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ABSTRACT 

Microleakage is an important topic in restorative dentistry. A large number of different 

techniques have been developed for the investigation of microleakage. However, 

these methodologies have been considered less reliable due to the nature of 

specimen preparation. 

The major objective of this investigation was to introduce a non-destructive technique 

for the study of microleakage. This objective has been partly met with the use of 

micro-computed tomography. By scanning the whole restoration with high spatial 

resolution, microleakage could be detected non-destructively and three-

dimensionally.  

In order to detect microleakage by micro-computed tomography, an X-ray contrast 

dye solution was developed to reveal microleakage at the tooth/restoration interface. 

In addition, a suitable model of tooth/cavity complex was designed in order to gain 

the best resolution from micro-computed tomography. Finally, with the application of 

advanced image analysis software, three-dimensional analysis of microleakage was 

achieved quantitatively and qualitatively. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Microleakage has been defined as the passage of bacteria, fluids, molecules or ions 

along the tooth-restoration interface (Kidd 1976). This leakage may be clinically 

undetectable, but is a major factor influencing the longevity of dental restorations as it 

causes many severe biological effects on the restored tooth including the recurrence 

of caries, pulp pathology, hypersensitivity and marginal breakdown (Hersek 2002). 

The investigation of microleakage is, therefore, important in the assessment of 

restorative materials.  

A variety of in vitro methods have been introduced into the study of microleakage 

including compressed air, neutron activation, electrochemical, fluid filtration, bacteria 

and the use of dyes (Kidd 1976; Taylor and Lynch 1992; Karagenç and Cansever 

2006). In addition, various techniques such as scanning electron microscopy, 

transmission electron microscopy and electron probe microscopic analysis have 

been used to image and measure leakage. However, the above specimen 

preparation techniques are two dimensional in nature and do not take the whole 

tooth-restoration interface into account, as some sections obtained randomly are 

taken to measure microleakage. Over the past few years there have been efforts to 

investigate microleakage of restorative materials three-dimensionally (Youngson 

1992; Gale 1994; Lyroudia 2000; Iwami 2005). However, this methodology was also 

destructive as images were reconstructed from serial cross sections of continuously 

ground surfaces.  

One of the most advanced techniques in medicine in recent years has been the 

advent of micro-computed tomography (MCT) that can achieve a spatial resolution at 

the micron level. Recently, the MCT Skyscan 1072 (MCT 1072) has been introduced 

into dentistry for the study of many relevant subjects including dental materials, 
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dental morphology and dental implants (Bergmans 2001; Park 2005; Santis 2005). 

Santis et al (2005) first used MCT to study microleakage and although these workers 

introduced a non-destructive method, the model they chose had some weaknesses. 

From the clinical perspective only flat dentine surfaces were studied rather than 

definite cavities, as in the clinical situation. Furthermore, no three dimensional 

quantitative and qualitative analysis was undertaken.  

In considering various methods that have been used to study microleakage, the 

technology of MCT would appear to offer significant advantages over two 

dimensional methods involving sectioning of specimens.  

However, in order to image microleakage using MCT, an X-ray contrast dye solution 

is needed. Although a solution of 50% silver nitrate has been commonly used in 

microleakage studies (Taylor and Lynch 1992; Taylor and Lynch 1993; Besnault and 

Attal 2003; Tsatsas, Meliou et al. 2005), it has been suggested that the nitrate 

solution has affinity with tooth structures, binding to tooth substances and restorative 

materials, leading to false results. As a consequence, one of the aims of the present 

study was to identify a better contrast dye solution for microleakage studies.  

The restorative material to be chosen to validate the methodology was a Glass 

Ionomer Cement (GIC), which is considered one of the most challenging classes of 

materials in microleakage studies (Ngo, personal communication). This is because 

the GIC is a water-based cement, which significantly absorbs dye agents, thereby 

making it difficult to accurately interpret microleakage.  

It is from this fundamental basis that the project evolved, with firstly, the need to 

explore the potential of using MCT scanning on dental restorations and secondly, to 

develop a suitable X-ray contrast dye medium to expose regions of microleakage. 

Thirdly, there was the requirement to quantify the amount of microleakage in three 

dimensions.  
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1.2 Literature review 

As an introduction to this investigation it is necessary to review the adverse effects of 

microleakage on the restored teeth. In addition, etiologies and dynamic processes of 

microleakage will be considered. Furthermore, the current methodologies with their 

main advantages and disadvantages are discussed.  

Having discussed the current thinking on microleakage, there will be a further 

discussion of X-ray contrast dye solutions and MCT. There is also an overview of 

GICs which is used for the validation of a new methodology. Finally, the factors that 

can influence the results of microleakage studies are reviewed.  

 

1.2.1 Microleakage definition  

As mentioned previously, microleakage can be the passage of bacteria, fluids, 

molecules or ions into the tooth/restoration interface. Trowbridge (1987) has also 

stated that microleakage can be considered as the ingress of oral fluids into the 

space between tooth structure and a restoration. These descriptions have been 

widely used by the researchers studying microleakage (Youngson 1990; Taylor and 

Lynch 1992; Youngson, Jones et al. 1999; Matharu 2001). From these studies it is 

evident that microleakage can be at micron level or at nanometer level.  

 

1.2.1.1 Leakage at micron level (bacterial microleakage)  

It can be inferred from the above microleakage definition that marginal gaps around a 

restoration permit bacteria to pass into the tooth/restoration interface. This is 

considered to be bacterial microleakage, which is at the micron level. Numerous 

studies have shown that once cariogenic bacteria gain an entrance to the tooth-

restoration interface they are able to successfully proliferate along this area with the 

potential to cause an adverse response from the pulp and recurrent caries (Browne 
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and Tobias 1986; Brannstrom 1987; Bishop and Briggs 1995; Mount and Hume 

2005) 

However, it is still questionable about the marginal gap size around restorations and 

the occurrence of recurrent caries. It was reported that even though the size of 

bacteria is as small as 2-4 µm, no secondary caries was found in amalgam 

restorations where the marginal gaps are less than 50 µm (Jorgensen and 

Wakumoto 1968). It was also reported that recurrent caries rates significantly 

increased with the extent of a wide marginal gap. In fact a crevice at the 

tooth/restoration interface between 250-400 µm was considered a major problem in 

terms of recurrent caries (Kidd, Joyston-Bechal et al. 1995). Currently, there was a 

statement that there seems to be no clear correlation between the dimension of 

marginal gaps around restorations and the development of recurrent caries (Mjör 

2005).  

The origin of bacteria which are found at the tooth/restoration interface is still 

uncertain and their relation to the development of recurrent caries remains to be 

established. While it is believed that bacteria trapped within the smear layer are able 

to multiply (Brannstrom 1984), on the other hand, it was stated that micro-organism 

contamination occurring during cavity preparation had little opportunity to survive in 

the absence of microleakage, and that bacteria found at the tooth/restoration 

interface were mainly derived from the oral environment through microleakage. 

 It is also noted that most of bacteria in the oral environment are non-pathogenic and 

bacteria that are found at the tooth/restoration interface may not be cariogenic. 

Therefore, in evaluating the role of microleakage, more investigation is needed in 

terms of the nature, the constitution, concentration and the biological activity of all 

microleakage factors (Trowbridge 1987; Mjör 2005). 

In order to gain information regarding the clinical significance of bacterial leakage 

many attempts have been made to mimic the oral environment by introducing 
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bacteria. However, the technique itself is considered complicated and somewhat 

unreliable (Taylor and Lynch 1992).  

 

1.2.1.2 Leakage at submicron level (nanoleakage) 

It can also be interpreted from the above definition that restorations with marginal 

gaps that permit ions and molecules to gain access can have microleakage at the 

nano level. Apparently, leakage can occur at the tooth/restoration interface while 

bacteria may not be able to enter.  

It is agreed that fluid flow containing ions and molecules access dentinal tubules with 

ease, particularly when the dentin surface is treated with acid-etch or other 

conditioning agents. It is also reported that the passage of fluid through dentin is 

affected by dentin permeability which is markedly influenced by a number of factors 

including the volume of dentinal tubules, the characteristics of dentine (such as 

density), dentin smear, dentin calcification and topical applications (Mount and Hume 

2005).  

Recently, nanoleakage research has focused more in composite resins, particularly 

at the hybrid layer (Heping Li 2003). However, it is still controversial, as to the clinical 

significance, in relation to recurrent caries (Taylor and Lynch 1992; Mjör 2005).  

 

1.3 Development of Microleakage  

There are many factors that can cause microleakage. Polymerization shrinkage of 

adhesive restorations has been commonly documented, where the hardening phase 

causes a considerable contraction in volume, creating stresses and forming gaps 

between cavity walls and a restoration (Rees and Jacobsen 1989). Secondly, some 

restorative materials such as GICs have the property of thermal expansion and water 

absorption, which is susceptible to leakage formation (Retief 1994). Thirdly, long-

term effect of mechanical loading and thermal changes can cause elastic 
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deformation and physical alterations of both tooth substances and restoration, 

resulting in microleakage (Trowbridge 1987; Hilton 2002).  

Marginal gaps of a restoration can also be created by improper manipulation of 

materials by operators. For example, material such as composite resin is highly 

technique sensitive. Its sealing ability is markedly influenced by the presence of 

moisture, cavity surface treatment, incremental placement and adequate light-curing 

time. In addition, factors such as cavity shape, cavity location and cavity depth are of 

great importance in microleakage creation. For example, composite resins bond well 

to acid-etched enamel however their bonding to cementum or dentin is still modest 

(Causton, Braden et al. 1984). As a result, microleakage can be much more easily 

initiated at composite/cementum and composite/dentin margins. Finally, the level of 

compatibility of restorative materials to tooth substances is also considered as an 

important factor in microleakage generation.  

 

1.4 Microleakage modification  

It has been believed that microleakage is an active process and thus varies with time. 

The progression of microleakage is due to long-term bio-chemical reaction within the 

material itself and between the material and surrounding environment, where the 

distance between tooth/restoration interfaces may worsen or improve over time 

(Trowbridge 1987). This can be partially seen in the case of glass ionomer cements 

where chemical adhesion to tooth surfaces via ionic exchanges can result in 

enrichment of the ion-bonded hybrid layer at the tooth/restoration interface, which 

may improve marginal gaps over time reducing microleakage (Mount and Hume 

2005). In other circumstances, long-term dimensional changes of restorations caused 

by environmental and functional factors such as masticatory forces (Qvist 1983) may 

also alter marginal adaptability, and hence the microleakage of a restoration. 
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It has been also documented that gradual accumulation of mineral substances at the 

marginal gaps due to long-term contact with the surrounding saliva environment can 

stimulate the progress of blocking out the marginal gaps around restorations 

(Brannstrom 1984). Moreover, microleakage caused by initial contraction may be 

compensated by the expansion due to water absorption and thermal alterations as 

seen in amalgam restorations (Trowbridge 1987).  

 

1.5 Adverse effects of microleakage 

Restorative marginal gaps that permit the ingress of oral fluid are considered a major 

reason for pulpal reaction and in time pulpal injuries (Brannstrom 1984; Mount and 

Hume 2005). Moreover, it is reported that the most substantial biological effect of 

microleakage on a restored tooth may be the development of recurrent caries, which 

accounts for approximately 50% of causes of clinical failure for restorations 

(Trowbridge 1987; Mjör 2005). 

Recurrent caries is sometimes named as secondary caries and can be clinically and 

radiographically identified at the restoration margins, most frequently on the gingival 

margins of class II and class V restorations. Recurrent caries may develop from a 

primary lesion or may initiate at the restoration margins, where dental plaque 

accumulation is accelerated by the presence of microleakage (Trowbridge 1987).  

Fluid leakage may cause an acute reaction of the pulp following the placement of a 

restoration, leading to post-operative hyper-sensitivity or even acute pain (Youngson, 

Jones et al. 1999; Mount and Hume 2005). It is believed that the symptoms are due 

to the fluid flow within dentin tubules, which is favored by the presence of 

microleakage. The problems may become more severe during function as the 

restoration can act as a plunger during mastication, causing increased fluid motion in 

the dentin tubule.  
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These pulpal symptoms may gradually disappear if there is no cariogenic factors 

involved. There appears to be the process of gradual recovery of pulpal tissue, 

probably resulting from the self-correction and replacement of dentinal fluid within the 

pulp chamber. In addition, there is also the involvement of dentinal sclerosis and 

dentinal calcification during the recovery process (Mount and Hume 2005).  

Other adverse effects of microleakage may include marginal defects which favor 

dental plaque accumulation, leading to periodontal problems. Microleakage may also 

cause esthetical consequences such as marginal discoloration, with associated 

aesthetic consequences.  

 

1.6 Microleakage studies 

The most effective method for evaluating the sealing of restorative materials to cavity 

walls is by microleakage studies (Hilton 2002) that use colored dye agents or 

chemical tracers which are able to penetrate into and stain the tooth/restoration 

interface. The specimens are then sectioned longitudinally through the restorations 

and assessed with stereo optical-microscopy or scanning electron microscopy 

(SEM). Bacteria and radioactive isotopes have also been widely used as markers. 

