A New In Vitro Method for the Study of Microleakage of Dental Restorative Materials

Chin Nguyen, DDS (Vietnam)

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Dentistry

School of Dentistry

The University of Adelaide

TABLE OF CONTENTS

TABLE OF CONTENTS	
ABSTRACT	V
DECLARATION	V
ACKNOWLEDGMENTS	vi
Chapter1: Introduction and literature review	1
1.1 Introduction	1
1.2 Literature review	3
1.2.1 Microleakage definition	3
1.2.1.1 Leakage at micron level (bacterial microleakage)	3
1.2.1.2 Leakage at submicron level (nanoleakage)	5
1.3 Development of Microleakage	5
1.4 Microleakage modification	6
1.5 Adverse effects of microleakage	7
1.6 Microleakage studies	8
1.6.1 Air pressure method	9
1.6.2 Fluid filtration method	10
1.6.3 Electrochemical method	11
1.6.4 Neutron activation method	12
1.6.5 Bacterial method	13
1.6.6 Radioisotope method	14
1.6.7 Dye penetration method	15
1.6.8 Metal solution tracers	17
1.6.9 Three-dimensional (3D) methods	18
1.7 Factors influencing microleakage studies	20
1.7.1 Substrate for microleakage studies	20
1.7.2 Storage factors	21

1.7.3 Cavity design	22
1.7.4 Microleakage expression and analysis	24
1.8 Glass Ionomer Cements (GICs) and microleakage studies	26
1.9 Conclusion	27
Chapter 2: Hypothesis and overview of approaches	29
2.1 Hypothesis of the study	29
2.2 Overall approach to achieving the objectives	29
Chapter 3 Materials and Methods	31
3.1 Introduction in the MCT-1072	31
3.1.1 Introduction	31
3.1.2 Skyscan 1072 system overview	31
3.2 Selection of dye solution	34
3.2.1 Introduction	34
3.2.2 Preparing x-ray contrast dye solutions	35
3.2.3 Testing the interactions between the dye solution and Fuji IX	36
3.2.4 Testing staining properties	37
3.2.5 Development of study model	39
3.2.5.1 Introduction	39
3.2.5.2 Specimen preparation	39
3.2.5.3 Qualitative and quantitative analysis	43
3.2.5.3.1 Selection of programs for image analysis	43
3.2.5.3.2 Image analyses	43
3.2.5.3.3 Image analysis with CT-an	44
3.2.5.3.4 Creation of 3D image with ANT	46
3.2.6 Main experiment-studying microleakage of Fuji IX	48
3.2.6.1 Introduction	48
3.2.6.2 Experiment preparation	49

C	chapter 4 Results	52
	4.1 Surface reactions	52
	4.2 Staining properties	54
	4.3 Development of study model for the MCT-1072	57
	4.4 Main experiment-microleakage of Fuji IX	62
С	hapter 5 Discussion	67
	5.1 Surface reaction test	67
	5.2 Microleakage staining of the metal solutions	68
	5.2.1 Barium and lead nitrate solution	68
	5.2.2 Silver nitrate solution	70
	5.3 Development of study model	71
	5.4 Main experiment and overall discussion of the methodology	73
	5.4.1 Significance of the results of the main experiment	73
	5.4.2 Metal dye solution	75
	5.4.3 Three-dimensionally quantitative and qualitative analysis	76
	5.4.4 Clinical relevance of microleakage results	77
С	hapter 6: Conclusion	79
	6.1 Restatement of research objectives	79
	6.2 Summary and general conclusions	79
	6.3 Suggestions and future directions	79
R	eferences	81

ABSTRACT

Microleakage is an important topic in restorative dentistry. A large number of different techniques have been developed for the investigation of microleakage. However, these methodologies have been considered less reliable due to the nature of specimen preparation.

The major objective of this investigation was to introduce a non-destructive technique for the study of microleakage. This objective has been partly met with the use of micro-computed tomography. By scanning the whole restoration with high spatial resolution, microleakage could be detected non-destructively and three-dimensionally.

In order to detect microleakage by micro-computed tomography, an X-ray contrast dye solution was developed to reveal microleakage at the tooth/restoration interface. In addition, a suitable model of tooth/cavity complex was designed in order to gain the best resolution from micro-computed tomography. Finally, with the application of advanced image analysis software, three-dimensional analysis of microleakage was achieved quantitatively and qualitatively.

DECLARATION

This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and to the best of my
knowledge and belief, contains no material previously published or written by another
person except where due reference has been made in the text.
I give consent to this copy of my thesis, when deposited in the University Library,
being available for loan and photocopying.

Signed	
Chin Nguyen	Date:

ACKNOWLEDGMENTS

The work leading to this thesis could not be achieved without the guidance, assistance and encouragement from a number of people.

I begin by thanking my supervisors, Associate Professor John Abbott, Dr John Kaidonis and Associate Professor Hien Ngo for their support and encouragement over the course of this study. In particular, I received important guidance and correction from Associate Professor John Abbott and Dr John Kaidonis during the development of this piece of work. I also would like to thank Dr Christina Eira for her guidance in academic writing during the Integrated Bridging Program.

The assistance and guidance I received from the staff of the Adelaide Microscopy and the staff of the CACDRC were valuable. Their willingness to support this study both in advice and materials played an important part in the completion of the experimental phase of this study. My thanks are also to Dr John McIntyre for his support since the beginning of my application for the course.

Finally, a special mention goes to my wife and two children. Their love, sacrifice and understanding have encouraged me to go to Adelaide for this work. To them I owe the greatest debt of gratitude.