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Abstract

In this thesis I explore the physical effects of improved actions combined with
improved operators in the framework of lattice QCD. All calculations are done in the
quenched approximation, that is, when all of the dynamical fermion interactions have
been suppressed by setting the determinant of the fermion matrix to a constant.

The thesis first briefly introduces lattice QCD to familiarize the reader with the
basic concepts. It then describes the common numerical procedures used. It is made
up of three major sections.

The first is the exploration of gauge field configurations and the study of the role of
instantons in lattice QCD. In this work the Wilson gauge action and a standard 1 loop
topological charge operator are used to determine the relative rates of standard cooling
and smearing algorithms in pure SUc(3)-color gauge theory. I consider representative
gauge field configurations on 163 × 32 lattices at β = 5.70 and 243 × 36 lattices at
β = 6.00. I find the relative rate of variation in the action and topological charge un-
der various algorithms may be succinctly described in terms of simple formulae 1. The
results are in accord with recent suggestions from fat-link perturbation theory. This
work is then extended to O(a2)-improved gauge action and O(a2)-improved operators 2.
In particular, an O(a2)-improved version of APE smearing is motivated by consider-
ations of smeared link projection and cooling. The extent to which the established
benefits of improved cooling carry over to improved smearing is critically examined.
I consider representative gauge field configurations generated with an O(a2)-improved
gauge field action on 163 × 32 lattices at β = 4.38 and 243 × 36 lattices at β = 5.00
having lattice spacings of 0.165(2) fm and 0.077(1) fm respectively. While the merits of
improved algorithms are clearly displayed for the coarse lattice spacing, the fine lattice
results put the various algorithms on a more equal footing and allow a quantitative
calibration of the smoothing rates for the various algorithms. I find that the relative
rate of variation in the action may also be described in terms of simple calibration
formulae for O(a2)-improvement which accurately describes the relative smoothness of
the gauge field configurations at a microscopic level.

In the second section the first calculation of the gluon propagator using an O(a2)-
improved action with the corresponding O(a2)-improved Landau gauge fixing 3 con-
dition is presented 4. The gluon propagator obtained from the improved action and
improved Landau gauge condition is compared with earlier unimproved results on sim-
ilar physical lattice volumes of 3.23 × 6.4 fm. It is found that there is good agreement
between the improved propagator calculated on a coarse lattice with lattice spacing
a = 0.35 fm and the unimproved propagator calculated on a fine lattice with spacing
a = 0.10 fm. This motivated us to calculate the gluon propagator on a coarse very
large-volume lattice of 5.63 × 11.2 fm. The infrared behavior observed in previous
studies is confirmed. The gluon propagator is enhanced at intermediate momenta and

1F. D. R. Bonnet, P. Fitzhenry, D. B. Leinweber, M. R. Stanford & A. G. Williams, Phys. Rev.
D 62, 094509 (2000) [hep-lat/0001018].

2F. D. R. Bonnet, D. B. Leinweber, A. G. Williams & J. M. Zanotti, Submitted to Phys. Rev. D.
[hep-lat/0106023].

3F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, D. G. Richards & A. G. Williams, Aust. J.
Phys. 52, 939 (1999).

4F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber & A. G. Williams, Infrared behavior of the
gluon propagator on a large volume lattice, Phys. Rev. D 62, 051501, (2000).



suppressed at infrared momenta. The observed infrared suppression of the Landau
gauge gluon propagator is not a finite volume effect. This work is then extended to a
variety of lattices with spacing ranging from a = 0.17 to a = 0.4 fm 5 to further explore
finite volume and discretization effects. In this work a technique previously used for
minimizing lattice artifacts, known as “tree-level correction”, has also been extended.
It is demonstrated that by using tree-level correction, determined by the tree-level be-
havior of the action being considered, it is possible to obtain scaling behavior over a
very wide range of momenta and lattice spacings. This makes it possible to explore
the infinite volume and continuum limits of the Landau-gauge gluon propagator.

As a final part of this thesis I present the first results for the quark propagator using
an Overlap fermionic quark action 6. I compare the results with those obtained from
the standard Wilson fermion. The overlap quark action is O(a)-improved compared
with the Wilson fermion. This action realizes exact chiral symmetry on the lattice
unlike the Wilson fermion and it demonstrates that the fastest way forward in this
field is with improved lattice operators.

The idea of studying improved actions in lattice gauge theory was suggested to me
by A/Prof. Anthony G. Williams during the “Nonperturbative Methods in Quantum
Field Theory” workshop in early February 1998. Initially it was suggested to me that a
calculation of the gluon propagator using improved action on large volumes, following
a study just done with standard gauge action in Ref. [62]. The point of interest was to
study the effect an improved gauge field action would have on the gluon propagator.
This study would then be extended to quark actions. In the meantime when generating
gauge field configurations using a computer code written in Fortran 77 (provided by Dr.
Derek B. Leinweber), it occurred to me that it would be good to explore the content of
these gauge field configurations. In order to do realistic calculations on large lattices
we needed a gauge field configuration generator that would run on our CM5 computer
and so Connection Machine Fortran (CMF) became the adopted language.

I started writing the computer code to generate the gauge field configuration in
the SUc(2) with the help of Dr. Derek B. Leinweber, who introduced me to the basic
concepts in lattice QCD. I then extended this code to the SUc(3) gauge group. This is
commonly known as the standard Wilson gauge action. After investigating with some
of the optimization possibilities, I moved on to code an O(a2)-improved gauge action.
The code uses a masking procedure for the link update. I have generalized the masking
procedure for any planar gauge field action in SUc(N), Ref. [18].

From there it was very obvious that by applying a continuous repetition of some
sections of code that I written, that some bigger Wilson loops could easily be included
in the action and hence highly improved actions could be easily constructed. The only
difficulty was to calculate the improvement coefficients.

I then moved on to study smearing algorithms. I adapted the gauge field config-
uration code to a cooling and a 1 × 2 and 2 × 1 improved cooling code in which we
inserted higher order loop operators. This was the tool used to explore gauge field
configurations and their topological structures. Once the short range quantum fluc-
tuations are removed it is possible to see instantons. Instantons are believed to play
a crucial role in the spontaneous chiral symmetry breaking mechanism. We improved

5F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G. Williams & J. M. Zanotti, Infinite
volume and continuum limits of the landau gauge gluon propagator, Phys. Rev. D 64, 034501 (2001)
[hep-lat/0101013].

6F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G. Williams & J. Zhang, Overlap Propagator
in Landau Gauge, to be Submitted to Phys. Rev. D.
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the topological charge operator from the clover term to an (1 × 2 and 2 × 1) O(a2)–
improved topological charge operator (see Appendices, Sections E.16 and E.17). This
code was subsequently adapted by Sundance Bilson-Thompson so that he could insert
higher order loops. I have also inserted my O(a2)–improved operator to construct an
O(a2)–improved smearing algorithm. Using these tools I have calibrated the relative
rates of cooling and smearing.

Another piece of work on gauge fixing, reviewed in Chapter 8, was led by Dr.
Patrick O. Bowman, Ref. [63]. There I supplied the gauge field configurations and
checked some of the analytical work. For the gluon propagator work I supplied all of
the lattice configurations with the exception of the 323 × 64 used in Ref. [62]. The
analysis was primarily carried out by Dr. Patrick O. Bowman and partly inspired by
the one carried out in hep-lat/0106023. While this gluon propagator work is not being
presented here as my own Ph. D. qualifying work, I am a co–author on the subsequent
papers and so I have therefore decided to include a review of this work in Chapter 9.

I have also made some contribution in the construction of the Fat–link quark action
(with and without the clover term) developed by James M. Zanotti. These contribu-
tions involve the code for the Reunitarization of the smeared links, Appendix E.21.
Because of the code developed for the improved lattice definition of the Fµν(x) term I
have also made some contribution to the Fat–link clover quark action although I will
not discuss about this work in the following thesis.

My main contribution for the overlap quark propagator study was in the analysis of
the propagator data. The overlap propagators were generated by Dr. Jianbo Zhang and
the research was also carried out in collaboration with A/Prof. Anthony G. Williams
and Dr. Derek B. Leinweber. The quark propagators for the Wilson fermion were
generated by a computer code parallelized by James M. Zanotti and originally written
by Prof. Frank X. Lee.

The anisotropic lattice code has not been used in any calculations yet although
it has been tested and verified. The code was extended from the isotropic improved
generator code in SUc(3). After a literature search, we decided to implement the
action described in Ref. [31] for the anisotropic Wilson action and in Ref. [11, 32] for
the improved anisotropic case.

Apart from the work on the gauge fixing and the gluon propagator, done in collab-
oration with Dr. Patrick O. Bowman, and which for completeness is briefly reviewed in
Chapters 8 and 9 respectively, this thesis contains no material which has been accepted
for the award of any other degree or diploma in any university or other institution and
to the best of knowledge and belief, contains no material previously published or writ-
ten by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library,
being available for loan and photocopying.

Frédéric D. R. Bonnet Date: 20th of September 2001.
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Chapter 1

Introduction

The Standard model (SM) of particle interactions is a synthesis of three of the four
forces of nature. These forces are described by gauge theories each of which is char-
acterized by a coupling constant, g. For the strong interaction, gs ∼ 1. For the
electromagnetic interaction the fine structure constant is gem ∼ 1/137. This constant
is known to a very high precision, the predictions of Quantum Electrodynamics (QED)
agree with nature to extremely high accuracy making it the most successful theory in
physics. The smallness of g is the reason why the perturbative approach has been very
successful for QED. For the weak interactions GF ∼ 10−15 GeV2.

It is almost universally accepted that Quantum Chromodynamics (QCD) is the
underlying quantum field theory of the strong interaction [1, 2] which binds atomic
nuclei and fuels the sun and the stars. Strongly interacting particles are referred to
as hadrons which include for example, the protons and neutrons that make up atomic
nuclei as well as a wide variety of particles that are produced in particle accelerators
and from astrophysical sources. In Fig. 1.1, I show a naive picture of the proton,
surrounded by the QCD vacuum. These hadrons are made up of quarks and gluons

u,d

g

A nucleon
p

THE QCD VACUUM

q : up

q : up = 1 to 5 MeV

q : down

The nucleon with its quarks

g: the gluons, m = 0

q: the quarks, 1 < m  < 10 MeV

Figure 1.1: A naive diagram of the nucleon with its constituent quarks

which are the underlying constituents in QCD. Experimental work has confirmed that
the basic constituents of matter are the six quarks: up, down, strange, charm, bottom
and top (u,d,s,c,b and t respectively). The up and down quarks are light and have
about the same mass, while the bottom and top quarks are much more massive, as
it can be seen in Fig. 1.2. Each of these quarks posses an internal degree of freedom
called colour. The six leptons, Fig. 1.3, are the remaining basic constituents of matter.

The concept of colour was first introduced in 1963 by Gell–Man and Zweig who
proposed a model that explained the spectrum of strongly interacting particles in terms
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8 gluons
u

d

1 to 5 Mev

t

75 to 170 Mev

s

c b

The six quark flavours The gluon gauge boson.

spin 1/2

u: up
d: down

c: charmed
t: top
b: bottom

g:gluon

s: strange

174.3 Gev

1.15 to 1.35 Gev3 to 9 Mev 4.0 to 4.4 Gev m=0 MeV, SU(3) color octet

spin 1

Figure 1.2: The six quarks all with spin 1/2 with their respective masses.
The gluon has spin 1, it is a vector boson. The gluons are the mediator
of the strong interaction.

of basic constituents called quarks. In this model the mesons were expected to be made
up of a quark and an anti–quark while the baryons were understood to be bound states

e µ τ

ν ν ν
µ:

tauonτ:
ν: neutrinos

muon
e: electron

e µ τ

The six leptons

Figure 1.3: The six leptons.

made up of three quarks. To explain the electric charges and other quantum numbers
Gell–Man and Zweig postulated the existence of three distinct species (called flavours)
of quarks: the up (u), down (d) and strange (s) quarks. The discovery of additional
hadrons confirmed the existence of the three other flavours: charm (c), bottom (b) and
top (t). To respect the baryon symmetry, the quarks needed to be assigned fractional
electric charges of +2/3 for the u, c, t and -1/3 for the d, s, b. Then the proton would
be a bound state of uud, while the neutron a bound state of udd.

Phenomenologically the model was very successful. However, it had some serious
problems. Firstly the problem of confinement. Free particles with fractional charges
could not be found despite tremendous efforts. Secondly some of the lightest excited
states of the nucleon, like the spin 3/2 with charge +2, the ∆++, required a totally
symmetric wave function under interchange of the quark spin and flavour quantum
numbers. This contradicted the expectation that quarks, which must have spin 1/2,
should obey Fermi–Dirac statistics.

The later problem was reconciled by Han and Nambu, Greenberg and Gell–Man,
who proposed that the quarks carried an additional internal degree of freedom called
“colour”. This quantum number is fully represented by the non–Abelian gauge group,
SUc(3). This gauge group possesses 8 generators, each of which may be viewed as a
quanta of the SUc(3) gauge field. These quanta are called gluons.

The quarks are spin-1/2 particles (i.e., fermions) and the gluons are massless spin-
1 particles (i.e., gauge bosons). The quarks interact strongly through their “colour”
charge through the exchange of gluons. The 8 gluons of SUc(3) (i.e., one for each
generator of SUc(3)) themselves carry colour.
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This theory of the strong interactions, Quantum Chromodynamics, can be fully
defined in terms of quark and gluon fields, through a fundamental quantity of quantum
field theory referred to as the action. The action is the integral of the Lagrangian
density which is a function of the quark and gluon fields. This action in Minkowski
space-time (up to gauge–fixing terms) is defined as:

SQCD =

∫
d4xL

=

∫
d4x

(
−1

4
F a
µν(x)F

aµν(x)
∑
q

ψ̄iq(x)(iγµDµ(x) −mq)ijψ
j
q(x)

)
, (1.1)

with the non–Abelian electromagnetic and covariant derivative expressed as:

F a
µν(x) = ∂µA

a
ν(x) − ∂νA

a
µ(x) + gsfabcA

b
µ(x)A

c
ν(x), (1.2)

(Dµ(x))ij = δij∂µ − igs
∑
a

λaij
2
Aaµ(x). (1.3)

The indices, ij, are the spinor indices. The first term describes the dynamics of gluons
while the second term involves both the quark and gluon fields and is summed over the
number of quark flavours. In Eq. (1.1), gs is the QCD coupling constant. There is only
one coupling strength between all the quarks and gluons. The fully antisymmetric
tensor, fabc, is the structure constant of the colour octet SUc(3) gauge group (The
Gell–Man matrices and the values for the fabc can be found in Appendix A).

The ψjq(x) are the 4-component Dirac spinors associated with each quark field of
3 colours and the flavour q. The eight gluons fields Aaµ(x) are contained in the colour
octet SUc(3) Lie Algebra.

Expanding the terms of Lagrangian density one finds

L = −1

4

(
∂µA

a
ν(x) − ∂νA

a
µ(x)

)2
− 1

2

[
gsfabc

(
∂µA

a
ν(x) − ∂νA

a
µ(x)

)
Abµ(x)A

c
ν(x) +

1

2

(
gsfabcA

b
µ(x)A

c
ν(x)
)2]

+
∑
q

ψ̄iq(x)(iγµ∂µ(x) −mq)ijψ
j
q(x) + ψ̄iq(x)

[
γµ

(
gs
∑
a

λaij
2
Aaµ(x)

)]
ψjq(x).(1.4)

From this expansion we can see that we obtain terms involving different powers in the
coupling. The terms at the zeroth order will give the gluon and quark propagators
while at the first order we obtain the 3–gluon vertex for the term just involving the
gluon field and the quark–gluon vertex when both the quark and gluon fields are mixed.
At the second order we obtain the 4–gluon vertex. These green functions are drawn in
the following Feynman diagrams:

3



Gluon PropagatorQuark Propagator

Quark-Gluon Vertex

gs

3-Gluon Vertex

gs

4-Gluon Vertex

g2
s

Hence the gluons interact with themselves as well as with the quarks. It is these
quantities that give rise to the non–perturbative physics and it is the essential difference
between QCD and the corresponding theory of photons and electrons referred to as
quantum electrodynamics (QED). The difference between these two has far reaching
consequences since the theories have entirely different behaviour. One of them is that
at shorter distances the effective coupling constant in QCD decreases. The property is
known as asymptotic freedom.

There are many different ways to probe the dynamics of these particles. One way,
which is an important theme in this thesis, is the study of quark and gluon propa-
gators. For example for the gluon propagator there has been considerable interest in
the infrared behaviour of the propagator as a probe into the mechanism of confine-
ment [3, 4] and as input for other calculations. Another fundamental quantity of QCD
is the quark propagator, Fig. 1.4.

The source point. The sink point.

The quark propagator in momentum space.

1

=
i p A(p) + B(p)

1 A(p)
Z(p)=

A(p)
M(p)=

Z(p)

i p + M(p)
S(p)=

B(p)

Figure 1.4: Illustration of the Feynman graph for the quark propagator.
The M(p) is the quark mass function and Z(p) is the quark renormal-
ization momentum function. The propagator is created at a source point
propagated along to a sink point where it is annihilated.

From the quark propagator it is possible to extract the quark mass function, M(p),
and the quark renormalization momentum function, Z(p). This quantity is really
a description of how the quark propagates in the QCD vacuum. By studying the
momentum dependent quark mass function in the infrared region (the scalar part of the
propagator) we can gain some insights into the mechanism of chiral symmetry breaking.
Chiral symmetry is dynamically broken in the QCD vacuum. This gives rise to mass
generation in the infrared. The sum of the current quark mass makes up less than 3%
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of the nucleon mass, the rest of the mass comes from dynamical symmetry breaking
and it is responsible for about 97% of the mass inside the protons and neutrons. So
studying the quark propagator will help us to understand the mechanism that gives
rise to the majority of the mass of strong interacting particles.

There are very few first-principles methods for studying QCD in the nonperturba-
tive low-energy regime. Of these few, the most widely used is the so-called Lagrangian-
based lattice field theory which formulates the field theory on a Euclidean space-time
lattice [5, 6]. An alternative lattice approach is based on the Hamiltonian formulation
of quantum field theory and makes use of cluster decompositions and again Monte
Carlo methods to carry out the simulations [7]. In addition, there are numerous stud-
ies based on a light-front formulation of QCD [8] and much use has been made of
Schwinger-Dyson equations [4] to assist with the construction of QCD-based quark
models.

The Lagrangian-based lattice technique simulates the functional integral using a
four-dimensional hypercubic Euclidean spacetime lattice together with Monte Carlo
methods for generating an ensemble of gluon field configurations with the appropriate
Boltzmann distribution exp(−SG). The argument of the exponential, SG is a discretized
form of the QCD gluon action on the hypercubic lattice. The simplest discretizations
of the QCD action involve only nearest neighbours on the lattice and have O(a2) er-
rors, where a is the lattice spacing. Improved actions represent a major advance for
the field of lattice gauge theory, where by using increasingly non-local discretizations
of the QCD action we can obtain the same accuracy with far fewer lattice points and
hence far less computational time and effort. The purpose of this work is to use im-
proved actions and improved operators to study observables close to their continuum
limits. For further details on the state of the art lattice QCD techniques see for ex-
ample Ref. [9]. Another related and equally important advance is the technique of
nonperturbative improvement (e.g., mean-field improvement) which corrects for some
of the major nonperturbative effects (the so-called tadpole contributions) and hence
brings the lattice results to their continuum form more quickly by improving the match
with perturbation theory at a given lattice spacing a [10]. It is the combination of im-
proved actions and nonperturbative improvement that together have come to represent
a significant advance for the field [9, 11].

Lattice QCD is based on a Monte Carlo treatment of the path integral formulation
which makes it a computationally demanding method for calculating physical observ-
ables. The gluon field is represented by 3 × 3 complex SU(3) matrices, where there
is one such SU(3) matrix associated with every link on the lattice. The links lie only
along one of the four Cartesian directions and join neighbouring lattice sites. Since
all lattice links require identical numerical calculations, lattice gauge theory is ideally
suited for parallel computers.

There are various types of improved actions, and as explained above, these are all
based on the idea of eliminating the discretization errors that occur when passing from
continuum physics to the discretized lattice version. The simplest (i.e., non-improved)
gluon action is the so called standard Wilson action and consists of 1× 1 Wilson loops
or, as they are frequently called, plaquettes. The Wilson loops used to build up lattice
actions shall often be referred to, in this thesis, as plaquettes. The need to build the
gluon action out of closed loops arises from the need to maintain exact SU(3) gauge
invariance in the discrete lattice action and from the fact that closed loops are gauge
invariant. This 1×1 loop action was first proposed by Wilson [12] in the early 70’s and
has been used extensively over the years. It consists of taking an arbitrary starting
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Figure 1.5: A three dimensional lattice at a fixed time in Euclidean space,
i.e., a single time “slice”. The quarks live at the sites while the gluon
fields reside on the gauge link Uµ(x). Each sites are separated by a space
of dimension a. The spacing a is called the lattice spacing and can be
tuned for a given simulation.

site, for example x, on the lattice and stepping around a 1 × 1 loop until returning to
the starting point x. The 1 × 1 Wilson loop is illustrated in Fig. 1.6.

x

xx

µ x + µ

+ µ + ν+ ν

µ

ν

a

U ( x +U ( x )

U ( x )

U ( x +

µ )

ν )

νν

µ

Figure 1.6: The 1 × 1 plaquette Usq(x) with base at x lying in the µν-
plane. The lattice spacing is denoted by a.

Improving the standard Wilson action is achieved by making use of larger loops
(e.g., 1 × 2, 2 × 2, etc.) in the lattice gluon action [13] to cancel out finite lattice
spacing artifacts to a given order in a. For an elegant and detailed discussion of these
topics see Ref. [11].

As already mentioned, a central theme of this thesis is the study of the gluon and
quark propagators. An effective study of the gluon propagator is done by improving
the gluonic action to higher order in the lattice spacing. Similarly for the quark prop-
agator, where a suitably improved choice of the fermion is crucial in order to extract
meaningful results over the entire momentum range. In the deep infrared region, arti-
facts associated with the finite size of the lattice spacing become small for sufficiently
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small lattice spacing a. This is the most interesting region as nonperturbative physics
lies here. However, the ultraviolet behaviour at large momenta of the propagator will
in general strongly deviate from the correct continuum behaviour. This behaviour will
be action dependent, and it is this region that really dictates the quality of the dis-
cretised action. Some interesting progress has been made in improving the ultraviolet
behaviour of the propagator for certain quark actions, a method recently developed
and referred to as tree-level correction.

This thesis is divided as follows:
Chapter 2 introduces the basic elements used in lattice QCD. The concept of the

link variable represents the fundamental quantity of the theory. I then describe, in
Chapter 3.1 the general procedure used in conducting numerical simulations. Chap-
ter 4 goes through the algorithm that enables us to generate non–Abelian gauge field
configurations as well as the technical related to the implementation of the computer
code.

Chapter 5 describes the O(a2)–improved gauge action. In this chapter a general
masking method is presented. This method is applicable to planar lattice gauge action
in SUc(N) of any size. Chapter 6 briefly describes the anisotropic gauge action for two
different types of improved gauge action. Chapter 7 uses a cooling method with both

Figure 1.7: Graphical representation of the action density after 11 sweeps
of improved cooling on a 243 × 36 lattice at β = 5.00

standard and improved operators to bring some insight into the various smoothing

7



methods. In this chapter, I also construct an improved topological charge operator
based on the improved definition of the field strength tensor. Using various smoothing
algorithms I calibrate the relative smoothing rates between the different algorithms,
using improved and non–improved operators. The goal is to study the distribution of
action and topological charge density of typical smoothed gauge field configurations.
This will allow us to probe the importance of topology and topological structures, such
as instantons, for understanding the properties of QCD. This is done with the help of
a graphical representation like the one shown in Fig. 1.7.

Chapter 8 introduces improved gauge fixing methods. Chapter 9 explores the gluon
propagator in quenched lattice QCD with improved actions at coarse lattice spacing
and in the infinite volume limit. Chapter 10 presents work on the quark propagator
for various actions, including the overlap Wilson fermion.
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Chapter 2

Lattice Gauge Theory

In the introduction I have briefly introduced the basic concept of a discretized glu-
onic action. In this chapter I shall discuss some of the fundamentals of lattice QCD.
These concepts are of crucial importance, since the forthcoming chapters become more
technical and revolve around the basic definitions that are explained in this chapter.

Lattice QCD is the best tool we have at the moment for calculating non–perturbative
observables from first–principles. This field is rapidly expanding, which is strongly cor-
related with the fact that computer resources are rapidly growing. The basic idea is
to replace infinite four dimensional continuous space–time by a discrete, finite volume
one. The scale of the four dimensional volume is characterized by a parameter called
the lattice spacing. The lattice spacing, a, plays the role of a cut–off parameter and,
therefore, theories on the lattice do not contain ultraviolet divergences, i.e., they are
regularized. On the other hand, when passing to a lattice theory, the relativistic in-
variance is violated, but the gauge invariance is preserved. In the continuum limit
(a −→ 0) relativistic invariance is restored and in a renormalizable theory like QCD,
the renormalized quantities approach finite limits.

2.1 QCD on the Lattice

2.1.1 The Basic Elements of Lattice QCD

For technical reason we pass from Minkowski space–time to Euclidean space–time, that
is make the change of variable x0 −→ it. The theory is constructed from few basic
elements of the lattice which are the following:

• A lattice site, or a point of the lattice is specified by the coordinates xµ = anµ,
where nµ is a 4–vector with components nx, ny, nz and nt. In general the number
of sites in the spacial directions are set to be equal and in the temporal direction
a multiple of the spacial direction. The parameter a is the lattice spacing, i.e.,
the distance between neighbouring lattice sites. On isotropic lattices the spacing
is the same in all directions. In the case of anisotropic lattices the spacing in the
spatial and temporal directions are different.

In order to study QCD one needs to attach an SUc(3) matrix to each lattice link.
The generators of this gauge group are explicitly written in Appendix A.

• A link variable, Uµ(x), or a link connecting two neighbouring sites, is given by
the coordinate of the xµ of its origin and by a direction of the corresponding axis

9



^ x+a^µ µxx x+a

U(x)
^µ̂

U(x)
µ

Figure 2.1: The link variable joining two lattice sites in the µν-plane.
The lattice spacing is denoted by a.

in the space; the link variable connects lattice sites with the coordinates x and
x+ aµ̂, where µ̂ is a unit vector in the direction of µ. When the direction of the
link variable is reversed we take the hermitian conjugate of Uµ(x), as shown in
Fig. 2.1.