Techniques employing ions as markers which can then be detected by neutron 

activation has also been used. Some other methodologies include electrical 

conductivity measurement, direct observation with microscopy or SEM and 

compressed air and compressed fluid.  

 An understanding of leakage patterns of restorative materials can lead to an 

increased awareness of the mechanism and etiology of microleakage, resulting in the 

establishment of the microleakage pattern. Subsequently this will have relevance for 

restorative material selection in dental practice. (Taylor and Lynch 1992;Hilton 2002).  
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The following is an overview of current microleakage methodologies and factors that 

may influence microleakage results. The methodologies which are related to MCT 

methodology are also emphasized.  

 

1.6.1 Air pressure method 

This technique is based on the introduction of compressed air into the pulp space of 

a restored tooth while investigating the delivery of air bubbles at restoration margins 

which are placed in fluid. The method was first introduced to test the margins of 

amalgam restorations (Harper 1912) and then applied to acrylic restorations 

(Fiasconaro and Shernam 1952). The introduction of microscopic observation 

(Pickard and Gaynford 1965) to examine the release of air bubbles at restoration 

margins was a major improvement in establishing a standard method to monitor 

leakage in the long-term.  

One advantage of the method is that leakage can be investigated without sectioning 

a sample. Thus the restorations can be monitored non-destructively and 

longitudinally. In addition, the technique can give a quantitative analysis by 

measuring the loss of pressured air. However, it has many drawbacks. Firstly, the 

microleakage cannot be photographed as the specimens are immersed in the fluid. 

Therefore, apart from the drop in pressurized air it cannot give a qualitative analysis 

of microleakage (Derkson and Pashley 1986). Secondly, it is difficult to interpret 

microleakage results because the observation of air release is purely to inform air 

leakage through dentin and then a restoration. Because air flow may pass through 

the restoration and tooth cracks it is difficult to determine whether air leakage is due 

to marginal gaps or cracks among tooth structures and restorations. Finally, the 

method may not provide clinical relevance because it is merely a reflection of air 

leakage, which is not representative of bacteria or other microorganisms (Kidd 1976; 

Taylor and Lynch 1992).  
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1.6.2 Fluid filtration method 

The fluid filtration method was developed on the principle of an air-pressurization 

technique where instead of using pressurized air, a pressurized-liquid was applied to 

the pulp chamber of a restored tooth with a constant pressure generated by a gas 

system (Derkson and Pashley 1986).  

The sealing ability of a restoration is indicated by the resistance to the dentine 

permeability. Dentin permeability is defined as the rate of the fluid filtration in the 

dentin tubules. The dentine permeability rate is measured once a cavity has been 

prepared and ready for the insertion of a restoration. This rate is assigned as a value 

of 100%. The rates of the fluid filtration that are measured after the insertion of the 

restoration are expressed relative to dentine permeability. The changes in the 

permeability of dentin of the restored tooth, for example values below 100%, indicate 

that the restoration has affected the dentine permeability by sealing the dentinal 

tubules (Derkson and Pashley 1986).  

A main advantage of the methodology is that it is a non-destructive test. It, therefore, 

allows samples to be reinvestigated over a period of time. Another advantage is that 

it provides some level of quantitative and qualitative analysis as fluid flow can be 

measured as well as photographed.  

The sealing ability of the restoration, according to the methodology, was indicated by 

the rate of the fluid filtration which is applied to the restored tooth through dentin 

tubules. This quantitative analysis is subject to the variations of the research design 

and varies significantly from experiment to experiment because of the remarkable 

changes in dentine permeability caused by dentin conditioning techniques and the 

thickness of the remaining dentin beneath the cavity. This makes it difficult to 

compare the results between studies (Youngson, Jones et al. 1999; Karagenç and 



Cansever 2006). In addition, the actual amount of microleakage and exact location of 

leakage cannot be directly determined. 

 
1.6.3 Electrochemical method 
 

In an attempt to develop a technique that can assess restorative microleakage 

longitudinally, the electrochemical methodology was introduced using a 

“conductimetric technique” in which the cavity wall/restoration interface (using a glass 

tube filled with silicate) was incorporated into an electrochemical unit (using lactic 

acid). The measurement of current changes flowing through this unit demonstrated 

changes in the dimensions of the interface and thus the tooth/restoration interface 

can be interpreted (Jacobsen and Von 1975). The technique is apparently not used 

for conductive materials. 

 
 

 
NOTE:  This figure is included on page 11 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
  
Figure 1: A model developed by Jacobsen 
   
 

The technique was then applied to extracted tooth models involving the insertion of 

an electrode into the root of an extracted tooth in such a way that it makes contact 

with the base of the restoration. Once filled, the cavity is theoretically sealed 

preventing electrical leakage through the tooth/restoration interface while immersed 

in an electrolytic bath (Momoi and Iwase 1990). 
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NOTE:  This figure is included on page 12 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
  
Figure 2: A model developed by Momoi 
 
 
The technique was also used to compare its reliability with other techniques such as 

autoradiography and dye penetration (Delivanis and Chapman 1982). However, it is 

hard to make any conclusion from this comparison because there seemed to be no 

reliable correlation among these techniques. Lim (1987) used the same methodology 

to compare the microleakage of two treatments of glass ionomer cements. There 

were again broad variations in the values. 

The electrochemical methodology of investigating leakage is destructive of tooth 

structure. The technique is extremely sensitive because it is highly related to the 

property of electric transmission of restorative materials. In addition, this dielectric 

property is changed with time due to the continuous setting reaction of the materials. 

Similar to air pressure studies, qualitative and quantitative analysis are hard to be 

drawn as the measurements purely described whether there is a current flow via the 

restoration. 

 
 
1.6.4 Neutron activation method 
 
The technique basically used non-radioactive manganese (Mn) salt as a chemical 

marker which was allowed to leak around the margins of restorations. The specimens 

were then placed in the core of a nuclear reactor and exposed to a pulsed 
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neutrons/sp cm/sec, where the 55Mn is activated to 56Mn. The gamma-ray emission of 

56Mn formed during irradiation was measured with the solid-state scintillation 

detector. The number of radioactive counts is considered to be proportional to the 

uptake of Mn per specimen (Going, Mayers et al. 1968).  

While there is the advantage of quantifying the results, the method has many 

disadvantages. Firstly, the technique is complicated, requiring nuclear engineers and 

involving radioactive isotopes. Secondly, the path and depth of tracer cannot be 

identified. In addition, the origin of leakage was not well defined as the method failed 

to identify whether the leakage is at the tooth/restoration interface or due to the 

uptake of the restoration. Finally, the presence of manganese, either in the tooth or in 

the restoration can lead to variability of the results.  

 

1.6.5 Bacterial method 

Using bacteria to investigate microleakage was first introduced by Fraser (1929), who 

examined the presence of bacteria after the immersion of glass tubing packed with 

amalgam into the cultured broth. The technique was then modified by the use of filled 

teeth in stead of the glass tubing (Kraus 1951; Seltzer 1955).  

Bacterial techniques continue to be used and upgraded as they have some clinical 

relevance (Matharu 2001; Britto 2003; Holke and Drake 2003; Balto and Mansour 

2005; Deus and Murad 2006; Karagenc and Gencoglu 2006). Advanced technology 

such as the SEM has been used to investigate the presence of bacteria at the 

tooth/restoration interface. Recently, Matharu (2001) introduced the use of the 

“constant depth film fermentor”, which helped generate a selected bacterial flora and 

was able to generate large number of biofilms that simulated an oral environment. 

The authors also suggested that the methodology could be improved by the 

investigation of positive pulpal pressure on bacterial leakage and the identification of 

bacteria at the tooth/restoration interface.  
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The most apparent advantage of the bacterial method is its capacity of replicating 

and simulating the clinical problems of bacterial leakage, which is considered the 

main origin of recurrent caries of restored teeth. However, there are many 

disadvantages arising from such techniques and associated research results. Firstly, 

the technique is complicated and difficult in terms of cultivating and controlling the 

bacterial population. Secondly, the methodology lacks standardized models and 

lacks reproducibility. Therefore, the results amongst various studies are hard to 

compare. Thirdly, the results are purely qualitative on the basis of whether or not 

there is presence of bacteria at the tooth-restoration interface. In addition, the results 

can only display the gaps at which bacteria can pass through. This does not reflect 

the smaller gaps which can be accessed by fluid flow such as ions, toxins and 

bacterial by-products (Taylor and Lynch 1992). The results of bacterial studies are 

therefore not entirely representative of microleakage images of the restoration.  

 

1.6.6 Radioisotope method 

Radioactive isotopes have been widely applied in microleakage studies with a broad 

range of substances including 45
 Ca, 131I, 35S, 22Na, 32P, 86Rb and 14C which have 

been introduced as markers. Basically, microleakage is expressed with isotopes by 

immersing specimens in the isotope solution. The isotope leakage at the 

tooth/restoration interface is detected by the autoradiography of a sectioned 

specimen (Hembree 1989; Fitchie and Reeves 1990; Saunders and Grieve 1990). 

Recently, Hersek (2002) simplified the technique of isotope identification with the use 

of a Kodak film model that is used in nuclear medicine. 

The radioisotope method, on the one hand, may bring with it some important 

advantages. It is convincing that isotopes are able to penetrate through gaps as 

small as 40 nm, which investigates the under-sized gaps that bacterial studies cannot 

reveal. In addition, it is believed that isotopes are more capable at demonstrating 
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microleakage than that of dye (Taylor and Lynch 1992). It has also been 

demonstrated that radioisotopes such as 14C can be used for long-term monitoring of 

microleakage (Alani and Toh 1997).  

On the other hand, there are many disadvantages arising from the radioisotope 

study. Firstly, the method is again destructive of specimens and still qualitative in the 

analyses of results. Secondly, a two-dimensional autoradiograph image is not 

representative of the three-dimensional image of microleakage. Thirdly, an isotope 

such as 45Ca has an affinity with tooth structure or restorative materials, leading to 

increased measurement errors. In addition, isotopes are able to pass through tooth 

structure or restoration flaws because of their tiny size, resulting in misinterpretation 

of leakage (Taylor and Lynch 1992). Moreover, because of the complicated 

procedure of radioisotope leakage recording, the results can be affected by other 

factors such as isotope selection, source and emulsion distance, exposure length 

and rinsing. Finally, the technique has potential to produce hazardous radiation.  

 

1.6.7 Dye penetration method 

Staining microleakage by using colored agents has been the most popular technique 

(Taylor and Lynch 1992). The method allows microleakage to be demonstrated in 

contrasting colors to both tooth and restoration.  

Basically, the methodology involves the immersion of a specimen into a dye solution 

for the pre-set time, after which the tooth-restoration interface is examined for stain. 

This staining layer is contrasted in color to both tooth structure and the restoration.  

A diverse range of dye agents with different concentrations has been introduced into 

the technique, in which 0.5% Basic Fuchsin, 2% Methylene Blue and 50% silver 

nitrate solution have been most frequently used (Taylor and Lynch 1992; Hilton 

2002).  
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The methodology has many advantages over the other techniques. First of all, the 

microleakage is demonstrated by single colored agent without the need for any 

further introduction of chemical reaction or hazardous radiation. In addition, the 

researchers can have a range of choices of available dye agents, which allows the 

method to be easily conformed to the instruments and methods available at the 

center in which the research is to be carried out. The technique is, therefore, highly 

feasible in any circumstances and can be easily repeated. They can, to some extent, 

have clinical significance since the particles size of dye agents can be pre-measured. 

One again the method is destructive because the specimen is required to be 

sectioned so that the staining dye layer is measured and recorded under light 

microscopy or scanning electron microscopy. This neither allows the method to be 

reproduced nor is the specimen capable of being long-term assessed. In addition, the 

results are recorded only from one or two slices obtained from sectioning, which does 

not represent the whole image of microleakage which is three-dimensional. The 

results are therefore unreliable. Finally, it is highly technique sensitive and is not able 

to exclude the diffusion of the dye substance into tooth structures and the restoration 

from the measurement. The results again do not demonstrate the nature and the 

patterns of the leakage (Taylor and Lynch 1992; Hilton 2002).  

The current studies have failed to make it clear whether a dye solution selected is 

suitable to use with tooth structure and restorative materials tested. For example, one 

particular frequent dye solution used, basic fuchsin and its solvent, propyl glycol, has 

been well documented to react with dentine. This process can cause the leakage 

image collected to be greater than the true image (Kidd 1976; Taylor and Lynch 

1992). The other consideration is the particle size of the dye solution used. The final 

results can be extremely less reliable if the particle dimension of dye solution used is 

too small or too big in comparison with bacteria and dentinal tubule diameter (Taylor 

and Lynch 1992). 
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1.6.8 Metal solution tracers   

Metal solutions have been commonly used as tracers to express the tooth/restoration 

gaps. It was frequently seen that the technique involves the use of at least two 

colorless chemicals to produce a colored precipitate at the tooth/restoration interface 

(Taylor and Lynch 1992; Li, Burrow et al. 2003). The microleakage deposition is, 

therefore, dependent on the penetration of both chemicals, since a precipitate may 

not occur if only one chemical, or the smaller of the two chemicals, exist (Taylor and 

Lynch 1992).  

