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Abstract

The Faà di Bruno formulæ for higher-order derivatives of a composite function are important
in analysis for a variety of applications. There is a substantial literature on the univariate
case, but despite significant applications the multivariate case has until recently received
limited study. We present a succinct result which is a natural generalization of the univariate
version. The derivation makes use of an explicit integral form of the remainder term for
multivariate Taylor expansions.

2000 Mathematics subject classification: primary 46G05, 05A15.
Keywords and phrases: multivariate composite functions, differentiation theory, integral
remainder term, multivariate Taylor series, Faà di Bruno formula.

1. Introduction and history

Francesco Faà di Bruno is remembered nowadays for his formulæ for the pth derivative
G.p/.z/ of a composite function G.z/ = F.u.z// ([7, 8]). His little-known determi-
nantal form seems to have been new, but the alternative form of this generalized chain
rule, whose extensions are treated in this article, appears earlier in the work of several
researchers. Craik [5] has traced the result back to Arbogast [2]. Further accounts of
the early history and comments on alternative forms are given by Flanders [9], Gould
[11] and Johnson [12].

Most applications are for p = 2; 3; 4, though exceptionally p = 5; 6 occur in
statistical or plasma physics. As detailed by Johnson, the Faà di Bruno formula
is mentioned in books on partitions, mathematical statistics, matrix theory, calculus
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of finite differences, computer science and symmetric functions, to which we add
stochastic processes [21].

Bruno’s main formula for general p ≥ 1 involves a .p+1/-dimensional summation
over indices m; k1; k2; : : : ; kp with 1 ≤ m ≤ p and 0 ≤ k1; k2; : : : ; kp ≤ p, subject to
coupling conditions involving

¦p.k/ :=
p∑
`=1

k` and −p.k/ :=
p∑
`=1

`k`:

Here and subsequently we employ boldface for a vector, in this case k = .k1; : : : ; kp/.
Bruno’s formula is characterized by what we may call the Bruno products

Bk;p.u.z// =
p∏
¹=1

{
1

k¹!
(

d¹u.z/

dz¹
1

¹!
)k¹
}
: (1.1)

These appear in the Bruno formulæ for one intermediate variable and also in our
multivariate analogues. The basic formula takes the compressed form

G.p/.z/ = p!
p∑

m=1

F .m/.u.z//
∑

k:¦p.k/=m;
−p.k/=p

Bk;p.u.z//: (1.2)

In multivariate application of the chain rule, the proliferation of additive terms
becomes awkward and the derivation of the terms somewhat tiresome even for p = 3.
This is evident already in the 2 × 2 case

u.z/ = .u1.z1; z2/; u2.z1; z2//:

The possibility of a “compressed" Bruno formula becomes more attractive with in-
crease in the order p or the multivariate dimensions M for u and N for z. Such a
formula can also be used for symbolic computation instead of recursive application of
the standard first-order chain rule. Certain features of the multivariate general chain
rule, such as the type of cross-coupling between different intermediate variables in
the − conditions, are possibly more illuminating in a Bruno-type formula than in the
full expression. Pure derivatives, such as @4G.z1; z2/=@z4

1 , are easier to deal with than
mixed derivatives like @4G=@z2

1@z2
2 , though these cannot always be avoided, as in the

calculation of .∇2/2 terms for elasticity and fluid mechanics. In multivariate proba-
bility theory, the verification of sign alternation in derivatives of Laplace transforms
of densities is a major application of multivariable derivatives for which multivariate
Faà di Bruno formulæ of all orders are desirable.

The use of a symbolic manipulator can easily produce higher-order differential
results. However, it achieves these results by recursively applying a chain rule. The
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outputs are often quite messy and further manipulation is needed to simplify the
results. If only a select number of terms are needed, one then has to go back and try
to weed out such terms. By utilizing the Bruno formulæ, one can easily isolate the
needed terms, which are already simplified.