The gluon field lives on the gauge links which can be related to the continuum
gluon field by

Uµ(x) = Peig0
R x+µ̂
x Aµ(z)dz . (2.1)

The gluon field Aµ(x) is contained in the colour octet SUc(3) Lie Algebra, i.e.
Aµ(x) =

∑8
a=1 t

aAaµ(x) with ta = λa/2 and λa are the Gell–Mann matrices, in the
case of SUc(2) the generators are just the Pauli matrices σa, See Appendix A.

• A plaquette, or an elementary square bounded by four links, illustrated in Fig. 2.2
is given by the coordinate of the site lying in its corner and by the positive

x

xx

µ x + µ

+ µ + ν+ ν

µ

ν

a

U ( x +U ( x )

U ( x )

U ( x +

µ )

ν )

νν

µ

Figure 2.2: The 1 × 1 plaquette Usq(x) with base at x lying in the µν-
plane. The lattice spacing is denoted by a.

directions µ and ν of the adjacent links forming the sites of the square. The
plaquette variable is written as:

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x) . (2.2)

A plaquette is the simplest closed Wilson loop that can be formulated on the lat-
tice. More complicated closed loops may be constructed quite easily by attaching
more links together.

• A staple is formed by three links joined edge–to–edge in one plane. In Fig. 2.3, I
illustrate a staple in a given plane (right), and on the left of that figure I illustrate
the sum of the six staples. The link joining the lattice x and x+ x̂ is pointing in
the x̂ direction.
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Figure 2.3: Rotating the 1 × 1 plaquette sitting in the x̂ŷ plane about
the x̂–axis into the x̂ẑ and x̂t̂ planes (left) and a staple (right).

2.1.2 The General Method in Lattice QCD

Lattice QCD calculations are a discretized non–perturbative implementation of field
theory using the Feynman path integral, which in a quantum field theory should more
appropriately be referred to as the Feynman functional integral. It is used when one
is confronted in computing the expectation value of an observable or some n–point
Greens function. The Feynman path integral definition of this is

G(x1, .., xn) = 〈0|T (Φ(x1)..Φ(xn))|0〉 =

∫ DΦ(
∏n

j Φ(xj))e
iSQCD∫ DΦeiSQCD

. (2.3)

In QCD, Φ(x) become the quark and gluon fields. The exponential factor eiSQCD acts
as a probability, but is imaginary. So strong oscillations for large SQCD makes the
path integral numerically intractable in ordinary Minkowski space, however, numerical
simulation is possible in Euclidean space. The transition from Minkowski to Euclidean
space is done by transforming the time component of the fields to an imaginary one.
So the n–point green function defined in Eq. (2.3) becomes

〈0|T (Φ(x1)..Φ(xn))|0〉 t→−itE	−→ 〈0|Φ(x1)..Φ(xn)|0〉E . (2.4)

Such transformations transform the exponential factor from an imaginary to a real
factor,

SQCD −→ iSE
QCD this means eiSQCD −→ e−S

E
QCD . (2.5)

Strong oscillations are then damped out at large SE
QCD, making Monte Carlo simulations

possible. So in Euclidean space our n–point green function becomes:

GE(x1, .., xn) = 〈0|Φ(x1)..Φ(xn)|0〉E =

∫ DΦ(
∏n

j Φ(xj))e
−SE

QCD∫ DΦe−S
E
QCD

=
1

Z
∫

DΦ(
n∏
j

Φ(xj))e
−SE

QCD . (2.6)

Let’s rewrite the partition function as:

Z =

∫
DAµDψDψ exp (−SQCD) , (2.7)
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where SQCD is the QCD action in Euclidean space–time (I have dropped the superscript
on the action term, as from now all the quantities will be in Euclidean space–time unless
stated otherwise)

SQCD =

∫
d4xL =

∫
d4x

(
1

4
F a
µν(x)F

aµν(x) +
∑
q

ψ̄iq(x)(γµDµ(x) +mq)ijψ
j
q(x)

)

=

∫
d4x

(
1

4
F a
µν(x)F

aµν(x) +
∑
q

ψ̄iq(x)[Mq]ijψ
j
q(x)

)
, (2.8)

and Aµ(x) and ψ(x) are the gluon and quark fields respectively. The matrix M is the
Dirac operator. The fermions are represented by Grassmann variables ψ and ψ. These
can be integrated out exactly giving

Z =

∫
DAµ detM exp

(
1

4
F a
µν(x)F

aµν(x)

)
. (2.9)

The fermionic contribution is now contained in a highly non–local term detM and the
partition function becomes an integral over only the background gauge group configu-
rations. After integration over the fermions, the action may be written as:

SQCD = Sgauge + Squarks =

∫
d4x

(
1

4
F a
µν(x)F

aµν(x)

)
−
∑
q

log (det [Mq]ij) , (2.10)

where the sum is over the quark flavours.
The fermion matrix plays a central role in full QCD simulations. This matrix de-

scribes all the quark and anti–quark interactions in the QCD vacuum (the sea quarks).
These interactions may therefore be switched off by setting detM = constant. This
approximation is called the quenched approximation and largely reduces the computa-
tional expense. As mq −→ ∞ the sea quark simply renormalize the strong coupling
constant.

Results for physical observables are obtained by calculating expectation values

〈O[Uµ(x)]〉 =
1

Z
∫

DUO[Uµ(x)]e
−S[Uµ(x)]

= lim
Mc−→∞

1

Mc

Mc∑
i=1

O[(Uµ(x))i], (2.11)

over an uncorrelated ensemble of gauge field configuration ({U1(x), .., UMc(x)}) gener-
ated with a probability distribution Pi

where Pi ∝
{
e−S[Uµ(x)] quenched QCD
detMe−S[Uµ(x)] full QCD.

In general O is any given combination of operators expressed in terms of time ordered
products of gauge and quark fields. The quark fields in O are expressed in terms of
quark propagators using Wick’s theorem for contracting fields.

The basic building block for fermionic quantities is the Feynman propagator which
is obtained by calculating the inverse of the Dirac operator on a given background
field. A given element of this matrix (M−1)y,j,bx,i,a is the amplitude for the propagation
of a quark from site x with spin–colour i, a to site–spin and colour y, j and b.
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2.1.3 The Simplest Formulation of the Actions

The Gauge Action

In the continuum the gauge action in Euclidean space–time for QCD is given by

SG =
1

4

∫
d4xFµν(x)Fµν(x). (2.12)

It is this quantity that we want our discretized lattice gauge action to approach in the
continuum limit. Here Fµν(x) is the usual non–Abelian field strength tensor

Fµν(x) = ∂µAν(x) − ∂νAµ(x) + ig[Aµ(x), Aν(x)]. (2.13)

The discretization is not done directly via the value of the gluon field but rather through
the link variable, Eq. (2.1), where the P–operator path–orders the Aµ(x) gluon fields
along the integration contour (a closed path called a Wilson loop). We use Uµ(x)
instead of Aµ(x) on the lattice because it is impossible to formulate a lattice version
of QCD directly in terms of Aµ(x) that has exact gauge invariance. The link variables
on the other hand transform simply under a gauge transformation:

Uµ(x) −→ Ug
µ(x) = g(x)Uµ(x)g

†(x+ aµ̂). (2.14)

This quantity makes it possible to construct out of the product of link variables, under
a closed loop, a gauge invariant action that will approach Eq. (2.12) in the continuum
limit.

The gauge action is constructed from an arbitrary Wilson loop

Cµν(x) =
1

Nc
P
{
Tr

(
exp

(
−ig

∮
C
A(x) · dx

))}
= P

{
1

Nc

Tr

[
1 − ig

(∮
C
A(x) · dx

)
− g2

2!

(∮
C
A(x) · dx

)2

+ O(g3)

]}
. (2.15)

Using Stokes theorem and performing a Taylor expansion of DµAν(x+ x0) around the
centre point of the Wilson loop x0 in coordinate gauge A · x = 0, it can be shown that:∮

C
A(x) · dx =

∫ b

a

dxµdxν [DµAν(x+ x0) −DνAµ(x+ x0)] (2.16)

=

∫ b

a

dxµdxν

[
Fµν(x0) + (xµDµ + xνDν)Fµν(x0)

+
1

2

(
x2
µD

2
µ + x2

νD
2
ν

)
Fµν(x0) + O(a2g2, a4)

]
.

The integration bounds are determined by the size of the Wilson loop. In the case of
a simple plaquette contour variable we have for the Wilson action, for both xµ and xν ,
−a/2≤xµ≤a/2 and −a/2≤xν≤a/2 respectively. Hence we have∮

1×1

A(x) · dx = a2Fµν(x0) +
a4

24

(
D2
µ +D2

ν

)
Fµν(x0) + O(a6, A2). (2.17)
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The action is obtain by taking the real part of the trace of Cµν(x). Hence we may write
for the Wilson action

Pµν(x) =
1

Nc
Tr

[
I − g2

2!

(∮
C
A(x) · dx

)2

+ ...

]
(2.18)

= 1 − g2

6
a4Tr

(
F 2
µν(x0)

)− g2

6

a6

12
Tr
(
Fµν(x0)

(
D2
µ +D2

ν

)
Fµν(x0)

)
+ ... .

Using this expansion we obtain the commonly known standard Wilson gluonic action:

SWil = β
∑
x,µ>ν

(1 − Pµν(x)) −→
∫
d4x

1

2
Tr
(
F 2
µν(x)

)
+ O(a2), (2.19)

where β = 6/g2 is a tuneable variable in numerical simulations. We can see that this
action has O(a2) errors which may become significant during numerical simulation if
the lattice is not fine enough.

The Fermionic Action

The fermionic part of the QCD action was first discretized by Wilson [14] by replacing
the derivative with symmetrized difference operators and included appropriate gauge
links to maintain gauge invariance. The discretized part of the action then becomes

ψD/ψ =
1

2a
ψ
∑
µ

γµ
[
Uµ(x)ψ(x+ µ̂) − U †

µ(x− µ̂)ψ(x− µ̂)
]
. (2.20)

Performing a Taylor expansion of the gauge links Uµ(x) = 1 + iagA(x + µ̂/2) + O
in powers of the lattice spacing and similarly for the fermion fields ψ(x + µ̂) = ψ +
aψ′(x) + O one sees that in the limit a −→ 0 one recovers the kinetic part of the
standard continuum Dirac action in Euclidean space–time. Hence one arrives at the
simplest (“naive”) lattice action for fermions,

S =
∑
x

[
mqψ(x)ψ(x) +

1

2a

∑
µ

ψ(x)γµ
[
Uµ(x)ψ(x+ µ̂) − U †

µ(x− µ̂)ψ(x− µ̂)
]]

≡
∑
x

ψ(x)M [U ]xyψ(y), (2.21)

where the interaction matrix, M [U ]xy, is given by

Mij [U ] = mqδij +
1

2a

∑
µ

γµ
[
Uµ(x)δi j−µ − U †

µ(x− µ̂)δi j+µ
]
, (2.22)

and the Euclidean hermitian γ matrices satisfy {γµ, γν} = 2δµν . From this simple
action we can easily extract the 2–point function, S(p). It is given by the inverse of
Mij [U ]. To see how this is done one can Fourier transform the quark fields over the
Brillouin zone (BZ) [−π/a, π/a] as

ψ(x) =

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)eip·x, and ψ(x) =

∫ π
a

−π
a

d4p′

(2π)4
ψ̃(p′)e−ip

′·x. (2.23)
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One then finds that for a 2–point function in momentum space that

S−1(p) = mq + i
∑
µ

γµkµ = M [U ](p). (2.24)

Note that we are working in the infinite volume limit here. Here, kµ = (1/a) sin(pµa).
A plot, Fig. 2.4, of kµ vs pµ shows the zeros at the edge of the BZ. These zeros destroy

Figure 2.4: The lattice momentum kµ plotted versus the discrete mo-
mentum pµ over the the interval [−π/a, π/a]. The small dash–dot line is
kµ = 1 and the dash line is line kµ = pµ. The continuum limit is deter-
mined by the momenta in the neighbourhood of pµ = 0 and pµ = ±π/a.

the correct continuum limit in the fermionic case, because there exist sixteen regions
of interest in the 2–point function where kµ takes a finite value in the limit a −→ 0.
Of these, fifteen regions involve high momentum excitations of the order of π/a, which
gives rise to a momentum distribution function having the form resembling that of
a single particle propagator. These excitations are pure lattice artifacts. In fact, in
d–space the number would be 2d ( 0 and π/a for each dimension), i.e. it doubles for
each additional dimensions.

The fermion doubling problem can be overcome by cancelling out the lattice arti-
facts. This is done by introducing irrelevant operators at the expanse of an explicit
breaking of chiral symmetry even for mq −→ 0.

The naive lattice action for fermions can be modified by a term which vanishes in
the continuum limit. This fermion action is known as Wilson fermion action, it has
O(a) errors and is defined as

SW [U, ψ, ψ] =
∑
x

[
(mq + 4r)ψ(x)ψ(x)

− 1

2

∑
µ

ψ(x)(r − γµ)Uµ(x)ψ(x+ aµ̂) + ψ(x+ aµ̂)(r + γµ)U
†
µ(x)ψ(x)

]
=
∑
xy

ψ(x)DW (x, y)ψ(y), (2.25)

with DW (x, y) the Wilson fermion operator:

DW (x, y) = (mq + 4r)δx,y − (2.26)
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1

2

∑
µ

(r − γµ)Uµ(x)δy,x+aµ̂ + (r + γµ)U
†
µ(x− aµ̂)δy,x−aµ̂.

Where r is the Wilson coefficient. The terms containing r are the irrelevant operators
introduced to eliminate the fermion doubling problem. Here mq is the lattice bare mass
related to the hopping parameter κ via

κ =
1

2m+ 8r
and mq ≡ 1

2a

(
1

κ
− 1

κc

)
. (2.27)

Chiral symmetry breaking gives rise to additive mass renormalization. When the glu-
onic interactions are turned off (Uµ(x) ≡ I), the critical value for the hopping parameter

is κ
(0)
c = 1/8. When the gluons are present, κc is defined as the value of κ at which

the pion mass vanishes. In this case the critical value tends to diverge away from its
tree value of an eighth. The Wilson fermions, for r 
= 0, break chiral symmetry even
for mq −→ 0.

The Wilson gauge action, Eq. (2.19) and the Wilson fermionic action Eq. (2.25)
are the simplest lattice actions which have the correct continuum limit (a −→ 0).
These actions have been used in a large number of lattice simulations. Simulations in
quenched QCD for the light hadron spectrum done by the CP-PACS Collaboration [15]
suggests a deviation of 11% from experiment. There has been many other studies using
these actions. The consistency of the results with the continuum were really limited by
the computational power available at the time because people had to drive the lattice
spacing to small values in order to get reasonable results. The computational factor
is slowly becoming less of an issue these days, and we can expect to improve over the
next few years. Increasing computational power is not really the fastest solution to
the problem. We can also improve the operators, actions and algorithms to reduce the
discretization errors to their minimum for a given lattice spacing. This is what the
subsequent chapters of this thesis are primarily concerned with.
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Chapter 3

Numerical Simulations and Markov
Chains

3.1 Markov Chains

The goal in numerical lattice simulations is to approximate the Feynman path integral
in Euclidean space–time

GE(x1, .., xn) = 〈0|Φ(x1)..Φ(xn)|0〉E =

∫
[DΦ](

∏n
i Φ(xj))e

−SE
QCD∫

[DΦ]e−S
E
QCD

. (3.1)

Calculating Eq. (3.1), can be extremely time consuming.

For example, in the case of SUc(3) on a small lattice, hundred of thousands of inte-
grations are required for just one configuration. One needs many of these configurations
in order to represent properly the system under scrutiny. Hence direct evaluation of
Eq. (3.1) is unthinkable for the lattice sizes that we will need to consider. However
using statistical methods to evaluate Eq. (3.1) is possible. In fact, since most of the
configurations will have an action which is very large, only a small fraction of them
will contribute significantly to this path integral. Hence an efficient way of computing
an ensemble average would consist in generating a sequence of uncorrelated field con-
figurations with a probability distribution given by the Boltzmann factor e−S

E
QCD . This

is the technique of “importance sampling”. If the configurations Ci, for i = 1, .., N ,
denote a representative sequence of configurations generated via the above technique,
then the ensemble average approximation for Eq. (3.1) is

GE(x1, .., xn)≈ 1

N

N∑
i=1

G(Ci). (3.2)

What is required, is an algorithm that systematically generates such a sequence of
configurations.

The configurations can be generated via a Markov process with each configuration
being an element of a Markov chain.

Let us denote each of these configurations by a discrete index. Because of computer
round–off limitations the set of all possible lattice gauge configurations is enormously
large but finite. Hence, we may denote C1, C2, .. to be a countable set of states of the
system. Consider a stochastic process in which a finite set of configurations is generated
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one after the other according to some transition probability P (Ci −→ Cj) = Pij for
going from configuration Ci to Cj.

Now given a set of configurations {Cτi} generated by the Markov process with
mean recurence time τi (see Appendix C) and an observable evaluated on this set of
states, O(Cτi), we can perform an ensemble average of O(Cτi) over the number of
configurations, N , of the Markov chain by

〈O〉N =
1

N

N∑
i=1

O(Cτi). (3.3)

It is this quantity which we compute, and which we want to equal the ensemble average
corresponding to a given Boltzmann distribution. Here we restrict ourselves to irre-
ducible aperiodic Markov chains whose states are positive, see Appendix C for a
detailed definition of these terms. I now state some important results for irreducible
aperiodic Markov chains with positive states 1.

Theorem 3.1 If the chain is irreducible and the states are positive and aperiodic, then
the limit N −→ ∞ of Eq. (C.1) exists, and is unique; in particular one can show 2

lim
N→∞

P
(N)
ij = πj , (3.4)

where πj > 0 are the numbers which satisfy the following equations:∑
j

πj = 1 and πj =
∑
i

πiPij . (3.5)

This theorem says that after a large number of Markov steps (i.e. as N −→ ∞)
the obtained configuration is completely uncorrelated from the initial configuration
used to start the Markov process. Furthermore, Eq. (3.5) states that the system is
left unchanged after further updates with transition probabilities Pij. When Eq. (3.5)
and Eq. (3.4) are combined we see that it is just the condition that the system has
reached equilibrium with πi the probability of finding the configuration Ci. The second
important theorem concerning the ensemble average is as follows:

Theorem 3.2 If the chain is irreducible and its states are positive, and if

τ
(2)
i ≡

∞∑
n=1

n2P
(n)
ii <∞ (3.6)

then the time average Eq. (3.3) approaches the ensemble average

〈O〉N =
1

N

N∑
i=1

πiO(Ci). (3.7)

with a statistical uncertainty of order O(1/
√
N).

1The following two theorems are taken from [5], the proof of these theorems may be found in
Hammersley and Handscomb (1975).

2For a detailed discussion, consult the books by Hammersley & Hamdscomb (1975), Clark & Disney
(1985).
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Theorems 3.1 and 3.2 provide the basis for using the Markov process to calculate
the ensemble average Eq. (3.2). In fact it is possible to show [5, 16] that for a Markov
process to sample a probability distribution of the type that is found in lattice gauge
theory, exp(−S(C)), it is sufficient to require that the transition probability Pij satisfies
detailed balance:

exp(−S(Ci))P (Ci −→ Cj) = exp(−S(Cj))P (Cj −→ Ci). (3.8)

The transition probability Pij should be understood as a rule for selecting the next
configuration in the Markov chain according to the one directly preceeding it.

3.2 The Metropolis Algorithm

This method was originally proposed by Metropolis et al. [17] and is applicable in
principle to any system.

Let C be any configuration which is to be updated. A new configuration C ′ is
then suggested with a transition probability P0(C −→ C ′) which satisfies the following
condition:

P0(C −→ C ′) = P0(C
′ −→ C). (3.9)

Having suggested a configuration C ′, we must perform an accept/reject step on that
configuration. The accept/reject step is based by comparing the action of these two
configuration. If the transition probability of going from the configuration of C to
configuration C ′ satisfies detail balance, then the decision is made as follows:

1. If exp(−S[C ′]) > exp(−S[C]), i.e. if the action decreases then the configuration
C ′ is accepted.

2. If on the other hand exp(−S[C ′]) < exp(−S[C]), i.e. if the action increases, then
accept C ′ only with a probability P (C ′)

P (C ′) =
exp(−S[C ′])
exp(−S[C])

= exp {−(S[C ′] − S[C])} . (3.10)

For a random number R ∈ [0, 1], if R � exp {−(S[C ′] − S[C])} then accept C ′.
Otherwise reject C ′ and keep the old configuration C.

In order to be guaranteed that the system reaches equilibrium, we must ensure
that the algorithm satisfies detailed balance. This is shown by using the fact that the
transition probability P (C −→ C ′) is the product of the probability P0(C −→ C ′) for
suggesting C ′ as the new configuration and the probability of accepting it. We see that
the algorithm for P (C −→ C ′) implies the following statements:

If exp(−S[C ′]) > exp(−S[C]) then P (C −→ C ′) = P0(C −→ C ′),

and

P (C ′ −→ C) = P0(C
′ −→ C)

exp(−S[C])

exp(−S[C ′])
.
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Since P0(C −→ C ′) = P0(C
′ −→ C), then we see that detailed balance is satisfied, i.e.

exp(−S[C])P (C −→ C ′) = exp(−S[C ′])P (C ′ −→ C). (3.11)

Conversely,

if exp(−S[C ′]) < exp(−S[C]) then P (C −→ C ′) = P0(C −→ C ′) exp {−(S[C ′] − S[C])} ,

and

P (C ′ −→ C) = P0(C
′ −→ C), (3.12)

which implies that detailed balance, Eq. (3.11), holds again.

3.2.1 The 2D Ising Model with the Metropolis Algorithm

In this simple model, I illustrate the use of the Metropolis algorithm. The Model
can be taken as a crude description of magnetic material or a binary alloy. We use
Monte Carlo methods to obtain a numerical result for the phase transition. The Ising
model consists of a set of degrees of freedom interacting with each other via nearest
neighbour interactions. These might represent, for example, the magnetic moments
of the atoms in a solid. Here we do not consider the possibility of an external field.
The spin variables are located on the sites of an Nx×Ny lattice. The spin can then be
labelled as σij where i, j are the indices for the spatial directions. These spin variables
can take the values of,

σij =

{
+1 spin up
−1 spin down.

(3.13)

So the action that we are interested in takes the following form

S(σ) = −β
∑
i,j

σij(σi+1j + σij+1). (3.14)

The idea is to sweep systematically through the lattice and considering whether
or not to flip each spin one at the time. The lattice is updated using the Metropolis
algorithm [17] as described in Sec. 3.2. Hence we consider two configurations S and St
(St for Strial) differing only by the flipping of one spin σij . The acceptance ratio of the
action is given by the formulae,

r =
exp(−S)

exp(−St) . (3.15)

If r > 1, the spin is automatically flipped. On the other hand if r < 1, that is the
action has increased, then the trial configuration is accepted or equivalently the spin is
flipped, if r is greater than a uniformly distributed pseudo-random number between 0
and 1. From Eq.(3.14) we see that only the terms involving σij will contribute, so we
have

r = exp (−2βσij(σi+1j + σi−1j + σij+1 + σij−1)) . (3.16)

This is illustrated in Fig. 3.1.
A periodic boundary condition on the lattice is assumed here, for example the lower

neighbours of the spins with i = Nx are those with i = 1 and left hand neighbours of

20



i

A site

i,j

i,j+1

i-1,j

i,j-1

i+1,j

j

Figure 3.1: Schematic illustration of the 2D Ising Model.

those with j = 1 are those with j = Ny, the lattice therefore has the topology of a
torus.

Here we are interested in measuring the magnetization of the system as it evolves
for the coupling, β, between 0 and 1, i.e. 0 ≤ β ≤ 1. Although this model has been
solved analytically it is useful to obtain a numerical solution as an illustration of the
Metropolis algorithm and Monte Carlo methods. This model was coded in Fortran 90.
After a few thousands sweeps the system is thermalized. One can then extract physical
quantities such as the magnetization. The resulting net magnetization, which is really
the sum of the spins, is plotted in Fig. 3.2 for single hit Metropolis. From this plot
one can observe a second order phase transition which means that there is a value of
β∼= 0.4406 at which the slope of the magnetization approaches infinity as the number
of states approaches infinity.

Figure 3.2: Numerical illustration of the 2D Ising Model for single hit
Metropolis.

Further Numerical Result, Multiple Hit Metropolis

Further analysis can be done in the numerical study of the Metropolis algorithm.
This simple technique is called Multiple Hit Metropolis. It consists of repeating the
probability ratio, Eq.(3.16), and the random number comparison. For example when
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the number of hits is one, the comparison is done only once, so if a spin configuration
is not updated then we move on hoping to update it on the next sweep. On the other
hand if we hit 5 times we do the comparison 5 five times. Therefore increasing the
chances for a spin update. For this model, the effect are subtle as illustrated in Fig. 3.3.

The data were obtained on an Alpha Workstation. The data plotted in Fig. 3.2 and
Fig. 3.3, is for an 40 × 40 lattice. The system is thermalised in about 1200 hundred
sweeps. I then obtain 1000 configurations separated by 600 sweeps. Since the errors
scale as 1√

N
, N being the number of configurations, the more configurations we have the

smaller the error bars are. This process is repeated for 100 different β values ranging
from 0 and 1. For these numbers it takes from about three quarters of a full day for
single− hit to about three full days for 5 − hits.

Figure 3.3: Numerical illustration of the 2D Ising Model for multiple hit
Metropolis.
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Chapter 4

Generating Gauge Field
Configurations

The purpose of this chapter is to develop an algorithm that will generate an uncorre-
lated ensemble of gauge field configuration in a given gauge group, namely SUc(N).
The link variable is an element of SUc(N) and is associated with each nearest-neighbour
on the four dimensional simple hypercubic lattice. Here we start with the standard
Wilson action (see Section 2.1.3) but the gauge action is totally arbitrary, that is the
algorithm is also applicable to higher improved gauge actions. In this chapter I only
consider the cases N = 2 and 3. The algorithm for N � 3 may be found in Ref. [21].