Early chemical tracing of leakage was introduced by Kornfield (1953), in which 

barium sulphide solution was used to investigate microleakage of acrylic resin 

containing lead glass. The reaction between barium and lead glass results in the 

formation of the lead sulphide which is in black and precipitates at the 

tooth/restoration interface, allowing microleakage to be determined (Kornfield 1953).  

Manganese salts were also introduced as a non-radioactive marker for a 

microleakage study (Going, Mayers et al. 1968). However, it was commented that the 

presence of manganese, either in the restoration or in tooth structure, can result in 

the variability of the result. As a result, dysprosium was recommended as an 

alternative (Meyer, Dennison et al. 1974). 

Recently, a solution of 50% silver nitrate has been most frequently used in 

conjunction with photo-developing solution (hydroquinone) to produce a precipitate at 

the restoration-tooth interface. This combination has been widely used as dental 

leakage dying technique (Taylor and Lynch 1992; Youngson, Jones et al. 1999; 

Mathew 2001; Hilton 2002).  

The problem of the chemical tracer technique is that it involves the use of many 

chemicals and the microleakage result is dependent on chemical reactions.  
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A criticism arising from using silver nitrate is its clinical relevance, because of its 

molecular size (Douglas 1989; Matharu 2001). The particle dimension of silver ions 

(0.059 nm) is absolutely small in comparison with bacteria (2-4 µm) and the dentinal 

tubule diameter (1.0-4.0 µm), so the result of silver nitrate leakage is markedly 

sensitive because of the easy penetration of silver through the restoration-tooth 

interface and dentine tubules. It is believed that with the introduction of photo-

developing solution whose molecular size is significantly larger than that of silver 

nitrate, the precipitate is, therefore, representative of bacterial size (Taylor and Lynch 

1992). 

The mechanism of silver staining at the tooth/restoration interface is still uncertain (Li, 

Burrow et al. 2003). On one hand, it was found that silver deposition was essentially 

affiliated with collagen fibrils (Adam and Whittaker 1972); in another hand, it was 

assumed that minute silver is precipitated freely at the tooth/restoration interface (Tay 

and Pang 1995). It seems that silver ions are highly active and therefore they are 

easily converted into silver metal, which can act as a stable dying agent. 

 

1.6.9 Three-dimensional (3D) methods  

Most microleakage researchers have recognized the disadvantages of two - 

dimensional analysis because of its simple sectioning into the specimen. A few 

studies (Youngson 1992; Gale 1994; Iwami and Hayashi 2007) have been developed 

to analyze microleakage three dimensionally.  

The three-dimensional analysis was pioneered by Youngson (1992) who introduced 

the technique of producing serial sections using a water-cooled wire saw. Each 

section was approximately 200µm thick and separated by 280 µm. Three-

dimensional models were then created by hand tracing projected transparencies and 

reconstructed by computer aided tools. Computer image analyzer was then applied 

to count the surface areas of dye leakage but the volume of leakage was calculated 
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manually (Gale 1994). It was reported that microleakage in this three-dimensional 

analysis was significantly greater than that of the two-dimensional analysis. This is 

probably due to the more thorough examination of the object compared to the single 

sectioning technique. 

However, the methodology is again destructive of specimens and thus all the 

disadvantages of sectioning technique were unavoidable. In addition, the technique 

is highly cumbersome and the restoration structure itself can be altered due to the 

comprehensive sectioning preparation. Apparently, the distance between the slices is 

still significant. The microleakage images were therefore comparatively low in pixel 

resolution and the loss of three-dimensional information is inherent to the 

methodology. Finally, manual tracing of the dye leakage is inherently subjective.  

The methodology was then applied and upgraded by Gale (1994), who developed a 

reconstructed model with higher resolution, in which the surface separation was 

approximately 100-200 µm compared to 280 µm in the previous study. The images of 

consecutive surfaces, which were created by sequential grinding, were photographed 

by a computer with image resolution about 9.3 µm per pixel. For the microleakage 

staining procedure, instead of using water-soluble eosin, which was consider to be 

significantly leached during sectioning, the author used a high contrast, water-fast 

tracer, which was 50% silver nitrate solution. This solution was not leached through 

the grinding process. Recently, Iwami (2007) introduced an improved method based 

on the technique of continuous surface reductions similar to the above technique in 

conjunction with an electrical method. In this study, the sequence of surface 

reduction was more consistent by 100 µm and image taking was made with an 

operation (i.e. surgical operating) microscope. Three dimensional images were also 

created by computer software.  

Although there were some improvements due to better control of surface reduction 

compared to serial sectioning, the methodology was again destructive of specimens. 
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Grinding processes of specimens may generate some mechanical deformation and 

unparallel surfaces, leading to increased measurement errors. In addition, the image 

resolution in depth direction was still low.  

The micro-computed tomography 1072 was introduced in a microleakage study by 

De Santis (2005), who stated that the MCT-1072 is able to determine the silver 

deposition at the tooth-restoration interface non-invasively. However, there were 

many drawbacks relating to the study. Firstly, the experimental method did not reflect 

a true clinical situation as prepared cavities were not used. Secondly, the 50% silver 

nitrate solution that was used in the study was not buffered and can cause marginal 

erosion, leading to confounding results. Finally, no qualitative and quantitative 

analysis was presented.  

 

1.7 Factors influencing microleakage studies  

1.7.1 Substrate for microleakage studies 

It is well documented that a myriad amount of microleakage research has been done 

on extracted human teeth although bovine teeth have been sometimes used (Hilton 

2002). It was also cited that living human teeth are the best substrate for bonding 

tests and also to conduct microleakage tests. However, it is extremely hard to have 

these studies done in vivo, leading to exclusive use of extracted human teeth for in 

vitro study (Rueggeberg 1991).  

The limited availability of human teeth and the concern about infection control have 

made bovine teeth a useful substitute. However, little research has been done to 

compare the microleakage results between the use of bovine and human teeth.  
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1.7.2 Storage factors  

The factors such as time, media and temperature for the storage of extracted teeth 

and specimens can play a role on microleakage studies. These factors could be 

related to the period of time after extraction, before specimen fabrication, after 

specimen fabrication. In addition, due to the concern about infective diseases, most 

extracted teeth were placed in sterilizing/disinfecting solutions for a period of time 

before changing to another media for storage.  

Research comparing the effects of autoclave and ethylene oxide sterilization 

procedures on bonding strength with those of non-sterilized specimens, found that 

there was no difference in shear bond strength and dentin permeability, and that 

either method of storage could be applied (Pashley, Tao et al. 1993).  

The time vector after extraction has not been specified by most studies. The most 

common words “freshly extracted” were used to describe sample collection but it 

seems hard to extrapolate the exact time period from the “freshly extracted”. 

Generally, it ranged from minutes to years (Hilton 2002). A thorough review done by 

Rueggeberg (1991) concluded that time after extraction has no impact on bonding 

result. He also concluded that storage time after cavity preparation but before 

material placement could be more important, and that restorations should be 

completed immediately after cavity preparation to better simulate clinical procedures 

(Rueggeberg 1991).  

Another time vector is storage duration after specimen fabrication. It was reported 

that there was a remarkable reduction in shear bond strength and increased gap at 

the cavity floor between 24 hours and six months, but no marginal gaps were found 

in the study done with Class V microleakage for two bonding agents with composite 

resin (Gwinnett and Ju 1994). There were also a number of studies investigating and 

comparing microleakage over time (Meiers and Turner 1988; Crim 1993; Gwinnett 
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and Ju 1994), that reported little change in marginal gaps over time with adhesive 

materials or amalgam lined with adhesive agents.  

A broad range of medium solutions have been used for the storage of extracted 

teeth, including formalin, thymol, chloramines, sodium azide, saline and water. These 

media may have different effects on enamel and dentin. It was found that 

physiological saline can make enamel softer while distilled water less so and sodium 

chloride had no effect on enamel surface hardness (Muhlemann 1964). It was also 

cited that formaldehyde is not an appropriate medium for storing extracted teeth as 

an oxidation process can form formic acid, which causes changes in pH of the 

medium solution (Rueggeberg 1991).  

It seems that dentin was more affected by storage solution than enamel. Teeth 

stored in saline demonstrated the greatest changes in dentin permeability over time. 

It was found that the shear bond strengths of composite and dentin fluctuate with 

storage media and time after extraction. It was also reported that ethanol and 

formalin provided stable results, while the saline results were dramatically variable. 

The authors also found that microleakage markedly rose in teeth stored in 

chloramines solution after 48 days, but no further surge up to 135 days. These 

changes could be caused by the modification in dentin due to ion exchanges, 

changes in dentin collagen framework and dentin tubules (Goodis and Allart 1993).  

 

1.7.3 Cavity design  

 Cavity design including size, shape and location can be important in a microleakage 

study because these variables closely relate to bonding efficiency of adhesive 

materials and thus microleakage results (Gale and Darvell 1999; Hilton and 

Ferracane 1999; Hilton 2002). It has been suggested that it is necessary for cavities 

to be as standardized as possible so as to eliminate variation among specimens.  
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Cavity size is an important variable for the microleakage testing of adhesive materials 

as polymerization shrinkage can be significantly altered by volume of the restoration. 

It was reported that the volumetric contraction during the setting phase of composite 

resins and GICs ranged from 1.0-3.6% by volume after 30 seconds and these 

shrinkages can reach a range of 2.8-7.1% after 24 hours (Feilzer, De Gree et al. 

1988). The authors also stated that chemically setting GICs contracted less than that 

of light-cured resins. Despite the apparent significance of volumetric shrinkage 

associated with cavity size, a review done by Taylor and Lynch (1993), reported that 

very few studies gave details about cavity design and the cavity dimensions were 

rarely investigated.  

Cavity properties such as depth can also be related to the extent of microleakage. 

This is likely due to the differences in the dentinal tubule diameter and dentinal tubule 

density, leading to differences in bonding effectiveness of the material (Trowbridge 

1987).  

Cavity shape is considered to be the factor that relates closely to the restoration 

stresses and so to microleakage formation. These stresses were shown to be 

proportional to the contact surface area which bonds to the restoration (Davidson and 

De Gree 1984). It was stated that the increase in the ratio of bonded surface to free 

surface can increase the internal stress within the restoration. The degree of internal 

stresses, therefore, varies among different class cavities and the highest values can 

be with Class I and Class V cavities.  

It can be seen in the literature that cavity design varies amongst studies with respect 

to the dental material being analyzed. (Taylor and Lynch 1993; Hilton 2002). For 

example, some authors introduced the beveling of enamel margins to compare the 

microleakage of composite resins with non-beveled cavities or butt margins and 

found that beveling enamel margins reduced leakage (Holtan, Nystrom et al. 1990). 

Another cavity modification was introduced with one and two notches placed at the 
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axial-gingival line angle in Class II cavities and found that the notches improved 

marginal sealing (Coli, Blixt et al. 1993). Moreover, a variety of cavity shapes have 

been also introduced such as saucer-shaped preparations (Krejci and Lutz 1990), 

wedge-shaped Class V cavities (Prati and Nucci 1991), and Cylindrical Class V 

cavities (Kamel and Retief 1990). 

Location of cavities can be also an important factor closely relevant to microleakage 

results. This is because adhesive materials may behave differently among enamel, 

dentin and cementum, resulting in internal stresses and marginal adaptation 

differences. It was also noted that the majority of microleakage studies preferred 

having margins involved in both enamel and dentin and that cementum has been 

importantly ignored (Hargreaves, Grossman et al. 1989; Taylor and Lynch 1993).  

It has been suggested that in-vitro cavity designs for microleakage studies should 

involve cementum, as clinically cervical lesions are increasingly prevalent, due to the 

fact that, these lesions may be proportional to the increasingly aging population. 

Such lesions may have special treatment requirements in bonding ability and cavity 

preparations (Hargreaves, Grossman et al. 1989). There have been some studies 

comparing the sealing ability of composite resins in cavity preparations with margins 

involving cementum (Phair and Fuller 1985; Staninec and Mochizuki 1985). They 

concluded that the etching-bonding condition on cementum showed little effect on 

composite resin sealing. However, a suitable method of preservation of cementum 

surface and cementum condition was not mentioned in these studies. The conclusion 

about composite bonded to cementum was therefore less reliable.  

 

1.7.4 Microleakage expression and analysis 

As discussed previously, the most popular technique for the investigation of 

restoration sealing is through a microleakage study (Taylor and Lynch 1992; Gale 

and Darvell 1999; Hilton 2002), in which the use of dyes for in-vitro experiments has 
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been dominant. As a result of this work a number of issues concerning methodology 

reliability and technique identity have arisen. Of particular concern are the issues of 

microleakage expression and analysis, both of which can affect microleakage results.  

First of all, a variety of techniques have been used for the immersion of specimens in 

the dye solution. Many studies have compared microleakage using different 

methodologies and found that dye immersion time and different thermocycling 

techniques did not affect microleakage (Hilton 2002). In this literature review, Hilton 

also stated that the time used for specimen immersion commonly ranged from one 

hour to two weeks but most commonly 24 hours. In addition, it was found that dye 

temperature during staining was not specified, commonly mentioning room 

temperature or 37ºC. 

