is considered to be an extracellular

bacterium against which antibody responses can play

a major role in protection against colonization, mucosal

infection, and invasive disease. Vaccine-induced anti-

capsular antibodies protect against both invasive disease

and colonization in humans [6–8]. However, naturally

acquired immunity in unimmunized children, which is

associated with progressive reduction in rates of inva-

sive disease and carriage from 2 years of age onward,

is unlikely to be caused by antipolysaccharide antibod-
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ies alone, because the protection can occur before the devel-

opment of measurable systemic anticapsular antibodies [9]. We

recently noted that serum antibody levels to Ply and CbpA were

higher in children with no detectable pneumococcal carriage

than in children who were culture positive for pneumococcus,

suggesting that these antibodies are associated with protection

against carriage [10]. However, recent studies in mice have

suggested that T cell immunity may also provide an antibody-

independent protection against pneumococcal colonization

[11, 12]. Other evidence supporting a role for CD4 T cell im-

munity against pneumococcal infection includes the observa-

tion that major histocompatibility complex II–deficient mice,

which are deficient in CD4 T cells, are more susceptible to

pneumococcal pneumonia and septicemia [13] and that in-

duction of CD4 T cell migration and activation by pneumococci

is important for the development of early protective immunity

against infection [13].

To investigate whether there is an additional or comple-

mentary role for CD4 T cell activation by Ply and CbpA in the

development of protection against pneumococcal colonization

in humans, we investigated T cell proliferative responses and

cytokine production to Ply and CbpA in peripheral blood

mononuculear cells (PBMCs) and adenoidal mononuclear cells

(MNCs) in relation to nasopharyngeal carriage in children.

MATERIALS AND METHODS

Subjects and samples. Peripheral blood and adenoid tissue

samples were obtained from otherwise healthy children aged

3–10 years (median age, 5 years) who were undergoing ad-

enoidectomy for adenoidal hypertrophy at either Bristol Royal

Hospital for Children or Southmead Hospital in Bristol, United

Kingdom. Criteria for exclusion from the study included pre-

vious immunization against pneumococcus, receipt of antibi-

otics or steroids within 2 weeks of surgery, and the presence

of an immunodeficiency or any serious infection. Nasopha-

ryngeal swab specimens were obtained on the day that the

operation was performed, and they were cultured for pneu-

mococcus as described elsewhere [10]. In brief, swabs were

placed in tubes containing skim milk–tryptone-glucose-glycerin

broth, and they were stored at �70�C until bacterial culture

was performed by inoculating 50 mL of the broth onto a blood

agar plate by use of a standard inoculating technique [14]. After

incubation was performed overnight at 37�C (in an atmosphere

of 5% CO2), pneumococcal colonies were identified on the basis

of typical morphologic findings, a-hemolysis, and subculture

with optochin disk testing. The pneumococcal load was assessed

semiquantitatively by grading growth density on a scale from

+ to ++++, as described elsewhere [14]. The study was ap-

proved by the South Bristol local research ethics committee,

and written, informed consent was obtained from all subjects.

Protein antigens. Recombinant Ply, a Ply toxoid (F433),

and recombinant CbpA proteins were used as antigen stimu-

lants. The 3 proteins were expressed in and purified from Esch-

erichia coli expressing the respective genes [15, 16]. The original

source of each of the genes was the encapsulated type 2 pneu-

mococcal strain D39. F433 is a detoxified mutant of Ply with

a Trp433-Phe mutation, which reduces cytolytic activity but

retains antigenicity [17]. Purified tetanus toxoid (National In-

stitute for Biological Standards and Control) was used as a

positive control for antigen stimulation. The endotoxin levels

of the recombinant proteins were !0.01 IU/mg of protein, as

determined by limulus assay (BioWhittaker). An optimal dos-

age for each protein was chosen for stimulation at which no

detectable cell toxicity was observed, by use of both trypan blue

staining and/or flow cytometric analysis after propidium iodide

staining (data not shown).

Cell isolation and culture. Adenoids were processed, and

MNCs were isolated according to methods described elsewhere

[10, 18]. PBMCs were also isolated using Ficoll (Amersham

Biosciences) according to the manufacturer’s instructions. Cells

were washed in PBS and were resuspended at cells/mL64 � 10

in RPMI 1640 culture medium containing 2 mmol/L glutamine,

100 U/mL penicillin, and 100 mg/mL streptomycin, as well as

10% fetal bovine serum (FBS; Sigma). Cells were cultured in

96-well culture plates (Corning). In some experiments, cell cul-

ture supernatants were collected and stored at �70�C until they

were assayed for cytokines.