Here we are interested in the path integral,

Z =

∫ (∏
µ

dUµ(x)

)
exp (−βS[U ]) , (4.1)

which defines the quantum theory. It is the same partition function as Eq. (2.7) but
written in the form of a statistical system at a temperature T = 1

β
. The system is

treated by obtaining an ensemble of configurations which simulates an ensemble in
equilibrium at this temperature T . Starting in some initial configuration (ordered or
random start) we successively bring a heat bath into contact with each link variable.
Each link, Uµ(x), in turn is replaced with a new link variable, U ′

µ(x), chosen randomly
from the entire group with probability density proportional to the Boltzmann factor

dP (U ′)∝ exp (−βS[U ′]) dU ′, (4.2)

where S[U ′] is the action evaluated with the given link having value U ′(x) and all the
other links fixed at their previous values.

4.1 The Algorithm for the SUc(2) Gauge Group

I now describe the algorithm for generating group element with weighting given by
Eq. (4.2) for the SUc(2) gauge group [20]. One of the key aspects of the SUc(2) gauge
group is that any group element may be parameterized in the form:

U(x) = a0(x)I + i�a(x) · �σ, (4.3)

where a0(x),�a(x) ∈ R. The 2× 2 matrices, σi, are the usual Pauli matrices, so at each
lattice site we have an SUc(2) matrix. From now on, I will not explicitly write the
lattice site dependence on the group elements but it is understood to be there.

23



These matrices have the properties that their trace is 0 and a determinant of 1.
Since we require that the link variables are unitary we must have U †U = UU † = I,
this implies that aµaµ = a2

0 + �a2 = 1, and therefore the aµ lie on the surface of the
3–sphere, S3. In this notation I can obtain the invariant group measure,

dU =
1

2π2
δ(a2 − 1)d4a, (4.4)

where 1
2π2 is a normalization factor and 2π2 is the solid angle for S3 such that

∫
dU = 1.

While working on a particular link, we need to consider only the contribution to the
action coming from the six plaquettes containing that link, i.e., the staples. The staples
are depicted in Fig. 2.3. If we denote the staples by Ũα=1,..,6(x), the six products of
three links variables which interact with the link in question, one can show that the
probability density can be written as

dP (U) ∝ exp (−βS[U ]) dU

∝ exp

(
−β
∑

�
1 − 1

Nc

Tr(Uµν(x))

)
dU

∝ exp

(
β

Nc
Tr

(
U

6∑
α=1

Ũα(x)

))
dU. (4.5)

Here Uµν(x) is the product of the links defining the plaquette, i.e., Eq. (2.2). Using
the useful property of the group SUc(2), namely that for a, b ∈ SUc(2) we have a + b
is proportional to an SUc(2) element, one can simplify Eq. (4.5) as follows:

6∑
α=1

Ũα = kU. (4.6)

The space-time matrix k ≡ k(x) is a constant of proportion, U ∈ SUc(2) which implies
that det(U) = I. To find k we take the determinant on both sides,

det

(
6∑

α=1

Ũα

)
= det(kU) = det(kI) det(U) = k2, (4.7)

so we obtain,

k =

(
det

(
6∑

α=1

Ũα

)) 1
2

. (4.8)

Using this result together with Eq. (4.5), we obtain the following density,

dP (UU
−1

) ∝ exp

(
β

Nc

Tr

(
UU

−1
6∑

α=1

Ũα

))
dU

= exp

(
β

Nc

kTr(U)

)
dU. (4.9)

Finally substituting the invariant group measure Eq. (4.4), and the trace of the link
variable U, Tr(U) = Tr(a0I + i�a · �σ) = 2a0, into Eq. (4.9) we obtain,

dP (UU
−1

) ∝ 1

2π2
δ(a2 − 1) exp

(
2β

Nc
ka0

)
d4a. (4.10)
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The problem reduces to generating points randomly on the unit 3–sphere in a four
dimensional space, R4, with exponential weighting along the a0 direction. To generate
an element U in this fashion, we replace the link variable on the lattice in Eq. (4.3) by

U−→U ′ = UU
−1
. (4.11)

Since for any SUc(2) matrices we have U
†
= U

−1
, then

U
†
=

(∑6
α=1 Ũα

)†
k

, as k ∈ R.

This leads to

U−→U ′ = U

(∑6
α=1 Ũα

)†
k

, where U = a0I + i�a · �σ. (4.12)

To generate the appropriately weighted points on S3, we first note that the integration
over |�a| can be done using the delta function. So

δ(a2 − 1) exp

(
2β

Nc
ka0

)
d4a =

1

2
|�a| exp

(
2β

Nc
ka0

)
da0dΩ, (4.13)

where dΩ is the differential solid angle of �a. The length of the vector �a is just√
a2

1 + a2
2 + a2

3. Because aµ lies on S3 we can rewrite the length as |�a| =
√

1 − a2
0.

Eq. (4.13) then becomes

δ(a2 − 1) exp

(
2β

Nc

ka0

)
d4a =

1

2

(√
1 − a2

0

)
exp

(
2β

Nc

ka0

)
da0dΩ. (4.14)

Thus we need to generate a0 stochastically on [−1, 1] with probability:

P (a0)∝
(√

1 − a2
0

)
exp

(
2β

Nc
ka0

)
. (4.15)

The spatial direction, the vector �a, is chosen totally randomly with a Gaussian proba-
bility distribution function as described in Section D.1. We are now able to write down
a systematic approach to updating the new link variable,

1. The algorithm for the a0 selection begins with a trial for a0,

a0 = 1 +
Nc

2βk
ln(x) =⇒ x = e−

2βk
Nc exp

(
2β

Nc
ka0

)
. (4.16)

The variable x is a random number uniformly distributed. We want

a0 ∈ [−1, 1] =⇒
{
a0 = +1 −→ x = 1

a0 = −1 −→ x = e−
4

Nc
βk.

}
=⇒x ∈ [e−

4
Nc
βk, 1]. (4.17)

This generates a0 distributed with exponential weight e
2

Nc
βka0 .

2. To correct for the factor (1 − a0)
1
2 in Eq. (4.15), reject this a0 with probability

1 − (1 − a0)
1
2 and select a new trial a0.

3. Repeat step.1 and .2 until an a0 is accepted.
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4.2 Computer Code for SUc(2)

The difference between serial and parallel computation is that in the first case the
computation is done by only one processor at a time, which therefore means that only
one site can be updated at once. This is a contrast with parallel computation where
multiple processors can perform updates at the same time. In that case, it is possible
to select a number of sites which can be updated simultaneously.

In order to take advantage of this resource and not waste any computational time by
leaving some of the processors idle, one must find a way to spread the information over
the entire machine in such a way that the number of working processors is maximized
at each flop. In lattice QCD it is usually accomplished by performing some masking
procedure [18].

The variables contained in the computer code are separated into two distinct cate-
gories. The first one, called “global variables”, contains the variables that are globally
spread over the entire program (the link variable, Uµ(x) for example) and any variables
that are in the argument list. The real and imaginary part of the link, Uµ(x), variables
are explicitly separated into two different variables (called the ur and ui) to give bet-
ter control over the data. The other category, called “local variables”, only contains
variables that are locally used within the routine.

4.2.1 Masking and Parallel Computing

When performing a Monte Carlo sweep of the entire lattice each lattice link must
be updated individually using the particular gluon action of interest (e.g., SG). The
action is used in the Monte Carlo accept/reject step for that link in order that detailed
balance is ensured at each link update and hence that it is ensured throughout the entire
lattice sweep. It is the combination of randomness in the link updates, the maintenance
of detailed balance, and decorrelation (ensured by large sweep numbers between the
taking of samples) that ensures the desired ensemble of gauge field configurations are
produced with the Boltzmann distribution exp(−SG).

In the most naive procedure we move through each link on the lattice consecutively
updating them one at a time until we have completed a “sweep” through the entire
lattice. We then repeat these lattice sweeps as often as required. This simple procedure
is highly inefficient on a parallel computing architecture, where we can be updating
many links at the same time. However, there is a fundamental limitation to this
parallelism, i.e., we will violate detailed balance and corrupt our data if we try to
simultaneously update a link while information about that link is being used in the
update of another link. It is crucial that we identify which links can be updated
simultaneously and this is determined by the degree of non locality in the action. For
example, for an action which contains only nearest neighbour interactions of the links,
such as the Wilson action, we can use an efficient “checkerboard” algorithm, which
will be described below. In general, the more non–local is the lattice gluon action the
fewer are the links that can be simultaneously updated. We see that the improvement
program is therefore more expensive to implement, but the benefit of improved actions
far outweighs this drawback.

In order to facilitate our discussions we will refer to this concept as “masking”, where
the lattice links not eliminated by the mask are the ones that can be simultaneously
updated in a parallel computing environment. The number of independent masks
needed for a particular action determines an upper limit to the parallelism that can be
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used in a single lattice sweep. As we will see, the best that can be done is to have two
masks per link direction and this is for the case of nearest neighbour interactions only.

We will simplify the presentation in the usual way by rescaling all dimensionful
quantities by the lattice spacing a. This is equivalent to choosing our units a = 1.

4.2.2 Masking for the Standard Wilson Action

In the standard Wilson action, where only neighbouring links are connected by the
action, we need only two masks for each of the four link directions. There are two
different ways of implementing this masking as we will now discuss.

Checker Board Masking

The standard Wilson action only involves 1 × 1 Wilson loops (depicted in Fig. 2.2)
and is the most fundamental lattice gluonic action. Whenever a given link is being
updated, we must not be attempting to update any of the links within any of the 1×1
plaquettes which contains the given link. Consider the link from the lattice site x to
x+ µ, where µ is one of the four Cartesian unit vectors x̂, ŷ, ẑ, or t̂. We see then that
the plaquette in Fig. 2.2 forms a “staple” consisting of three links in the µ-ν plane
which is attached to the link of interest Uµ(x). [Note that we are sometimes using x
as a shorthand notation for the space-time lattice point xµ ≡ (x, y, z, t) as well as for
the x-coordinate on the x̂ axis. The meaning should be clear from the context.] We
could equally well consider the plaquette and staple below the link Uµ(x) in the figure,
which also lies in the µ-ν plane. In addition, for a given Cartesian direction µ, there
are three possible choices for ν, i.e., there are three orthogonal planes which contain
the link and two staples per plane.

^

x

x

x+2

y+2

y+1

y

x

y

^

^
^ ^

^

^

Figure 4.1: Checkerboard masking as seen in an x̂–ŷ plane of the lat-
tice when using the standard Wilson action. The highlighted links with
arrows can be updated simultaneously.

Let us consider, for example, all of the links in the x̂-ŷ plane which are oriented
in the x̂ direction. We can see from Fig. 4.1 that we can choose a “checkerboard” of
such links that can be updated at the same time without interfering with each other.
These links are indicated in the figure as highlighted links with arrows. It is easy to see
that none of the links to be updated lie in any of the staples for the other links to be
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updated and that exactly half of the x̂-oriented links in this plane can be simultaneously
updated at one time.

We have identified one of the lattice sites in Fig. 4.1 as the site x. If the link variable
Ux̂(x) is to be updated then from Fig. 4.1, it is observed that the link variables in the
x̂ direction that can be simultaneously updated are Ux̂(x+ 2x̂), Ux̂(x+ 4x̂) and so on.
So every second link along the x̂ direction can be updated at the same time. Now let
us consider stepping in the ŷ direction. We again see that every second link in that
direction can be simultaneously updated. By symmetry the same must also be true for
the ẑ and t̂ directions as depicted in Fig. 2.3, where we have used a broken dash-dot
line to try to indicate the fourth dimension (i.e., for the links that lie in the x̂–t̂ plane).
We see that for the link pointing in the x̂ direction, the plaquettes (and staples) in
the x̂–ŷ, x̂–ẑ, x̂–t̂ planes are all related by simple rotations about the link. Thus we
see that we have now built up a four-dimensional mask for determining which links
pointing in the x̂ direction can be simultaneously updated.

Let us introduce some convenient shorthand notation. If for a given link pointing
in the direction µ, we must take n steps in the direction ν before reaching the next
updatable link pointing in the direction µ, we will use the notation µ : ν ∼ nν. For
our checkerboard masking we see that for a link pointing in the direction x̂ we have to
take two steps in each of the Cartesian directions before reaching the next updatable
link. Hence we write

x̂ : x̂ ∼ 2x̂ , ŷ ∼ 2ŷ , ẑ ∼ 2ẑ and t̂ ∼ 2t̂. (4.18)

We immediately see that this is also true for links oriented in the ŷ, ẑ, and t̂ directions
so that

ŷ : x̂ ∼ 2x̂ , ŷ ∼ 2ŷ , ẑ ∼ 2ẑ and t̂ ∼ 2t̂, (4.19)

ẑ : x̂ ∼ 2x̂ , ŷ ∼ 2ŷ , ẑ ∼ 2ẑ and t̂ ∼ 2t̂, (4.20)

t̂ : x̂ ∼ 2x̂ , ŷ ∼ 2ŷ , ẑ ∼ 2ẑ and t̂ ∼ 2t̂. (4.21)

Finally, note that when we wish to update all of the links pointing in any one of
the four Cartesian directions, say µ, we need only two four-dimensional masks. This
is because exactly half of the µ-oriented links across the entire lattice are considered
in each four-dimensional mask. To appreciate this we simply note that for any one of
the Cartesian directions one mask can be turned into the checkerboard complement
mask for that direction by shifting the mask by one step in any Cartesian direction, (see
Fig. 4.1). So to update all of the links on the lattice we need a total of 8 four-dimensional
masks, i.e., 2 masks for each of the four Cartesian directions. In other words, no matter
how many nodes we have available on our parallel computing architecture a full lattice
updating sweep will require 8 serial masked sweeps to complete with a nearest neighbour
action (such as the Wilson action) and checkerboard masking. This is the conventional
procedure for the standard Wilson action in lattice QCD studies. In closing this section
on the standard Wilson action we observe that there is an alternative and equally good
“linear” masking for this case.

Linear Masking

As an alternative approach to the checker board masking described in Sec. 4.2.2, one
could partition the links over the lattice in a linear fashion as shown in Fig. 4.2. If the
link variable of interest is Ux̂(x) then the next possible link variable in the x̂ direction
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Figure 4.2: Linear masking of the lattice when using standard Wilson
action. The highlighted arrows represents the link variable that can be
updated simultaneously.

which can be updated is the Ux̂(x+ x̂) link and then the Ux̂(x+2x̂) and so on. We see
that all the links on the x̂ line can be updated at the same time, since none of these
links are contained in the 1 × 1 plaquettes for the other links in the line. Hence we
have x̂ : x̂ ∼ 1x̂. Now looking in the ŷ direction, we realize that we cannot touch the
Ux̂(x+ ŷ) link because it is part of the Wilson loop containing the link variable Ux̂(x)
which is being updated simultaneously. However, the links Ux̂(x+2ŷ), Ux̂(x+4ŷ), etc.
can be updated. Consequently, we have x̂ : ŷ ∼ 2ŷ and similarly for steps in the ẑ and
t̂ directions. For a link variable pointing in the x̂ direction we then have that

x̂ : x̂ ∼ 1x̂ , ŷ ∼ 2ŷ , ẑ ∼ 2ẑ and t̂ ∼ 2t̂. (4.22)

When the links to be updated are pointing in the other three directions we have

ŷ : x̂ ∼ 2x̂ , ŷ ∼ 1ŷ , ẑ ∼ 2ẑ and t̂ ∼ 2t̂, (4.23)

ẑ : x̂ ∼ 2x̂ , ŷ ∼ 2ŷ , ẑ ∼ 1ẑ and t̂ ∼ 2t̂, (4.24)

t̂ : x̂ ∼ 2x̂ , ŷ ∼ 2ŷ , ẑ ∼ 2ẑ and t̂ ∼ 1t̂, (4.25)

for the ŷ, ẑ and t̂ directions respectively.

Again, we see that there are two complementary linear masks for links pointing in
any given Cartesian direction µ. One mask can be obtained from the other by a shift of
one step in any of the three Cartesian directions orthogonal to µ as can be appreciated
from Fig. 4.2. Thus this linear masking is equally as efficient as the checkerboard
masking of the previous section, since there are 2 masks for each of the 4 Cartesian
directions giving a total of 8 masks.

The computer code implementing the above method may be found in Appendix E.1.
Both the linear and checker board are implemented. During our production runs, the
checker board was used.

The mask is setup as a six dimensional array. The first four dimensions are just
space–time. The fifth dimension is the Lorentz index, that is the direction in which
the link is pointing towards. Finally the sixth dimension is the number of masks. The
variable nmask was set to sixteen so that it could be accommodated with the rest of
the program. This routine gets only called once during the execution of the program.
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4.2.3 The Program for the Pseudoheat Bath Algorithm

The routine that implements the pseudoheat bath algorithm is called pseudoheat.fcm.
This routine can be found in Appendix E.2.

The algorithm tells us that only a0 undergoes an accept/reject step, and that the
rest of the 4–vector, aµ, can therefore be randomly generated on S3 ∈ R4. The routine
commences by generating a uniformly distributed array of random numbers. This was
done using the method [19] described in Appendix D.1.

The next step is to calculate the determinant k = |∑6
α=1 Ũα|1/2 where Ũα ≡ { the

product of the three links that interact with the link in question, and there are six
planes}, i.e., staples

Now the task is to update all the links in the lattice according to the mask. To
ensure that the mask does not get corrupted during the procedure, it is copied into a
temporary variable called update. The values of update are all true when imask = 1
and all false when imask = 2. The value of imask is passed into the argument list.

The accept/reject step is performed with a do while. The do while makes sure that
all links are updated at every sweep. A space–time array of random double precision
numbers dimensioned according to the volume of the lattice is stored in the variable
x. The variable x is uniformly distributed within the region exp(−2βk) < x < 1. This
generates a0 which is distributed with exponential weight exp(βka0).

To summarize, the algorithm begins with a trial a0 = 1 + ln(x)/(βk) where x is a
random number uniformly distributed in the region exp(−2βk) < x < 1. To correct
for the factor (1 − a2

0)
1/2 in the probability function P (a0) = (1 − a2

0)
1/2 exp(βka0),

reject this a0 with probability Preject(a0) = 1−√(1− a2
0) (called probrjk) and select a

new trial a0. Repeat this until an a0 is accepted. This a0 is accepted by following the
procedure.

The variable update is initialized with the same value as the mask variable. If
Preject(a0) = 1−√(1 − x2) is true, i.e. if probrjk < y ( y a random number 0 � y � 1
), and if update = .true., which is true, then where ever this condition is true within
the lattice then a0 = x. Otherwise, we have a true with a false which is false which
implies that a0 is not updated. In that case update = update .and. probrjk� random
(that is update −→ .not. update) and we go around the loop to repeat this process
until all the links are updated.

Here is the section of code that performs the accept/reject procedure:

do while( any(update) )

counter = counter + 1

call CMF_random( x )

x = ( 1.0d0 - exp( -2.0d0 * beta * k ) ) * x + exp( -2.0d0 * beta * k )

x = 1.0d0 + log( x ) / ( beta * k )

probrjk = 1.0d0 - sqrt( 1.0d0 - x**2 )

call CMF_random( random )

where( update .and. probrjk < random ) a4vector(:,:,:,:,4) = x(:,:,:,:)

update = ( update .and. probrjk >= random )

end do

This iterative procedure is dependent on the lattice spacing which means that as β in-
creases the probability P (a0) decreases, which implies that Preject(a0) increases. There-
fore more iterations around the do while loop are required.
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Once we have all of the aµ, it is then possible to calculate the link variable Uµ(x) =
a0I + i�a · �σ in a particular direction. Using this randomly generated link variable,

the existing link Uµ(x) is replaced with Uµ(x)−→U ′ = Uµ(x)
(∑6

α=1 Ũα

)†
/k, as in

Eq. (4.12).

4.2.4 The Staples with the C-shifts

The staple is constructed by taking the product of the gauge links around a closed
contour. The multiplication is performed at the level of the gauge group for all space–
time sites. For this program the contour was the standard Wilson loop namely a 1×1,
see Fig. 2.3. I shall postpone this discussion until I come to discuss improved actions
in Chapter 5.2.1.

4.3 Numerical Results for SUc(2)

In Fig. 4.3 and Fig. 4.4, I illustrate the convergence as a function of the iteration
process using two different initial states for two different Monte Carlo procedures: the
Pseudo–heatbath algorithm [20] and the Metropolis algorithm [17]. The first state is
called an ordered state, that is, where all the links are set to the identity (Uµ(x) = I).
The second one is called a random state, where a set of purely random SUc(2) matrices
is attached at each lattice site (see Appendix E.3). Working in various β values, I plot
the average action per plaquette:

P =< S� >, (4.26)

for an 8 × 8 × 8 × 8 lattice. The size of the lattice is totally arbitrary. In fact, an 84

lattice is sufficient to get an overall view of the general behaviour.
In the top half of Fig. 4.3 we see that for the Pseudo–heatbath the points have

disappeared from the graph after the tenth iteration. This is because at that point the
2 × 2 matrices are no longer part of the SUc(2) gauge group. This problem does not
arise with the Metropolis algorithm. The Metropolis algorithm does not perform any
accept/reject on any of the coefficients, aµ, in the link variable, Uµ(x) Eq. (4.3).

In order to fix this problem the generated matrices need to be projected back onto
the SUc(2) gauge group or reuniterized.

4.3.1 Reuniterizing the Links Every n Sweeps

The reunitarization of the SUc(2) matrix is done using the standard row by row or-
thonormalization procedure. The procedure begins by normalizing the first row of the
matrix; then updates the second row by calculating row2 = row2− (row2 · row1)row1;
finally the second row is normalized.

In the top half of Fig. 4.4, we can observe both the evolution of an ordered and a
random initial state, when the links are reuniterized with every sweep. We can see the
system evolves towards its equilibrium.

From the bottom half of the Fig. 4.4 one can observe that it takes longer for the
Metropolis algorithm to converge for a high β value. In fact as shown in Fig 4.4 we
can see that the Metropolis algorithm is ten times slower than the pseudo–heatbath
method.
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Figure 4.3: SUc(2) Gauge Configuration at different β. Pseudo-heatbath
algorithm versus Metropolis algorithm without reunitarizing the links.
Note that the Metropolis algorithm is ten times slower than the Pseudo–
heatbath method.

High β means that we are in the weak regime where the typical quantum fluctuations
are much smaller than in the strong regime ( low β ) where the fluctuations are large.
This means that for high β the Metropolis algorithm spends a great deal of time
generating unrealistic SUc(2) group elements. This effect is expected to be largely
amplified as the number of colours, Nc, is increased. Although the Metropolis algorithm
reaches thermalization about ten times slower than the pseudoheat–bath algorithm, it
is actually possible to use it to generate gauge field configurations in the SUc(2) gauge
group.

These results were obtained on both the CM5 and on an Alpha Workstation. It
takes about 10sec of CPU time per full sweep on the Alpha station, while it takes
about 1sec to 1.5sec on the CM5 with 64–Nodes for the Pseudo-heat bath on this
small lattice. The length of time taken by the Metropolis algorithm for each iteration
is approximately the same as that taken by the Pseudoheat–bath. This is because
there are approximately the same amount of calculations for each full sweep.
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Figure 4.4: SUc(2) Gauge Configuration at different β. Pseudo-heatbath
algorithm versus Metropolis algorithm with a reunitarization scheme.
There we can see that the Metropolis algorithm is slower than the
Pseudo–heatbath method by a factor of ten.
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4.4 The Algorithm for the SUc(3) gauge group.

In this section a method for updating SUc(3) matrices is described. This algorithm
is an extension of the Creutz method [20], mentioned in the previous Sec. 4.1, for
updating the SUc(2) matrices, and could be applied with small programming effort to
any number of colours [21]. It is composed of the following steps

1. Select a sufficiently large subset F of SUc(2) subgroups of SUc(N):

F = {SUc(2)k, k = 1, .., m = N − 1} (4.27)

such that there is no left ideal, i.e. no subset of SUc(N) which is invariant under
left multiplication by F except the unit element and the whole group. In the case
of QCD, where only three colours are necessary, one could choose for the set F a
matrix of the form:

a1 =

(
α1 0
0 1

)
, and a2 =

(
1 0
0 α2

)
, (4.28)

where αk ∈ SUc(2) located at the kth and the (k + 1)th rows and columns.

2. In each step of the iteration the new link variable is obtained by multiplying the
previous value by m = N − 1 matrices (here N = 3 then m = 2) belonging to
the m subgroups SUc(2)k

U ′ = a2a1U, with ak ∈ SUc(2)k=1,2, (4.29)

so that

U ′ = U (m), with U (k) = akU
(k−1) = akak−1..a1U

(0). (4.30)

When k = 0, the link variable is just the initial link, i.e. U (0) = U .

The element ak is chosen at random ( a1 is chosen first, then a2 ) with the measure:

dP (ak) = d(k)ak
exp
(−βS[akU

(k−1)]
)

Zk[U (k−1)]
, (4.31)

where d(k)ak is the Haar measure on SUc(2)k, and the normalization factor Zk[U ] is
defined by:

Zk[U ] =

∫
SUc(2)k

da exp(−βS[aU ]). (4.32)

Note that Zk[U ] is invariant under left multiplication by an element of SUc(2)k, math-
ematically this means that

Zk[bU ] = Zk[U ], if b∈SUc(2)k. (4.33)

Performing the generation of ak consecutively for k = 1, 2, .., m, one obtains U ′ accord-
ing to Eq.(4.30). N. Cabibbo and E. Marinari [21], have proved, using the invariance
properties of the Haar measure under left multiplication and inversion, that the proce-
dure leads to thermalization provided U (k−1) has a Boltzmann distribution, something
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that guarantees detailed balance. We can see that it is indeed the case, if we assume
that U (k−1) has a Boltzmann distribution:

dP (U (k−1)) =
exp
(−βS[U (k−1)]

)
ZN

dU (k−1), (4.34)

with ZN a normalisation factor. Now since U (k) = akU
(k−1), it implies that U (k−1) =

a−1
k U (k). Therefore, the probability density for U (k−1), Eq.(4.34), becomes

dP (U (k−1)) = dP (a−1
k U (k)) =

exp
(−βS[a−1

k U (k)]
)

ZN
dU (k−1). (4.35)

In this way, we can obtain a probability distribution function for the U (k). First we
note that we have,

dP (U (k)) = dP (ak)dP (U (k−1)). (4.36)

Using Eq.(4.31) and Eq.(4.34), the probability distribution for U (k) can then be written
as:

dP (U (k)) =

∫
SUc(2)k

d(k)a
exp
(−βS[U (k)]

)
Zk[a−1U (k)]

exp
(−βS[a−1U (k)]

)
ZN

d(a−1U (k)). (4.37)

From Eq.(4.33) and the properties of the Haar measure:

d(a−1U (k)) = dU (k), and d(k)(a) = d(k)(a−1), (4.38)

it is easily seen that Eq.(4.37) coincides with the Boltzmann measure. So if U (k) has a
Boltzmann distribution, so will U ′. If the action S is identified with the Wilson action
we can write

S[U ] =
∑

�
�eTr(UŨ�) + constant = �eTr(UR) + constant, (4.39)

where R =
∑

� Ũ� arises from the staples depicted in Fig. 2.3. In order to generate
the distribution in Eq.(4.31) for the minimal set F , Eq.(4.27), we note that

S[akU ] = �eTr(akU (k−1)R) = �eTr(αkrk) + terms independent of αk. (4.40)

Here the matrix rk is the 2 × 2 submatrix of the link time staples matrix, U (k−1)R.
This submatrix must have exactly the same block structure as the matrix ak.