Another concern is the use of different types of dyes in microleakage studies. Dying 

agents may behave differently due to different molecular size and different level of 

affinity to tooth structures and restorative materials. A large range of dyes have been 

used in microleakage studies and thus it seems very hard to locate identical study 

protocols. As a result, it is difficult to interpret the differences in microleakage results 

collected from different types of dyes.  

Microleakage assessment is considered as a factor influencing study results. As can 

be seen, most of studies by far have sectioned the specimens to be assessed and 

most of these had a single section through the center of the restoration (Taylor and 

Lynch 1992; Hilton 2002). As discussed previously, this evaluation technique does 

not reflect the whole image of microleakage.  

Recently, attempts have been made to assess microleakage three-dimensionally by 

serial sectioning of the specimen into very thin two-dimensional slices which can then 

be reconstructed and interpolated into a three-dimensional image (Youngson 1992). 

Another technique was introduced by Gale (1999), who presented a sequential 

grinding of the specimen and image reconstruction by computer. The authors stated 
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that three dimensional techniques revealed markedly greater microleakage than the 

two dimensional assessment.  

Microleakage recording and statistical analysis are also crucial. Almost all of the 

current methods of recording data simply code the two dimensional extent of dye 

leakage with cardinal or ordinal scale for the statistical calculation, which is 

subjective. 

 

1.8 Glass Ionomer Cements (GICs) and microleakage studies 

There are two main reasons for selecting GICs to validate the proposed 

methodology. Firstly, there has been an increasing interest in using GICs in practice 

but little research on microleakage has been done. Secondly, questions raised from 

previous microleakage studies were that the cements tend to take up dye agents, 

making it difficult to accurately measure microleakage. The previous techniques have 

been unable to distinguish leakage staining from that occurring via marginal gaps or 

from restoration absorption. The proposed methodology is hoped to overcome these 

problems. 

It has been believed that GICs would be able to prevent microleakage as a result of 

its chemical bonding to tooth substances (Mount and Hume 2005). In spite of that, 

results from current in-vitro microleakage studies have been equivocal. Many studies 

(Prati 1989; Sparks and Hilton 1992; Hallett and Garcia 1993; Quo and Drummond 

2002) have consistently shown that marginal sealing of GICs to tooth structures was 

not sufficient enough to prevent dye leakage into the tooth-restoration interface. A 

study comparing microleakage of one chemically-cured and two resin-modified GICs 

on Class V cavities reported that all three cements behaved similarly in marginal 

leakage, showing slight leakage (Brackett, Gunnin et al. 1995). Another study also 

comparing two resin-modified with one chemically-cured glass ionomer cement on 

Class V cavities reported that no leakage was found for these three cements (Crim 
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1993). Other studies (Davidson and Abdalla 1994; Sidhu 1994) reported that 

microleakage of resin-modified GICs was slightly less than that of chemically-cured 

GICs. Similarly, another study comparing microleakage of self-cured GICs with third 

generation dentin bonding agents/resin-based composite, reported no differences in 

microleakage among groups at one week, 6 months, and one year and that 

microleakage at one year was more severe than at one week (Reeves, Fitchie et al. 

1990). Another comparable study using the same dentin bonding agents on Class V 

cavities concluded that GICs demonstrated less leakage than that of dentin bonding 

agents (Sidhu and Henderson 1992). 

In terms of secondary caries, a long term clinical study (Mjör 2005) about the causes 

of restoration replacement reported that recurrent caries rates of glass ionomer 

restorations are as high as that of composite, which accounts for approximately 50% 

of the whole reasons for restoration failure.  

It is believed that the study of microleakage with GICs involves many difficulties. It is 

well agreed that GICs tend to take up moisture and ions as they are basically acid-

based cements. As a result, it is suggested that GIC restorations be immediately 

covered with a varnish or unfilled resin in order to isolate the material. This 

procedure, if applied in the microleakage study, can bring about other confounding 

factors. It is hard to be sure that the microleakage results are not influenced by 

surface coating. In addition, if this surface is removed by a cleaning finishing 

technique the researcher can not be certain whether or not the coating substances 

penetrate into marginal gaps, interfering with the dye leakage. Finally, as a 

consequence of moisture and ion uptake by GICS, the exact amount of microleakage 

is hard to identify (Sidhu and Henderson 1992).  

1.9 Conclusion 

Microleakage is definitely an important issue in modern dentistry, particularly when 

new versions of adhesive materials are constantly introduced. Various methodologies 
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have been developed but none are reliable. It is reasonable to conclude that 

research should focus on microleakage methodology in order to develop a reliable 

technique before applying it to the study of microleakage on materials.  
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CHAPTER 2: HYPOTHESIS AND OVERVIEW OF APPROACHES 

 

2.1 Hypothesis of the study 

As pointed out in the literature review, the ideal method would be non-destructive and 

the results should be analyzed three-dimensionally. Based on this suggestion, a 

hypothesis was constructed. 

This study was designed to test the following hypothesis: 

Microleakage of restorative materials can be detected non-destructively and 

microleakage results can be analyzed three-dimensionally.  

2.2 Overall approach to achieving the objectives 

As introduced previously, a major emphasis of this study was to investigate a non-

destructive three-dimensional method for studying microleakage of restorative 

materials. Having reviewed the current methodologies and the advanced medical 

technology, it is likely, at this time, that a way forward would be to explore the 

potential of MCT in not only identifying microleakage non-destructively but also the 

possibility arises to be able to analyze the result in three dimensions. One of the 

most important parts of the project was to obtain a study protocol that can be 

effectively and efficiently used with the MCT/Skyscan-1072 (MCT-1072), which is 

available at the University of Adelaide.  

The first step was to investigate the x-ray contrast dye solution that can reveal 

microleakage of restorative materials. Then, it was to assess if this microleakage 

expression can be photographed by the MCT-1072 and then quantified. 

It was also necessary to conduct an investigation involving the specimen-restorative 

dimensions in order to determine the best spatial resolution that could be obtained in 

the scanning process. In addition, the programs used for image analysis and 3D 

microleakage analysis were evaluated. Finally, the main experiment was carried out 

to finally validate this methodology.  
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The material chosen for the study was a conventional glass ionomer restorative 

material, Fuji IX. This material is considered to have adhesive properties to enamel 

and dentine but has not been widely investigated with respect to its microleakage 

potential.  
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CHAPTER 3: MATERIALS AND METHODS  

 

3.1 Introduction in the MCT-1072 

3.1.1 Introduction 

Generally, an X-ray system generates two-dimensional shadow images from three-

dimensional structures. In pure two-dimensional radiography the depth information is 

completely missed. Only an X-ray tomography system allows three-dimensional 

object structures to be viewed and analyzed in an absence of sample preparation or 

chemical fixation. Basically, the spatial resolution of traditional medical computer 

tomography scanners falls between 1-2 mm. The MCT-1072 allows a spatial 

resolution in order of microns. Similar to conventional computer tomography 

scanners, the fully three-dimensional structures of the specimen can be 

reconstructed non-destructively. 

 

3.1.2 Skyscan 1072 system overview 

The Skyscan 1072 is an advanced digitalized system for x-ray microscopy and micro-

tomography, which is the combination of an x-ray shadow microscopic unit and a 

computer installed with tomographic reconstruction software. The system allows the 

production of a non-destructive three-dimensional reconstruction of the highly 

detailed internal structure of objects from two-dimensional x-ray shadow projections.  
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Figure 3: The Skyscan 1072 system 

 

The equipment contains an x-ray microfocus tube with high-voltage power supply, a 

specimen stage with precision manipulator, two-dimensional x-ray CCD-camera 

connected to the frame-grabber and a Dual Pentium (IBM) computer with color 

monitor. The system can be summarized as follows (Skyscan).  

The x-ray microfocus tube with several microns focal spot size operates at 20-

80kV/100 µm or 20-100kV/0-250 µA. The special x-ray CCD-camera is based on 

high-resolution (1024x1024) cooled CCD-sensor with fibre optic coupling (3.7:1 

image reduction) to x-ray scintillator or 768x560 pixels CCD-sensor with lens 

coupling to x-ray scintillator (Skyscan).  



 
 

 
NOTE:  This figure is included on page 33 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
  
Figure 4: Schematic working chart of the Skyscan 1072 (Skyscan) 
 
 

The x-ray shadow projections digitized as 1024 x 1024 pixels with 4096 brightness 

gradation (12 bit) for cooled camera or 256 gradations (8 bit) for analog camera. The 

reconstructed cross-sections have a 1024x1024 (or 2048x2048, 512x512…) pixels 

(float point) format. Typical circle of data collection for reconstruction contains of 

shadow image acquisition from 200 to 400 views over 180 or 360 degrees of object 

rotation. 

For the reconstruction of 3D objects a serial reconstruction of cross sections is 

operated with reconstruction programs. It starts with one acquisition cycle followed by 

an “off-line” reconstruction of the complete three-dimensional object in a resolution of 

1024x1024xmax1024 layers. After the serial reconstruction, the cross-sections of the 

object can be displayed on the screen and a realistic view of the three-dimensional 

object is obtained. 

There are two main programs for image analysis and visualization of the results from 

the MCT-1072: CT-an (Skyscan) for 2D visualization and 2D and 3D analysis, and 
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ANT (Skyscan) for realistic 3D visualization. In addition, T-view and Data-viewer 

(Skyscan) can be used to primarily visualize images. With these programs, qualitative 

analysis and quantitative analysis of microleakage results can be comprehensively 

analyzed. More details about these programs are presented in the next part of this 

paper.  

 

3.2 Selection of dye solution 

3.2.1 Introduction 

As discussed previously, dye techniques have been a popular method in 

microleakage studies. The dye agent that that can be identified by the MCT-1072 has 

to be an x-ray contrast solution. As a result, the search for a suitable agent was 

focused on solutions containing metal ions. 

It is well agreed that a dye solution for microleakage studies should meet some 

fundamental requirements. Firstly, it must be able to penetrate into the 

tooth/restoration interface. Secondly, it must satisfactorily stain the tooth/restoration 

interface. Thirdly, it should not react with tooth structures and restorative material.  

As stated in the introduction to Chapter 1, the metal solution, containing 50% silver 

nitrate has been broadly used in the field. However, it is highly invasive, interacting 

with the restorative material and tooth substances.  

It was decided to test other metal solutions. Barium nitrate and lead nitrate solutions 

were chosen for the test as it is thought that they may be chemically less invasive 

than that of silver nitrate. However, the possibility of staining could occur due to metal 

precipitation formed as a result of a chemical reaction with metal salts existing in the 

Fuji IX.  
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3.2.2 Preparing x-ray contrast dye solutions  

A 50% silver nitrate solution (Chem-Supply, Batch Ref 10 23015, code SA 087), a 

saturated concentration of barium nitrate (10%) and lead nitrate solution (15%) were 

prepared.  

It was noticed that that the non-buffered silver nitrate solution with pH 3.5 is highly 

acidic and thus corrosive to tooth structures and Fuji IX. The solution therefore can 

produce its own path into tooth/restoration interface (Li, Burrow et al. 2003). It was 

decided to buffer the pH of the 50% silver nitrate solution in order to diminish the 

corrosive potential.  

However, the pH of barium and lead nitrate was not determined at this stage, as this 

was only a preliminary experiment to identify whether or not these solutions can be 

used as dye solutions for microleakage studies.  

It was found that the 50% silver nitrate solution was extremely chemically active. 

Many common buffering systems were tried but not successful due to their chemical 

reaction to nitrate solution, causing precipitate. The successful buffer formula for the 

50% silver nitrate solution found was therefore presented as a useful system for 

future use.  

The buffer system is based on acid boric/ sodium tetra-borate and the formula as 

follows:  

Solution A: 0.2 M boric acid (mw: 62.5), which was made from 1.24 g boric acid in 

100 cm3 DDW. 

Solution B: 0.5 M sodium tetra-borate (mw: 381.4), which was generated from 1.9 g 

sodium tetra-borate in 100 cm3 DDW. 

90 cm3 solution A was mixed with 10 cm3 solution B to make a buffering solution 

having pH 7.4. This solution was used to bring pH of the 50% silver nitrate solution to 

6.5-7 
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3.2.3 Testing the interactions between the dye solution and Fuji IX  

This experiment was designed to examine the surface interaction between the above 

metal solutions with Fuji IX, which will be used in the main experiment for the 

validation of the proposed methodology.  

Sixty cylindrical specimens approximately 4 mm in diameter 6 mm in height of Fuji IX 

(GC Corp., Tokyo, Japan, lot no. 05033081) were produced using a split mould, 

stored in 100% humidity for 48 hours, allowing the material to mature. The 

specimens were then divided into 3 groups of 20 each, immersed in the above three 

solutions for 24 hours at room temperature (silver nitrate was placed in darkness), 

rinsed in running water for 5 minutes.  

In order to determine surface reaction between the material and the solutions, 

specimens were embedded in epoxy resin at a ratio of 100:25 for epoxy resin LC 191 

(Adelaide Epoxy Supplies, Adelaide, Australia), using plastic circular moulds. The 

cylindrical specimens were then mounted both horizontally and longitudinally so that 

every surface can be examined via cross sectioning. The specimens were then 

sectioned in halves using a water cooled low speed diamond saw (Buehler, USA), 

with Diamond Wafering Blade, No. 11-4244 (Buehler, USA). Since a smooth surface 

is required for analysis, the samples were then polished manually using medium grit 

with an aluminum oxide micro-abrasive system (Struers, Copenhagen, Denmark). 