Depletion of T cell subsets from adenoidal MNCs. In some

experiments, cellular depletion of CD45RO+ (i.e., memory phe-

notype) cells from adenoidal MNCs was performed using mag-

netic cell sorting (MACS) according to the manufacturer’s in-

structions, before cells were cultured with stimulants. This

procedure was not performed for PBMCs, because there gen-

erally were not enough cells available from patients’ blood sam-

ples to allow for both experiments to be performed using un-

depleted and depleted cells. In brief, adenoidal MNCs were

washed in PBS with 1% bovine serum albumin (PBS/BSA) and

were incubated with anti-human CD45RO microbeads (Mil-

tenyi Biotec) at 4�C for 15 min. The cells were washed and

passed through a column on a magnetic cell separator. The

CD45RO+ cell–depleted MNCs were collected and resuspended

in PBS/BSA. Depletion consistently yielded RO� cells that were

199% pure (data not shown).

Analysis of cellular proliferation. Carboxyfluorescein di-

acetate 5,6 succinimidyl ester (CFSE; Molecular Probes) was

used to label adenoidal MNCs or PBMCs before culture, al-

lowing for tracking of cell division. In brief, cells stained with

CFSE (5 mmol/L) in PBS were incubated at 37�C for 8 min,

followed by the addition of cold culture medium to quench

the reaction. The labeled cells were cultured with or without

antigen for a predetermined period. In some experiments, cells

were preincubated with blocking antibodies to Toll-like receptor
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(TLR)–2, TLR4, or isotype controls (eBioscience) at 37�C for

1 h before antigen stimulation. Staining of cells with CD mark-

ers (e.g., CD4–phycoerythrin) was followed by flow cytometric

analysis. The “proliferation index” of CD4 T cells in adenoidal

MNCs or PBMCs was calculated as the percentage of prolif-

erated CD4 T cells—that is, lymphocytes (defined by forward/

side light scatter properties) expressing CD4 whose CFSE (FL1)

fluorescence was below a threshold above which all unstimu-

lated cells (at day 0) fluoresced after CFSE staining.

Flow cytometric analysis. Cells were suspended in 100 mL

of PBS and were incubated with phycoerythrin- or fluorescein

isothiocyanate–labeled anti-human CD3, CD4, CD8, CD45RA,

or RO (BD Biosciences) at 4�C for 30 min in the dark. After

staining, cells were washed and resuspended in PBS with or

without propidium iodide and then were subjected to flow cy-

tometric analysis (FACScan; BD Biosciences). Flow cytometric

data were analyzed using WinMDI (The Scripps Institute).

Measurement of cytokines. Cell culture supernatants (on

day 3 after stimulation) were collected and assayed for inter-

leukin (IL)–2, IL-4, IL-5, IL-10, tumor necrosis factor (TNF)–

a, and interferon (IFN)–g by cytometric bead array (BD Bio-

sciences), according to the manufacturer’s instructions. The

intra-assay and interassay coefficients of variance were �5%

and !10%, respectively, for all the cytokines.

Statistical analysis. The significance of differences between

culture-positive and -negative subjects was analyzed using Stu-

dent’s t test. The general linear model of analysis of variance

(ANOVA) was used to analyze the effects of age and carriage

status on cellular proliferation. Associations between CD4 T

cell proliferation and bacterial load or antibody levels were

analyzed by Spearman’s or Pearson’s correlation test. The sig-

nificance of differences between stimulated and unstimulated

cell samples in a specified group of subjects was analyzed using

paired Student’s t test. Analysis was performed using SPSS soft-

ware (version 11.5; SPSS).

RESULTS

Patients’ demographic data and CD4 T cell subsets in ade-

noidal MNCs and PBMCs. A total of 38 patients were re-

cruited into the study, and pneumococcal carriage rates were

assessed by pneumococcal culture of nasopharyngeal swabs. No

difference was found in carriage rates between males ( )n p 18

and females ( ) (33% and 30%, respectively). As in an p 20

previous study [10], younger children (age, 3–4 years [n p

; 46%]) tended to have higher carriage rates than older chil-11

dren (age, 5–6 years [ ; 29%] and 7–10 years [ ;n p 14 n p 13

23%]). CD4+CD45RO+ T cells (memory phenotype) predom-

inated in adenoidal MNCs (57%–65% of all CD4+ T cells), and

CD4+CD45RA+ T cells (naive phenotype) predominated in

PBMCs (78%–89% of all CD4+ T cells). No differences were

shown between the percentages of CD4 T cells in culture-pos-

itive and culture-negative patients (data not shown).