Bruno gave only a hazy proof of (1.2), neither rigorous nor algorithmically con-
vincing. Königsberger derived a more difficult formula for the general problem of
calculating higher-order differentials d p f .z1; : : : ; zN /, using a symbolic calculus and
induction. In principle this should yield multivariable chain rules. However, higher
differentials package together a variety of different orders of derivatives, which yield a
Bruno formula conveniently only in the case M = N = 1. In that case, Königsberger’s
proof also is an inductive proof of (1.2), as pointed out by Bieberbach [3]. Somewhat
later, de la Vallée Poussin [17] produced a concise proof of (1.2), based on a weak form
of the Taylor expansion with remainder and a weak uniqueness theorem for “almost"
power series of the form

a0 + a1h + · · · + aq−1hq−1 + Mq.h/h
q;

where Mq.h/ → aq as h → 0 and Mq.h/ is bounded in h for small h. That proof is
less elementary than a longer one based on the integral form of the Taylor remainder.
The latter can be made quite explicit, at the cost of assuming slightly more regularity
than needed. The integral remainder version generalizes well in the multivariable
context.

We note that Schwatt [20] contains a good collection of higher-derivative formulæ,
including many infinite series, but does not include the di Bruno formula, but rather
various substitutes oriented to special cases of interest, and has little on the impor-
tant topic of asymptotic series for higher-order derivatives, of interest in statistical
mechanics (Fowler [10]). Lukács [14] has discussed the problem using formal power
series.

Symbolic manipulation by computer via Macsyma, Maple, Mathematica, etc. can
produce any required order of Bruno or Schwatt formulæ. A multivariate symbolic
program produces multivariable versions of such formulæ. In another direction,
similar formulæ appear in the Whitney [22] and Dieudonné [6] theories of extensions
of differentiable functions. Abraham and Robbin [1] provide a detailed account.

The general problem has received attention recently from several researchers. Con-
stantine and Savits [4] make use of a combinatorial identity, Mishkov [15] employs
differential operators and Diophantine equations, while Noschese and Ricci [16] use a
connection with a generalization of Bell polynomials. A number of papers in the liter-
ature come from the standpoint that derivatives are essentially integer partitions — see,
for example [18, 19, 24]. See also [23].

We present a simple treatment based on Taylor series. Following a leisurely
exploration of the remainder term idea in a one-dimensional rehearsal in Section 2,
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we provide, in Section 3, an efficient and explicit Bruno-type formula for two-variable
chains

G.z1; z2/ = F.u1.z1; z2/; u2.z1; z2//:

Section 4 presents briefly the corresponding results for the general multivariate case
of the problem.

An earlier version of this paper was presented from the standpoint of symbolic
computation at the Ninth International Conference on Technology in Collegiate Math-
ematics [13]. In the present version we have clarified the arguments, simplified the
notation and taken the opportunity to attend to some errors and inconsistencies in [13].

2. Proof of the one-dimensional Bruno formula

In this section we give an integral-remainder proof of the Bruno formula. This is
directly generalizable to higher dimensions.

If u.z/ and F.u/ are .p+1/-times differentiable in suitable domains, the p-th-order
Taylor expansions with integral remainder are given by

F.u + j/ =
p∑

m=0

j m

m! F .m/.u/+ Rp

(
F .p+1/.u/; u; j

)
; (2.1)

u.z + h/ =
p∑

n=0

hn

n! u.n/.z/+ Rp

(
u.p+1/.z/; z; h

)
; (2.2)

where the remainder terms are defined by

Rp .Y; v; k/ =
∫ v+k

v

.v + k − y/p

p! Y .y/dy: p = 0; 1; 2; : : : :

The following lemma covers the relevant behaviour of the remainder terms.

LEMMA 2.1. Suppose X is continuously differentiable and u is p-times continuously
differentiable on the requisite interval and put

�X;u;q :=
∫ u.z+h/

u.z/

[u.z + h/− y]q

q! X ′.y/ dy;

where q is a nonnegative integer. Then for 0 ≤ s ≤ p and all q ≥ s we have

(
@

@h

)s

�X;u;q → 0 as h → 0:
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PROOF. First take q = 0. We have �X;u;0 = X .u.z + h//− X .u.z//, so

�X;u;0 → 0 as h → 0;

giving the result for q = 0. The result is also immediate for s = 0 and q > 0, providing
a basis for induction on s. Suppose the desired result holds for s = 0; : : : ; s0 < p and
all q ≥ s. We have for q > 0 that @�X;u;q=@h = �X;u;q−1u ′.z + h/. Thus by Leibnitz’
theorem, we have for s = s0 + 1 and q ≥ s that

(
@

@h

)s

�X;u;q =
s−1∑
`=0

(
s − 1

`

)[(
@

@h

)`
�X;u;q−1

](
@

@h

)s−`
u ′.z + h/

h→0−−→ 0

by the inductive hypothesis. This establishes the induction.