We can write:

rk = r0I + i�r · �σ, and αk = α0I + i�α · �σ, (4.41)

so that
�eTr(αkrk) = 2(α0�e(r0) − �α · �e(�r)). (4.42)

Since αµ ∈ R, the real part of r0 and �r participate in the action. The problem reduces
to the need to generate random SUc(2) submatrices αk with a probability distribution
given by:

dP (αk) = δ(α2 − 1) exp

(
− β

N
�eTr(αkrk)

)
d4αk. (4.43)

These are generated using the algorithm described in Sec. 4.1.
To summarize the algorithm as it is coded (see Appendix E.9):
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1. First calculate the staples with some arbitrary links (ordered or random start) in
a particular direction, R.

2. Calculate the link times the staples, U (0)R.

3. Extract the appropriate 2 × 2 submatrix from U (0)R and reform it as a SUc(2)
matrix with rk = r0I + i�r · �σ, with �e(rµ) .

4. Pass this information into the Pseudo-heatbath algorithm to obtain some new
SUc(2) matrix, the α1.

5. Calculate U (1) = a1U
(0), where a1 is as in Eq.(4.28).

6. Repeat step.1 to 5 to calculate the new link, U (2) = a2U
(1).

4.4.1 The Number of SUc(2) subgroups.

The algorithm suggests that a minimum of two SUc(2) subgroups is required to cover
the SUc(3) gauge group. The positions of the entries for these two SUc(2) subgroups
are displayed in the following matrices:

a1 =

(
α1 0
0 1

)
, and a2 =

(
1 0
0 α2

)
. (4.44)

The subgroups α1, α2 ⊆ SUc(2), are generated using the pseudoheat–bath algorithm
described in Section 4.1.

Using cooling methods (the methods are described in subsequent chapters. In
short, the method is designed to remove the short range quantum fluctuation from
the gauge field) it was possible to demonstrate that a gauge field constructed from
two SUc(2) subgroups had a rough nature as opposed to having three diagonal SUc(2)
subgroups. Consequently, the SUc(3) gauge field configurations were constructed using
the following structure:

a1 =

(
α1 0
0 1

)
, a2 =

(
1 0
0 α2

)
, and a3 =

⎛⎝ α11 0 α12

0 1 0
α21 0 α22

⎞⎠ . (4.45)

To further smooth out the gauge field this structure was looped over twice, producing
a gauge field constructed from six SUc(2) subgroups. See Appendix E.9.
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Chapter 5

Improved Actions in the SUc(3)
Gauge Group

In the previous section I described the pseudoheat–bath algorithm in the SUc(2) gauge
group (Section 4.1) and how one can extend the algorithm to SUc(N) (Section 4.4).
These methods were basically applied to the case of a simple 1 × 1 Wilson loop type
action. I now turn to the case of improved actions where additional Wilson loops
are added to construct an action which has smaller discretization errors. The main
motivation behind using an improved action is that these types of action make it
possible to run simulation at a coarser lattice spacing, hence larger volumes, while
keeping the discretization errors well under control.

Over recent years computer power has tremendously increase therefore giving the
possibility to study larger lattice with finer spacing. Not only these kind of simulations
are very costly with respect to time, but also traditional perturbation theory for lattice
QCD starts to fail at distances of order 0.1 fm. The idea was to do a perturbative
expansion of the short–distance lattice quantities in terms of the bare coupling αlat
used in the lattice Lagrangian. This idea was motivated from the fact that the bare
coupling in a cutoff theory is approximately equal to the running coupling evaluated at
the cutoff scale, αs(π/a). This means, in this case, that αlat would be the appropriate
coupling for the quantities dominated by the momenta near the cutoff. The problem
with this idea is that the bare coupling in traditional lattice QCD is much smaller than
an effective coupling at large lattice spacing namely:

αlat = αV (
π

a
) − 4.7α2

V + ...≤1

2
αV (

π

a
), for a≥ 0.1 fm, (5.1)

where αV is an effective coupling defined by the static–quark potential,

VQQ(q)≡− 4πCF
αV (q)

q2
. (5.2)

Consequently the αlat expansion, does not take into account the perturbative effects
correctly and converges poorly [11].

The breakthrough, came in the early 1990’s with the discovery of a trivial modifi-
cation called “Tadpole Improvement”. Tadpole contributions arise from higher powers
of agAµ(x), in the link operator expansion Uµ(x)≈e−iagAµ(x) = 1 − iagAµ(x) + O(a2),
creating extra vertices in the gluon action, as well as generating divergent factors of
O(g2). Consequently the contribution generated by these extra vertices are suppressed
by powers of g2 and not a, this effect turns out to be significantly large. So the best
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way to eliminate these unwanted tadpole contribution is to find a quantity that can be
computed during the simulation time, which is mostly made up of tadpole. The mean
link u0 = (1/3 < �eTrUµν(x) >)1/4, where Uµν(x) is the 1× 1 plaquette. To eliminate
these unwanted contributions divide every lattice link by the mean link:

Uµ(x) −→ Uµ(x)

u0
, such that Uµ(x)−→u0(1 − iagAµ(x)). (5.3)

By making this simple change, the tadpole contributions are largely accounted for and
perturbation theory converges more rapidly.

In the gluonic action the tadpole improved bare coupling, αTI is enhanced by a
factor of 1/u4

0 relative to the αlat in the unimproved theory:

αTI =
αlat
u4

0

. (5.4)

If one expresses αTI in terms of the continuum coupling αV , we find that the tadpole
improved bare coupling is approximately equal to the continuum coupling αV (π/a):

αTI = αV (
π

a
) − 0.5α2

V + ...≈αV (
π

a
). (5.5)

5.1 Gauge Action

The starting point in constructing an improved lattice gauge action is the same as in
the case of the standard Wilson gauge action, Eq. (2.12), in Section 2.1.3. Recall that
the QCD gauge action in continuum Euclidean space–time to be given by

SG =
1

4

∫
d4xFµν(x)Fµν(x). (5.6)

Where Fµν(x) is the usual non–Abelian gauge invariant field strength tensor defined in
Eq. (2.13).

The Gauge action is constructed from the path ordered variable, around some arbi-
trary contour Cµν(x), Eq. (2.15), where the contour integral is evaluated using Stoke’s
Theorem as in Eq. (2.16). The boundaries of the contour integral are determined by
the size of the Wilson loop. The expansion point x0 is located at the centre of the
Wilson loop such that if one is considering the 1× 1 plaquette, for both xµ and xν , we
have −a/2≤xµ≤a/2 similarly for −a/2≤xν≤a/2. Now we would like to insert more
Wilson loops, namely the 2 × 1 and 1 × 2 loops. In this case, the integration bounds
are −a≤xµ≤a and −a/2≤xν≤a/2 for the 2× 1 loop. Similarly for the 1× 2 improved
plaquette we have −a/2≤xµ≤a/2 and −a≤xν≤a. The integration bounds are illus-
trated in Fig. 5.1. So, for the 1× 1 Wilson contour and 2× 1, 1× 2 improved contours
we have respectively the following:∮

1×1

A(x) · dx = a2Fµν(x0) +
a4

24

(
D2
µ +D2

ν

)
Fµν(x0) + O(a6;A3), (5.7)∮

2×1

A(x) · dx = 2a2Fµν(x0) +
a4

12

(
4D2

µ +D2
ν

)
Fµν(x0) + O(a6;A3), (5.8)∮

1×2

A(x) · dx = 2a2Fµν(x0) +
a4

12

(
D2
µ + 4D2

ν

)
Fµν(x0) + O(a6;A3) . (5.9)
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Figure 5.1: The integration contour for the Wilson loops used in a 1× 1
contour and 2×1, 1×2 improved contours. The expansion is done about
x0.

The action is obtained by taking the real part of the trace of Eq. (2.15), hence only
terms of O(g2) will contribute. We therefore need,(∮

1×1

A(x) · dx
)2

= a4F 2
µν(x0) +

a6

12
Fµν(x0)

(
D2
µ +D2

ν

)
Fµν(x0) + O(a8;A3), (5.10)(∮

2×1

A(x) · dx
)2

= 4a4F 2
µν(x0) +

4a6

12
Fµν(x0)

(
4D2

µ +D2
ν

)
Fµν(x0) + O(a8;A3), (5.11)(∮

1×2

A(x) · dx
)2

= 4a4F 2
µν(x0) +

4a6

12
Fµν(x0)

(
D2
µ + 4D2

ν

)
Fµν(x0) + O(a8;A3) . (5.12)

The O(a2) errors generated in the Wilson action, Eq. (2.19), are cancelled out by adding
other rectangular Wilson loops. These loops are illustrated in Fig. 5.1 and 5.2, and

xx
+

Figure 5.2: The staples containing the six elementary rectangular pla-
quettes with base at x.

have an expansion expressed by Eq. (5.11) for the 2×1 Wilson loop which we denote
by Rµν(x) and Eq. (5.12) for the 1×2 Wilson denoted Rνµ(x). These rectangular loops
may be combined to obtain a lattice action which is accurate up to O(a4), namely

1

2
(Rµν(x) +Rνµ(x)) =

1

2!

((∮
2×1

A(x) · dx
)2

+

(∮
1×2

A(x) · dx
)2
)

(5.13)

= 4a4F 2
µν(x0) +

20a6

24
Fµν(x0)

(
D2
µ +D2

ν

)
Fµν(x0) + O(a8;A3) .

Using Fig. 5.1, we can write down an expression in terms of link variables which has
an expansion of the form of Eq. (5.13):

Uµ(x)Σ̃rect(x) = Uµ(x)Uν(x+ µ̂)Uν(x+ ν̂ + µ̂)U †
µ(x+ 2ν̂)U †

ν(x+ ν̂)U †
ν(x)

+ Uµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U †
µ(x+ µ̂+ ν̂)U †

µ(x+ ν̂)U †
ν (x).(5.14)
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Of course there are no mathematical restriction on the number of Wilson loops that one
can assemble together, the problem with this approach is that the computational time
required to calculate these loop considerably increases. Now by adding the squares
and rectangles in the proper way with the correct factors, one finds that the improved
classical lattice action is accurate up to O(a4) [22, 23],

SImp
G (x) = −β0

(∑
x,µ>ν

5

3
Pµν(x) − 1

12
(Rµν(x) +Rνµ(x))

)
cont−→

∫
d4x
∑
µ,ν

1

2
TrF 2

µν(x) + O(a4), (5.15)

for β0 = 6/g2. The quantum version of the gluonic action is mainly obtained by adding
the tadpole improvement. The tree–level O(a2)–improved action is then defined as,

SG =
5β

3

∑
sq

�eTr(1 − Uµ(x)Σ̃sq(x)) − β

12u2
0

∑
rect

�eTr(1 − Uµ(x)Σ̃rect(x)), (5.16)

where the operators Σ̃sq(x) and Σ̃rect(x) are defined as follows,

Σ̃sq(x) = Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x), and Pµν(x) = Uµ(x)Σ̃sq(x), (5.17)

Σ̃rect(x) = Uν(x+ µ̂)Uν(x+ ν̂ + µ̂)U †
µ(x+ 2ν̂)U †

ν(x+ ν̂)U †
ν(x)

+ Uµ(x+ µ̂)Uν(x+ 2µ̂)U †
µ(x+ µ̂+ ν̂)U †

µ(x+ ν̂)U †
ν(x). (5.18)

u0 is the tadpole improvement factor that largely corrects for large quantum renormal-
ization of the links. We employ the plaquette measure:

u0 =

(
1

3
�eTr

〈
Σ̃sq(x)

〉) 1
4

. (5.19)

O(g2a2) correction to this action are estimated to be of the order of two to three per-
cent [25]. Note that β0 = 6/g2 differs from the one used in [25, 26, 27]. Multiplication
of β in Eq.(5.16) by a factor of 5/3 reproduces their definition. The u0 factor depends
only on the lattice spacing and u0−→1 as a−→0.

5.2 Code for the improved action in SUc(3)

5.2.1 Factors for the Rectangles and Staples

The implementation of the loop calculation is done using three distinct routines. The
calculation of the staples, Routine. E.6, the 1×1 loops (Routine. E.7) and of the 1×2,
2× 1 loops in Routine. E.8. The subroutine Staples acts as an interface routine which
decides which routines are required in the calculation. The decision is done according
to the action. In the case of the standard Wilson action only the squares will be
required. However, in the case of an improved action both the Squares and Rectangles
routines are required. The calculation of the plaquettes is done first, and this is then
added on to the rectangular contribution with the appropriate coefficients. The idea is
to calculate the contributions one plane at a time and then to amalgamate the results
into a temporary variable for each Lorentz index.
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The Rectangles routine is a continuous repetition of the squares routine. Enlarging
the Wilson loop to a bigger mensuration would require a continuous copy paste of
the link product as it is done in Squares and Rectangles. The only difficulty is to
calculate the correct improvement factors. Rectangles involves the product of five links
while Squares only involve those of three links, and is therefore more computationally
expansive .

The matrix multiplication is done at the SUc(3) level, that is, multiplying the 3×3
complex matrices at all lattice sites simultaneously. To optimize the computation, the
matrix movement (the cshift operations) of the SUc(3) matrices is done outside of the
colour loops. For example the multiplication of Uŷ(x+ x̂)U †

x̂(x+ ŷ) is coded as

tr = 0.0d0

ti = 0.0d0

tsr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)

tsi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)

usqr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)

usqi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)

do ic=1,nc

do jc=1,nc

do kc=1,nc

tr(:,:,:,:,ic,jc) = tr(:,:,:,:,ic,jc) +

& ( tsr(:,:,:,:,ic,kc) * usqr(:,:,:,:,jc,kc) +

& tsi(:,:,:,:,ic,kc) * usqi(:,:,:,:,jc,kc) )

ti(:,:,:,:,ic,jc) = ti(:,:,:,:,ic,jc) +

& ( tsi(:,:,:,:,ic,kc) * usqr(:,:,:,:,jc,kc) -

& tsr(:,:,:,:,ic,kc) * usqi(:,:,:,:,jc,kc) )

end do

end do

end do

This is the most efficient way of multiplying the SUc(3) matrices together.
When the local action is calculated at a given link, the six loops are calculated,

otherwise only the positive loops are considered.

5.2.2 Masking the Lattice When Using Improved Action

In this section, we describe the necessary masking procedure for a first-level improved
action involving 1 × 1 and 1 × 2 Wilson loops. In particular, in this section we are
describing the masking suitable for the improved gauge action of Eq. (5.16), which has
been used extensively by us [53, 63, 28, 29, 30]. Let us again begin by considering the
link variable beginning at some lattice site x and pointing in the x̂ direction, i.e., Ux̂(x).
We now need to consider both Fig. 7.26 for the elementary 1× 1 square plaquette and
Fig. 5.3 for the 1 × 2 rectangular plaquette. In Fig. 5.3 we show all of the 1 × 2
rectangular plaquettes which contain the link Ux̂(x), which is shown as the highlighted
horizontal link in the three parts of this figure. Depicting a four dimensional object
on a flat piece of paper is an artistic challenge and so we have again used a dash–dot
line to indicate links lying in the x̂–t̂ plane. There are three distinguishable ways to
include this link in a 1×2 plaquette (the three parts of the figure) and for each of these
there are two (mirror-image) rectangles per Cartesian plane and four Cartesian planes.
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All links in Figs. 2.3 and 5.3 with arrows (other than the link Ux̂(x) itself) must be
omitted from the mask when updating this link with our improved action. We see that
there are many excluded links.

x
+ +

x x

Figure 5.3: The set of all possible 1 × 2 plaquettes containing the link
Ux̂(x). The dashed-dotted line is to be understood as being in the x̂–t̂
plane.

x̂

x

ŷ

Figure 5.4: The highlighted links with arrows are the ones that can be
simultaneously updated for an action containing both 1 × 1 and 1 × 2
plaquettes.

In Fig. 5.4 we show which links can be simultaneously updated with the link Ux̂(x).
We can immediately write down by inspection from this figure that

x̂ : x̂ ∼ 2x̂ , ŷ ∼ 3ŷ , ẑ ∼ 3ẑ and t̂ ∼ 3t̂ . (5.20)

This follows since the ẑ and t̂ cases are identical to the ŷ case for this x̂–oriented link.
The generalization to the other orientations of the links to be updated is straightforward
by symmetry

ŷ : x̂ ∼ 3x̂ , ŷ ∼ 2ŷ , ẑ ∼ 3ẑ and t̂ ∼ 3t̂, (5.21)

ẑ : x̂ ∼ 3x̂ , ŷ ∼ 3ŷ , ẑ ∼ 2ẑ and t̂ ∼ 3t̂, (5.22)

t̂ : x̂ ∼ 3x̂ , ŷ ∼ 3ŷ , ẑ ∼ 3ẑ and t̂ ∼ 2t̂ . (5.23)
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Let us return to the particular case of the masking for x̂-oriented links. From
Eq. (5.20) we see that there is symmetry between the ŷ, ẑ, and t̂ directions and so we
will begin by constructing suitable masks for any given equal-x hyper-plane, i.e., for
the three dimensional space spanned by the unit vectors ŷ, ẑ, and t̂.

Before attempting this, let us first consider Fig. 5.4 and extend this to three di-
mensions by imagining that the ẑ-axis is pointing directly out from the page. We shall
temporarily neglect the t̂ direction, which is equivalent to simply taking a slice of the
four-dimensional lattice with the same value of t, (i.e., an equal-t hyper-plane). Now
let us view this three-dimensional lattice by looking along the x̂-axis at one particular
equal-x plane. We will then be presented with end-views of updatable links in the ŷ–ẑ
plane. For every fixed value of z there are three different masks needed for y and vice
versa. Also, there is no restriction on simultaneously updating diagonally shifted links,
since we are only considering planar actions at this point.

Let’s suppose now that we rotate the set of axes such that the entire x̂ ∈ [1, nx]
line is just a point going into and out of the page such as in Fig.(5.5). Doing this,

Plane 3.

yhatt

t+1

t+2

zhat
x,y,z,t

Plane 1.

Plane 2.

Figure 5.5: Rotating the two dimensional plane onto the x̂ axis to give
visual access to the other dimensions.

enables one to visually access the hidden fourth dimension, and see which link that
can be updated. Since ŷ ∼ 3ŷ, ẑ ∼ 3ẑ and t̂ ∼ 3t̂, this implies that the step number
n equals to three, we therefore have three different planes, starting at t̂ and finishing
at t̂+ 2, with three distinct points in each plane. Each filled black circle corresponds
to a link that can be updated simultaneously. From Fig.(5.5), we see that any point
along just the ẑ axis, that is, points that are just to the right of the (x̂, ŷ, ẑ, t̂) point,
cannot be updated as well as any of the points along the ŷ axis (because of ŷ ∼ 3ŷ and
ẑ ∼ 3ẑ). On the other hand the link positioned at (x̂, ŷ+1, ẑ+1, t̂) and (x̂, ŷ+2, ẑ+2, t̂)
can themselves be updated. The combination of these three points will constitute the
first t̂ plane. The second plane, the t̂+ 1 plane, is obtained by incrementing over the
ẑ direction in relation to the (x̂, ŷ, ẑ, t̂) point by one unit to the right. The starting
point is therefore (x̂, ŷ, ẑ + 1, t̂). Eliminating the appropriate points according to the
rule defined in Eq.(5.20), tells us that the next two allowed points in that plane are:
(x̂, ŷ + 1, ẑ + 2, t̂) and (x̂, ŷ + 2, ẑ, t̂). Similarly for the third plane, namely the t̂ + 2
plane. The set of these three planes, consisting of the combination of three points over
three planes (making up a total of nine points), covering every points of the 3 × 3
lattice sites make up the first mask. It is not difficult to see that we can cover all of
the nine lattice links that need to be updated with three orthogonal masks as shown
in Fig. 5.6. In this figure x-oriented links which can be updated at the same time are
indicated by a solid dot. Note that each of these masks is related by a diagonal shift
of the nine-point lattice “window”.

We can now also extend this thinking to include the t direction, by stacking the
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Figure 5.6: Schematic illustration of the lattice masking when using the
1 × 2 plaquette improved action.
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Plane 1.

Plane 2.
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x,y+2,z+1,t+2
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Figure 5.7: Illustration of the cyclic plane rotation in the improved mask-
ing.

three two-dimensional y–z masks on top of each other as shown in Fig. 5.7. We must
stack the planes so that when viewed along any of the three axes the solid dots in
any one Cartesian planes always have the appearance of one of the planes in Fig. 5.6.
We see that this can be achieved in three ways by the stacking in Fig. 5.7 and its
two cyclic permutations. These three three-dimensional masks when summed give the
identity (i.e., the sum includes all points) and are orthogonal to each other (i.e., the
sum includes all points only once).

We can now give a simple geometrical picture of what we are doing, which will
simplify the generalization that we give in the next section. For x̂-oriented links, the
directions ŷ, ẑ, and t̂ directions are all symmetrical and each direction requires a step
of 3 to reach the next updatable link. Hence, we need to construct a complete set of
orthogonal masks in three dimensions for a 3 × 3 × 3 cube, where no two points in
the cube lie on the same Cartesian axis (i.e., only diagonally related points). This is
simple to do. Let us consider the bottom plane (i.e., plane 1) of Fig. 5.7 and connect
the three solid dots by a diagonal line. We see that plane 2 is obtained from plane 1
by a diagonal shift of this line by one diagonal half-step, and similarly for plane 3. In
visualizing this it may help to imagine surrounding the cube by many identical copies
of itself and moving the diagonal line through diagonal half-steps across all of these
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cubes simultaneously. All three three-dimensional masks are obtained in the same way
but start with plane 1, plane 2, and plane 3 respectively.

So for the x̂-oriented links we need 3 masks for each equal-x hyper-plane (i.e., a
three-volume here) and we have two independent equal-x hyper-planes, giving a total
of 6 masks for each Cartesian direction for the link orientation. Since there are 4
orientations, then there is a total of 24 masks needed for an action containing both
1×1 and 1×2 plaquettes. Thus a single lattice sweep must take at least 24 sequential
serial calculations even on the most parallel computing architecture.

The masking procedure outlined here for this action can only be implemented when
the number of lattice points in each dimension is a multiple of three. Inspection of
Fig. 5.7 reveals the periodicity of three is required to maintain separation of links at
the boundary. Since simulations are usually carried out on lattices with even numbered
sides, this restricts the length of the lattice sides to multiples of six. Fortunately, mul-
tiples of four are easily obtained as described in the next section. Moreover, Sec. 5.2.4
reports a high-performance mask for this action with a periodicity of four.

It is interesting to note that when implementing this masking procedure on the
CM-5 we achieved optimum performance by calculating the updates for all links on
the lattice and by then only implementing those updates that were appropriate for
the particular mask being used at the time. In other words for the lattices that we
have studied so far on the CM-5 it was more efficient to calculate link updates that
were never used, than it was to split the masked links over the various processor nodes
and update only these masked links. This was due to the fact that there was a large
overhead of communication time in assigning the masked links across the processors.
The point of this observation is that the optimal use of the masks will in general depend
on the details of the parallel computing architecture being used.

5.2.3 Generalization of the Masking Procedure for an n × m
Wilson Loop

We can now generalize the algorithm presented in Sec. 5.2.2 for arbitrarily improved
planar actions. Let us begin as before by considering the update of links oriented in the
x̂-direction. Let us assume that we have an action with n×m links where the n refers
to the x̂ direction and the m refers to the ŷ, ẑ, t̂ directions. We will eventually argue
that only the nmax × nmax case, where nmax is the greater of n and m, is necessary in
the general case. As shown in Fig. 5.8 the nearest simultaneously updatable links are
separated by n steps in the x̂ direction and (m+ 1) steps in the other three Cartesian
directions.

Hence we see that we can write in our notation for the four Cartesian orientations
of the links that

x̂ : x̂ ∼ nx̂ , ŷ ∼ (m+ 1)ŷ , ẑ ∼ (m+ 1)ẑ and t̂ ∼ (m+ 1)t̂, (5.24)

ŷ : x̂ ∼ (m+ 1)x̂ , ŷ ∼ nŷ , ẑ ∼ (m+ 1)ẑ and t̂ ∼ (m+ 1)t̂, (5.25)

ẑ : x̂ ∼ (m+ 1)x̂ , ŷ ∼ (m+ 1)ŷ , ẑ ∼ nẑ and t̂ ∼ (m+ 1)t̂, (5.26)

t̂ : x̂ ∼ (m+ 1)x̂ , ŷ ∼ (m+ 1)ŷ , ẑ ∼ (m+ 1)ẑ and t̂ ∼ nt̂ . (5.27)

We can now follow the arguments of the previous section. Let us consider a fixed-x
hyper-plane (i.e., three-volume). In place of a 3× 3 three-volume we will now need an
(m+ 1) × (m+ 1) × (m+ 1) three-volume. Furthermore, we will need a complete set
of orthogonal and diagonal masks for this. Let us again look along the x̂ direction at
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Figure 5.8: The highlighted links with arrows are the ones that can be
simultaneously updated for an action containing up to n×m plaquettes,
where here n refers to the x̂ direction and m applies to the other three
Cartesian directions.

a fixed t plane for now, i.e., we are looking at a ŷ–ẑ plane as in Fig. 5.9. Let us refer
to the (m+ 1) × (m+ 1) two-dimensional plane with the updatable links (solid dots)
along the diagonal as plane 1. Then we can generate the other m two-dimensional
planes by diagonal half-shifts as before as depicted in Figs. 5.10 and 5.11. We can then
sequentially stack these planes in the t̂ direction as before to form the first of the three-
dimensional masks. The other m three-dimensional masks are then generated from
this first mask by the cyclic permutations of the m + 1 planes as in Sec. 5.2.2. Hence
we have generated the desired complete set of (m + 1) orthogonal three-dimensional
diagonal masks.