The specimens were assessed using optical microscopy.  
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Figure 5: Isomet Slow –speed saw  

 

3.2.4 Testing staining properties 

As discussed previously, the ability to penetrate and stain the tooth-restoration 

interface is an essential prerequisite for the metal solutions. Except for silver nitrate 

which has been used as a dye solution in earlier microleakage studies, the barium 

and lead nitrate solution have not been confirmed as suitable dye solutions in the 

field. The ability to demonstrate microleakage using these solutions was therefore 

investigated.  

In order to test marginal staining properties of the above two metal solutions, 

microleakage of a tested restoration was promoted so that the dye solutions were 

free to enter the tooth/restoration interface and so express this space.  

The material of choice for this experiment was also Fuji IX. The reason was that it is 

necessary to examine the same material of choice so that the results have 

consistency 

For the detection of microleakage, specimens were prepared to be examined with the 

MCT-1072. By using the MCT-1072, at this stage, the suitability of the machine could 

be assessed for its ability to display microleakage. 

Ten non-carious premolars, extracted for orthodontic treatment, were collected, 

stored in de-ionized distilled water (DDW) containing 1% thymol at room temperature. 

After surface debridement with a hand scaling instrument and cleaning with a rubber 

cup and pumice, cavity preparations were placed in the buccal and lingual root 

surface 1 mm apical to the cementum-enamel junction. 20 preparations were 

produced 1 mm deep and 2 mm wide using round diamond burs (Komet Brasseler, 

USA) and high-speed hand-piece (Sirona, Siemens, Germany).  

The reason for choosing the root was that its size is relatively smaller than that of the 

coronal part. This smaller size part can increase the spatial pixel resolution of the 
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MCT-1072 as the resolution of the MCT-1072 is dependent on the dimension of the 

object scanned. In addition, it has been suggested that studying microleakage of 

GICs should be done on dentin because of it clinical relevance. 

The teeth were filled with Fuji IX (GC Corp., Tokyo, Japan, lot no. 05033081) and 

stored in 100 % humidity for 48 hours for maturing the restorative material. As 

mentioned above, the cavity surfaces were not treated with conditioning in order to 

promote microleakage of the Fuji IX. The metal solution was therefore encouraged to 

enter the tooth/restoration interface. 

Groups of three teeth were made and immersed in each solution for 24 hours, 

encouraging the penetration of the metal solution into the tooth-restoration interface. 

The specimens were then rinsed under running water and dried for mounting in the 

MCT-1072. The extra tooth was treated the same but with the non-buffered silver 

nitrate solution. This was to examine the surface erosion of the restoration caused by 

the non-buffered solution.  

Each specimen was securely placed and fixed into the specimen holder of the 

MCT1072. In order to achieve the best spatial resolution, the image magnification 

was adjusted to as high as possible while allowing for full rotation of the specimen 

within the CT machine. The program was commenced with source voltage set at 100 

kV and source current at 120 µAmps, beam hardening set to 10.  

The time required for each specimen to be completely scanned was roughly 2 hours, 

producing approximately 1000 projections in TIFF. These images were then 

converted to tomograms (cross-sections) saved in BMP, using NRecon (version 

1.4.3; Skyscan). The images were then examined for microleakage using image 

analysis programs provided by Skyscan such as T-view and CT-an.  
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3.2.5 Development of study model 

3.2.5.1 Introduction 

It was felt that an appropriate model designed to realize the advantages of the MCT-

1072 was essential for the proposed methodology. By the time this project started, 

there was no previous microleakage studies using MCT published. It was decided to 

develop an in vitro model of microleakage that could be best used with the available 

technology-the MCT1072.  

It should be emphasized that the restoration must be non-destructively examined and 

its size must be harmonious to the whole tooth model. In addition, the spatial 

resolution of the MCT-1072 is dependent on the whole tooth dimension, particularly 

the diameter of the specimen. As a result, cavity size and cavity location should be 

located close to where the 4 mm in diameter of the specimen can be achieved. In 

addition, the cavity is closely related to the material of choice for the clinical 

relevance. Finally, it is necessary that the programs that are able to quantitatively 

and qualitatively analyze the images should be incorporated within the model.  

3.2.5.2 Specimen preparation  

As discussed previously, human teeth were chosen for this experiment as it has been 

shown that microleakage patterns of restorative materials in human teeth may have 

more clinical relevance than that on animal teeth (Taylor and Lynch 1992; Hilton 

2002).  

There were other factors contributing to the development of the proposed model. 

Firstly, as Fuji IX was the material of choice to validate the methodology it was 

decided to prepare cavities on root surfaces. Secondly, since the tooth containing a 

cavity to be scanned must be within the limit of 4 mm in diameter, the premolars were 

chosen. Moreover, the longitudinal sectioning in halves mesio-distally of the 
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premolars produced two specimens of 4 mm in diameter (Figure 17). Finally, the 

cavity sizes were decided after considering these concerns by such conditions.  

To validate the model it was realized that this part of the research should be 

considered as a pilot experiment so that a small study sample was used. Four non-

carious premolars, extracted for orthodontic reasons, stored in DDW containing 1% 

thymol were selected. After surface debridement with a hand scaling instrument and 

cleaning with a rubber cup and pumice, a standardized cavity preparation was placed 

in the buccal and lingual root surface, 1 mm apical to the cementum-enamel junction. 

Uniform round preparations were made 1 mm deep and 2 mm wide using round 

diamond burs (Komet Brasseler, USA) and high-speed hand-piece (Sirona, Siemens, 

Germany). These cavities were compatible to the specimen size as pointed out 

above. The cavities then were measured to be 2 mm ± 0.3 in diameter and 1 mm ± 

0.3 in depth with the whole margin in the root surface.  

The cavities were then checked for cracks at the margins using a light 

stereomicroscope. This step was necessary to eliminate those cavities with defects 

that may allow dye solution to ingress through microscopic spaces of the tooth-

restoration interface, thereby giving false positive results.  

Only the buccal cavities (marked by a notch at the buccal enamel edge) were treated 

with dentin conditioner (3M ESPE, USA) according to the manufacturer’s instruction 

and all cavities were filled with Fuji IX (GC Corp., Tokyo, Japan, lot no. 05033081). 

The restorations were then stored in 100% humidity at room temperature for 48 

hours. 

To prevent dye penetration in areas other than the exposed margins, the apices were 

covered with Fuji 9 and the teeth were sealed with two layers of nail varnish to within 

1 mm away from restoration margins.  

The 50% silver nitrate solution (buffered to pH 6.5) was an x-ray contrast solution of 

choice based on the above testing. The silver nitrate solution proved to stain well the 
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tooth-restoration interface and this layer of silver deposition was highly distinct from 

dentin and materials. Although previous studies have suggested that photo-

developing solution helps precipitate silver ions to metal silver to stain the tooth-

restoration interface (Taylor and Lynch 1992; Heping Li 2003), the above part of this 

study showed no difference in silver deposition when images were compared to non-

developing solution. Therefore, this study demonstrated that photo-developing 

solutions were not required. 

The specimens were immersed in 50% silver nitrate solution in darkness for 24 

hours, rinsed with running water for 5 minutes and exposed to light for 8 hours 

allowing conversion of silver ions to silver metal that stayed stable at the tooth-

restoration interface. The specimens were then cleaned slightly with Soflex disks (3M 

ESPE, USA) to partly eliminate silver staining at the restorative surface. 

Each tooth was then sectioned longitudinally via a mesial-distal direction (using 

Isomet low-speed saw, Buehler), giving two specimens within 4 mm in diameter 

(Figure 6). The specimens can be adjusted at the sectioning surface so as to ensure 

that every specimen has the diameter at about 4 mm. It should be noted that the 

longitudinal sectioning must be carried out carefully so that the whole restoration can 

be completely preserved non-destructively. These models were then ready for 

scanning with the MCT-1072.  

 

 

Figure 6: the proposed model (4 mm in diameter) 
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The specimen was securely placed and fixed into the specimen holder of the 

MCT1072. The specimen holder 4 mm in diameter was chosen so that the maximum 

magnification for small object sizes was reached (Figure 7-8). As a result, the best 

spatial resolution of the MCT 1072 was obtained. During operation with this 

specimen holder, the specimen position and its rotation were carefully checked by 

the visual camera to avoid the object touching the x-ray tube or other parts inside the 

system. The program was commenced with the source voltage set at 100 kV and 

source current at 120 µAmps, beam hardening set to 10. The magnification was 75X 

and thus approximately 4.166 µm of image pixel was obtained. 

  

Figure 7: Specimen holder 

  

Figure 8: Special specimen holder 4 mm in diameter 
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The time required for each specimen to be completely scanned was roughly 2 hours. 

Each specimen was entirely scanned, producing approximately 1000 projections in 

TIFF. The projections were constructed to tomograms (cross sections) saved in BMP 

using NRecon (Skyscan). All information about the scanning procedures and their 

results for every specimen, particularly the spatial resolution, were automatically 

reported and saved. The report of every specimen was checked for resolution 

consistency.  

3.2.5.3 Qualitative and quantitative analysis  

3.2.5.3.1 Selection of programs for image analysis 

The image analysis programs used in this work were T-view, Data-viewer, CT-an and 

ANT (Skyscan, Aartselaar, Belgium). The tomograms (cross-sectioning images) 

saved in BMP were compatible to all these programs so the images can be viewed 

and analyzed easily.  

T-view is able to convert between TIFF and BMP files with adjustment of color 

palette, inversion, renaming, resizing and combining of datasets. Data-viewer assists 

in visualizing 2D images in three intersecting orthogonal sections, which can be 

turned and each intersecting slice independently moved by simple control. As a 

result, horizontal images (or cross-sections), coronal images and sagittal images can 

be viewed simultaneously. CT-an is the most important program that is able to 

calculate the volume of microleakage. ANT is the program that reconstructs 3D 

images of microleakage, giving a realistic view on microleakage structures.  

 

3.2.5.3.2 Image analyses 

Approximately 1000 cross-sectioning images or tomograms were produced from 

every single specimen. However, in order to limit the numbers of images that have 
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validity, only images that contained the restoration were selected. Even so, there 

were about 550 -600 images that needed to be analyzed in each specimen.  

It is apparent that it is impossible to analyze every image because of the huge 

numbers of images. In other words, 2D quantitative analysis is impractical. It was 

decided to focus on analyzing microleakage quantitatively three-dimensionally using 

computer software programs.  

Initially, T-view was used for two-dimensional visualization. It was convenient to 

display images as a slice-by-slice by scrolling the mouse so as to visualize every 

single image. Also, it was possible to scroll forwards and backwards for any further 

examination. This enables the examiner to record the severity of microleakage in 2D 

images and thus this can be used as a reference in 3D analysis. In addition, T-view is 

useful in terms of identifying silver deposition at dentinal tubules and in the 

restoration.  

Further image analyses were done with Data-viewer, where three intersecting 

orthogonal sections can be visualized, allowing the extent of silver spreading to the 

surrounding structures to be confirmed.  

 

3.2.5.3.3 Image analysis with CT-an 

One of the aims of the proposed methodology was to identify and exclude any dye 

agent that had diffused into the dentinal tubules and the restoration from the 

microleakage result. It was found that the CT-an allowed the identification of areas to 

be measured (i.e. region of interest).  

CT-an is able to quantitatively analyze microleakage both two-dimensionally and 

three-dimensionally. Originally, the program was designed to measure bone volume 

and as a consequence, in microleakage images, silver deposition at the 

tooth/restoration interface was considered as bone density. 
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Initially, the MCT results were loaded in CT-an. The shadow images and list of files 

are displayed in the top part of the program window and one of the cross sections in 

the lower part. This image can be then magnified for closer investigation.  

Microleakage can be measured in 2D images. However, as discussed previously, 

microleakage calculated from 2D images cannot be representative of the 3D 

structure of the microleakage. In addition, approximately 1000 cross-section images 

were produced from any single specimen, in which 500-600 images needed to be 

analyzed. The 2D quantitative analysis was therefore impractical. It was decided not 

to measure the dimension of the microleakage in the cross sectional images. 

The CT-an provides many useful functions for volumetric calculation. These functions 

are activated once a dataset is loaded, including original image view, selection of 

region or volume of interest, conversion of images to binary for quantitative image 

analysis.  

As also discussed above, in general, silver deposition at the tooth-restoration 

interface is highly distinct from surrounding structures because of difference in the 

level of x-ray contrast density. This silver deposition was therefore outlined from the 

surrounding structures and calculated in volume.  

It was realized that the accuracy of the microleakage result could be improved if the 

technique could identify the amount of dye agent that infused into the surrounding 

structures. This meant that only the microleakage at the tooth/restoration interface 

was measured and the amount of leakage that extended into the restoration and 

dentinal tubules could be identified and excluded from the microleakage result. 