COROLLARY 2.2. Suppose that the assumptions of Lemma 2.1 apply with 0 ≤ s ≤ p.
If r > 0 and − ≥ 0, with Ls;−;r := .@=@h/s

[
h− .�X;u;q/

r
]
, then Ls;−;r → 0 as h → 0.

PROOF. We have by Leibnitz’ theorem that

Ls;−;r =
s∑
`=0

(
s

`

)[(
@

@h

)s−`
h−
](

@

@h

)`
�r

=
s∑
`=0

(
s

`

)
− !

.− − s + `/!h
−−s+`

(
@

@h

)`
�r :

If s ≤ − , the term in h disappears as h → 0 unless s = − and ` = 0, in which case
the term in � vanishes in the limit, by Lemma 2.1. So suppose s > − . Then the term
in h vanishes in the limit except if ` = s − − , and we have

Ls;−;r → s!
.s − − /! lim

h→0

(
@

@h

)s−−
�r as h → 0:

A further use of Leibnitz’ theorem with Lemma 2.1 gives the desired result.

THEOREM 2.3. If F.u/ and u.z/ are .p + 1/-times continuously differentiable
.p > 0/ on the appropriate domains, then (1.2) holds.

PROOF. We may set j = j .z; h/ = u.z + h/ − u.z/ in (2.1) and substitute for u
from (2.2) to obtain

F.u.z + h// =
p∑

m=0

F .m/ .u.z//

m!

[
q∑

n=1

hn

n! u.n/.z/+ uRp

]m

+ FRp; (2.3)
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where the abbreviated remainder expressions are given by

uRp = Rp

(
u.p+1/.z/; z; h

)
;

FRp = Rp

(
F .p+1/.u/; u; j

)∣∣
u=u.z/

:

The powered bracket expression in (2.3) has a multinomial expansion

m∑
r=0

∑
k:¦p.k/=m−r

m!
k1! · · · kp!r !

{
p∏

¹=1

(
h¹

¹!
d¹u.z/

dz¹

)k¹
}(

uRp

)r

=
m∑

r=0

∑
k:¦p.k/=m−r

m!
r ! h−p.k/Bk;p.u.z//

(
uRp

)r
;

by use of (1.1). This leads to

G.z + h/ = F.u.z + h//

=
p∑

m=0

F .m/.u/
∑

k:¦p.k/=m

h−p.k/Bk;p.u.z//+ F Rp

+
p∑

m=0

F .m/.u/
m∑

r=1

1

r !
∑

k:¦p.k/=m−r

h−p.k/Bk;p.u.z//
(

uRp

)r
;

where we have separated out the contribution for r = 0.
Thus for p > 0 we have

@ p

@h p
G.z + h/ =

p∑
m=0

F .m/.u/
∑

k:¦p.k/=m

Bk;p.u.z//
@ p

@h p
h−p.k/ + @ p

@h p F Rp (2.4)

+
p∑

m=0

F .m/.u/
m∑

r=1

1

r !
∑

k:¦p.k/=m−r

Bk;p.u.z//
@ p

@h p

[
h−p.k/

(
uRp

)r]
: (2.5)

For h → 0, the term involving the derivative of a power of h on the right in (2.4)
vanishes unless p = −p.k/. Since F Rp = �X;u;p for X = F .p/, we have by Lemma 2.1
that (

@

@h

)p

F Rp → 0 as h → 0:

Hence the right-hand side of (2.4) has limit

p!
p∑

m=0

F .m/.u.z//
∑

k:¦p.k/=m; −p.k/=p

Bk;p.u.z//
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for h → 0. Similarly u Rp = �u.p/;z;p, so by Corollary 2.2 the right-hand side of (2.5)
has limit zero as h → 0.

On combining these results we obtain

G.p/.z/ = p!
p∑

m=0

F .m/.u.z//
∑

k:¦p.k/=m; −p.k/=p

Bk;p.u.z//: (2.6)

which is close to (1.2). Finally −p.k/ = p > 0, which implies that at least one of
k1; : : : ; kp is positive and so m = ∑p

`=1 k` > 0, which converts (2.6) into (1.2).