CD4 T cell proliferation induced by Ply and CbpA. Pro-

liferation of CD4 T cells was observed in both adenoidal MNCs

and PBMCs after stimulation with Ply, the toxoid F433, and

CbpA (figure 1A). These responses were dose dependent (figure

1B). At concentrations 10.1 mg/mL (for Ply) and 1 mg/mL (for

F433), there were decreases in proliferation associated with cy-

tolytic effects, as confirmed by propidium iodide staining and

flow cytometric analysis (data not shown). The pro-proliferative

effects of Ply, F433, and CbpA were abrogated by prior treat-

ment with proteinase K followed by boiling, but not by coin-

cubation with polymyxin B (data not shown).

CD4 T cell proliferation induced by Ply in both memory

and naive phenotypes. To determine whether the proliferated

CD4 T cells originate from memory or naive phenotypes, cel-

lular depletion of CD45RO+ cells from adenoidal MNCs was

performed. Ply and F433 induced significant proliferative re-

sponses (detectable at day 4) in undepleted adenoidal MNCs

and weaker cellular proliferative responses (detectable from day

6) in MNCs that contained naive T (RO�) cells only (figure

2A and 2B). Figure 2C shows the CD4 T cell proliferation in

naive (RO�) cells, compared with a stronger response noted in

undepleted MNCs (containing memory T cells), at day 8 after

stimulation. Although CbpA induced CD4 T cell proliferation

in undepleted MNCs, no significant proliferation was shown

in CD45RO� (naive phenotype) cells.

Association of CD4 T cell proliferation and nasopharyngeal

carriage. To investigate whether there is any association be-

tween CD4 T cell immunity and current nasal carriage, CD4

T cell proliferation was compared between children with de-

tectable nasal colonization and those without such colonization.

Figure 3A shows that the CD4 T cell proliferation indices in

PBMCs after stimulation with Ply or F433 were significantly

higher in children who were culture negative than in those who

were culture positive for pneumococci. Among culture-positive

patients, there was a statistically significant inverse relationship

between CD4 T cell proliferation indices and pneumococcal

density in culture ( ; ). This effect of carriager p �0.64 P ! .05

status on CD4 proliferation was independent of age ( ,P ! .05

general linear model of ANOVA). No such difference was found

after CbpA stimulation. In contrast, in adenoidal MNCs, there

was no such difference between culture-negative and -positive

children in CD4 T cell proliferation after either Ply, F433, or

CbpA stimulation (figure 3B). However, when memory T cells

were depleted from adenoidal MNCs, a higher CD4 T cell

proliferation index was shown in the RO� cells from culture-

negative patients than in the RO� cells from patients who were

culture positive after stimulation with Ply or F433 as seen in

PBMCs (figure 3C). There were no differences in CD4 T cell

proliferation in either PBMCs or adenoidal MNCs after stim-
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Figure 1. A, Cellular proliferation analyzed by carboxyfluorescein diacetate 5,6 succinimidyl ester (CFSE) at day 7 (when cell proliferation became
significant for all responding subjects and on the linear part of the proliferative curve [see figure 2A]) after stimulation with recombinant protein
antigens (pneumolysin [Ply], 0.05 mg/mL; Ply toxoid [F433], 0.5 mg/mL; and choline-binding protein A [CbpA], 1 mg/mL). Fluorescence-activated cell
sorter dot plots show percentages of proliferated CD4 T cells in adenoidal mononuclear cells (Ad MNCs) (top) and peripheral blood mononuclear cells
(PBMCs) (bottom). B, Dose-response curve of CD4 T cellular proliferation upon stimulation by Ply (circles), F433 (squares), and CbpA (triangles) at day
7 in Ad MNCs (black symbols) and PBMCs (white symbols). Both panels show representative data from 1 of 6 experiments.

ulation with tetanus toxoid between culture-negative and cul-

ture-positive children (figure 3A–3C).

IFN-g and TNF-a production associated with CD4 T cell

proliferation in PBMCs. To identify the cytokines associat-

ed with Ply-induced T cell proliferation and with protection

against carriage, concentrations of IL-2, IL-4, IL-5, IL-10, TNF-

a, and IFN-g were measured in cell culture supernatants after

antigen stimulation and were compared with such concentra-

tions in unstimulated controls. In PBMCs, production of IFN-

g and TNF-a was shown to be associated with CD4 T cell

proliferation after stimulation with Ply (figure 4A and 4B).