Subplane 1.

Plane 1.

x,y,z,t
t

z+1 z+2 z+3 z+m-3z z+m-2 z+m-1 z+m

x,y,z+m,tx,y,z+m-3,t
y

y+1

y+2

y+3

y+m-3

y+m-2

y+m-1

y+m

Subplane 2.

Subplane 3.

Subplane 4.

Figure 5.9: Plane 1 with the (m+1) updatable sites on the main diagonal
of the ŷ−ẑ plane.

So for each fixed x-hyper-plane (i.e., three volume) we need (m+1) masks. We will
need such a set of masks for the n values of x. The general result is that for updating
the links oriented in the x̂ direction we need a total of n× (m+ 1) masks and we have
seen that the construction of these masks is straightforward. The construction of the
masks for the other Cartesian orientations of the links proceeds identically. This total
number of masks is nmask = 4×n×(m+1). The periodicity of the mask is governed by
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Figure 5.10: Plane 2.
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Figure 5.11: Plane 3.

the last factor, (m+1), and the lengths of the lattice dimensions must be a multiple of
this number. The reason for this is that if this were not the case then the imposition
of the necessary periodic boundary conditions would cause link collisions, where a link
being updated uses one or more other links which are simultaneously being updated.

Any improved lattice action of physical interest must be both Z4-symmetric (i.e.,
symmetric under the arbitrary interchange of the four Cartesian directions) and trans-
lationally invariant. Thus for such actions every link will find itself occurring in every
possible position for every plaquette in the improved action. We then see, as we did
in Sec. 5.2.2 and Fig. 5.3, that the number of steps needed in each direction is deter-
mined by the longest plaquette side appearing in the action. Let us denote the longest
plaquette side appearing in the action as nmax. Then we see that the number of steps
needed in the various Cartesian directions is given by

x̂ : x̂ ∼ nmaxx̂ , ŷ ∼ (nmax + 1)ŷ , ẑ ∼ (nmax + 1)ẑ and t̂ ∼ (nmax + 1)t̂,

ŷ : x̂ ∼ (nmax + 1)x̂ , ŷ ∼ nmaxŷ , ẑ ∼ (nmax + 1)ẑ and t̂ ∼ (nmax + 1)t̂,

ẑ : x̂ ∼ (nmax + 1)x̂ , ŷ ∼ (nmax + 1)ŷ , ẑ ∼ nmaxẑ and t̂ ∼ (nmax + 1)t̂,

t̂ : x̂ ∼ (nmax + 1)x̂ , ŷ ∼ (nmax + 1)ŷ , ẑ ∼ (nmax + 1)ẑ and t̂ ∼ nmaxt̂ .

Hence the number of masks in general for an improved action will then be given by

nmask = 4 × nmax × (nmax + 1), (5.28)

and the lattice will need the length in each dimension to be an integral multiple of
(nmax + 1).
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It is useful to note that the linear masking for the standard Wilson action is the one
that is extended initially in Sec. 5.2.2 and is subsequently generalized in this section.
For the standard Wilson action (i.e., 1 × 1 plaquettes only) we see that nmax = 1 and
hence nmask = 4 × 1 × 2 = 8 as we found for the linear (and checkerboard) mask. For
the improved action that we have studied (i.e., 1 × 1 and 1 × 2 plaquettes) we have
nmax = 2 and hence nmask = 4 × 2 × 3 = 24 or 6 masks per link direction as found in
Sec. 5.2.2. However, this way of proceeding for the plaquette plus rectangle improved
action would require each lattice dimension be a multiple of (nmax + 1) = 3, but since
we also typically want our lattices to have even lengths then that means each side of
the lattice would need to be a multiple of 6 in length. Since the result in Eq. (5.28)
is a lower bound, we can of course always choose to enlarge the period of our masking
by choosing nmax + 2 for the last factor in Eq. 5.28 rather than nmax + 1. This will
still ensure that no link collisions occur. For example, for the plaquette plus rectangle
improved action we can use (nmax + 2) = 4 instead of (nmax + 1) = 3 in Eq. (5.28),
so that any lattice lengths which are multiples of 4 become available at the cost of
requiring 32 masks rather than 24. Fortunately, for this case a more efficient mask can
be realized and will be presented in the next section.

5.2.4 Non-planar Considerations

We have presented a method for identifying links which may be simultaneously updated
during Monte-Carlo updates or cooling sweeps. The generality of the algorithm allows
one to parallelize link updates for planar actions of any degree of non locality. In
this section we extend this analysis to a few special cases of actions in which out-of-
plane considerations are necessary. Both cases are centred around the plaquette plus
rectangle action of Eq. (5.16) in which 1 × 1 and 1 × 2 Wilson loops are considered in
the action. Such actions dominate current improved gauge action analyses.

In Sec. 5.2.2 we illustrated how such an action can be masked through the con-
sideration of an elementary 3 × 3 × 3 cube in which one-third of the links may be
simultaneously updated. However, only every second link in the direction of the links
is updated simultaneously as illustrated in Fig. 5.4. Hence six masks per link direction
are required.

Here we consider an alternative masking specialized to the 1 × 1 and 1 × 2 Wilson
loop actions. Fig. 5.12 illustrates the manner in which these Wilson loops may be
nested, such that one need not restrict the mask to every second link in the direction
of the links being updated. This technique will reduce the number of masks by a factor
of two, at the expense of considering an elementary 4×4×4 cube in which one-quarter
of the links may be simultaneously updated. Fig. 5.13 displays the four planes to be
cycled through in which the links to be updated simultaneously are indicated by the
solid dot. Hence only four masks per link direction are required. Moreover, the lattice
dimensions (usually even numbers) can now be multiples of four as opposed to six.

The out-of-plane considerations required for the nested action are also indicated in
Fig. 5.12. Hence it becomes apparent that not only the three links at (x, y+1), (x, y+2),
and (x, y+3), be avoided, but also the links two-steps in a direction orthogonal to the
link direction and one step in a third direction (similar to moves of a Knight on a chess
board) must be avoided.

Inspection of the four planes to be cycled through in the elementary 4× 4× 4 cube
displayed in Fig. 5.13 indicates that such Knight moves are already avoided in this
mask. However, it also becomes clear that the ordering of the planes is crucial. For

48



x+1,y+2

x,y

Figure 5.12: Two elementary cells for an action involving 1×1 and 1×2
Wilson loops are nested together such that one need not restrict the mask
to every second link in the direction of the links being updated. The
links with the positions labelled are the ones that can be simultaneously
updated. The out of plane plaquette-plus-rectangle illustrates additional
links that cannot be simultaneously updated.

ŷ

Plane 4.
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Figure 5.13: The four planes to be cycled through in the elementary
4× 4× 4 cube. One-quarter of the links may be updated simultaneously
and are indicated by the solid dot. The circled sites are an example of
the sites surviving when the out of plane “chair” or “parallelogram” link
paths are included in the action.

example interchanging the positions of planes 2 and 3 would cause “link collisions”
within the nested mask.

Finally we consider non-planar actions in which one step out of the plane of the
1 × 1 and 1 × 2 Wilson loops is required. Such non-planar paths are introduced to
eliminate small but finite O(g2a2) errors where g is the gauge coupling constant. The
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Table 5.1: Parameters used in the fit of a(β). The conversion of the βLee definition is
done through β = (3/5)βLee.

Action β Volume βLee a fm u4
0 Physical Volume fm

Improved 3.75 63 × 12 6.25 0.40(3) 0.4423 2.403 × 4.80
Improved 4.08 83 × 14 6.80 0.27(1) 0.5372 2.163 × 3.78
Improved 4.20 103 × 16 7.00 0.24(1) 0.5658 2.403 × 3.84

six-link paths commonly referred to as the “chair” and “parallelogram” [25] introduce
a link parallel to that being updated which is one-step orthogonal to the link direction
and one step in a third direction.

Inspection of Fig. 5.13 indicates that such 1 by 1 moves eliminates fully two of the
four planes and half of the parallel sites on each surviving plane. An example of four
of the sites which may still be updated in parallel are indicated by the circled sites in
Fig. 5.13. As a result there are now 16 masks required per link direction instead of
4. Now a total of 64 masks is required for this action which is still regarded as rather
local.

The introduction of even the most local non-planar paths can have a serious detri-
mental effect on the level of parallelism that is possible. It is easy to see that one
can rapidly eliminate all sites in an elementary n× n× n cube with non-planar loops,
leading to n3 masks per link direction.

5.3 Estimating the Lattice Spacing

Before starting any sort of simulation it is necessary to have an idea on the scale one is
working on. The lattice spacing as a function of the coupling β can be estimated from
the two loop perturbative β function expressing the lattice spacing a as a function of
β is

a(β) =
1

Λ

(
12π

11N α

)51/121

exp

(
− 6π

11N α

)
, (5.29)

where N = 3 for SUc(3) and

α0 =
g2

0

4π
=

2N

4π

1

β0
. (5.30)

One must be careful in making contact with the correct definition of β as defined
above (β0 = 2N/g2

0) when considering the plaquette plus rectangle action. I found that
a direct fit from Eq. (5.29) worked best in estimating the lattice spacing. Using data
already published in Ref. [25, 26, 27] and taking note of the fact that a multiplication
of β in Eq.(5.16) by a factor of 5/3 reproduces their definition. I was able to obtain
a fit for the lattice spacing. The details of the parameter used in the fit are shown in
Table 5.1.

The single parameter fit on the scalar variable Λ, was carried out using Eqs. (5.30)
and (5.29), which lead to

a(β) =
1

Λ

(
24π2β

11N2
c

)51/121

exp

(
−12π2β

11N2
c

)
. (5.31)
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Figure 5.14: Graph to extract the running coupling using a fitted
curve: the 2 loop perturbative β function. The fitted value for Λ is
Λ = 0.0719152 fm−1.

The resulting fit for Λ gave a value of Λ = 0.0719152 fm−1, and shown in Fig. 5.14.
It is now possible to use this fitted curve to get an estimate for the lattice spacing

as a function of the lattice coupling β. So for example, a lattice spacing of 0.2 fm would
estimate a coupling of β = 4.38.

This way of estimating the lattice spacing may not be very accurate, in fact an
explicit calculation using Wilson loops to extract the spacing and to calculate the
static quark potential reports a value at β = 4.38 of a = 0.165(2) [28]. Nevertheless, it
is a good way to get a first estimate on the spacing.
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Chapter 6

Anisotropic Lattices with Standard
Wilson and Improved Action

One of the advantages of anisotropic lattices with temporal lattice spacing at that are
smaller than spatial lattice spacing as, is that they allow one to extract results on
coarse lattice as if one was working on fine ones. Such lattices are also useful in the
determination of signal to noise ratio correlation functions calculated in Monte Carlo
simulations of hadrons. This is because they give more time slices with an accurate
signal.

6.1 Wilson Action

6.1.1 With Time Improvement

The simplest case of anisotropic gauge action is the anisotropic version of the standard
Wilson gauge action described in Sec. 2.1.3. For this action no coefficients have to be
tuned to restore space–time exchange symmetry up to O(a2). An important step in
any action is to be able to take the proper continuum limit. One then has to know the
true or renormalized anisotropy ξ = as/at as a function of the bare parameters.

The Anisotropic Wilson action for SUc(N) is written as

SAni
Wil =

β

N

∑
x,s>s′

1

ξ0
�eTr(1 − U sq

ss′(x)) + ξ0�eTr(1 − U sq
0s (x)). (6.1)

where the coupling is still the bare coupling β = 6/g2. Here the link operator, Pµν(x), is
the 1×1 plaquette operator defined in Eq. (2.2). At the classical level the renormalized
anisotropy ξ is proportional to the ratio of the two lattice spacing, the temporal and
spatial spacing i.e. ξ = as/at. It was suggested in Ref. [31] that the renormalized
anisotropy, ξ, may be related to the bare anisotropy, ξ0 using a method based on
the ratios of Wilson loops. Here we use mean field improvement terms to get a direct
estimate of the renormalized anisotropy. We then rewrite the Anisotropic Wilson action
Eq. (6.1) as

SAni
Wil =

β

N u4
s

∑
x,s>s′

1

ξ0
�eTr(1 − U sq

ss′(x)) + ξ0�eTr(1 − U sq
0s (x)), (6.2)

In order to reproduce the results in Section 4.4 and 5 just set the renormalized
anisotropy ξ = as/at to 1.
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6.2 Improved Action

6.2.1 With Time Improvement

We saw in Chapter 5 that perturbation theory by itself does not reliably determine the
coupling in the improved action. It is known that a superior estimate of the coupling is
obtained when perturbation theory is combined with mean field improvement. Mean
field theory is introduced when the gauge links variables are renormalized by the mean
field factor. In the spatial direction Uj(x) −→ Uj(x)/us and in the temporal direction
Ut(x) −→ Ut(x)/ut, where us and ut are the spatial and temporal mean links factors:

us =

〈
1

Nc

�eTrUsp(x)

〉 1
4

, (6.3)

ut =

〈
1
Nc
�eTrUtp(x)

〉 1
2

us
. (6.4)

The power of the mean link increases by the number of links the Wilson loop is con-
nected by. The anisotropic version of the gauge action defined in Eq. (5.1) is given
by [11, 33]

SI [U ] = β

{
5

3ξu4
s

Wsp +
5ξ

3u2
su

2
t

Wtp − 1

12ξ2u6
s

Wsr − ξ

12u4
su

2
t

Wstr − ξ

12u2
su

4
t

Wttr

}
. (6.5)

Where β = 6/g2 is the usual coupling and Wc = 1/3
∑

c�eTr(1 − Uc) are the usual
contours. Usp denotes the spatial plaquettes, Utp refers to the temporal plaquette, Usr

expresses the product of link variables about a planar 2×1 spatial rectangular loop, Ustr

indicates the short temporal rectangles (one temporal, two spatial) and Uttr refers to
all temporal rectangles (two temporal spacing one spatial). When the temporal lattice
spacing, at, is significantly smaller than the spacial one, as, we expect the temporal
mean link ut to be very close to 1 or close to its continuum value. It is then common
practice to set the temporal mean link to its continuum value ut = 1 and only update
us.

6.2.2 Without Time Improvement

It was pointed out [33] that the gluon spectrum calculated from Eq. (6.5) had some
high energy states arising from Wttr term, which spans two time slices. These modes
occur at energies of order 2/at. although they have little effect on the gluon spectrum,
they could cause problems when applying the variational method to extract masses
from short time correlation functions.

These modes may be cancelled out by not doing any time improvement, i.e., “re-
laxing” the time improvement. The improved anisotropic gauge action then takes the
form

SII [U ] = β

{
5

3ξu4
s

Wsp +
4ξ

3u2
su

2
t

Wtp − 1

12ξu6
s

Wsr − ξ

12ξ2u4
su

2
t

Wstr

}
. (6.6)

Where the contour loops have the same meaning as in Eq. (6.5), explicitly we have

Wsp =
1

3

∑
x

∑
i�=j

�eTr
[
1 − Ui(x)Uj(x+ î)U †

i (x+ ĵ)U †
j (x)

]
,
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Wtp =
1

3

∑
x

∑
i

�eTr
[
1 − Ut(x)Ui(x+ t̂)U †

t (x+ î)U †
i (x)

]
,

Wsr =
1

3

∑
x

∑
i�=j

�eTr
[
1 − Ui(x)Ui(x+ î)Uj(x+ 2̂i)U †

i (x+ î+ ĵ)U †
i (x+ ĵ)U †

j (x)
]
,

Wstr =
1

3

∑
x

∑
i

�eTr
[
1 − Ui(x)Ui(x+ î)Ut(x+ 2̂i)U †

i (x+ î+ t̂)U †
i (x+ t̂)U †

t (x)
]
.

Where x labels the lattice sites and the indices i, j are the spatial indices. This action,
designed for use with the temporal lattice spacing much less that the spacial one, has
O(a4

s, a
2
t , αsa

2
s).

6.3 The Computer Code for the Anisotropic Lat-

tices

I now describe the computer code that implements the generation of gauge field config-
uration for the gauge actions described by Eqs. 6.1, 6.5 and 6.6. The implementation is
done by just modifying the gauge field generator code for the improved action described
in Sects. 4.2 and 5.2. Here I shall describe the key routines in more depth.

The main differences with the isotropic code are the calculations of the staples, the
tadpole improvement factors and few extra switches in the front end of the program.
The masking, the accept/reject steps and the construction of the SUc(3) matrices
remain unchanged.

6.3.1 The Various Switches

The switches are set in the front end of the program, a copy of the code is shown
in Appendix. E.10. The main switches are the coupling constant β, the renormalized
anisotropy ξ, the choice of the action, a switch that decides if time improvement needs
to be done or not (when the switch is turned off, it means that we are calculating
Eq. (6.5) else we are calculating Eq. (6.6)), and two other switches for the tadpole
factors.

The renormalized anisotropy is what sets the scale of the anisotropy. It can be set
to any positive value, however most calculation set the anisotropy from around 3 to
5. The bare anisotropy is usually set as an integer. Once the anisotropy has been set
the value gets passed into other routines. The only time it comes into play is for the
calculation of the Wilson loops. When the time improvement is switched off the time
switch parameter takes a value of 0. In that case the term Wttr appearing in Eq. (6.5)
is not calculated and the factor in front of Wtp (in the squares routine) is set to 4/3,
we are therefore considering Eq. (6.6). Else if the time improvement switch is turned
on the Wttr is calculated and the factor in front Wtp is set to 5/3.

During the thermalization process after each Monte Carlo update (i.e. a full sweep
over the lattice) the tadpole improvement factors are calculated. The tadpole factors
are averaged over the number of intermediate sweeps. The action is then calculated
with the latest tadpole values. The resulting action and averaged mean link values are
reported to an output file.
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6.3.2 The calculation of the Anisotropic Squares and Rectan-

gles

I now describe in more detail the anisotropic routines squares and rectangles, Ap-
pendix E.12 and E.13 respectively. The argument list for both of these routines consist
of the link variables (all lattice arrays like the link variable Uµ(x) are made up of a real
and imaginary part), the staples, the Lorentz index, a variable which acts as a flag if
all the plaquettes around the link variable are to be calculated, the time improvement
switch, the tadpole factors and finally the anisotropic factor.

The link variable is the input variable, and the staples are the variable being cal-
culated. The first step in the routine is to setup a dimension 3 array for each of the
directional indices. This index is passed into the routine by the argument list. This
array will loop over each dimension of the array. The procedure is repeated for each of
the four Lorentz index. The subroutine squares is also used for the calculation of the
tadpole factors. In the case of the spatial tadpole calculation we only need to worry
about the spatial indices. The loop is therefore over just the spatial indices as opposed
to the temporal tadpole where the tadpole is only calculated in the time direction.

The next step is the calculation of the anisotropic factors. These factors need to
be inserted on the right Wilson loop. This is dictated by the action. The rest of the
routines are the same as in the isotropic case, described in Sec. 5.2.1.

6.4 Some Numerical results

Here I show some of the results obtained for the anisotropic action described above.
The idea was to insert the mean field improvement factors in the code and compare it
to the bare anisotropy calculated from the string tension.

6.4.1 Results for the Anisotropic Wilson Gauge Action

In this section I show some results obtained from Eq. (6.1), I then compare the results
with those obtained by Klassen [31]. In Table 6.1 I show some of the results obtained
by Klassen [31] for a handful of small lattices.

ξ βkl η
2.0 5.4 1.2658(184)

5.8 1.1905(92)
3.0 5.5 1.3351(134)

5.6 1.3043(130)
6.3 1.1947(38)

4.0 5.4 1.4126(245)
5.6 1.3374(94)

Table 6.1: Simulation results for the renormalization of the anisotropy, η = ξ/ξ0.
Simulation was done a 163 × 48. The table has been carved from Table I in Ref. [31].

Here we are estimating the renormalized anisotropy η = ξ/ξ0 using the mean field
tadpole factors. So we have η = ut/us. The coupling used in our code is related to the
one defined in Ref. [31] by β = βkl/η

3.
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In Table. 6.2 I report the tadpole factors for one lattice. Taking the ratio of the
two tadpole factors gives ut/us = 1.296. These results should be compared with the
lattice generated at βkl = 5.6 with ξ = 3.0 where the renormalized anisotropy is
estimated to be η = 1.3043(130). We can see a very good agreement between the
two different methods, showing that estimating the renormalised anisotropy with the
tadpole improvement factors gives a result very close to the one calculated using the
Wilson loops.

Table 6.2: Parameters used to generate the anisotropic lattices. The coupling value is
denoted as before by β, ξ is the renormalized anisotropy and the spatial and temporal
tadpole factors are denoted by us and ut respectively.

Action Volume ξ β us ut
Wilson 63 × 30 3.0 2.55 0.7715 1.00

6.4.2 Results for the Peardon and Morningstar Gauge Action

In Table 6.3, I show the results for four different lattices. Three of which were just
used to get a value for the spatial tadpole factor after a small number of sweeps. These
three lattices are compared with the results obtained in [32], (Table I). There I am
comparing their obtained value for the spatial tadpole factor u4

s with the one I get
from my code. For example, if I compare the result for spatial tadpole factor, us,
obtained from the 63 × 30 with a renormalized anisotropy of ξ = 5.0 and a coupling
of β = 1.70, I get us = 0.7369. Taking this value to the fourth power gives a value of
u4
s = 0.2948, compared with a value of u4

s = 0.2951.
I now compare the results obtained from the fourth lattice (123 × 36) which is used

to calculate the renormalized anisotropy. The renormalized anisotropy can be obtained
by taking the ratio of the spacing, namely as/at, and then be compared with the input
anisotropy ξ. Fifty configurations were generated and twenty were analysed to extract
both the temporal and spatial lattice spacing. Taking the ratio of the spacing (as/at),
shown in Tab. 6.3, gives a renormalized anisotropy of as/at� 3.03±0.04 compared with
an input value of exactly 3.0. Similarly for the 123 × 48, using just ten configurations,
the renormalized anisotropy comes out as as/at� 4.00±0.34. The mean field improved
estimate for the renormalized anisotropy is therefore a very good estimate.

1u4
s = 0.295 may be found in Table I of Ref. [32]
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Table 6.3: Parameters used to generate the anisotropic lattices. The coupling value is
denoted as before by β, ξ is the renormalized anisotropy and the spatial and temporal
tadpole factors are denoted by us and ut respectively.

Action Volume ξ β as fm at fm us ut Physical Volume (fm)
Improved 63 × 18 3.0 1.90 - - 0.7636 1.00 -
Improved 63 × 30 5.0 1.70 - - 0.7369 1.00 -
Improved 63 × 30 5.0 1.90 - - 0.7567 1.00 -
Improved 123 × 36 3.0 2.40 0.267(2) 0.088(1) 0.8056 1.00 3.203 × 3.17
Improved 123 × 48 4.0 2.35 0.26(1) 0.065(5) 0.7969 1.00 3.163 × 3.02
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Chapter 7

Cooling and Smearing SUc(3) Gauge
Field configurations

The approximate chiral symmetry of QCD arises from the smallness of the masses of
the u and d quarks. Typical strong interaction scales are around ΛMS ≈ 200 MeV. The
light quark masses are of order 10 MeV. In the chiral limit for the light quark sector
where quark masses vanishes, mu = md = 0 and one can have an exact global UV (2) =
UV (1)⊗SUV (2) flavour symmetry, where UV (1) expresses the quark (fermion) number
conservation, and SUV (2) the isospin symmetry for the vector current V . At zero quark
mass UV (2) can be extended to UV (2)⊗UA(2) = UV (1)⊗UA(1)⊗SUV (2)⊗SUA(2) which
is generated by the vector and axial currents.

The SUA(2) axial isospin symmetry is spontaneously broken by the vacuum expec-
tation value of the scalar quark densities, giving rise to three massless pseudoscalar
bosons, one for each of the broken generators of a spontaneously broken global sym-
metry. In a somewhat poorer approximation the strange quark mass (ms ≈ 150
MeV) can also be neglected. In this case the chiral flavour symmetry is extended
from SUV (2)⊗SUA(2) to SUV (3)⊗SUA(3). In fact, the symmetry of the classical
continuum QCD with three massless quarks is larger than SUV (3)⊗SUA(3) namely
UV (3)⊗UA(3) = UV (1)⊗UA(1)⊗SUV (3)⊗SUA(3). The additional UA(1) symmetry is
explicitly broken by quantum effects. This is due to the presence of an Adler-Bell-
Jackiw anomaly, which is proportional to the non–Abelian field strength tensor. This
anomaly prevents the restoration of the UA(1) symmetry, even in the massless con-
tinuum limit. In reality the explicit breaking of the symmetry is due to light quarks
propagating by zero modes which in turn arises from instantons which themselves de-
scribe some tunnelling effect between different physical states. Since the UA(1) anomaly
is proportional to the non–Abelian field strength tensor it is therefore also proportional
to the topological charge density, and hence the topological charge of a gauge field con-
figuration in the gluonic sector. The topological charge can be related to the number of
chiral zero modes via the Atiyah–Singer index theorem [34]. The Atiyah–Singer index
theorem states that the difference between the number of positive chirality modes and
the negatives ones of the Dirac operator in an external colour gauge field is equal to
the topological charge. Firstly, as a physical consequence of this explicit symmetry
breaking, the UA(1) axial symmetry is not realized at the quantum level, which is
why it is an anomaly, hence implying that a more realistic continuous chiral symmetry
is UV (1)⊗SUV (3)⊗SUA(3). Secondly, its spontaneous breaking to UV (1)⊗SUV (3) at
small u and d quark masses give rises to the existence of eight low mass quasi–Goldstone
bosons( one for each broken generator in the symmetry group). The ninth pseudoscalar
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meson, the η′ does not become a Goldstone boson if the quark masses are put to zero.
In nature the η′ (about mη′ = 958MeV) is a lot more massive than the π–, K– and the
η– mesons. Based on the limit of a large number of colours (Nc −→ ∞) argument, the
Witten–Veneziano formula [35, 36] relates the η′ mass to the topological susceptibility
in a pure gluon sector and in the quenched approximation

χ =

∫
d4x

Vol
〈Q(x)Q(0)〉 =

f 2
π

2Nf

(m2
η +m2

η′ − 2m2
K), (7.1)

leading to the expectation that χ ≈ (180 MeV)4.