CT-an provided the tool that allowed selecting only the region that needed to be 

measured. This meant that it was possible to outline the silver deposition at the 

tooth/restoration interface only.  

Microleakage was located by activating the “volume of interest” menu and drawing 

with the left mouse button, following the microleakage shape as close as possible to 
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the image of silver deposition at the tooth/restoration interface in the cross-sectional 

image. This shape could be copied to all the cross sections in the dataset. It was 

realized that the microleakage of each restoration was complex in morphology and 

significantly varied from tomogram to tomogram. It was therefore important to 

accurately draw the microleakage individually. The software was able to interpolate 

them automatically through all intermediate cross sections. 

Of course, only the images that contained the restoration needed to be analyzed. 

These images were more than 550-600 for a single specimen. Therefore, the 

volume-of-interest could be limited within these images and this could be done by 

moving two sliders in the vertical direction bar to the right of the files list. The blue bar 

appeared between the top slider and the bottom slider in the vertical bar, indicating 

the number of files selected. Double-clicking on the blue bar displayed the 

conversation boxes in which upper and lower limits could be entered numerically. 

The region-of-interest containing the microleakage limit was then saved and reset. 

The next step was to prepare all parameters for quantitative analysis. It was initiated 

with the binary images and by opening the “histogram” dialog window. It was 

important to accurately select the upper and lower global threshold levels for silver 

deposition by using the sliders above and under the histogram. The white part 

represented silver deposition at the tooth/restoration interface. The histogram could 

also be saved. 

The histogram could be used for the 2D and 3D quantitative analysis. However, as 

discussed above, 2D analysis was not a focus of this work. The whole volume of 

microleakage was calculated by starting the 3D analysis button. By selecting all the 

required parameters, a data text report could be saved and printed out 

3.2.5.3.4 Creation of 3D image with ANT  
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One of the interesting parts of the work was to reconstruct 3D images of the whole 

tooth-restoration-microleakage complex. It was hoped that creation of 3D images 

would provide a realistic qualitative analysis of microleakage.  

Some earlier studies had tried to reconstruct the 3D image of microleakage from 

serial sectioning of the specimens. However, these images lacked reality because of 

the low spatial resolution (more than 100 microns between two sections). With the 

spatial resolution of 4 microns, it was hoped that the 3D images of microleakage 

were more representative. It was decided to use ANT for the 3D reconstruction as it 

had all necessary functions for creating the 3D model: movement, rotation, surface 

and illumination adjustments, re-cutting and many other possibilities.  

It involved many steps to create and manipulate a full 3D model of microleakage. 

This included, in the order of time, getting started, model creation, model 

visualization, plane and shadow, visualization of internal structure, scene controls 

and flight, and creating cross sections with arbitrary orientation. In addition, there 

were other commands that could rotate the models. 

Of special mention was the significant time required to three-dimensionally 

reconstruct one model. Time taken was dependent on the parameters of object 

densities that were set in the “density window”. These parameters include the “Step”, 

“Locality” and “Tolerance”. The “Step” indicated the step size of the original dataset. 

The “Locality” helped adjust the size of neighboring area pixels, which could be 

scanned to find the object connectivity. The “Tolerance” helped select the accuracy in 

the surface reconstruction. In addition, these parameters could influence the levels of 

smoothness and sharpness of the models.  

It was suggested that the “footstep” be set at 1 for silver, 15 for restorations and to 30 

for teeth. The “Locality” was set at 1 for silver, 15 for restoration and 100 for teeth 

and the “Tolerance” was set at 1 for all components. These settings ensured the 
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model would be created efficiently and effectively so that the microleakage of the 

restoration could be visualized in relation to its surrounding structures.  

In the step of “Model Visualization”, when 3D images appeared on the screen, all the 

buttons of movements and rotations could be accessed, allowing movement and 

rotation of the object model around corresponding axes.  

There are two main ways for visualizing the object’s internal structures. The first one 

was to make the model body semi-transparent, which can be done in “model 

properties”. Another way was to cut a corner of the model and show the internal 

structure.  

It was decided to set the silver, the restoration and the tooth at different levels of 

translucency and then color code, allowing each structure to be visualized clearly. 

 

3.2.6 Main experiment-studying microleakage of Fuji IX 

3.2.6.1 Introduction 

The above pilot study showed that the above model of the tooth-cavity complex 

together with the MCT-1072 and its software programs can be a useful model in 3D 

microleakage studies. Furthermore, it is a truly non-destructive methodology with 

comprehensive 3D analysis.  

However, it was realized that a number of aspects of the technological mechanisms 

and their sensitivity for assessing microleakage needed validation and the consistent 

results achieved from the MCT-1072 should be confirmed. It was decided to develop 

an experiment for the assessment of the consistency and sensitivity of the model. In 

addition, it was conducted to study microleakage of the restorative material.  

The material selection for the validation of the model has already been discussed. 

Fuji IX was a challenging material for the microleakage study because of its water-

based property. It was hoped that with the use of appropriate computer software, 
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microleakage of this material could be analyzed more accurately, so that the 

problems raised by previous studies were no longer an issue.  

3.2.6.2 Experiment preparation 

Twenty non-carious premolars stored in 1% thymol in DDW were selected. After 

surface debridement with a hand scaling instrument and cleaning with a rubber cup 

and pumice, a standardized cavity preparation was placed in the buccal and lingual 

root surface 1 mm apical to the cementum-enamel junction. Uniform round 

preparations were made 1 mm deep and 2 mm wide using round diamond burs 

(Komet, Brasseler, UK) and high-speed handpiece (Sirona, Siemens, USA). The 

cavities then were measured 2 mm ± 0.3 in diameter and 1 mm ± 0.3 in depth with 

the whole margin in the root surface.  

The cavities were then checked for cracks at the margins using light 

stereomicroscopy (figures 9-10) to eliminate those cavities with defects that may 

allow dye solution to ingress through microscopic spaces of the tooth-restoration 

interface, giving false positive results.  

 

  

 Figure 9 Figure 10 

 

The teeth were then divided randomly into two groups of ten each. In the group 1, 

only the buccal cavities (marked by a notch at the buccal enamel edge) were treated 
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with dentin conditioner (3M ESPE, USA) according to the manufacturer’s instruction 

and all cavities were filled with Fuji IX (GC Corp., Tokyo, Japan, lot no. 05033081). 

Vaseline was used for coating the restoration surface immediately after restoration 

placement to limit water absorption and dehydration. Group 2 were treated exactly as 

group 1 except that the restorations were not protected by Vaseline. The restorations 

were then stored in 100% humidity at room temperature for 48 hours. 

To prevent dye penetration in areas other than the exposed margins, the apices were 

covered with Fuji IX and the teeth were sealed with two layers of nail varnish to within 

one mm away from restoration margins.  

The 50% silver nitrate solution (pH buffered to 6.5 using boric/sodium tetra-borate 

buffer system) was the X-ray contrast solution of choice based on a pilot study which 

was part of this research. In addition, it was decided not to use photo-developing 

solution in conjunction with silver nitrate solution as suggested by previous studies 

(Taylor and Lynch 1992; Heping Li 2003).  

The specimens were immersed in 50% silver nitrate solution in darkness for 24 

hours, rinsed with running water for 5 minutes and exposed to light for 8 hours, 

allowing conversion of silver ions to silver metal that stays stable at the tooth-

restoration interface. The specimens were then cleaned slightly with Soflex disks (3M 

ESPE, USA) to eliminate partly silver staining at the restorative surface. 

The tooth models for scanning with the MCT-1072 were prepared according to the 

above methodology and 20 specimens 4 mm in diameter were produced.  

The procedures of placing the specimen in the MCT-1072 were described in the 

above experiment.  

The time required for each specimen to be completely scanned was roughly 2 hours. 

Each specimen was entirely scanned, producing approximately 1000 slices saved as 

TIFF files which were then converted into BMP files using the NRecon software 

version 1.4.3 (Skyscan, Belgium).  
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These slices can be visualized using T-view and Data-view. With the T-view, all 2D 

images were screened allowing silver leakage to be identified. DATA-viewer can 

separate these slices into three spatial directions.  

CT-an was used to quantify the volume of silver leakage while assessing the 

restoration three dimensionally. In order to eliminate any silver diffusing into dentin 

tubules and the restoration, the program allowed the identification of areas of interest 

to be measured.  

Silver deposition at the tooth-restoration interface was distinguished from the tooth 

structure and the restoration as its X-ray density was different with these structures. 

In addition, this silver deposition was seen easily since the whole restoration was 

depicted.  

Finally, three dimensional images were constructed using 3D-ANT in which Step is 

set at 1 for silver, 15 for restorations and to 30 for teeth. The Locality was set at 1 for 

silver, 15 for restoration and 100 for teeth and Tolerance was set at 1 for all 

components. In addition, the silver, the restoration and the tooth were set at different 

level of translucency and color, allowing each structure to be visualized.  
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CHAPTER 4 RESULTS 

 

4.1 Surface reactions  

The experiment was designed to observe whether or not the metal solutions chosen 

reacted with or were absorbed by Fuji IX. Qualitative analysis was therefore an 

emphasis of this experiment.  

The surface staining was observed and photographed using an optical microscope 

(figure 11-13). It was obvious that silver reacted strongly with Fuji IX and that silver 

was absorbed into the material (figure 11), making a thick black smear around the 

whole surface of the Fuji IX specimens. The patterns of surface staining of barium 

nitrate were similar to that of lead nitrate solution and were less severe than that of 

silver nitrate. It was noted that about one to two surfaces were stained by these two 

metal solutions (Figures 12-13). 

 

 

Figure 11: silver nitrate  
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Figure 12: lead nitrate 

 

Figure 13: barium nitrate 

 

In order to compare the surface reactions among the solutions, marginal staining of 

rectangular shaped specimens was chosen and recorded. This was because the 

marginal staining at rectangular pieces could be scored with the cardinal numbers for 

student test. It was scored as follows: 

0: No evidence of marginal staining 

0.5: Half a single margin was stained 

1: One single margin was stained 

1.5: One and a half margins were stained 
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2: Two margins were stained 

2.5: Two and a half margins were stained 

3: Three margins were stained 

3.5: Three and a half margins were stained 

4: Four margins were stained 

The incidence of surface interaction between the three solutions and Fuji IX were 

presented in table 1. The t test results showed that surface reactions were 

significantly different between silver nitrate and barium and lead nitrate (p<0.01). 

There was no significant difference between barium and lead nitrate (p>0.05).  

Table 1: Degree of surface reactions on a scale of 0-4 

Sample no. Silver nitrate Barium nitrate Lead nitrate

1 4 1.5 1.5 

2 4 1.5 1.5 

3 4 3 1 

4 4 2 1.5 

5 4 1 1.5 

6 4 2 1.5 

7 4 1 2 

8 4 2 2 

9 4 2.5 1.5 

10 4 2 1 

Mean 4 1.85 1.5 

 

4.2 Staining properties 

Each specimen was scanned with the MCT-1072, producing approximately 1000 

projections which were converted into tomograms as cross-sectional images. 
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Similar to the previous analysis, it was mainly focused on analyzing results 

quantitatively because the aim was to identify if the above solutions are able to stain 

the tooth/restoration interface.  

All cross-section images containing the restoration were examined using T-view and 

Data-viewer (Skyscan). Results showed that while silver nitrate solution consistently 

stained the tooth/restoration interface and this silver deposition was sharply 

displayed in the MCT images (Figures 14), barium nitrate and lead nitrate solution did 

not present at the tooth/restoration interface (Figures 15 and 16). However, lead 

nitrate again proved to significantly stain the surface of Fuji IX (Figure 15).  

It was also reported that spatial resolution achieved from the above model was 10.2 

µm. Non-buffered silver nitrate solution was highly corrosive to the Fuji IX surface 

(Figure 17), whereas the buffered solution was not corrosive to the material (Figure 

18).  

  

Figure 14: 2D image-silver nitrate solution 

Silver deposition at tooth/restoration 

interface (arrows) was photographed 

by the MCT-1072  
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Figure 15: 2D image-lead nitrate solution 

  

Figure 16: 2D image-barium nitrate solution 

Lead stained restoration 

surfaces but not in the 

tooth/restoration interface  

Showed no staining at 

tooth/restoration interface 
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Figure 17: 2D image-the non-buffered silver nitrate solution 

 

Figure 18: 2D image-buffered silver nitrate (pH 6.5) 

 

4.3 Development of study model for the MCT-1072 

Similar to the above experiment, this experiment was conducted as a small pilot 

investigation for the main experiment which was carried out in the following part of 

the project. The primary results were mainly descriptive and statistical analysis was 

not a focus as the study sample was small. 

It was consistently reported that the spatial resolution achieved from the above 

models was approximately 4.16 µm. The following is an example of the individual 

report for each specimen (e.g. tooth 1_a: conditioning group) scanned. 

The Fuji IX surface (arrow) was 

intact with the buffered silver 

nitrate solution.  

Non-buffered silver nitrate 

was corrosive to Fuji IX.  
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 [System] 

 Scanner=SKYSCAN1072_3 

 [Acquisition] 

 Converted by = NRecon (Version: 1.4) 

 Conversion time=Mar 15, 2006 21:03:10 

 Original configuration file=mls_1_1_a__par.txt 

 Conversion description=Retrieved info. No conversion. 