3. Bruno formulæ with two variables and two functions

We proceed to a multivariate chain rule for G.z/ = F
(
u.z/

)
with scalar F , where

u.z/ = (
u1.z/; : : : ; uM.z/

)
and z = .z1; : : : ; zN /. So as not to become too encum-

bered with algebraic detail, we begin in this section with the basic multivariate case
M = N = 2. This has obvious application for derivative orders p = 2; 3; 4 to phys-
ically meaningful two-dimensional Laplacians, and to curls and repeated curls. For
orthogonal coordinates, such as polar, confocal and elliptic, the results are well-known
and more easily found by variational integral methods.

First we establish a double Taylor series expansion for a bivariate function, with
double-integral remainder form.

THEOREM 3.1. Suppose (
@

@z1

)q1
(
@

@z2

)q2

f .z1; z2/

exists and is jointly continuous in z1 and z2. Then for 0 ≤ s1 ≤ q1 and 0 ≤ s2 ≤ q2,
we have

f .z1 + h1; z2 + h2/ =
s1∑

m1=0

s2∑
m2=0

hm1
1 hm2

2

m1!m2! Dm
z f .z/+ Rs1;s2; (3.1)

where

Rs1;s2 =
s1∑

m1=0

∫ z2+h2

z2

hm1
1

m1!
.z2 + h2 − y2/

s2

s2! Dm1;s2+1
z1;y2

f .z1; y2/ dy2 (3.2)

+
s2∑

m2=0

∫ z1+h1

z1

hm2
2

m2!
.z1 + h1 − y1/

s1

s1! Ds1+1;m2
y1;z2

f .y1; z2/ dy1

+
∫ z1+h1

z1

∫ z2+h2

z2

.z1 +h1 − y1/
s1

s1!
.z2 +h2 − y2/

s2

s2! Ds1+1;s2+1
y1;y2

f .y1; y2/ dy1 dy2:

(3.3)
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In particular, we have for s1 = 0 = s2 that

R0;0. f / =
∫ z1+h1

z1

@ f .y1; z2/

@y1
dy1 +

∫ z2+h2

z2

@ f .z1; y2/

@y2
dy2

+
∫ z1+h1

z1

∫ z2+h2

z2

@2 f .y1; y2/

@y1@y2
dy1 dy2: (3.4)

PROOF. We provide a proof by induction in s1 and s2. To begin, the first integral
in (3.4) may be evaluated as f .z1 + h1; z2/− f .z1; z2/ and by symmetry, the second
equals f .z1; z2 + h2/− f .z1; z2/. The third integral is

∫ z1+h1

z1

[
@ f .y1; z2 + h2/

@y1
− @ f .y1; z2/

@y1

]
dy1

= [ f .z1 + h1; z2 + h2/− f .z1; z2 + h2/] − [ f .z1 + h1; z2/− f .z1; z2/] :

Addition yields
R0;0. f / = f .z1 + h1; z2 + h2/− f .z1; z2/;

that is, (3.1) holds for s1 = 0 = s2, which is a basis for our induction.
For the inductive step, suppose (3.1) holds for s1 = t1 ≤ q1 and s2 = t2 < q2. With

these choices for s1, s2, the right-hand side of (3.2) may be recast by integration by
parts as

t1∑
m1=0

hm1
1

m1!
ht2+1

2

.t2 + 1/! Dm1;t2+1
z1;z2

f .z1; z2/

+
t1∑

m1=0

hm1
1

m1!
∫ z2+h2

z2

.z2 + h2 − y2/
t2+1

.s2 + 1/! Dm1;s2+2
z1;y2

f .z1; y2/ dy2:

Similarly the right-hand side of (3.3) may be re-expressed for the same choices of s1,
s2 as

∫ z1+h1

z1

.z1 + h1 − y1/
t1

t1!
ht2+1

2

.t2 + 1/! Dt1+1;t2+1
y1;y2

f .y1; z2/ dy1

+
∫ z1+h1

z1

∫ z2+h2

z2

.z1 + h1 − y1/
t1

t1!
.z2 + h2 − y2/

t2+1

.t2 + 1/! Dt1+1;t2+2
y1;y2

f .y1; y2/ dy1 dy2:

Substitution of these values in (3.2) and (3.3) yields

Rt1;t2 =
t1∑

m1=0

hm1
1

m1!
ht2+1

2

.t2 + 1/! Dm1;t2+1
z1;z2

f .z1; z2/+ Rt1;t2+1:
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Substitution into (3.1) with s1 = t1, s2 = t2 shows that (3.1) holds also for s = t1,
s2 = t2 +1. By symmetry we have that if (3.1) holds for s1 = t1 < q1 and s2 = t2 ≤ q2,
then it applies also for s = t1 + 1, s2 = t2. This proves the inductive step and so the
theorem.