Similar associations were also shown after F433 stimulation

( and for IFN-g and TNF-a, respectively;r p 0.69 r p 0.71

). The concentrations of IFN-g and TNF-a in cell cultureP ! .05

supernatants at day 3 were higher in patients who were culture

negative for pneumococcus than in patients who were culture

positive for pneumococcus after stimulation by Ply and F433

(figure 4C). For the other cytokines measured, apart from a

minor increase in IL-5 after Ply stimulation, no significant

changes in concentrations of IL-2, IL-4, and IL-10 were found

in PBMCs after stimulation by any antigen (data not shown).

In adenoidal MNCs, increases in concentrations of IFN-g and

IL-10 (figure 4D), but not in concentrations of IL-2, IL-4, IL-

5, and TNF-a (data not shown), compared with those noted

in unstimulated controls, were seen after stimulation by Ply

and F433 and, to a lesser extent, by CbpA. IFN-g and IL-10

concentrations in culture-positive patients tended to be higher

than those in culture-negative patients, although the differences

were not significant ( ) (figure 4D).P 1 .05

Induction of CD4 T cell proliferation by Ply and its asso-

ciation with TLR4. To study whether TLR2 or TLR4 is in-

volved in the induction of CD4 T cell proliferation by Ply,



Figure 2. A, Time course of CD4 T cell proliferation after stimulation with pneumolysin (Ply; 0.05 mg/mL), Ply toxoid (F433; 0.5 mg/mL), and choline-
binding protein A (CbpA; 1 mg/mL) in adenoidal (Ad) mononuclear cells (MNCs) (black symbols) and memory T cell–depleted (RO�) cells (white symbols).
B, Cellular proliferation shown by carboxyfluorescein diacetate 5,6 succinimidyl ester (CFSE) staining at day 8 after stimulation with Ply, F433, and
CbpA in memory (CD45RO+) T cell–depleted Ad MNCs. Some proliferated cells have changed phenotype from RA+ to RA� after stimulation. A and B,
Representative data from 1 of 6 experiments. C, CD4 T cell proliferation indices (mean + SD) after stimulation at day 8 in RO� MNCs, compared
with Ad MNCs ( ). * , compared with medium control.n p 10 P ! .01
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Figure 3. CD4 T cell proliferation indices (mean + SD) measured at
day 7 after stimulation with recombinant pneumolysin (Ply; 0.05 mg/mL),
Ply toxoid (F433; 0.5 mg/mL), choline-binding protein A (CbpA; 1 mg/mL),
and tetanus toxoid (TT; 1 Lf/mL) in peripheral blood mononuclear cells
(PBMCs) (A) and adenoidal mononuclear cells (MNCs) (B) from children
who were either culture positive ( ) or negative ( ) for pneu-n p 12 n p 26
mococci in nasal swab specimens. C, Cell proliferation in memory T cell–
depleted (RO�) MNCs measured at day 8 after stimulation ( andn p 6

for culture-positive and culture-negative patients, respectively).n p 12
* , compared with medium control; # , compared with culture-P ! .05 P ! .05
positive patients.

monoclonal antibodies to TLR4 (mTLR4) and TLR2 (mTLR2)

were preincubated with adenoidal MNCs or PBMCs before the

addition of Ply or F433. Figure 5 shows that mTLR4, but not

mTLR2 or isotype control, significantly but incompletely in-

hibited the CD4 T cell proliferation induced by Ply in both

types of cell culture. Similar inhibition by mTLR4—but not by

mTLR2—for F433-induced proliferation was also observed

(data not shown). Flow cytometric analysis showed that TLR4

was expressed on adherent cells (representing antigen-present-

ing cells [APCs], which accounted for 3%–6% and 15%–22%

of adenoidal MNCs and PBMCs, respectively) but not on CD4

T cells (data not shown).