 Acquisition time=Wednesday, March 15, 2006, 9:32(file creation time) 

 Source Voltage (kV) = 80.000000 

 Source Current (uA) = 120.000000 

 Use 360 Rotation=NO 

 Rotation Step (deg) = 0.675000 

 Object to Source (mm) = 204.000000 

 Optical Axis (line) = 513 

 Image Pixel Size (um) = 4.166 

 Rotation Direction=CC 

 Image Format=TIFF 

 Depth (bits) = 16 

 [Reconstruction] 

 Reconstruction Program = NRecon 

 Program Version=Version: 1.4.3 
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The following is an individual report of 3D image analysis of the above tooth:  

 CT Analyser, Version: 1.3.3.11 

 Date and time: 23.03.2006 15:17 

 Operator identity analysis 

 Computer name: ANALYSIS2 

 Computation time: 00:02:18 

 Dataset: mls_1_1_a__rec 

 Lower grey threshold: 215 

 Upper grey threshold: 255 

 Number of layers: 577 (cross-section images) 

 Lower vertical position: 0.91667 mm 

 Upper vertical position: 3.31668 mm 

 Pixel size: 4.166 um (spatial resolution) 

 Tissue volume: 2.63840 mm3 (volume of restoration) 

 Bone volume: 0.00080 mm3 (volume of silver nitrate) 

 Percent bone volume BV/TV: 0.03043 % (silver/restoration ratio) 

 Tissue surface TS: 30.82264 mm2 (surface of the restoration) 

 Bone surface BS: 0.26400 mm2 (surface of silver nitrate) 

It was noted that approximately 1000 cross-sectioning images were produced from 

each specimen. But about 550-600 images contained the restoration and these 

images were located by setting the lower grey and upper grey threshold during image 

analysis with CT-an. Every single image could be identified, analyzed and relocated 

whenever required, as this cross-section image was a single file. 

Qualitative and quantitative were carried out with the programs chosen and the 

technical procedures were also discussed. More details in quantitative analysis will 

be discussed in the result part of the main experiment of this research. The following 

are examples of 2D and 3D images of this pilot study.  
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Figure 19: 3D image of microleakage 

 

Figure 20: 3D image of microleakage  

  

Figure 21: 3D image of microleakage  

Microleakage (red) was viewed in the 3D 

reconstruction. This 3D image could be viewed 

through every single angle in the spatial rotation.  

Similarly, microleakage was reconstructed three-

dimensionally.  

Microleakage was viewed in 3D image (arrow). 

The volume could be calculated, being 

representative of the whole leakage of the 

restoration.  
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Figure 22: 2D image  

 

Figure 23: Coronal single image of the same specimen in Data-viewer dataset 

 

Figure 24: Sagittal single image of the same specimen in Data-viewer  

Silver leakage (strong black) was 

viewed in 2D image in T-view. Silver 

leakage diffusing into dentinal tubules 

was noted (arrow). 

Silver leakage (arrow) at the marginal 

area viewed in the Data-viewer 

program. This is a single image 

scanned in the frontal plane  

(1)Microleakage was viewed in the 

sagittal plan. (2) Silver diffused into 

dentinal tubules. (3) Silver was 

absorbed into the restoration. 

 

 

 

 

(3) 

(2) 

(1) 
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4.4 Main experiment-microleakage of Fuji IX  

Quantitatively, the whole amount of silver deposition at the tooth-restoration interface 

was calculated in volume. Table 2 and table 3 show silver leakage of Fuji IX 

restorations for the two groups. In order to compare the mean values between 

groups the t test was applied. The results of the t test showed that no significant 

differences in silver leakage between conditioning and non-conditioning groups 

(p>0.05). However, there were significant differences in volume silver deposition 

between the Vaseline and the non-Vaseline groups (p<0.001). 

However, it should be noted that when the observed data were plotted it was 

observed that there seemed to be not a normal distribution within the groups. 

Analysis of the data to provide means and standard deviation for each group also 

showed that each group was associated with a significant large standard deviation. A 

non-parametric statistical analysis was considered appropriate to analyze this 

parameter and therefore the Mann-Whitney test was applied. It was seen that the 

statistical results analyzed by the Mann-Whitney were the same as what was 

reported above with the t test. This is to say a statistically significant difference in 

volume silver leakage between the Vaseline and the non-Vaseline groups was 

reported (p<0.001). The results of the Mann-Whitney U test also showed that no 

differences between conditioning and non-conditioning groups (p>0.05).  
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Table 2: silver deposition volume (µ3) of group 1(Vaseline ) 

Sample no. Conditioning Non-conditioning 

Tooth 1 800 1040 

Tooth 2 5520 5890 

Tooth 3 2650 34380 

Tooth 4 1620 350 

Tooth 5 710 11350 

Tooth 6 230 1080 

Tooth 7 29660 230 

Tooth 8 51850 1060 

Tooth 9 2460 330 

Tooth 10 990 14360 

Mean 10611 6190 

Median 2460 1060 

Standard deviation 18035 11204 
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Table 3: silver deposition volume (µ3) of group 2 (Non-

Vaseline) 

Sample no. Conditioning Non-conditioning 

Tooth 11 94610 111920 

Tooth 12 7340 117910 

Tooth 13 5440 11220 

Tooth 14 25020 10070 

Tooth 15 5420 20010 

Tooth 16 2020 2680 

Tooth 17 22540 58620 

Tooth 18 22540 9880 

Tooth 19 10570 78350 

Tooth 20 168600 17720 

Mean 36410 43838 

Median 16555 18865 

Standard deviation 53738.96 44513 

 

Qualitatively, 2D images and 3D models were established for each specimen. 

Figures 26-29 are the examples of 2D images extracted from T-view and Data-

viewer, showing that silver deposition was found only at the tooth/restoration 

interface. This is possibly because of the absence of dentinal tubules at these areas. 

For these specimens, microleakage results can be measured accurately. However, in 

some other specimens silver leakage diffused into dentinal tubules, making 

microleakage result less accurate (Figures 25).  

For the 3D qualitative analyses the pattern of microleakage of each restoration was 

reconstructed three-dimensionally using ANT. It seems that the images transferred to 
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this thesis have lost resolution compared with the original images. It was understood 

that the degree of image sharpness depends on the levels of “Step”, “Locality” and 

“Tolerance” set. However, it was extremely time-consuming to have one 3D model 

finished with a high level of sharpness. It was therefore decided to reduce the 

amount of time creating a 3D model by setting as presented previously. It is to be 

noted that pink, grey and red were chosen for teeth, restorations and silver 

depositions respectively and these structures were set at different levels of 

translucency so that the structures could be seen internally (Figures 30-31) .  

  

Figure 25: 2D image of tooth 8, slice 306, a non-conditioned cavity  

  

Figure 26: Single 2D image of tooth 1, slice 721, non-conditioned cavity 

Microleakage was viewed on T-view. 

The image of silver leakage at the 

tooth/restoration interface was highly 

sharp and well defined 

Microleakage at the tooth/restoration 

interface (1) and its diffusion into dentinal 

tubules (2) are observed in 2D image. 

The silver leakage was not very sharp.  

1 

 

2 
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Figure 27: Sagittal single image of the tooth 2 viewed in Data-viewer 

 

Figure 28: Coronal single image of the same specimen in Data-viewer  

 

Figure 29: Horizontal single image of the same specimen in Data-viewer  

 

Silver leakage (arrow) at the marginal area 

viewed in the Data-viewer program. This is a 

single image scanned in the frontal plane  

Microleakage (arrow) was viewed on 

Data-viewer in sagittal plane.  

Silver leakage (arrow) was highly 

sharp and defined 
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Figure 30: Silver deposit in tooth 8, a non-conditioned cavity  

   

Figure 31: microleakage on tooth 2, a non-conditioned cavity  

CHAPTER 5 DISCUSSION 

 

5.1 Surface reaction test 

It was shown by simple experimentation that the interaction between the proposed 

dye solutions and the test material could be investigated with no special advanced 

technology; the testing of suitable agents undertaken in the basic laboratory. It was 

seen that silver nitrate is highly active and invasive to the Fuji IX, which is in 

agreement with previous studies (Taylor and Lynch 1992; Santis 2005). 

Microleakage (arrow) was viewed on 

3D image. The microleakage volume 

was calculated 51805 µ3. 

Microleakage (arrows) was viewed in 

3D image. The microleakage volume 

was calculated 5890 µ3.  
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Lead and barium were investigated and proved to be the promising dye agents as 

they were chemically less active compared to silver nitrate in terms of interaction with 

Fuji IX. The reasons for this could be related to chemical behavior.  

The reactivity between the test material e.g. Fuji IX and the dye agent is an important 

consideration to bear in mind when calculating microleakage. Ideally, such 

measurements would be made somewhat easier if the microleakage revealing dye 

solution was inert with respect to the reactivity of the test restorative material. 

However, it seems impossible to find any metal dye solutions that are totally inert to 

glass ionomer cements as these cements tend to absorb ions and water because of 

their water-based properties. Newer technology involving better computer programs 

could be employed for the image analysis to identify material reactivity that amplifies 

the microleakage results. Most microleakage studies have ignored the ionic uptake of 

the test material and the invasion of the dye solution into the surrounding structures. 

This is probably because the issues were too complicated for the current 

methodologies to identify the quantity of dye agent taken by the material. And also it 

is because of two-dimensional sectioning of the specimens that the severity of the 

dye agent invasion was underestimated. 

The experiment was considered as a preliminary pilot study that could provide an 

overall view on the degree of severity of material reaction occurring between the test 

material and the proposed dye solution. This simple design could be used for future 

studies on determining suitable dye solutions.  

 

5.2 Microleakage staining of the metal solutions  

5.2.1 Barium and lead nitrate solution 

Although barium and lead nitrate were significantly less invasive than that of silver as 

mentioned above, the results from the MCT-1072 showed that these solutions were 

not able to stain the tooth/restoration interface. It is understood that the size of the 
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metal atom used as the radiographic contrast medium may have some influence on 

the penetration of the metal solution into the tooth/restoration interface.  

Whatever atom is selected it must be capable of diffusing between the cavity margin 

and the restorative material. The above parts of the study conducted in preparation 

for this investigation observed larger metallic atoms, such as barium and lead could 

produce good x-ray contrast, but it was likely that the prepared solutions were highly 

viscous and therefore unlikely to penetrate the margins. In some cases the material 

was insoluble and therefore entirely unsuitable. 

There would be other reasons for not finding barium and lead nitrate at the 

tooth/restoration interface. It may be due to the fact that x-ray density of the amount 

of barium and lead at the marginal areas was at the same level as that of the 

surrounding structure, possibly because of the low saturated concentration of the 

solutions. Barium and lead deposition at the tooth/restoration could not be, therefore, 

picked up by the MCT-1072. In addition, it could be that barium and lead ions are not 

able to stably stain the tooth/restoration interface as they were not easily converted 

into metal precipitate as the silver ions do, and hence, may be washed away during 

specimen cleaning.  

It is possible that the introduction of another chemical that can react with barium or 

lead may help produce metal precipitate at the tooth/restoration interface. However, 

because of the fact that barium and lead are not chemically highly active and their 

concentration at the tooth/restoration interface low, the chemical reaction at the 

interface was hard to efficiently happen. Also these issues were beyond the outline of 

the project. 

The study failed to find an alternative for silver nitrate solution. This is to say, the 

invasive and highly chemically active nature of this solution was still used as a dye 

agent for this research. 
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It was hoped that with the use of the MCT and its advanced software in image 

analysis, the problems of invasive dye solution could be overcome. It could be a 

significant advantage if the image analysis software could automatically distinguish 

the invasive dye areas and exclude them from the results, thereby increasing the 

accuracy of the microleakage results.  

It is also believed that from this experiment, further investigation can be done with 

manganese and dysprosium salts, which were discussed as chemical tracers used in 

the past in the chapter 1.  

 

5.2.2 Silver nitrate solution 

The results showed that although silver nitrate is highly active and invasive, it can be 

used to express microleakage and this leakage can be detected by the MCT. In 

addition, the silver nitrate solution itself is able to stably stain microleakage without 

the need to introduce photo-developing solutions as stated in previous research. This 

finding helps minimize the involvement of chemicals being introduced into the 

tooth/restoration interface, which by their nature might also be reactive and invasive. 

Silver nitrate solution proved to stain the tooth/restoration interface consistently. This 

layer was displayed reasonably sharply in 2D images (figure 22, 23, 24, 26, 27, 28, 

29) and constructed into 3D images (figures 30, 31).  

The MCT images also demonstrated that the non-buffered 50% silver nitrate solution 

was significantly corrosive to both tooth structures and restorative surfaces, 

particularly at marginal areas, making the microleakage pattern more severe (Figure 

17). However, when buffered to pH 6.5, the solution showed no corrosion to the tooth 

structures and the restoration (Figure 14, 18). This result was in agreement with 

earlier work(Li, Burrow et al. 2003).  
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Previous studies did not buffer the silver nitrate solution. This was probably due to 

the difficulties faced in searching an appropriate buffering system for silver nitrate as 

this solution is highly chemically active.  