This establishes the desired double induction on f , and with it a Taylor series
integral remainder formula for functions of two variables which the writers have not
seen elsewhere.

Before we proceed, it is convenient to introduce some notation. We take p1 and p2

as fixed nonnegative integers and put p = p1 + p2 and

A. p/ = ({0; 1; : : : ; p1} × {0; 1; : : : ; p2}
)\({0} × {0});

C. p/ = {
.m;m ′/ ∈ A.p; p/ : m + m ′ ≤ p

}
:

Let U .m/ denote the family of maps � : A. p/ → {0; 1; : : : ;m}. We define

T .m/ =
{
� ∈ U .m/ :

∑
n∈A. p/

�.n/ = m

}

and for � ∈ T .m/ (
m

�

)
:= m!∏

n∈A. p/ �.n/!
:

If � ∈ U .m/ and � ′ ∈ U .m ′/ for some nonnegative integers m;m ′, we put

−i .�; �
′/ =

∑
n∈A. p/

ni

[
�.n/+ � ′.n/

]
.i = 1; 2/:

Finally, we define

V .m;m ′/ = {
.�; �′/ : � ∈ T .m/; � ′ ∈ T .m ′/; −i .�; �

′/ = pi for i = 1; 2
}
:

THEOREM 3.2. Suppose F.u1; u2/ has continuous derivatives up to order .p + 1;
p + 1/ and ui .z1; z2/ .i = 1; 2/ have continuous derivatives to order .p1 + 1; p2 + 1/
on appropriate domains. Define

B�.ui .z/ =
∏

n∈A. p/

{
1

�.n/!
(

Dn
z ui.z/

n1!n2!
)�.n/}

for i = 1; 2:

If G.z1; z2/;= F.u1.z1; z2/; u2.z1; z2// and p 	= 0, then

@ pG.z/
@z p1

1 @z p2

2

= p1!p2!
∑

m∈C. p/

Dm
u F

∑
.�;�′/∈V .m/

B�.u1.z//B�′.u2.z//: (3.5)
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PROOF. If js = us.z + h/− us.z/ for s = 1; 2, Theorem 3.1 provides

F.u + j/ = F .u1.z1 + h1; z2 + h2/; u2.z1 + h1; z2 + h2//

=
p∑

m1=0

p∑
m2=0

j m1
1 j m2

2

m1!m2! Dm
u F + FRp;p .u; j/ :

We have readily for 0 ≤ i ≤ p1 and 0 ≤ j ≤ p2 that

@ i+ j

@hi
1@h j

2

FRp;p .u; j/

∣∣∣∣
h=0

= 0:

Theorem 3.1 yields also that

j` =
∑

n∈A. p/

hn1
1 hn2

2

n1!n2! Dn
z u` + u`Rp1;p2 .z; h/ .` = 1; 2/

and it is immediate that for 0 ≤ i ≤ p1 and 0 ≤ j ≤ p2

@ i+ j

@hi
1@h j

2

u`Rp1;p2 .z; h/

∣∣∣∣
h=0

= 0 .` = 1; 2/:

It follows that the three integral remainder terms all make zero contribution to

@ p

@h p1

1 @h p2

2

F.u + j/

∣∣∣∣
h=0

:

Thus

@ p

@h p1

1 @h p2

2

F.u + j/

∣∣∣∣
h=0

= @ p

@h p1

1 @h p2

2

p∑
m1=0

p∑
m2=0

Dm
u F

m1!m2!