Association of CD4 T cell proliferation and serum anti-

bodies to Ply and CbpA. To determine whether peripheral

CD4 T cell responses are correlated with serum antibody levels,

antigen-specific IgG and IgM antibodies to Ply and CbpA were

measured in serum. There was a moderate correlation between

CD4 T cell proliferation indices to Ply and F433 and anti-Ply

IgG antibody levels ( and , respectively;r p 0.31 r p 0.34 n p

; ), but not anti-Ply IgM antibody levels ( ).38 P ! .05 P 1 .05

There was no correlation between CD4 T cell proliferation and

anti-CbpA IgG or IgM antibody levels ( ; ).P 1 .05 n p 38

DISCUSSION

In the present study, we showed that the pneumococcal proteins

Ply and F433 and, to a lesser extent, CbpA induce CD4 T cell

proliferation in both PBMCs and adenoidal MNCs from chil-

dren. Upon stimulation by Ply or F433, the CD4 T cell pro-

liferation index in PBMCs was significantly higher in children

who were culture negative than in children who carried pneu-

mococci in their nasopharynx. To our knowledge, this is the

first report of T cell immunity to pneumococci in children and

of any association between natural T cell immunity and car-

riage. It suggests that natural CD4 T cell immunity to pneu-

mococcal protein antigens may modulate nasopharyngeal car-

riage, although it remains unclear whether this immunity can

prevent new colonization or help clear existing carriage. The

inverse relationship between a low CD4 T cell proliferation

index (in response to stimulation by Ply and F433) and carriage

found in PBMCs was not observed in adenoidal MNCs. One

possible explanation for this apparent difference is that, in chil-

dren who carried pneumococcus, antigen-specific (e.g., Ply�)

memory CD4 T cells in the circulation (peripheral blood) may

migrate to the site of infection (nasopharynx) and become

sequestered in nearby lymphoid tissue, such as adenoids. Thus,

fewer antigen-specific memory T cells would remain in pe-

ripheral blood, resulting in diminished memory T cell responses

after stimulation in vitro. It has been previously reported that

during acute pneumococcal infection, there is a transient loss

of T cells, followed by the reappearance of these cells after

treatment and clinical improvement [19, 20]. However, the
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Figure 4. Association between CD4 T cell proliferation and production of interferon (IFN)–g and tumor necrosis factor (TNF)–a in peripheral blood
mononuclear cells (PBMCs) after stimulation with pneumolysin (Ply; 0.05 mg/mL) (A and C); and association of cytokine production in PBMCs (B) and
in adenoidal mononuclear cells (MNCs) (D) with patients’ carriage status. * , compared with culture-positive patients ( ). CbpA, choline-P ! .05 n p 22
binding protein A; IL, interleukin; F433, pneumolysin toxoid.

Figure 5. Effect of monoclonal blocking antibodies to Toll-like receptor
(TLR)–2 (mTLR2; 20 mg/mL), TLR4 (mTLR4; 20 mg/mL), and isotype control
(20 mg/mL) on CD4 T cell proliferation induced by pneumolysin (Ply) in
adenoidal mononuclear cells (MNCs) and peripheral blood mononuclear
cells (PBMCs). * , compared with Ply stimulation alone. Mean +P ! .05
SD of 6 replicate experiments is shown.

children who carried pneumococcus in the present study did

not seem to have a loss of CD4+ T cells from peripheral blood,

because there was no difference in the percentage of CD4+ T

cells in PBMCs between these subjects and subjects who were

culture negative. In this context, colonized subjects did not

have acute invasive infection. There appeared to be differences

between CD4 T cell activation by Ply and CbpA, and our pre-

vious results showed that both Ply- and CbpA-specific anti-

bodies were associated with absence of carriage [10]. The rea-

sons why CbpA seems to induce mainly antibody-mediated

immunity and Ply induces both CD4 T cell– and antibody-

mediated immunity are currently unknown, but they could be

explained, in part, by the apparent activating effects of Ply on

antigen-presenting cells (authors’ unpublished observations).

CD45RA+ naive T cells predominated in PBMCs, whereas

CD45RO+ memory T cells predominated in adenoidal MNCs.

Using MACS cell separation, we assessed naive T cell prolif-

eration in the latter cell populations, which showed the same

pattern of lower responses to Ply and F433 in culture-positive

children (figure 3C) as seen in peripheral blood (figure 3A).

This observation raises the possibility that the differences in

PBMCs observed between culture-positive and culture-negative

children could be caused, at least in part, by differences in naive

cell responses to these antigens. The ability of Ply to induce

primary as well as memory CD4 T cell responses may be im-

portant for cellular immunity against pneumococcal carriage

and also may have implications for the use of this antigen in

pneumococcal vaccines intended for use in young children.