It was significant that the present study introduced a buffering system, namely boric 

acid/ sodium tetra-borate. With the formula presented in detail, it is hoped that silver 

nitrate solution can be buffered for future microleakage studies.  

 

5.3 Development of study model 

The experiment outlined the overall procedure that can produce a model that the best 

resolution of the current MCT can be achieved. The result showed that the model 

produced a resolution of approximately 4.16 microns while the model from the above 

experiment can only achieve a resolution of more than 10 microns. This is a 

significant improvement because the sharpness and details of the microleakage 

images were markedly improved. This is to say the accuracy regarding qualitative 

and quantitative of microleakage improved with the current model.  

It was realized that the development of a suitable model to be used effectively with 

the MCT-1072 was an important step of this work. This model can be used for the 

future study of microleakage using the same technique. It was also realized that 

some aspects relevant to the suitability of the new model needed validation, in which 

identifying and applying the appropriate software programs for the analysis of 

microleakage results can be particularly important.  

In terms of software programs used in this experiment, it was shown that T-view and 

Data-view are effective programs for 2D analysis and CTan and ANT are sufficient 

for 3D analyses.  

Although the sample size of the experiment was not sufficient for statistical analysis, 

the results from the experiment have partially met the major objectives. This is to say, 
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the highest spatial resolution of the MCT-1072 was consistently achieved with the 

model introduced.  

As discussed above, although 2D analysis of microleakage is not representative of 

the 3D structure of microleakage, there were some useful findings when the whole 

2D images were scrolled. 2D analysis programs used in this research were T-view 

and Data-viewer. 2D analysis done by these programs may preliminarily determine 

the general severity of leakage. Also, it provided information about the levels of dye 

agent infusing into surrounding structures. As a result, the fundamental pattern of 

leakage of the restoration could be imaged and so be more easily outlined in the 3D 

analysis program.  

For 3D analysis, it was found that the whole amount of silver deposition at the tooth-

restoration interface could be calculated in volume (µm3) and the 3D image of the 

microleakage in relation to the restoration reconstructed. In this way, a realistic 

pattern of the microleakage for each restoration could be displayed three-

dimensionally. These findings are particularly important for this methodology 

The volumetric analysis of microleakage has been considered the most relevant 

parameter, because the result reflects the whole leakage at the tooth/restoration 

interface rather than the leakage value calculated from some sections (Lyroudia 

2000). 

It is also noted that one of the conveniences of the technique is that the data of whole 

images can be stored digitally and the study models kept intact, allowing researchers 

to reuse data and specimens comfortably.  

The difficulty of the technique was related to the huge number of images produced 

from each specimen. This led to difficulties in up-loading data and in managing image 

analysis. In order to improve the efficiency of image analysis, it was necessary to 

eliminate those images that were not relevant to the restoration by setting the lower 

grey threshold and upper grey threshold when images are screened (pages 47-48). 
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This is to say, from approximately 1000 images produced from each specimen, there 

were about 400 - 450 images which are out of the “region of interest” and were 

eliminated from the limited area of analysis. It should be noted that the technique was 

relatively expensive with the cost to scan one specimen being just under $100AUS. 

There was also the need to manually scan sections prior to running the appropriate 

software. In addition, the steps take time and labor to calculate the volumetric 

quantity of microleakage from such huge number of sections.  

 

5.4 Main experiment and overall discussion of the methodology  

In general, the project has introduced a new methodology for the study of micro-

leakage around dental restorative materials and has partially overcome some of the 

problems faced by previous studies. This is to say, the results from the above 

experiments have partly met the research objectives.  

 

5.4.1 Significance of the results of the main experiment 

For the reasons discussed previously, different published research methodologies do 

not allow the results of this study to be easily compared. It should be emphasized 

that the main focus of the current research was the development of a technique to 

quantify micro-leakage in three dimensions and does not attempt to make a 

comparison between different restorative materials. There has always been 

controversy over the interpretation of the results of two dimensional studies of micro-

leakage and the clinical significance. To simplify the investigation the experiment was 

confined to a comparison between conditioning and non-conditioning of dentine prior 

to the placement of a Fuji IX restorations and the application of Vaseline as a sealant 

after placement. The use of a mild solution of poly-acrylic acid as a conditioning 

agent has generally been recommended to remove the smear layer from the 

prepared cavity. The subsequent change in surface energy of the dentine is expected 
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to increase the ability of glass-ionomer cement to wet the tooth surface, thereby 

increasing the adaptation of the material to the tooth (Mount and Hume 2005). The 

application of a sealant to maintain water balance is also customary but not essential.  

Whilst the results suggest no statistical difference between conditioning and non-

conditioning, the large standard deviations around the means in both groups, may 

indicate that the sample size of 10 specimens was inadequate to give a meaningful 

result.  

It should also be noted that there were some specimens with significant leakage 

making the volume of microleakage higher than the average level of leakage found 

within this study. This resulted in larger standard deviations. The increase in 

microleakage was not thought to be due to technical problems in specimen 

preparation but appeared to be related to the tooth restoration interface. It was 

shown that once the leakage has traveled along the whole restorative interface the 

severity of leakage into dentinal tubules dramatically increased (figure 25). This extra 

leakage was possibly included into the “region of interest” during drawing and 

subsequently influenced the calculation.  

The second variable introduced was to test the influence of Vaseline on the uptake of 

the buffered silver nitrate solution. It is apparent from the analysis that Vaseline did 

inhibit the uptake. This is considered to be a positive result and demonstrates the 

capability of the MCT-1072 to differentiate between samples.  

In terms of microleakage of glass ionomer cements, it has been reported that 

microleakage of glass ionomer cements was significantly consistent and that root 

surface margins exhibited much greater leakage than occlusal margins (Prati 1989; 

Hallett and Garcia 1993; Wilder, Swift et al. 2000; Quo and Drummond 2002; Corona 

2005). These authors concluded that the chemical bond between Fuji IX and tooth 

structure is not continuous and thus cannot prevent the penetration of dye agents. 

Generally, the results from the main experiment demonstrated the same patterns of 
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leakage of glass ionomer cements, although this reflection is highly relative as 

previous work has been conducted with different techniques. Nevertheless, this infers 

the MCT-1072 provided positive microleakage results.  

 

5.4.2 Dye solution 

It is important for this methodology that the dye solution should be highly opaque 

radio-graphically in relation to restorative materials and tooth structures so that even 

the little amount of dye leakage can be photographed.  

Another important issue regarding dye solution in this methodology is that the dye 

leakage should not penetrate into dentinal tubules but rather stays stably at the 

tooth/restoration interface. The results showed that it seems impossible to locate any 

metal dye solution that cannot enter dentinal tubule as the dentinal tubule diameter is 

significantly larger than that of any metal molecules or metal atom. One suggestion 

can be made for future studies to limit the penetration of the dye solution into dentinal 

tubules is that dentinal tubule ends at the pulp chamber should be sealed with 

bonding agents so that it can stop the hydraulic movement mechanism. 

Of the X-ray contrast dye solutions studied, it was found that 50% silver nitrate 

solution buffered to pH 6.5 can delineate micro-leakage satisfactorily as it allows 

suitable contrast to be produced when exposed to X-rays of the MCT-1072. 

Generally, the radiographic contrast enables a clear distinction to be made between 

tooth structure and restorative material.  

Another finding in relation to silver nitrate solution was that it does not require the 

additional process of placing specimens into photo-developing solutions, which are 

corrosive by nature, to convert silver ions to metallic silver as other workers have 

done (Taylor and Lynch 1992).  

It must be noted that silver nitrate solution readily diffuses into both dentine and 

glass-ionomer, making it difficult to quantify the true value of silver at the tooth-
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restoration interface. This problem will always be present, and will need to be taken 

into account with glass-ionomer and dentine.  

It was also demonstrated that the severity of silver spreading into dentinal tubules 

varies among areas within the tooth and from tooth to tooth. This is likely due, as 

pointed out in the literature review, to the differences in size and number of dentinal 

tubules and these changes may be in accordance with tooth’s ages and the degree 

of the secondary and tertiary dentine.  

 

5.4.3 Three-dimensionally quantitative and qualitative analysis  

One of the exciting parts of the work was the application to microleakage studies of 

the advanced computer programs, which had been written for image analysis with 

the MCT. It was shown that CT-an with the function of manual drawing of the outline 

of the tooth/restoration interface as the “volume-of-interest”, could be used for the 

microleakage calculation. This allowed silver deposition at the tooth/restoration 

interface to be calculated, with the silver deposition at dentinal tubule areas to be 

partly eliminated from the “volume of interest” and hence from the microleakage 

calculation.  

This research has introduced a new method to calculate volume leakage and offered 

a way forward for future studies into microleakage. In addition, a technique to allow 

the identification and elimination of dye leakage into the restoration and dentin from 

the overall calculation of microleakage represents a significant improvement, as the 

accuracy of the result is more rigorous. Having said that, there are always some 

areas where it was difficult to entirely separate between true microleakage and silver 

deposition at the dentinal tubules. This was because low levels of silver deposition 

produce poor x-ray contrast and hence an unclear image. Efforts were made to 

overcome the above problems by carefully taking every cross section into 

examination and the “volume of interest” was manually drawn slice-by-slice. In 
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addition, there was always a need to carefully identify the deposition of silver ions in 

all areas from the immediate interface between the restoration and the dentine. The 

process was therefore laborious and time consuming. 

Of note, although beyond the scope of this paper, was the appearance, in several 

specimens (e.g. figures 26, 27, 28, 29) of a radio-opaque space present along the 

restoration base, its cause and its significance is unknown.  

 

5.4.4 Clinical relevance of microleakage results  

It is generally accepted that micro-leakage can occur at the submicron level and in 

the present research the equipment was capable of achieving a maximum resolution 

of 4 microns only. That is to say, with a machine capable of a higher resolution the 

amount of micro-leakage that could be detected would be more precise.  

Although there has been a recent shift to investigate microleakage at the submicron 

level or nano-leakage level, the clinical relevance in terms of recurrent caries is still 

controversial. Clinically, as discussed previously, no recurrent caries was found in 

restorations with marginal gaps below 50 microns (Jorgensen and Wakumoto 1968; 

Mjör and Toffenetti 2000). In the light of this report, with resolution of 4 microns, the 

results can be considered clinically relevant.  

It was realized that volume and surfaces of the object could be calculated with the 

CT-an (pages 46-47). These are valuable variables for the investigation of the extent 

of leakage in relation to the whole cavity surface. In addition, the relation between the 

volume of microleakage and the volume of the restoration was also valuable in 

assessing the influence of the restoration volume on the extent of microleakage. 

However, these variables were not accurately achieved as the silver nitrate was 

invasive both to restoration and tooth structures, making this calculation unreliable.  

The three dimensional models obtained from the reconstruction of two dimensional 

slice data gave very clear visual information about the pattern of micro-leakage and 
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where it potentially may have initiated. As a result, the qualitative description of 

micro-leakage was undoubtedly improved by MCT. Moreover, the technique for the 

first time allowed quantification in three dimensions, and as a result, it opens the way 

for further investigations into this clinically important area.  
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CHAPTER 6 CONCLUSION 

 

6.1 Restatement of research objectives 

The major objective of this research was to introduce a new methodology into the 

study of microleakage, making it possible to analyze microleakage of restorations 

non-destructively. In addition, it aimed to present the ways in which microleakage 

results can be analyzed three-dimensionally.  

 

6.2 Summary and general conclusions 

The results provided a comprehensive analysis of the microleakage of the test 

materials. This was only possible with the use of the MCT to study microleakage non-

destructively and three-dimensionally.  

A non-destructive methodology using MCT scanning has proved to be innovative in 

the study of micro-leakage around dental restorations. MCT can provide sharp 

images of micro-leakage and with appropriate computer software enabled 

quantitative and qualitative analysis to be performed. 

 

6.3 Suggestions and future directions 

The current work highlights the need to further perform basic studies into 

microleakage methodology. Whilst the micro-CT and associated software produce 

some very nice images and allow quantitative results to be obtained, the inability to 

discern the “true microleakage” because of the reaction of the leakage dye with either 

the restoration or tooth structure or both, has implications for the wider use of the 

technique. It may be that glass ionomer restorative materials will always suffer from 

this reactivity problem and that the methodology presented in the current work will 

need to be applied to other materials such as resin composite. Another suggestion 
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could be that an alternative dye solution, yet to be identified could replace the silver 

nitrate solution, which is extremely invasive. 

Further developments in micro-CT technology have led to the construction of 

machines that can operate at the submicron level. Such a development would no 

doubt improve the resolution and accuracy of microleakage data and increase the 

understanding of the microleakage process.  

To further advance the accurate analysis of microleakage, it is suggested that the 

methodology and techniques developed in the present work be applied to the study 

of various restorative materials. For example, the technique could have significance 

for the widely used method of bonding resin composite to tooth structure. There are a 

variety of adhesive systems employed in dentistry that are tested in terms of shear 

bond or tensile strength as there is no standard for microleakage.  

Ultimately, further research should continue to develop the micro-computed 

tomography method with the eventual goal that it may be used in the development of 

a standard for microleakage.  
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