( ∑
n∈A. p/

hn1
1 hn2

2

n1!n2! Dn
z u1

)m1

×
( ∑

n′∈A. p/

hn′
1

1 hn′
2

2

n′
1!n′

2!
Dn′

z u2

)m2
∣∣∣∣∣

h=0

= @ p

@h p1

1 @h p2

2

H

∣∣∣∣
h=0

;

say, which is p1!p2! times the coefficient of h p1

1 h p2

2 in H .
In terms of the notation immediately preceding the theorem, we have that( ∑

n∈A. p/

hn1
1 hn2

2

n1!n2! Dn
z ui

)mi

=
∑

�∈T .mi /

(
mi

�

) ∏
n∈A. p/

(
hn1

1 hn2
2

n1!n2! Dn
z ui

)�.n/
for i = 1; 2:
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Hence

H =
p∑

m1=0

p∑
m2=0

Dm
u F

∑
�∈T .m1/

∑
�′∈T .m2/

B�.u1.z//B�′.u2.z//h
−1.�;�

′/
1 h−2.�;�

′/
2 :

The coefficient of h p1

1 h p2

2 is obtained when −i .�; �
′/ = pi for i = 1; 2 respectively,

that is, when .�; � ′/ ∈ V .m1;m2/. This yields

@ p1+p2 G.z/
@z p1

1 @z p2

2

= @ p

@h p1

1 @h p2

2

F.u + j/

∣∣∣∣
h=0

= p1!p2!
p∑

m1=0

p∑
m2=0

Dm
u F

∑
.�;�′/∈V .m1;m2/

B�.u1.z//B�′.u2.z//:

If m = 0, then � ∈ T .m1/ implies �.n/ = 0 for all n ∈ A. p/ and similarly
�′ ∈ T .m1/ implies �′.n/ = 0 for all n ∈ A. p/. Since p 	= 0, this is incompatible
with −i .�; �

′/ = pi for i = 1; 2. Thus we may remove 0 from the domain of m. Also
n ∈ A. p/ entails n1 + n2 ≥ 1, so that

−1.�; �
′/ =

∑
n∈A. p/

.n1 + n2/
[
�.n/+ � ′.n/

] ≥
∑

n∈A. p/

[
�.n/+ � ′.n/

]
:

For .�; �′/ ∈ V .m1;m2/, we thus have p ≥ m1+m2. On combining these constraints,
we have that the domain of m can be restricted to m ∈ C. p/, establishing the result
of the enunciation.

While we have assumed for simplicity of exposition that F has continuous deriva-
tives up to order p + 1 in each variable, the final result (3.5) involves derivatives
of F only to total order p + 1. A mollification argument can be used to strengthen
Theorem 3.2 as follows.

THEOREM 3.3. The conclusion of Theorem 3.2 holds when the regularity assump-
tions on F are weakened to F being of class C .p+1/.

4. Bruno formulæ in the general case

Formulæ appropriate for general M and N follow from a development similar to that
of the previous section. A multivariate analogue to Theorem 3.1 provides the necessary
underpinnings. To this end, we first provide some notation. Put S = {1; 2; : : : ; L}
and define � = 2S\{∅}. Suppose Q = {n1; n2; : : : ; nt}, with n1 < n2 < · · · < nt .
For 0 ≤ mi ≤ si given (1 ≤ i ≤ L), put

wi =
{

si + 1 if i ∈ Q;

mi if i ∈ �\Q;
Þi =

{
yi if i ∈ Q;

zi if i ∈ �\Q:
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For f = f .z1; : : : ; zL/, we define

D.Q; s;m/ f .α/ =
{

L∏
i=1

(
@

@Þi

)wi
}

f .α/:

For h = .h1; : : : hL/ given,

2.Q; s; h/ :=
∏

i∈�\Q

{
si∑

mi =0

hmi
i

m1!

}∫ zn1 +hn1

zn1

· · ·
∫ znt +hnt

znt

{∏
j∈Q

.z j + h j − y j/
s j

s j !

}

× D.Q; s;m/ f .α/ dyn1 · · · dynt :

Finally, f Rs := ∑
Q∈� 2.Q; s; h/:

THEOREM 4.1. Suppose
∏L

i=1

(
@=@zi

)qi f .z1; : : : ; zL/ exists and is jointly continuous
in z1; : : : ; zL. Then for 0 ≤ si ≤ qi .1 ≤ i ≤ L/, we have

f .z + h/ =
s1∑

m1=0

· · ·
sL∑

mL=0

hm1
1

m1! · · · hmL
L

mL ! Dm
z f .z/+ f Rs:

PROOF. Like Theorem 3.1, this is established inductively. The only novelty is in
obtaining the basis result for s = 0. Put

� j = {Q ∈ � : max{i ∈ Q} = j} .1 ≤ j ≤ L/:

We employ an inner induction to show for 1 ≤ j ≤ L that∑
Q∈� j

2.Q; 0; h/ = f .z1 + h1; : : : ; z j + h j ; z j+1; : : : ; zL/− f .z1; : : : ; zL/: (4.1)

The result for j = L then provides the basis for the outer induction.
We have

2.Q; 0; h/ =
∫ zn1+hn1

zn1

: : :

∫ znt +hnt

znt

∏
i∈Q

(
@

@yi

)
f .α/dyn1 : : : dynt : (4.2)

Since �1 = {1},
∑
Q∈�1

2.Q; 0; h/ =
∫ z1+h1

z1

(
@

@y1

)
f .y1; z2; : : : ; zL/dy1

= f .z1 + h1; z2; : : : ; zL/− f .z1; : : : ; zL/;

yielding a basis for the inner induction.
For the inductive step, suppose (4.1) applies for some j with 1 ≤ j < L . The

sets Q contributing to the . j + 1/-th sum
∑

Q∈� j+1
2.Q; 0; h/ belong to three disjoint

classes:
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(a) � j ;
(b) sets of the form Q ∪ { j + 1} with Q ∈ � j ;
(c) the singleton class { j + 1}.

By inductive assumption, the contribution from (a) is given by the right-hand side of
(4.1). For any set in (b), for which the Q makes contribution g.z1; : : : ; zL ; h/, say, the
augmention Q ∪ { j + 1} may be seen from (4.2) to make a contribution

g.z1; : : : ; z j ; z j+1 + h j+1; z j+2; : : : ; zL ; h/− g.z1; : : : ; zL ; h/:

By the inductive assumption, the total contribution from (b) is thus

[
f .z1 +h1; : : : ; z j+1 +h j+1; z j+2; : : : ; zL/− f .z1 + h1; : : : ; z j +h j ; z j+1; : : : ; zL/

]
− [

f .z1; : : : ; z j; z j+1 + h j+1; z j+2; : : : ; zL/− f .z1; : : : ; zL/
]
: (4.3)

The contribution from (c) is trivially

f .z1; : : : ; z j; z j+1 + h j+1; z j+2; : : : ; zL/− f .z1; : : : ; zL/: (4.4)

Addition of the right-hand side of (4.1) to the expressions in (4.3) and (4.4) yield that
the . j + 1/-th sum is∑

Q∈� j+1

2.Q; 0; h/ = f .z1 + h1; : : : ; z j+1 + h j+1; z j+2; : : : ; zL/− f .z1; : : : ; zL/:

This completes the inductive step for the inner induction and so the proof of the
theorem.

The notation of Section 3 extends as follows. We have m = .m1; : : : ;mM/,
φ = .�1; : : : ; �M/, p = .p1; : : : ; pN / with

∑N
i=1 pi = p,

A. p/ = ({0; : : : ; p1} × : : :× {0; : : : ; pN })\({0} × : : :× {0});
C. p/ =

{
m ∈ A.p; : : : ; p/ :

M∑
`=1

m` ≤ p

}
:

As before, �i : A. p/ → {0; 1; : : : ;mi}. Finally

V .m/ =
{
φ

∣∣∣∣
∑

n∈A. p/ �i.n/ = mi .1 ≤ i ≤ M/;∑
n∈A. p/ n`

∑M
j=1 � j.n/ = p` .1 ≤ ` ≤ N /

}
:

The following theorem may now be established with an argument parallel to that
of Theorem 3.3.
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THEOREM 4.2. Suppose F.u/ is C .p+1/ and ui .z/ .i = 1; 2/ have continuous
derivatives to order .p1 + 1; : : : ; pN + 1/ on appropriate domains. Define

B�i .ui.z// =
∏

n∈A. p/

⎧⎨
⎩ 1

�i.n/!

(
Dn

z ui .z/∏M
`=1 n`!

)�i .n/
⎫⎬
⎭ .1 ≤ i ≤ M/:

If G.z/ = F.u.z// and p 	= 0, then

@ pG.z/
@z p1

1 : : : @z pN

N

=
(

N∏
j=1

p j !
) ∑

m∈C. p/

Dm
u F

∑
φ∈V .m/

M∏
`=1

B�`.u`.z//:
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[15] Multivariable Faà di Bruno formulæ 341
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