The topological susceptibility has to be calculated in the pure gauge theory such as
SUc(3). The difficulty in the numerical evaluation of the topological susceptibility lies
in the lattice definition of the topological charge Q. A straightforward transcription
of Q = (g2/32π2)εµνρσ

∫
d4xF a

µν(x)F
a
ρσ(x) between the continuum into the lattice suf-

fers from very large renormalizations [37, 38] which are difficult to control without the
help of supplementary techniques which drive this renormalization factor down to one.
There are various ways to control the large renormalization errors. One of them is the
geometrical method [39] which is based on the interpolation of the colour gauge field
obtained from the link variables. This method is highly non local. The dislocations
are short distance lattice artifacts that after a certain amount of iterations spoil the
continuum limit. The cooling method [40] overcomes the problem encountered with
the geometrical method. Cooling methods smooth out the short range quantum fluc-
tuations. The effect of cooling can be illustrated by graphing the action density. For
example, in Fig. 7.1, we can see that the topological structure of the gauge field is
slowly revealed as the quantum fluctuations are removed and as the cooling procedure
evolves. In Fig. 7.1, a two loop improved cooling algorithm was used, separated by
fifty sweeps of cooling. Once these short range quantum fluctuations are removed it
is possible to measure a sensible integer like topological charge after a given number
of iterations. In Fig. 7.2, the evolution of the topological charge density after 50 in-
termediate sweeps of improved cooling is illustrated. This method appears to be the
most robust and reliable method to calculate such observables on the lattice. This
method still remain non local and questions remains about how much of the physics is
lost as well as the coherency of the physics observed after such iteration. This question
cannot be resolved until the physical scale is well separated from the scale of the lattice
spacing.

A similar method in smoothing out the short range quantum fluctuations is found
using the smearing method. This method is operating directly in SUc(N) by perform-
ing a projection onto the SUc(N) via a linear combination involving the original link
variable and the product of the staples dagger. This method is commonly known as
APE smearing [41].

In the following sections I present a method that improves the cooling method and
construct an improved topological charge operator based on the product of link vari-
ables forming rectangular Wilson loops. Using these operators we can resolve an integer
like topological charge and perform a comparative study on the relative performance
of the cooling and smearing techniques.
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Figure 7.1: Graphical representation of the action density after
50,100,150 and 200 sweeps of improved cooling on a 243 × 36 lattice
at β = 5.00.

7.1 Topological Charge Density on the Lattice and

Instantons

In Appendix B.1 I review the mathematical background behind the concept of the
topological charge of a gauge field and why we expect an integer value for the toplogical
charge as well as showing how it relates to the gluonic action. As we saw in Eq. (2.12),
the fundamental QCD action for the gluons in Euclidean space is defined as

SG =
1

4

∫
d4xFµν(x)Fµν(x). (7.2)

This Euclidean action is finite only if Fµν −→ 0 as the Euclidean length |x| −→ ∞,
meaning that the gauge field are vanishing at infinity. So the fields are the gauge
transform of a null field, and can be considered to be pure gauge fields. In this situation
they have the asymptotic g−1(x)∂µg(x) as x −→ ∞, where g(x) ∈ SUc(3). In SUc(2)
such functions would take the form of U(x) = a0(x)I + �a·�σ.

To each field Aµ that has this asymptotic behaviour we can assign a homotopy
class of maps from the sphere of very large radius into the gauge group, the class being
realized by the function g(x).
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Figure 7.2: Graphical representation of the 2 loop improved topological
charge density after 50,100,150 and 200 sweeps of improved cooling on a
243 ×36 lattice at β = 5.00. The configuration is the same as in Fig. 7.1.
Here the topological charge is -4.

Thus a pure gauge field with a finite Euclidean action defined as in Eq.(7.2), has
an associated integer, its topological charge [42]. The topological charge, q, of a pure
gauge field Aµ, is usually expressed as the integral over the Euclidean space–time of a
topological charge density, Q(x),

q =

∫
d4xQ(x) =

g2

16π2

∫
d4xTr(F̃µν(x)Fµν(x)) where F̃µν =

1

2
εµνρσFρσ. (7.3)

The rank two tensor F̃µν is the anti–symmetric tensor dual to Fρσ. From Eq.(B.9),
we can see the set as being countably infinite, in other words the QCD vacuum is
not made up of only one degenerate vacuum but an infinite number of degenerate
vacua each of which are characterized by the topological charge number. The local
minimum of the Euclidean action, Eq.(7.2), are called instantons [45]. Instantons are
what connects the vacua together separated by q units of the topological quantum
number between t = −∞ and t = +∞. In other words instantons corresponds to
tunnelling between different vacua with different topological charge q. In the semi–
classical limit the topological charge can also be defined by the number of instantons
nI minus the number of anti–instantons nI , i.e. q = nI − nI . The minimum action
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Figure 7.3: Graphical representation of the topological charge operator.

corresponding to instantons, from Eq.(7.2), is S0
G = 8π2|q|/g2. This is realized when

Fµν are self/anti-self–dual depending if q = ±1 respectively, i.e. F̃µν = ±Fµν for q = ±1
respectively.

7.1.1 Topological Charge Operator on the lattice

We construct the lattice topological charge density operator analogous to the standard
Wilson action via the clover definition of Fµν . The topological charge QL and the
topological charge density qL(x) are defined as follows

QL =
∑
x

qL(x) =
g2

32π2
εµνσρ

∑
x

Tr (Fµν(x)Fσρ(x)) . (7.4)

The non–Abelian field strength tensor can be expressed as

a2gFµν(x) =
−i
8

[(
O(i)
µν(x) −O(i)†

µν(x)
)
− 1

3
Tr
(
O(i)
µν(x) −O(i)†

µν(x)
)]

. (7.5)

The operator O(i)
µν(x) is constructed from the product of gauge links. The dummy

index, i, is just for notation purposes.
The ability for QL to converge to integer value really depends on the definition of

O(i)
µν(x). When i = 1, we define O(1)

µν (x) as the sum of the 1 × 1 plaquettes loop shown
in Fig. 7.3, which can analytically be written as:

O(1)
µν (x) = Uµ(x)Uν(x+ µ̂)U †

µ(x+ ν̂)U †
ν(x)

+ Uν(x)U
†
µ(x+ ν̂ − µ̂)U †

ν(x− µ̂)Uµ(x− µ̂)

+ Uµ(x− µ̂)U †
ν(x− µ̂− ν̂)Uµ(x− µ̂− ν̂)Uν(x− ν̂)

+ U †
ν (x− ν̂)Uµ(x− ν̂)Uν(x+ µ̂− ν̂)U †

µ(x) . (7.6)

This definition for Fµν(x) is usually the one that is inserted in the Clover term in the
Sheikoleslami–Wholert [46] improved quark action. We will define the resulting lattice
topological charge as QL.

Lattice operators possess a multiplicative lattice renormalization factor, QL =
ZQ(β)Q which relates the lattice quantity QL to the continuum quantity Q. Per-
turbative calculations indicate ZQ(β) ≈ 1− 5.451/β +O(1/β2) [38]. This large renor-
malization causes a problem when one is working at β ≈ 6.0, as ZQ(β) � 1. This
implies that the topological charge is almost impossible to calculate directly. How-
ever when one applies cooling or smearing techniques to remove the problem of the
short range quantum fluctuations giving rise to ZQ(β) � 1, one can resolve near in-
teger topological charge. One can apply the operator QL to cooled configurations or
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smeared configurations. The latter case may be regarded as employing an improved
operator in which the smeared links are understood to give rise to additional higher di-
mension irrelevant operators designed to provide a smooth approach to the continuum
limit. However, even after a significant amount of smoothing it is difficult to resolve
perfect integer value topological charge. Alternative definition is therefore necessary.

We define our improved topological charge operator, QImp
L , using

O(2)
µν (x) = c1O(1)

µν (x) +
c2
u2

0

I(2)
µν (x), (7.7)

where I(2)
µν (x), depicted in Fig. 7.4, is the 2 × 1 and 1 × 2 Wilson loop improvement

O (x) = x
µ

µ

ν

µ

x

µ

ν

+ c
1 2

U (x)(2)

µν

U (x)

c

Figure 7.4: Graphical representation of the improved topological charge
operator.

operator. This operator can also be expressed in terms of link variables as:

I(2)
µν (x) = Uµ(x)Uµ(x+ µ̂)Uν(x+ 2µ̂)U †

µ(x+ µ̂+ ν̂)U †
µ(x+ ν̂)U †

ν(x)

+ Uµ(x)Uν(x+ µ̂)Uν(x+ µ̂+ ν̂)U †
µ(x+ 2ν̂)U †

ν(x+ ν̂)U †
ν(x)

+ Uν(x)Uν(x+ ν̂)U †
µ(x− µ̂+ 2ν̂)U †

ν (x− µ̂+ ν̂)U †
ν(x− µ̂)U †

µ(x− µ̂)

+ Uν(x)U
†
µ(x− µ̂+ ν̂)U †

µ(x− 2µ̂+ ν̂)U †
ν(x− 2µ̂)Uµ(x− 2µ̂)Uµ(x− µ̂)

+ U †
µ(x− µ̂)U †

µ(x− 2µ̂)U †
ν(x− 2µ̂− ν̂)Uµ(x− 2µ̂− ν̂)Uµ(x− µ̂− ν̂)Uν(x− ν̂)

+ U †
µ(x− µ̂)U †

ν(x− µ̂− ν̂)U †
ν(x− µ̂− 2ν̂)Uµ(x− µ̂− 2ν̂)Uν(x− 2ν̂)Uν(x− ν̂)

+ U †
ν(x− ν̂)Uµ(x− ν̂)Uµ(x+ µ̂− ν̂)Uν(x+ 2µ̂− ν̂)U †

µ(x+ µ̂)U †
µ(x)

+ U †
ν(x− ν̂)U †

ν(x− 2ν̂)Uµ(x− 2ν̂)Uν(x+ µ̂− 2ν̂)Uν(x+ µ̂− ν̂)U †
µ(x). (7.8)

The coefficients c1 and c2 are the improvement coefficients which need to be extracted
from the path ordered Wilson loop expansion (this is done in Section 7.1.1). The
tadepole coefficient u0 is defined in Eq. (5.19), and was introduced for the tadepole
corrections it is of crucial importance in the numerical simulation. It approaches 1 as
the number of smoothing sweeps approaches a large value.

Extracting The Coefficients For The Improved Topological Charge Operator

To extract the improvement coefficients one needs to expand the Path ordered Wilson
loop as in Section 2.1.3. The Wilson loop Cµν is defined by Eq. (2.15), where the
contour integral is evaluated using Stoke’s Theorem as in Eq. (2.16). Using the same
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boundaries for the contour integral as in Sec. 5.1, one obtains for the 1 × 1 Wilson
contour and 2 × 1, 1 × 2 improved contours we have respectively the following∮

1×1

A(x) · dx = a2Fµν(x0) +
a4

24

(
D2
µ +D2

ν

)
Fµν(x0) + ... , (7.9)∮

2×1

A(x) · dx = 2a2Fµν(x0) +
a4

12

(
4D2

µ +D2
ν

)
Fµν(x0) + ... , (7.10)∮

1×2

A(x) · dx = 2a2Fµν(x0) +
a4

12

(
D2
µ + 4D2

ν

)
Fµν(x0) + ... . (7.11)

One could easily introduce more Wilson loops to do further improvement and calculate
expressions similar to Eq. (7.9,7.10,7.11) by adapting the integration bounds according
to the expansion point x0 centred inside the Wilson loop [30].

Extracting the improvement coefficients for the action, SG[U ], is done by considering
the real part of Cµν(x). This implies that the first non–vanishing term in Eq. (2.15)
is the one of second order in the coupling, g. Squaring Eqs.(7.9,7.10,7.11) will give
three equations, Eqs. (5.10,5.11,5.12), in terms of Fµν(x0) from which the improvement
coefficients can be calculated by taking linear combinations of these operators. These
coefficients are already known in the case of a 2× 1 and 1× 2 improved action [11]. In
the case of the topological charge operator, one needs to consider the imaginary part
of the contour operator, Cµν(x). From Eqs.(7.9,7.10,7.11) it is observed that

a2Fµν(x0) =
5

3

[∮
1×1

A(x) · dx
]
− 1

6

[∮
2×1

A(x) · dx+

∮
1×2

A(x) · dx
]
, (7.12)

which implies that the improved coefficients for the 2×1 and 1×2 improved topological
charge operator, Eq. (7.7), are:

c1 =
5

3
, and c2 = −1

6
. (7.13)

7.2 Gauge Action

In this chapter, the analysis is based on both gauge actions. The Standard Wilson
action defined in Eq. (2.19) is

SG = β
∑
x

∑
µ<ν

1

3
�eTr(1 − Pµν(x)), (7.14)

where the operator Pµν(x) is the standard plaquette operator:

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x) . (7.15)

The tree–level O(a2)–improved action was defined in Eq. (5.16) and is

SG =
5β

3

∑
sq

�eTr(1 − Uµ(x)Σ̃sq(x)) − β

12u2
0

∑
rect

�eTr(1 − Uµ(x)Σ̃rect(x)). (7.16)

The gauge field configurations are generated using the algorithm described in Chap-
ter 4 with three diagonal SUc(2) subgroups cycled twice. Simulations are performed

64



using a parallel algorithm on a Thinking Machines Corporations (TMC) CM-5 with
appropriate link partitioning.

For standard Wilson and the Improved action the link variables are partitioned
according to the algorithm described in Sec. 4.2.2 and Sec. 5.2.2 respectively.

Configurations are generated on a 163 × 32 lattice at β = 4.38 and a 243 × 36
lattice at β = 5.00, for the improved gauge glue. Similarly for the standard glue with
couplings β = 5.70 and β = 6.00. Configurations are selected after 5000 thermalization
sweeps from a cold start, and every 500 sweeps thereafter with a fixed mean link value.
Lattice parameters are summarized in Table 7.1.

7.3 Cooling

Standard cooling minimizes the action locally at each link update. The preferred
algorithm is based on the Cabbibo-Marinari [21] pseudo-heat-bath algorithm for con-
structing SUc(3)-colour gauge configurations. A brief summary of a link update is as
follows:

At the SUc(2) level the algorithm is transparent. An element of SUc(2) may be

parameterized as, U = a0I + i�a · �σ, where a is real and a2 = 1. Let Ũµ be one of the
six staples associated with creating the plaquette associated with a link Uµ.

Ũµ = Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x) . (7.17)

We define

6∑
α=1

Ũα = kU, where U ∈ SUc(2), and k2 ≡ det

(
6∑

α=1

Ũα

)
. (7.18)

The feature of the sum of SUc(2) elements being proportional to an SUc(2) element is
central to the algorithm. The local SUc(2) action is proportional to

�eTr(1 − UU) , (7.19)

and is locally minimized when �eTr(UU) is maximized, i.e. when

�eTr(UU ) = �eTr(I) . (7.20)

which requires the link to be updated as

U−→U ′ = U
−1

= U
†
=

(∑6
α=1 Ũα

)†
k

. (7.21)

Table 7.1: Parameters of the numerical simulations.
Action Volume NTherm NSamp β a fm u0 Physical Volume fm
Wilson 163 × 32 5000 1000 5.70 0.18 0.86085 2.883 × 5.76
Wilson 243 × 36 5000 1000 6.00 0.10 0.87777 2.43 × 3.6

Improved 163 × 32 5000 1000 4.38 0.165(2) 0.87614 2.883 × 5.76
Improved 243 × 36 5000 1000 5.00 0.077(1) 0.90286 2.43 × 3.6

65



At the SUc(3) level, one successively applies this algorithm to various SUc(2) subgroups
of SUc(3), with SUc(2) subgroups selected to cover the SUc(3) gauge group.

We explored cooling gauge field configurations using two diagonal SUc(2) subgroups.
The cooling rate is slow and the action density is not smooth, even after 50 sweeps over
the lattice. Addition of the third diagonal SUc(2) subgroup provides acceptably fast
cooling and a smooth action density. We will see in Sec. 7.8.1 in more details how the
number of SUc(2) subgroups influence the gauge group. These SUc(2) subgroups are
acting as a covering group for the SUc(3) gauge group. One would therefore expect that
repeated updates of SUc(2) subgroups will provide a better update for the ultimate
SUc(3) link.

7.4 Improved Cooling

Our algorithm is based on the Cabbibo–Marinari [21] pseudo–heat–bath algorithm.
This algorithm constructs the SUc(3) link variable, Uµ(x), according to the Boltzmann
probability distribution, using newly generated SUc(2) subgroups, V m(x).

The subscript, m, represents the position of the diagonal SUc(2) subgroup inside an
SUc(3) matrix, am(x). These subgroups are located at the m+ i,m+ j matrix entries
for i, j = 0, 1 for the first and second diagonal SUc(2) subgroup, i.e. m = 1 and m = 2
respectively. The third diagonal subgroup is located at the entries (12, 21, 23, 32) of
the SUc(3) matrix, am(x).

The improved cooling algorithm, is itself based on the standard cooling algorithm.
As in standard cooling, improved cooling also minimizes the action locally at each link
update.

The local SUc(3) standard Wilson action is proportional to

SG[U ] = β
∑
sq

�eTr(1 − Uµ(x)Σ̃sq(x)). (7.22)

Where Σ̃sq(x) is defined by Eq. (5.17), with
∑

sq ≡ ∑
x,µ�=ν . This action is locally

minimized when �eTr(Uµ(x)Σ̃sq(x)) is maximized, i.e. when

�eTr(Uµ(x)Σ̃sq(x)) = �eTr(I), (7.23)

which really means replacing the original link by the link Uµ(x) which optimizes

max�eTr

(
Uµ(x)

∑
sq

Σ̃sq(x)

)
. (7.24)

Using the existing SUc(3) link variable, Uµ(x), we can construct the staples,

Σ̃(x;µ) =

4∑
µ�=ν

Ũµν(x). (7.25)

Here Ũµν(x) represents two of the 1 × 1 plaquette contained in a particular plane
pointing in the ν direction out of the three possible planes on the hypercubic lattice,

Ũµν(x) = Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x) + U †
ν(x+ µ̂− ν̂)U †

µ(x− ν̂)Uν(x− ν̂). (7.26)
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It can be shown [21], that the action may be written as:

S[amU ] = �eTr(amUµ(x)Σ̃(x;µ))

= �eTr(V m(x)Vm(x)) + terms independent of V m(x). (7.27)

Here Vm(x) is a 2 × 2 sub–matrix extracted from the product Uµ(x)Σ̃(x;µ) and its
entries are at the same place as those of the SUc(3) matrix, am(x). The matrix V m(x)
is in SUc(2).

At the SUc(2) level the method becomes trivial since an element of SUc(2) may be

parameterized as, V m(x) = b0(x)I + i�b(x) · �σ, where the components of the 4–vector,
b(x), are real numbers. Since V m(x) is an SUc(2) element the constraint on b2(x) is
as such that b2(x) = 1, implying that b(x) resides on the 3–sphere. Furthermore, an
important property of the SUc(2) topological group, is that the sum of SUc(2) elements
are proportional to another SUc(2) element. It is then possible to write Vm(x) as:

Vm(x) = kV m(x), where V m(x) ∈ SUc(2), and k2 ≡ det (Vm(x)) ∈ R . (7.28)

Now we see that by making the transformation in Eq. (7.27),

V m(x)−→V
′
m(x) =

V †
m(x)√

det(Vm(x))
=
V

†
m(x)

k
, (7.29)

the action is minimized. This transformation is performed for every value of m cor-
responding to the various SUc(2) subgroups being selected consistently to cover the
SUc(3) gauge group. It was found consideration of the three diagonal SUc(2) subgroups
looped over twice were optimal. Round off errors in additional loops can actually in-
crease the action.

The improved cooling method is defined when the operator Ũµν(x), Eq. (7.26), is
replaced by an operator based on 1 × 2 and 2 × 1 loop additional closed contours.
This action based improved cooling scheme is also O(a2)–improved. I then rewrite the
staples defined in Eq. (7.25) as:

Σ̃(I)(x;µ) =

4∑
µ�=ν

Ũ (I)
µν (x) =

4∑
µ�=ν

5

3
Ũµν(x) − 1

12u2
0

Rµν(x), (7.30)

where Rµν(x) is the 1 × 2 and 2 × 1 loop contributions,

Rµν(x) = Uν(x+ µ̂)Uν(x+ ν̂ + µ̂)U †
µ(x+ 2ν̂)U †

ν(x+ ν̂)U †
ν (x)

+ Uµ(x+ µ̂)Uν(x+ 2µ̂)U †
µ(x+ µ̂+ ν̂)U †

µ(x+ ν̂)U †
ν(x)

+ Uν(x+ µ̂)U †
µ(x+ ν̂)U †

µ(x+ ν̂ − µ̂)U †
ν(x− µ̂)Uµ(x− µ̂)

+ U †
ν(x+ µ̂− ν̂)U †

ν(x+ µ̂− 2ν̂)U †
µ(x− 2ν̂)Uµ(x− 2ν̂)Uµ(x− ν̂)

+ Uµ(x+ µ̂)U †
ν(x+ 2µ̂− ν̂)U †

µ(x+ µ̂− ν̂)U †
µ(x− ν̂)Uν(x− ν̂)

+ U †
ν(x+ µ̂− ν̂)U †

µ(x− ν̂)U †
µ(x− ν̂ − µ̂)Uν(x− ν̂ − µ̂)Uµ(x− µ̂).(7.31)

The coefficients are based on those of the action, Eq. (5.16), which have already been
established in previous work by Lepage et al. [11].

The u0 factor is not held fixed during the improved cooling iteration. Starting from
its initial frozen value determined after the thermalization procedure, it is recalculated
at every sweep of the iteration. After a few sweeps of improved cooling the value
quickly converges to 1 being a good indication that short distance tadepole effects are
being removed in the smoothing procedure.

Further work is currently underway in constructing a highly improved scheme [30].

67



7.5 Smearing

Here we consider two algorithms for smearing the gauge links. APE smearing [41] is
now well established. Our alternate algorithm AUS smearing is designed to remove in-
stabilities of the APE algorithm and provide an intermediate algorithm sharing features
of both smearing and cooling.

7.5.1 APE Smearing

APE smearing [41] is a gauge equivariant [47] prescription for averaging a link Uµ(x)
with its nearest neighbours Uµ(x+ ν̂), ν 
= µ. The linear combination takes the form:

Uµ(x) −→ U ′
µ(x) = (1 − α)Uµ(x) +

α

6
Σ̃†(x;µ), (7.32)

where Σ̃(x;µ) =
(∑6

ν=1 Ũν(x)
)
µ
, is the sum of the six staples defined in Eq. (7.17).

The parameter α represents the smearing fraction. The algorithm is constructed as
follows: (i) calculate the staples, Σ̃(x;µ); (ii) calculate the new link variable U ′

µ(x) given
by Eq. (7.32) and then reunitarize U ′

µ(x); (iii) once we have performed these steps for
every link, the smeared U ′

µ(x) are mapped into the original Uµ(x). This defines a single
APE smearing sweep which can then be repeated.

The celebrated feature of APE smearing is that it can be realized as higher-
dimension operators that might appear in a fermion action for example. Indeed, “fat
link” actions based on the APE algorithm are excellent candidates for an efficient ac-
tion with improved chiral properties [48]. The parameter space of fat link actions is
described by the number of smearing sweeps nape and the smearing coefficient α. It is
the purpose of this investigation to explore the possible reduction of the dimension of
this parameter space from two to one.

7.5.2 AUS Smearing

The Annealed U Smearing (AUS) algorithm is similar to APE smearing in that we take

a linear combination of the original link and the associated staples, Σ̃†(x;µ). However in
AUS smearing we take what was a single APE smearing sweep over all the links on the
lattice and divide it up into four partial sweeps based on the direction of the links. One
partial sweep corresponds to an update of all links oriented in one of the four Cartesian
directions denoted µ = 1, .., 4. Hence in a partial sweep we calculate the reuniterized
U ′
µ(x) for all µ–oriented links and update all of these links [U ′

µ(x) −→ Uµ(x)] at the
end of each partial sweep.

Thus the difference between AUS smearing and APE smearing is that in APE
smearing no links are updated until all four partial sweeps are completed, while in
AUS smearing, updated smeared information is cycled into the calculation of the next
link direction, a process commonly referred to as annealing. In a sense AUS smearing
is between cooling and APE smearing in that cooling updates one link at a time, AUS
smearing updates one Cartesian direction at a time, and APE smearing updates the
whole lattice at the same time.

As for APE smearing, the reunitarization of the SUc(3) matrix is done using the
standard row by row orthonormalization procedure: begin by normalizing the first row;
then update the second row by row2 = row2−(row2·row1)row1; normalize the second
row; finally set row3 equal to the cross product of row1 and row2.
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For SUc(2) gauge theory, cooling and smearing are identical for the case of α = 1
when the links are updated one at a time. The AUS algorithm changes the level
of annealing and provides the opportunity to alter the degree of smoothing. At the
same time the AUS algorithm preserves the gauge equivariance of the APE algorithm
for SUc(3) gauge theory [47]. As we shall see, it also removes the instability of the
APE algorithm at large smearing fractions α. This latter feature may provide a more
efficient method for finding the fundamental modular region of Landau Gauge in trying
to understand the effects of Gribov copies in gauge dependent quantities such as the
gluon-propagator [49].

7.6 Improved Smearing

In this section we consider one smearing algorithm, APE smearing [41], to smear our
gauge links. We extend this algorithm to produce an improved version. Smearing
techniques are of great utility in constructing quark actions commonly known as fat–
link actions [50].

Improving the smearing operator and comparing them to other smoothing method
provides a step forward in enabling one to calculate some observables in lattice QCD
as well as constructing an efficient action with improved chiral properties [48].

7.6.1 The Reunitarization of the Links

The reunitarization procedure is of crucial importance when smearing is applied to
the gauge links because the APE smearing operation projects the transformed links
away from the SUc(3) gauge group. It is therefore necessary to have a procedure that
projects the smeared links back to the gauge group.