It is known that protein antigens generally induce T cell–

dependent antibody responses, and we have previously shown
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that human mucosal anti-CbpA and -Ply antibody production

is T cell dependent [21]. One could postulate that the observed

inverse association between CD4 T cell immunity to Ply and

carriage could reflect T cell support for production of anti-

bodies in vivo. However, only a weak correlation was found

between PBMC CD4 T cell proliferation and serum anti-Ply

IgG antibodies, and no association with anti-CbpA IgG or IgM

antibodies was found. This is compatible with the hypothesis

that CD4 T cell immunity may have an antibody-independent

effect against colonization. These results therefore concur with

results of recent studies in mice showing that CD4 T cell im-

munity may protect against pneumococcal colonization [13,

22] by an antibody-independent mechanism [11, 12].

Human naive and memory T cells can generally be identified

by the reciprocal expression of CD45RA or CD45RO isoforms

[23, 24]. Using CD45RO+ T cell–depleted MNCs, we showed

that Ply and F433 can induce CD4 T cell responses in both

memory and naive phenotypes (figure 2C), whereas CbpA in-

duced CD4 T cell responses of memory phenotypes only. The

phenotypically naive T cellular response to Ply and F433 is

interesting, because protein antigens usually require adjuvant

help to induce primary responses, perhaps through effects on

APCs (e.g., dendritic cells and macrophages) [25, 26], whereas

such need for APCs in memory T cell responses is not as strict

[27, 28]. Ply has been shown to induce activation of murine

macrophages to secrete inflammatory cytokines TNF-a and IL-

6 through TLR-4 [29]. In the present study, we showed that

CD4 T cell proliferation induced by Ply is partially inhibited

by antibody to TLR4, suggesting that Ply may induce T cell

proliferation in part through a TLR4-dependent mechanism.

Because no significant expression of TLR4 on CD4 T cells was

observed, and because dendritic cells and macrophages are

known to express TLR4 [30, 31], it is possible that the Ply-

induced CD4 T cell response is mediated through TLR4-de-

pendent activation of APCs.

We showed significant production of IFN-g but negligible

production of IL-4 in both PBMCs and adenoidal MNCs after

stimulation with Ply and F433, suggesting a Th1-type response.

In most infections, Th1-type responses have been associated

with strong cell-mediated inflammatory responses, which may

be favorable for pathogen elimination from the host [32]. It

has been reported that pneumococcal infections are associated

with increased trafficking of Th1 cells [19]. Mice lacking IFN-

g have been shown to be more susceptible to pneumococcal

infection [33], and administration of IFN-g could enhance

survival of mice after pneumococcal challenge [34]. However,

there appear to be differences in cytokine production between

PBMCs and adenoidal MNCs after antigen stimulation. Sig-

nificant induction of TNF-a was found in PBMCs but not in

adenoidal MNCs, whereas the reverse was noted for IL-10.

TNF-a is a proinflammatory cytokine that can promote pro-

tective immune responses against a variety of pathogens but

that may also cause inflammatory host injury under certain

conditions [35]. In contrast, IL-10 is a regulatory cytokine that

can suppress the proliferation and differentiation of Th1 cells

and, thus, can limit the potential immunopathology caused by

inflammatory responses [36]. It is possible that, in the mucosal

compartment exemplified by adenoidal MNCs, the production

and actions of the proinflammatory cytokines IFN-g and TNF-

a are tightly controlled by IL-10. In accordance with this, we

previously demonstrated inhibition by IL-10 of IFN-g pro-

duction by adenoidal cells [21]. CD4 T cell depletion from

PBMCs or adenoidal MNCs showed significant reduction

(75%–95%) in IFN-g and TNF-a or IL-10 production after

Ply or F433 stimulation (data not shown), suggesting that the

CD4 T cell is a major cellular source of these cytokines. The

induction of IFN-g and TNF-a in PBMCs by Ply in association

with T cell proliferation may play a role in protection against

pneumococcal carriage in children.

The results of the present study support the hypothesis that

CD4 T cellular immunity is involved in modulation of pneu-

mococcal colonization in humans. The induction of both

primary and memory CD4 T cell responses associated with

Th1-type cytokine production adds further information on the

nature of the immune responses to pneumococcal protein an-

tigens. The induction of CD4 T cell responses by Ply appears

to be regulated, in part, through TLR4 expressed by APCs.

Novel vaccines that include conserved protein antigens, such

as Ply or detoxified analogues, may induce significant CD4 T

cellular immunity and reduce colonization of multiple sero-

types of pneumococci.
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