Standard APE smearing is gauge equivariant [47] prescription for smearing a link
Uµ(x) with its nearest neighbours Uµ(x+ ν̂), given that ν̂ 
= µ̂. By gauge equivariance
we mean that if two starting gauge configurations are related by a gauge transforma-
tion then the respective smeared configurations are also related by the same gauge
transformation.

The APE smearing process is really an iterative prescription for the link variable,
Uµ(x). The transformation takes the form:

Uµ(x) −→ U ′
µ(x) = (1 − α)Uµ(x) +

α

6
Σ̃†(x;µ), (7.33)

Uµ(x) = PU ′
µ(x), (7.34)

where Σ̃(x;µ) is the staples and P is a projection onto SUc(3) by Cabbibo Marinari
maximization of the Tr

[
Uµ(x)U

†′
µ (x)

]
with two hits on the three diagonal SUc(2) sub-

groups. The parameter α represents the smearing fraction. The projection works by
first calculating U ′

µ(x) and then taking its hermitian conjugate,

U †′
µ (x) = (1 − α)U †

µ(x) +
α

6
Σ̃(x;µ), (7.35)

which implies that when we take the real part of the trace of the quantity Uµ(x)U
†′
µ (x)

we obtain:

�eTr(Uµ(x)U
†′
µ ) =

α

6
�eTr(Uµ(x)Σ̃(x;µ)) + constant (7.36)

=
α

6
�eTr(V m(x)Vm(x)) + terms independent of V m(x).
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V m(x) is in SUc(2) and Vm(x) is a 2 × 2 sub–matrix extracted from the product

Uµ(x)Σ̃sq(x;µ). Now projecting U ′
µ(x) back onto SUc(3) amounts to finding an SUc(3)

matrix which minimizes the action or equivalently maximizes the quantity �eTr(Uµ(x)U
†′
µ ).

The solution is given by performing the following transformation:

V m(x)−→V
′
m(x) =

V †
m(x)√

det(Vm(x))
. (7.37)

This method is advantageous because it uses SUc(2) subgroups to projects back the
U ′
µ(x) to SUc(3).

In this case a clear connection to cooling is established when α → 1 as

max�eTr
(
Uµ(x)U

′†
µ (x)

)
= max�eTr

⎛⎜⎝Uµ(x)∑
ν

ν �=µ

Σ̃(x;µ)

⎞⎟⎠ . (7.38)

7.6.2 Improved Smearing

The improved smearing algorithm is similar to APE smearing in that we take a linear
combination of the original link Uµ(x) and the associated 1 × 1 staples Σ̃†(x;µ) just

as in Eq. (7.33). However in Improved APE smearing we replace the staples Σ̃(x;µ)
defined in Eq. (7.25) by the improved staples:

Σ̃(I)(x;µ) =
4∑

µ�=ν
Ũ (I)
µν (x) =

4∑
µ�=ν

5

3
Ũµν(x) − 1

12u2
0

Rµν(x). (7.39)

The algorithm is constructed as follows: (i) calculate the staples, Σ̃(I)(x;µ); (ii) cal-
culate the new link variable U ′

µ(x) given by Eq. (7.33); (iii) once we have performed
these steps for every link, the smeared links U ′

µ(x) are projected back to the SUc(3)
gauge group using the projection method P procedure, Eq. (7.34), described in the
previous section (see Section 7.6.1, for more details on that reunitarization method).
These three steps define a single improved smearing sweep.

I have compared the results obtained from this method with the standard row
by row orthonormalization reunitarization procedure explored in [53], also explained
in Sec. 7.5.2. Using the same topological charge operator and performing the same
smoothing procedure, I have found a slight reduction in fluctuations of the topolog-
ical charge in the evolution of gauge fields under APE smearing with projection via
Eq. (7.38).

7.7 Numerical Simulations with Standard Wilson

Gauge Action: Calibration work

In this first part of the simulation I analysed two sets of gauge field configurations. The
two sets are composed of ten 163×32 configurations and five 243×36 configurations at
β = 5.70 and β = 6.00 respectively. For each configuration I separately performed 200
sweeps of cooling, 200 sweeps of APE smearing at four values of the smearing fraction
(α) and 200 sweeps of AUS smearing at six values of the smearing fraction.
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For clarity, the number of times an algorithm is applied to the entire lattice is defined
as nc, nape(α) and naus(α) for cooling, APE smearing and AUS smearing respectively.
I monitor both the total action normalized to the single instanton action S0 = 8π2/g2

and the topological charge QL of Eq. (7.4) and observe their evolution as a function of
the appropriate sweep variable and smearing fraction α.

For APE smearing we consider four different values for the smearing fraction α
including 0.30, 0.45, 0.55, and 0.70. Larger smearing fractions reveal an instability in
the APE algorithm where the links are rendered to noise.

The origin of this instability is easily understood in fat-link perturbation theory
[51] where the smeared vector potential after n APE smearing steps is given by

A(n+1)
µ (q) =

∑
ν

[
fn(q)

(
δµν − q̂µq̂ν

q̂2

)
+
q̂µq̂ν
q̂2

]
A(n)
ν (q) , (7.40)

reflecting the transverse nature of APE smearing. Here

q̂µ =
2

a
sin
(a qµ

2

)
, (7.41)

and
f(q) = 1 − α

6
q̂2 . (7.42)

For f(q) to act as a form factor at each vertex in perturbation theory over the entire
Brillouin zone

−π
a
< qµ ≤ π

a
, (7.43)

one requires −1 ≤ f(q) ≤ 1 which constrains α to the range 0 ≤ α ≤ 3/4.
The annealing process in AUS smearing removes this instability. Hence, the pa-

rameter set for AUS smearing consists of the APE set plus an extra two, α = 0.85 and
1.00.

7.7.1 Action Analysis

APE and AUS Smearing Calibration

The action normalized to the single instanton action S/S0 can provide some insight
into the number of instantons left in the lattice as a function of the sweep variable for
each algorithm. However, the main concern is the relative rate at which the algorithms
perform. In Fig. 7.5, I show S/S0 as a function of cooling sweep on the 243 ×36 lattice
for five different configurations. The close proximity of the five curves is typical of the
configuration dependence of the normalized action S/S0.

Figures 7.6 and 7.7 report results for APE and AUS smearing respectively. Here
we focus on one of the five configurations, noting that similar results are found for
the other configurations. Each curve corresponds to a different value of the smearing
fraction α.

A similar analysis of the 163 × 32 lattice at β = 5.70 is also performed yielding
analogous results. In fact, taking the physical volumes of the two lattices into account
reveals qualitatively similar action densities after 200 sweeps.

Note that in Fig. 7.7, the curve associated with the smearing parameter α = 1.00,
crosses over the one generated at α = 0.85, when the sweep number, naus(α), is ap-
proximately 40 sweeps. Thus α = 1 is not the most efficient smearing fraction for

71



Figure 7.5: The ratio S/S0 as a function of cooling sweeps nc for five configurations on
the 243 × 36 lattice at β = 6.00. The single instanton action is S0 = 8π2/g2.

Figure 7.6: The ratio S/S0 as a function of APE smearing sweeps nape(α) for a con-
figuration on a 243 × 36 lattice at β = 6.00. Each curve has an associated smearing
fraction α.
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Figure 7.7: The ratio S/S0 as a function of AUS smearing sweep naus(α) for a con-
figuration on a 243 × 36 lattice at β = 6.00. Each curve has an associated smearing
fraction α.

unsmoothed gauge configurations. However, as the configurations become smooth,
α = 1.00 becomes the most efficient choice.

To calibrate the rate at which the algorithms reduce the action, I record the number
of sweeps n(α) required for the smeared action to cross various thresholds ST . This is
repeated for each of the smearing fractions α under consideration. In establishing the
relative α dependence for the number of sweeps n(α), a simple linear relation between
the number of sweeps required to cross ST at one α compared to another α′ is first
considered, i.e.

n(α′) = c0 + c1 n(α) . (7.44)

Anticipating that c0 will be small if not zero, I divide both sides of this equation by
n(α) and plot as a function of n(α). Deviations from a horizontal line at large n(α)
will indicate failings of this linear assumption.

Fig. 7.8 displays results for α′ fixed to 0.55 for the APE smearing algorithm and
Fig. 7.9 displays analogous results for AUS smearing. I omit thresholds that result in
n(0.55) < 10 as these points will have integer discretization errors exceeding 10%. For
α = 0.70 discretization errors the of order of 10% are clearly visible in both figures.

For the smearing fraction α ≤ 0.85 both plots show little dependence of n(α′ =
0.55)/n(α) on n(α). This supports our simple ansatz of Eq. (7.44) and indicates c0 is
indeed small as one would expect.

The non-linear behaviour for α = 1.00 in AUS smearing, in Fig. 7.9, reflects the
cross over in Fig. 7.7, for α = 1.00. For unsmeared configurations, α = 1.00 appears to
be too large. Further study in SUc(2) is required to resolve whether the origin of the
smearing inefficiency lies in the sum of staples lying too far outside the SUc(3) gauge
group for useful reunitarization, or whether the annealing of the links in AUS smearing
is insufficient relative to cooling.

To determine the α dependence of c1, I plot c1 = 〈n(α′ = 0.55)/n(α)〉 as a func-
tion of α. Here the angular brackets denote averaging over all the threshold values
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Figure 7.8: The ratio nape(0.50)/nape(α) versus nape(α) for numerous threshold actions
on the 243 × 36 lattice at β = 6.00. From top down the data points correspond to
α = 0.70, 0.55, 0.45 and 0.30.

Figure 7.9: The ratio naus(0.55)/naus(α) versus naus(α) for numerous threshold actions
on the 243 × 36 lattice at β = 6.00. From top down the data points correspond to
α = 1.00, 0.85, 0.70, 0.55, 0.45, 0.30.
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Figure 7.10: Illustration of the α dependence of c1 = 〈n(α′ = 0.55)/n(α)〉 for APE
smearing. The solid line fit to the data indicates c1 = 1.838α − 0.011 whereas the
dashed line, constrained to pass through the origin, provides a slope of 1.818.

considered; i.e. averaging over data in the horizontal lines of Figs. 7.8 and 7.9.

Fig. 7.10 for APE smearing and Fig. 7.11 for AUS smearing indicate that the rela-
tionship between c1 and α is linear with zero intercept to an excellent approximation.
Indeed, ignoring the point at α = 1 for AUS smearing, one finds the same coefficients
for the α dependence of APE and AUS smearing. When the fits are constrained to
pass through the origin, one finds a slope of 1.818 which is the inverse of α′ = 0.55.
Hence we reach the conclusion that

nape(α
′)

nape(α)
� α

α′ and
naus(α

′)
naus(α)

� α

α′ . (7.45)

This analysis based on the action suggests that a preferred value for α does not really
exist. In fact it has been recently suggested that one should anticipate some latitude
in the values for n(α) and α that give rise to effective fat-link actions [51]. What we
have done here is established a relationship between n(α) and α, thus reducing what
was potentially a two dimensional parameter space to a one dimensional space. This
conclusion will be further supported by the topological charge analysis below.

To summarize these finding we plot the ratios

α′ nape(α
′)

αnape(α)
and

α′ naus(α
′)

αnaus(α)
, (7.46)

designed to equal 1 in Figs. 7.12 and 7.13 for APE and AUS smearing respectively.
Figs. 7.14 and 7.15 report the final results of a similar analysis for APE and AUS
smearing respectively at β = 5.7. Here the α = 1.0 results are omitted from the AUS
smearing results for clarity.
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Figure 7.11: Illustration of the α dependence of c1 = 〈n(α′ = 0.55)/n(α)〉 for AUS
smearing. Fits to the data exclude the point at α = 1. The solid line fit to the data
indicates c1 = 1.857α−0.021 whereas the dashed line, constrained to pass through the
origin, provides a slope of 1.818.

Figure 7.12: Illustration of the degree to which the relations of (7.45) are satisfied for
the action under APE smearing. Here α < α′ and α′ = 0.30, 0.45, 0.55, and 0.70. Data
are from the 243 × 36 lattice at β = 6.0.

76



Figure 7.13: Illustration of the degree to which the relations of (7.45) are satisfied for
the action under AUS smearing. Here α < α′ and α′ = 0.30, 0.45, 0.55, 0.70 and 0.85.
Data are from the 243 × 36 lattice at β = 6.0.

Figure 7.14: Illustration of the degree to which the relations of (7.45) are satisfied for
the action under APE smearing. Here α < α′ and α′ = 0.30, 0.45, 0.55, and 0.70. Data
are from the 163 × 32 lattice at β = 5.7.
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Figure 7.15: Illustration of the degree to which the relations of (7.45) are satisfied for
the action under AUS smearing. Here α < α′ and α′ = 0.30, 0.45, 0.55, 0.70 and 0.85.
Data are from the 163 × 32 lattice at β = 5.7.

Cooling Calibration

Here the previous analysis is repeated, this time comparing cooling with APE and AUS
smearing. I consider the same linear ansatz for the relationship and plot nc/nape(α)
versus nape(α) for APE smearing in Fig. 7.16. Fig. 7.17 reports the ratio nc/naus(α)
versus naus(α) for AUS smearing. At small numbers of smearing sweeps, large integer
discretization errors of the order of 25% are present, as nc is as small as 4. With this
in mind, we see an independence of the ratio on the amount of cooling/smearing over
a wide range of smearing sweeps for both APE and AUS smearing. This supports a
linear relation between the two algorithms.

Averaging the results provides

nc

nape(0.50)
= 0.330 and

nc

naus(0.55)
= 0.340 , (7.47)

or more generally

nc � 0.600αnape(α) and nc � 0.618αnaus(α) . (7.48)

Hence we see that cooling is much more efficient at smoothing than the smearing
algorithms requiring roughly half the number of sweeps for a given product of n and
α.

Equating the equations of Eq. (7.48) provides the following relation between APE
and AUS smearing

αnape(α) � 1.03α′ naus(α
′) , (7.49)

summarizing the near equivalence of the two smearing algorithms. It is important to
recall that the annealing of the AUS smearing algorithm removes the instability of
APE smearing encountered at large smearing fractions, α. Thus AUS smearing offers
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Figure 7.16: Ratio of cooling to APE smearing sweeps as a function of the number of
APE smearing sweeps. From top down α = 0.70 0.55, 0.45 and 0.30.

Figure 7.17: Ratio of cooling to AUS smearing sweeps as a function of the number of
AUS smearing sweeps. From top down α = 1.00, 0.85 0.70 0.55, 0.45 and 0.30.
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Figure 7.18: Typical evolution curve of the lattice topological charge operator as a
function of the number of sweeps for APE smearing. Data are from the 243×36 lattice
at β = 6.00. Each curve corresponds to a particular α value and indicated.

a more stable gauge equivariant smoothing of gauge fields. It offers faster smoothing
due to its ability to handle larger smearing fractions. This algorithm may be of use in
studying Gribov ambiguities in Landau gauge fixing [47].

A similar analysis of the 163 × 32 lattice at β = 5.7 provides

nc � 0.572αnape(α) and nc � 0.604αnaus(α) , (7.50)

with

αnape(α) � 1.06α′ naus(α
′) . (7.51)

Here the change in the coefficient relating APE smearing to cooling appears to be
proportional to β.

7.7.2 Topological Charge Density Analysis

Typical evolution curves for the lattice topological charge operator of Eq. (7.4) are
shown in Figs. 7.18, 7.19 and 7.20 for APE smearing, AUS smearing and cooling re-
spectively. These data are obtained from a typical gauge configuration on our 243 ×36
lattice at β = 6.00. The configuration used here is the same representative configura-
tion illustrated in Figs. 7.6 and 7.7 of the action analysis.

The main feature of these figures is that the smearing/cooling algorithms produce
a similar trajectory for the topological charge. For most cases only the rate at which
the trajectory evolves changes. In these cases, one can use these trajectories as another
way in which to calibrate the rates of the algorithms.

After a few sweeps, the topological charge converges to a near integer value with
an error of about 10%, typical of clover definitions of Q at β = 6.0. The standard
Wilson action is known to lose (anti)instantons during cooling due to O(a2) errors
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Figure 7.19: Typical evolution curve of the lattice topological charge operator under
AUS smearing. Data are from the 243×36 lattice at β = 6.00. Each curve corresponds
to a particular α value and indicated.

Figure 7.20: Typical evolution curve of the lattice topological charge operator as a
function of the number of sweeps for cooling with three diagonal SUc(2) subgroups on
a 243 × 36 lattice at β = 6.00.
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Figure 7.21: The trajectories of the lattice topological charge density operator as a
function of the number of sweeps for cooling on typical 243×36, β = 6.00 configurations.

in the action which act to tunnel through the single instanton action bound. Given
the intimate relationship between cooling and smearing discussed in Section 7 it is not
surprising to see similar behaviour in the topological charge trajectories of the smearing
algorithms considered here. The sharp transitions from one integer to another indicate
the loss of an (anti)instanton.

These curves look quite different for other configurations. Fig. 7.21 displays trajec-
tories for cooling on five different gauge configurations. However, the feature of similar
trajectories for the various cooling/smearing algorithms remains at β = 6.0. To cali-
brate the cooling/smearing algorithms, I select thresholds at topological charge values
where the trajectories are making sharp transitions from one near integer to another.
Table 7.2 summarizes the thresholds selected and the number of sweeps required to
pass though the various thresholds. Note that the second configuration, C2, data entry
in Table 7.2 corresponds to the sampling of the curves illustrated in Figs. 7.18, 7.19
and 7.20.

At β = 5.7 no analogous trajectories can be found, suggesting that the coarse lattice
spacing and larger errors in the action prevent one from reproducing a similar smoothed
gauge configuration using different algorithms. In this case the two-dimensional aspect
of the smearing parameter space remains for studies of the topological sector. That
this might be the case is hinted at in Fig. 7.15 in which the ratio of smearing results
for β = 5.7 lattices is not as closely constrained to one as for the β = 6.0 results in
Figs. 7.13.

As in the action analysis, the ratio of α = 0.55 results to other α value results
within APE and AUS smearing is reported. Figs. 7.22 and 7.23 summarize the results
for APE and AUS smearing respectively. Again we see an enhanced spread of points
at small numbers of smearing sweeps due to integer discretization errors.

Data for large numbers of sweeps at small and large α values are absent in Fig. 7.23.
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Table 7.2: Summary of the number of sweeps required to pass through various topologi-
cal charge thresholds. The selection of the thresholds is described in the text. Smearing
fractions α are indicated in the table headings. Omissions in the table indicate either
the threshold was not met within 200 sweeps or that the trajectory diverged from the
most common trajectory among the algorithms.

Config. Threshold Cooling APE smearing AUS smearing
0.30 0.45 0.55 0.70 0.30 0.45 0.55 0.70 0.85 1.00

1.00 fall 2 3 3 2 - 3 2 2 - - -
C1 1.00 rise 6 7 5 4 3 6 4 3 2 1 1

1.00 fall 10 41 28 24 20 35 24 19 15 25 17
1.25 rise 2 9 6 4 3 8 4 3 2 1 1
1.25 fall 6 25 17 14 12 24 17 13 11 - -
5.0 fall 11 52 35 29 23 49 33 26 20 16 13

4.0 45 - 178 146 114 - 169 137 110 84 69
3.5 55 - - 195 152 - - 189 142 120 101

C2 5.0 rise 3 18 12 10 8 12 11 9 7 5 4
4.0 2 11 7 6 4 10 6 5 3.5 3 2.5
3.5 1 8 5 4 3 8 5 4 3 2 2
3.0 1 7 4 3.5 3 6 4 3 2.5 2 2

2.0 rise 1 4 3 2.5 2 4 3 2 1.5 1 1
1.0 rise 2 11 7 6 4 10 6 5 3 2 2

1.0 10 94 62 49 36 - - 26 20 17 16
C3 1.5 rise 3 25 17 15 11 21 13 11 8 6 6

1.5 fall 7 42 25 20 15 39 24 19 15 12 9
1.5 60 - 168 139 110 - 162 132 - - 190
6.0 20 - 135 110 85 - 136 112 88 - -

C4 5.0 1 6 4 3 2 - 4 3 2 2 1
4.0 1 4 3 2 1 - 3 3 2 1 1
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Figure 7.22: The ratio nape(0.50)/nape(α) versus nape(α) for QL from the data of Table
7.2 extracted from the 243 × 36 configurations at β = 6.00. From the top down, the
horizontal sets of points correspond to α = 0.70, 0.55, 0.45 and 0.30.

Figure 7.23: The ratio naus(0.55)/naus(α) versus naus(α) for QL from the data of Table
7.2 extracted from the 243 × 36 configurations at β = 6.00. From the bottom up, the
symbols correspond to α = 0.30, 0.45, 0.55, 0.70, 0.85 and 1.00.
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Figure 7.24: Calibration of cooling and APE smearing via the ratio nc/nape(0.50) versus
nape(0.50).

The absence of points for small α values is simply due to the thresholds not being
crossed within 200 smearing sweeps. The absence of points for large α values reflects
the divergence of the topological charge evolution from the most common trajectory
among the algorithms. This divergence is also apparent in Fig. 7.9 where the α = 1.0
AUS smearing results fail to satisfy the linear ansatz.

While the data from the topological charge evolution is much more sparse, one
can see reasonable horizontal bands forming supporting a dominant linear relationship
between various α values. Averages of the bands are reported in Table 7.3 along with
previous results from the action analysis. With the exception of the α = 1.0 AUS
smearing results, the agreement is remarkable, leading to the same conclusions of the
action analysis summarized in Eq. (7.45).

In calibrating cooling via the topological charge defects, the ratio nc/nape(0.50) is
reported as a function of nape(α) and nc/naus(0.55) as a function of naus(α) for APE
and AUS smearing respectively. The results are shown in Figs. 7.24 and 7.25.

The data is too poor to determine anything beyond a linear relation between nc

and nape(α) or naus(α). Averaging the results provides

nc

nape(0.50)
= 0.30(3) and

nc

naus(0.55)
= 0.35(3) , (7.52)

Table 7.3: The average of the ratio < nape(0.50)/nape(α) > or < naus(0.55)/naus(α) >
for the action analysis, (S), and the topological charge analysis, (Q) from the 243 × 36
lattice.

APE smearing AUS smearing
α 0.30 0.45 0.55 0.70 0.30 0.45 0.55 0.70 0.85 1.00
S 0.541(1) 0.816(1) 1.0 1.278(1) 0.534(1) 0.812(1) 1.0 1.290(1) 1.584(2) 1.475(7)
Q 0.54(1) 0.83(1) 1.0 1.28(2) 0.54(3) 0.812(8) 1.0 1.28(1) 1.65(4) 1.90(6)
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Figure 7.25: Calibration of cooling and AUS smearing via the ratio nc/naus(0.55) versus
naus(0.55).

in agreement with the earlier action based results of Eq. (7.47).
As a final examination of the relations I have established among APE smearing,

AUS smearing and cooling algorithms, we illustrate the topological charge density is
illustrated in Fig. 7.26. Large positive (negative) winding densities are shaded red
(blue) and symmetric isosurfaces aid in rendering the shapes of the densities. In fixing
the x coordinate to a constant, a three-dimensional slice of a four-dimensional 243×36
gauge field configuration is displayed. Fig. 7.26(a) illustrates the topological charge
density after 21 APE smearing steps at α = 0.7. The other three quadrants display
APE smearing, AUS smearing and cooling designed to reproduce Fig. 7.26(a) according
to the relations of Eqs. (7.45), (7.48) and (7.49). The level of detail in the agreement
is remarkable.

7.7.3 Summary

The APE smearing algorithm is now widely used in a variety of ways in lattice simu-
lations. It is used to smear the spatial gauge-field links in studies of glueballs, hybrid
mesons, the static quark potential, etc. It is used in constructing fat-link actions and
in constructing improved operators with smooth transitions to the continuum limit. I
have shown that to a good approximation the two-dimensionful parameter space of the
number of smearing sweeps nape(α) and the smearing fraction α may be reduced to a
single dimension via the constraint

nape(α
′)

nape(α)
=
α

α′ . (7.53)

satisfied for α and α′ in the range 0.3 to 0.7. This result is in agreement with fat-link
perturbation theory expectations, and survives for up to 200 sweeps over the lattice.
This relation is expected to hold over the entire APE smearing range 0 < α < 3/4.
I find the same relation for AUS smearing provided α ≤ 0.85. For AUS smearing,
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Figure 7.26: Topological charge density of a 243 × 36 lattice for fixed x coordinate.
Positive (negative) windings are coloured red to yellow (blue to green). Fig. (a) illus-
trates the topological charge density after 21 APE smearing steps at α = 0.7. Fig. (b)
illustrates the topological charge density after 49 APE smearing steps at α = 0.3. Re-
lation (7.45) suggests these configurations should be similar and we see they are to a
remarkable level of detail. Fig. (c) illustrates the topological charge density after 20
AUS smearing steps at α = 0.7. Relation (7.49) suggests these configurations should
be similar and again the detail of the agreement is excellent. Finally (d) illustrates
the topological charge density after 9 cooling sweeps, motivated by relation (7.48).
While the level of agreement is not as precise, the qualitative features of the smoothed
configurations are compatible.
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annealing of the links is included as one cycles through the Lorentz directions of the
link variables in the smearing process.

The smoothing of gauge field configurations is often a necessary step in extracting
observables in which the renormalization constants differ significantly from one, as is
the case for the topological charge operator. It is also often used to gain insights into the
nonperturbative features of the field theory which give rise to the observed phenomena.
We have seen that cooling, APE smearing and AUS smearing produce qualitatively
similar smoothed gauge field configurations at β = 6.0 provided one calibrates the
algorithms as follows:

nc � 0.600αnape(α) , nc � 0.618αnaus(α) and αnape(α) � 1.03α′ naus(α
′) .

(7.54)
The topological charge analysis serves to confirm the action analysis results at

β = 6.0 and further support these relations. However, it also reveals that at β = 5.7
different trajectories are taken. At β = 5.7 different algorithms produce smoothed
gauge field configurations with similar action, but different topological properties.

As most modern simulations are performed at β ≥ 6.0, the relations of Eqs. (7.53)
and (7.54) will be most effective in reducing the exploration of the parameter space. It
is now possible to arrive at optimal smearing by fixing the number of smearing sweeps
and varying the smearing fraction, or vice versa. Finally, it is now possible to directly
compare the physics of smeared and cooled gauge field configurations in a quantitative
sense.

I have used the action and topological charge trajectories to calibrate the various
smoothing algorithms. While the topological charge may be related to the topological
susceptibility, it may be of future interest to introduce other physical quantities such
as the string tension as a measure of smoothing [52].

It is well known that interpreting the physics of cooled configurations based on
the standard Wilson action is somewhat of an art. The difficulty is that the O(a2)
errors in the action spoil an instanton under cooling by reducing the action below the
one-instanton bound. A consequence of this is a lack of universality. For example, the
action varies smoothly to zero while the topological sector jumps as (anti)instantons
are destroyed. One may then attempt to define the concept of an optimal amount of
smoothing, and perhaps also extrapolate back to zero smoothing steps. Unfortunately,
all of these difficulties are apparent in the APE smearing analysis results as well.

Because of the intimate connection between smearing and cooling, as emphasized
in the discussion of Section 7.5.2, it is natural to consider improved smearing, where
the Hermitian conjugate of the improved staple is used in the smearing process. It
will be interesting to see if the benefits of improved cooling carry over into improved
smearing and this work is currently in progress.

7.8 Numerical Simulations with Improved Gauge

action

In this section I extend the analysis done in Sec. 7.7 using improved gauge field config-
urations. Two sets of gauge field configurations are analysed. Details may be found in
Table 7.1. Analysis of a few configurations proves to be sufficient to resolve the nature
of the algorithms under investigation. In this simulation I consider eleven 163 × 32
configurations and six 243 × 36 configurations. The general method here is the same
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as in Sec. 7.7. For each configuration I separately perform 200 sweeps of cooling and
200 sweeps of improved cooling. We explore 200 sweeps of APE smearing at seven
values of the smearing fraction and 200 sweeps of improved smearing at five values
of the smearing fraction. For APE smearing we consider α = 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, and 0.70. Similarly for improved smearing we consider α = 0.10 to 0.50 at
intervals of 0.10. The extended nature of the staple alters the stability range of α to
lie below α = 0.6.

For clarity, the number of times an algorithm is applied to the entire lattice is
defined as nc, nIc, nape(α) and nIape(α) for cooling, improved cooling, APE smearing
and improved smearing respectively. Both the total action normalized to the single
instanton action S0 = 8π2/g2 and the topological charge operators, QL and QImp

L are
monitored, from which observe their evolution as a function of the appropriate sweep
variable and smearing fraction α is observed.

7.8.1 The Influence Of The Number Of Subgroups On The
Gauge Group

I now describe the influence of including additional SUc(2) subgroups in constructing
the gauge group SUc(3) and explore the impact it has on the smoothing procedure.

The Cabibbo-Marinari algorithm [21] constructs the SUc(N) gauge groups using
SUc(2) subgroups. It is understood that the minimal set required to construct SUc(3)
matrices is two diagonal SUc(2) subgroups.

After having performed cooling on gauge field configurations I noticed that the
resulting cooled gauge field configurations were not smooth even after a large number
of smoothing steps. Adding a third SUc(2) subgroup made a significant difference in
the resulting smoothness.

Further exploration by simply performing additional cycles, ncycle, around the three
diagonal SUc(2) subgroups. I monitored the smoothing rate using both the Standard
Wilson and the improved action according to the cycle number being set to ncycle = 1, 2
and 3. Based on the evolution of the action, it is found that the optimum cooling rate on
gauge field configurations is achieved using the three diagonal SUc(2) subgroups cycled
over twice, ncycle = 2. Cycling more than twice provides very little further reduction
of the action and round off errors may actually increase the action on occasion. Hence
two cycles over the three diagonal SUc(2) subgroups is sufficient to precisely create the
SUc(3) link which minimizes the local action. This determination is crucial to ensuring
the effects of our improved action are fully reflected in the SUc(3) link.

I also monitored the evolution of the topological charge with respect to the above
number of cycles. On the 163×32 lattice with spacing of a = 0.165(2) fm, we observe a
disagreement of the trajectories for the topological charge for different numbers of the
SUc(2) subgroups cycles. Fig. 7.27 displays results for standard cooling and Fig. 7.28
displays similar results for improved cooling. A comparison of Figs. 7.27 and 7.28

indicates the trajectories also differ between cooling and improved cooling.

Hence we see subtle differences in the algorithms leading to dramatic differences
in the topological charge. One must conclude that a lattice spacing of 0.165(2) fm is
too coarse for a serious study of topology in SUc(3) gauge fields. The characteristic
size of the topological fluctuations is at the scale of the lattice spacing. As such the
gauge fields are simply too rough to smooth in a deterministic manner. On the other
hand, a lattice spacing the order of 0.077(1) fm appears to allow a meaningful study
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Figure 7.27: The evolution of the topological charge estimated by the
improved operator as a function of standard cooling sweeps nc for various
numbers of SUc(2) subgroups. The curves are for a typical configuration
from the 163 × 32 lattices where a = 0.165(2) fm. The parameter cycle
describes the number of times the three diagonal SUc(2) subgroups are
cycled over.

Figure 7.28: The evolution of the topological charge estimated by the
improved operator as a function of improved cooling sweeps nIc for var-
ious numbers of cycles over the three diagonal SUc(2) subgroups. The
curves are for the same configuration illustrated in Fig. 7.27.
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Figure 7.29: The evolution curve for the topological charge estimated
via the improved operator as a function of cooling sweeps nc for six
configurations on the 243 × 36 lattices at β = 5.00 where a = 0.077(1)
fm.

of topology in SUc(3) gauge theory.

We also note here the accuracy with which the improved topological charge opera-
tor, Eq. (7.7), reproduces integer values. These results should be contrasted with the
usual 10% errors of the unimproved operator at similar lattice spacings. Such errors
on a topological charge of 5 can lead to the uncomfortable result of Q � 4.5 when the
unimproved operator is used.

With the finer 243 × 36 lattice at β = 5.00, a perfect agreement among trajectories
can be observed for different numbers of cycles of the three SUc(2) subgroups. More-
over, the topological charge remains stable for hundreds of sweeps following the first
three sweeps. Figures 7.29 and 7.30 compare the topological charge evolution for cool-
ing versus improved cooling for six configurations. In every case, the two algorithms
produce the same topological charge for a given configuration.

7.8.2 The Action

We begin by considering the action evolution on both lattices. Here I report the
action divided by the single instanton action S0 = 8π2/g2. It is important to note that
although the 243 × 36 lattice has almost four times more lattice sites than the 163 × 32
lattice, the physical volume is smaller by almost a factor of three. As such the typical
topological charges encountered are smaller in magnitude.

Figs. 7.31, 7.32, 7.33, and 7.34 report the typical evolution of the action under
standard cooling, improved cooling, APE smearing and improved smearing respectively.
Inspection of the figures reveals that improved cooling preserves the action better than
standard cooling over a couple hundred sweeps. As expected, standard APE smearing
remains slower than cooling or improved cooling even at our most efficient smearing
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Figure 7.30: The evolution curve for the topological charge estimated
via the improved operator as a function of improved cooling sweeps nIc

for the same six configurations from the 243 × 36 lattices at β = 5.00
illustrated in Fig. 7.29.

Figure 7.31: The ratio S/S0 as a function of standard cooling sweeps
nc for five configurations on the 243 × 36 lattice at β = 5.0. The single
instanton action is S0 = 8π2/g2.

fraction (α = 0.70). Similar results are observed for improved smearing at our most
efficient smearing fraction of α = 0.50 in Fig. 7.34.

Based on these observations, one concludes that the fastest way to remove the short
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Figure 7.32: The ratio S/S0 as a function of improved cooling sweeps nIc

for five configurations on the 243 × 36 lattice at β = 5.0. The rate of
cooling is seen to be somewhat slower than that for the standard cooling.

Figure 7.33: The ratio S/S0 as a function of APE smearing sweeps
nape(α) for one configuration on the 243 × 36 lattice at β = 5.0. Each
curve has an associated smearing fraction α. The rate of lowering the
action for the maximum stable smearing fraction (≈ 0.75) is seen to be
less than that for the other standard or improved cooling.
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Figure 7.34: The ratio S/S0 as a function of improved smearing sweeps
nIape(α) for one configuration on the 243 × 36 lattice at β = 5.0. Each
curve has an associated smearing fraction α. We see that this is the
slowest of the four algorithms for lowering the action as a function of the
sweep number.

range quantum fluctuations on an O(a2) gauge field configuration, is through standard
cooling, which lowers the action more rapidly than improved cooling as a function of
cooling sweep. In turn we see that improved cooling is faster than the maximum stable
standard APE smearing, which is faster than the maximum stable improved smearing.
This is illustrated by Figs. 7.31–7.34. It is important to emphasize that the fastest
way of removing these fluctuations is not necessarily the best as far as the topology is
concerned. It is already established that the O(a2) errors of the standard Wilson action
act to underestimate the action. These errors spoil instantons which might otherwise
survive under improved cooling.

7.8.3 Topological Charge from Cooling and Smearing

We begin by considering the 163 × 32 lattices having a lattice spacing of a = 0.165(2)
fm. In Fig. 7.35, we plot the evolution curve for the improved topological charge as
a function of the cooling sweep number, nc, for six of our configurations. Similarly
in Fig. 7.36, for the same six configurations I plot the improved topological charge
operator but this time as a function of improved cooling sweep nIc. The line types in
Figs. 7.35 and 7.36 correspond to the same underlying configurations and are to be
directly compared. For example, the solid curve corresponds to the same gauge field
configuration in both figures but with a different algorithm applied to it. From these
two figures we notice the two cooling methods lead to completely different values for
the topological charge.

Improved cooling brings stability to the evolution of the topological charge whereas
standard cooling gives rise to numerous fluctuations to the topological charge. For
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Figure 7.35: QImp
L versus nc for six configurations on the 163×32 lattices

at β = 4.38, a = 0.165(2) fm. Each line corresponds to a different
configuration.

Figure 7.36: QImp
L versus nIc for six configurations on the 163×32 lattices.

The different line types identifying different configurations match the
configurations identified in Fig. 7.35.
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Figure 7.37: QImp
L versus nIc calculated over a thousand sweeps. Also

shown is the normalized to a single instanton action, S/S0. The action
and topological curve are converging to each other for each configuration,
illustrating Eq. (7.55).

improved cooling, plateaus appear after about forty sweeps and persist for hundreds
of sweeps until the absolute value of QImp

L converges to the normalized to a single
instanton action, S/S0, so we have the following result:∣∣∣QL or QImp

L

∣∣∣ −→ S/S0, as nsweeps −→ ∞. (7.55)

An illustration of this results may be seen in Fig. 7.37. This is a celebrated feature of
improved cooling.

This algorithmic sensitivity of the topological charge is also seen in Figs. 7.38
and 7.39, for APE and improved smearing on a single configuration (the solid line
of Figs. 7.35 and 7.36). Within APE smearing or improved smearing, the topologi-
cal charge trajectories follow similar patterns but different rates for various smearing
fractions. However, APE smearing leads to values for the topological charge which are
different from that obtained under improved smearing. An important point is that
improved smearing stabilizes the topological charge at 95 sweeps for α = 0.5, whereas
standard smearing shows no sign of stability until 140 iterations at α = 0.5. Hence we
see significant improvement in the topological aspects of the gauge field configurations
under improved smearing.

On the finer lattice, we find a completely different behaviour for the topological
charge evolution. The topological charge is established very quickly; after a few sweeps
in the case of cooling or improved cooling as illustrated in Figs. 7.29 and 7.30. The
topological charge persists without fluctuation for hundreds of sweeps, both for cooling
and for smearing as illustrated in Figs. 7.40 and 7.41 for APE and improved smearing
respectively. Moreover, the topological charge is independent of the smearing algo-
rithm.
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Figure 7.38: The evolution of QImp
L using APE smearing as a function of

APE smearing sweep nape(α) on the 163 × 32 lattice at β = 4.38. Here
different line types correspond to different smearing fractions.

Figure 7.39: The evolution ofQImp
L using improved smearing as a function

of APE smearing sweep nIape(α) on the 163×32 lattice at β = 4.38. Here
different line types correspond to different smearing fractions.
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Figure 7.40: The evolution of QImp
L using APE smearing as a function of

APE smearing sweep nape(α) on the 243 × 36 lattice at β = 5.00. Here
different line types correspond to different smearing fractions.

Figure 7.41: The evolution of QImp
L using APE smearing as a function of

APE smearing sweep nIape(α) on the 243 × 36 lattice at β = 5.00. Here
different line types correspond to different smearing fractions.
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Figure 7.42: The evolution of the improved topological charge, QImp
L , as

a function of standard APE smearing sweeps, nape(α), for 0.1 ≤ α ≤ 0.7
(solid lines) is compared to improved smearing sweeps, nIape(α), (dotted-
dashed lines) for the same smearing fractions 0.1 ≤ α ≤ 0.5 on the
243×36 lattice at β = 5.00. The horizontal dotted-dashed line is QImp

L =
−4.

These results are to be compared with Fig. 7.35 and Fig. 7.36, where transitions
are observed even with improved cooling on the coarser lattice with a = 0.165(2) fm.
The results on our fine lattice suggest the characteristic size of instantons is much
larger than the lattice spacing, such that the topological structure of the gauge fields
is smooth at the scale of the lattice spacing.

In Fig. 7.40 for standard APE smearing we observe a slower convergence to integer
topological charge than in Fig. 7.41 for improved smearing when 0.1 ≤ α ≤ 0.5.
This feature of improved smearing is illustrated in detail in Fig. 7.42. However, APE
smearing has the advantage to allow values for the smearing fraction up to α = 0.70
which cannot be accessed by improved smearing.

Having demonstrated that it is possible to precisely match the behaviour of the
algorithms on fine lattice spacings, we proceed to calibrate the efficiency of these algo-
rithms in the following section.

7.8.4 Smoothing Algorithm Calibration

I now calibrate the relative rate at which quantum fluctuations are removed from typical
field configurations by the various algorithms. The calibration is done using the action
normalized to the single instanton action, S/S0, on both, the 163 × 32 lattices and
243 × 36 lattices.

While there is no doubt that the algorithms may be accurately calibrated on the fine
243 × 36 lattice, the 163 × 32 lattice with a = 0.165(2) fm presents more of a challenge.
As a result, in most cases we will show the graphs produced from the 163 × 32 lattice
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Figure 7.43: The ratio nape(0.50)/nape(α) versus nape(α) for numerous
S/S0 thresholds on the 163 × 32 lattice at β = 4.38. From top to bottom
the data point bands correspond to α = 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and
0.1.

analysis and simply present the numerical results for both the 163 × 32 and 243 × 36
lattices.

The numerical results are summarized in Tables 7.4, 7.5, and 7.8 for the 163 × 32
lattices and in Tables 7.6, 7.7, and 7.9 for the 243 × 36 lattices.

APE Smearing and Improved Smearing Calibration

To calibrate the rate at which the algorithm reduces the action I record the nearest
number of sweeps required to reach a given threshold in S/S0. The action thresholds
are spaced logarithmically to obtain a uniform distribution in the number of sweeps
required to reach a threshold. The relative rates of smoothing are established by
comparing the relative number of sweeps required to reach a particular threshold.

Here we calibrate the APE smearing algorithm characterized by the smearing frac-
tion α and the number of smearing iterations nape(α). The different threshold crossings
are characterized by the number of sweeps required to reach that threshold, nape(α).
In Fig. 7.43 I show the number of sweeps required to reach a threshold when α = 0.5,
nape(0.50), relative to that required for other α values, nape(α). I plot these relative
smoothing rates as a function of nape(α) such that low S/S0 thresholds are reached
after hundreds of iterations of the smoothing algorithm. Fig. 7.44 shows similar re-
sults for improved smearing. In these figures and in the following analysis, thresholds
that result in fewer than five smoothing iterations are omitted as these points produce
integer discretization errors of more than 20%.

Both standard and improved smearing algorithms have a relative smoothing rate
which is independent of the amount of smoothing done. By calculating the average
value for each of the bands in Figs. 7.43 and 7.44, we can investigate the dependence
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Figure 7.44: The ratio nIape(0.50)/nIape(α) versus nIape(α) for numerous
S/S0 thresholds on the 163 × 32 lattice at β = 4.38. From top to bottom
the data point bands correspond to α = 0.5, 0.4, 0.3, 0.2, and 0.1.

of the average relative smoothing rate 〈nape(0.50)/nape(α)〉 on α.

Fig. 7.45 illustrates a linear fit to the data constrained to pass through the origin.
I find 〈nape(0.50)/nape(α)〉 = 2.00α such that

nape(α
′)

nape(α)
=
α

α′ , (7.56)

is in agreement with the earlier analysis, Eq. (7.46), carried out in Sec. 7.7.1 . The ex-
tent to which this relationship holds can be verified by plotting the ratio α′nape(α

′)/αnape(α)
and comparing the results to 1.

In plotting the band averages for the improved smearing algorithm of Fig. 7.44 in
Fig. 7.46, one finds a small deviation of the points from the line y = 2α. This suggests
that Eq. (7.56) is not sufficiently general for the improved smearing case.

A better approximation to establish the α dependence, that is similar to Eq. (7.56)
and contains Eq. (7.56) is

nIape(α
′)

nIape(α)
=
( α
α′

)δ
, (7.57)

where δ is equal to one in the case of standard APE smearing and can deviate away
from one for improved smearing.

In Fig. 7.47, the logarithm of Eq. (7.57) is plotted. The slope of the data provides
δ = 0.914(1) for both the 163 × 32 and the 243 × 36 lattices. The value of δ = 1.00
was also verified for the APE smearing data. Fig. 7.48 plots the ratio of the left- and
right-hand sides of Eq. (7.57) as a function of nIape(α) for α′ > α. The ratio is one as
expected with 5% for large amounts of smearing where integer discretization errors are
minimized. Throughout the following analysis, δ is fixed at 0.914(1).
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Figure 7.45: Illustration of the dependence of 〈nape(0.50)/nape(α)〉 for
APE smearing on the smearing fraction α. The solid line is a linear fit
to the data constrained to pass through the origin.

Figure 7.46: Illustration of the dependence of < nIape(0.50)/nIape(α) >
for APE smearing on the improved smearing fraction α. The solid line
fit is constrained to pass through the origin.
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Figure 7.47: Illustration of the dependence of
ln (< nIape(0.50)/nIape(α) >) on the improved smearing fraction α
for improved smearing. The solid line fit indicates δ = 0.914.

Figure 7.48: Illustration of the degree to which the relation Eq. (7.57) is
satisfied for improved smearing. Here the entire data set is plotted for
α and α′ = 0.5, 0.4, 0.3, 0.2 and 0.1. Data are from 163 × 32 lattice at
β = 4.38.
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Figure 7.49: The ratio nape(0.50)/nIape(α) versus nIape(α) for numerous
threshold actions on the 163×32 lattice at β = 4.38. From top to bottom
the data point bands correspond to improved smearing fractions α = 0.5,
0.4, 0.3, 0.2, and 0.1.

APE and Improved smearing cross calibration

In this section I focus on the cross calibration of the smearing algorithms. In Fig. 7.49,
the number of improved smearing sweeps required to reach a threshold for various
improved smearing fractions relative to APE smearing at α = 0.5 is compared. The
lowest band corresponds to an improved smearing fraction of 0.10. From this, we
conclude that for low α values APE smearing and improved smearing produce roughly
equivalent smeared configurations. However, there are some evident differences in the
rate at which both algorithms perform. For intermediate to large α there is curvature
in the bands. Early in the smearing process, fewer sweeps of improved smearing are
required to reach a threshold. That is, improved smearing removes action faster than
APE smearing in the early stages of smearing. This behaviour is also manifest in
the analogous results for the fine 243 × 36 lattice. As emphasized in the discussion
surrounding Fig. 7.42, improved smearing also provides a topological charge closer to
an integer than APE smearing. Together, these two properties of improved smearing
identify a genuine improvement in the smearing process.

For the coarse 163 × 32 lattice data, the bands are thick for large smearing frac-
tions indicating improved smearing does perform significantly different from standard
APE smearing. Contributions from individual configurations are clearly visible as lines
within the bands. This structure is due to the coarse lattice spacing of 0.165(2) fm
which reveals differences between the algorithms. Such structure is not seen in the fine
243 × 36 lattice results. There a precise calibration is possible.

In Tables 7.4 and 7.5, we report the averages of each band for APE and improved
smearing on the 163 × 32 lattices. In Tables 7.6 and 7.7 we report similar results for
the 243 × 36 lattices.
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Table 7.4: The averages of the ratios < nape(0.50)/nape(α) > and <
nIape(0.50)/nape(α) > for various smearing fractions α from the 163 × 32 lattice at
β = 4.38.

α for APE smearing
0.10 0.20 0.30 0.40 0.50 0.60 0.70

nape(0.50) 0.195(1) 0.394(2) 0.595(3) 0.797(4) 1.0 1.203(1) 1.407(1)
nIape(0.50) 0.227(1) 0.465(1) 0.706(1) 0.948(1) 1.189(1) 1.431(1) 1.673(1)

Table 7.5: The averages of the ratios < nape(0.50)/nIape(α) > and <
nIape(0.50)/nIape(α) > for various smearing fractions α from the 163 × 32 lattice at
β = 4.38.

α for improved smearing
0.10 0.20 0.30 0.40 0.50

nape(0.50) 0.196(1) 0.376(3) 0.543(1) 0.697(1) 0.842(1)
nIape(0.50) 0.228(1) 0.442(1) 0.641(1) 0.827(1) 1.0

Table 7.6: The averages of the ratios < nape(0.50)/nape(α) > and <
nIape(0.50)/nape(α) > for various smearing fractions α from the 243 × 36 lattice at
β = 5.00.

α for APE smearing
0.10 0.20 0.30 0.40 0.50 0.60 0.70

nape(0.50) 0.195(1) 0.395(1) 0.595(1) 0.797(1) 1.0 1.205(1) 1.410(1)
nIape(0.50) 0.227(1) 0.462(1) 0.698(1) 0.937(1) 1.176(1) 1.416(1) 1.658(1)

Table 7.7: The averages of the ratios < nape(0.50)/nIape(α) > and <
nIape(0.50)/nIape(α) > for various smearing fractions α from the243 × 36 lattice at
β = 5.00.

α for improved smearing
0.10 0.20 0.30 0.40 0.50

nape(0.50) 0.196(1) 0.378(1) 0.546(1) 0.704(1) 0.851(1)
nIape(0.50) 0.228(1) 0.442(1) 0.641(1) 0.826(1) 1.0
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Figure 7.50: Illustration of the degree to which the relation Eq. (7.58) is
satisfied for calibration of the action under APE and improved smearing.
Here the entire data set is plotted.

Based on equations Eq. (7.56) and Eq. (7.57) for APE and improved smearing, we
expect

α′nape(α
′)

αδnIape(α)
= constant . (7.58)

This ratio is plotted in Fig. 7.50 where a rather mild dependence on nIape(α) is revealed.
Averaging these results provides 0.81(2) for the constant of Eq. (7.58). Similar results
are seen for the finer 243 × 36 lattice, but with greater precision in the calibration
reflected in a narrower band. There the constant is also 0.81(2). However, it should
also be noted that for α ≤ 0.5, improved smearing achieves integer topological charge
faster than standard APE smearing.

Calibration of Cooling and Smearing

In this section I apply the ansatz of equations Eq. (7.56) and Eq. (7.57) to relate the
cooling and smearing algorithms. Fig. 7.51 displays results comparing cooling and
standard APE smearing. For α as small as 0.1 it takes about 75 sweeps of APE
smearing compared with 5 sweeps of cooling to arrive at an equivalent action. On the
other end of the smearing fraction spectrum, we note the bands become very thick.

The calibration of these ratios indicates

nc

αnape(α)
= 0.59(1), (7.59)

in agreement with that obtained in, Eq. (7.48), where the analysis was performed on
unimproved gauge configurations. The reduction in O(a2) errors in the gauge field ac-
tion affect both algorithms similarly such that the calibration of the relative smoothing
rates remains unaltered.
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Figure 7.51: The ratio nc/nape(α) versus nape(α) for numerous action
thresholds for the 163 × 32 lattice at β = 4.38. From top down the data
point bands correspond to α = 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1.

Further broadening of the bands is observed when comparing improved cooling with
APE smearing as illustrated in Fig. 7.52. The precision of improved cooling relative
to APE smearing leads to very different smoothed configurations at this coarse lattice
spacing of 0.165(2) fm. This indicates the algorithms are sufficiently different, that an
accurate and meaningful calibration is impossible.

This effect is not observed when we pass to our fine lattice spacing as displayed
in Fig. 7.53. We remind the reader that the thickness of the band for small numbers
of smoothing sweeps is simply due to the ratio of small integers taken in plotting the
y-axis values.

The real test of improved smearing is the extent to which the algorithm can preserve
action associated with topological objects and thus maintain better agreement with
more precise algorithms including cooling and improved cooling. Fig. 7.54 displays
results for the calibration of improved cooling with improved smearing. Comparing
these results for each smearing fraction, α, with that for improved cooling and standard
smearing in Fig. 7.52 reveals that the improved smearing algorithm, which was seen
to be better than standard APE smearing algorithm does not perform as well as the
improved cooling algorithm.

Similar results are seen in Fig. 7.55 where standard cooling is compared with im-
proved smearing. Hence the annealing of the links in the process of cooling, where
cooled links are immediately passed into the determination of the next cooled link, is
key to the precision with which cooling can preserve topological structure.

Calibration of the smoothing rates as measured by the action for the algorithms
under investigation are summarized in Tables 7.8 and 7.9. The entries describe the
relative smoothing rate for the algorithm ratio formed by selecting an entry from the
numerator column and dividing it by the heading of the denominator columns. The
entry comparing APE smearing with itself reports the level to which the ansatz of
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Figure 7.52: The ratio nIc/nape(α) versus nape(α) for numerous action
thresholds on the 163 × 32 lattice at β = 4.38. From top down the data
point bands correspond to α = 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1.

Figure 7.53: The ratio nIc/nape(α) versus nape(α) for numerous action
thresholds on the 243 × 36 lattice at β = 5.00. From top down the data
point bands correspond to α = 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1.
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Figure 7.54: The ratio nIc/nIape(α) versus nIape(α) for numerous action
thresholds on the 163 × 32 lattice at β = 4.38. From top down the data
point bands correspond to α = 0.5, 0.4, 0.3, 0.2, and 0.1.

Figure 7.55: The ratio nc/nIape(α) versus nIape(α) for numerous action
thresholds on the 163 × 32 lattice at β = 4.38. From top down the data
point bands correspond to α = 0.5, 0.4, 0.3, 0.2, and 0.1.
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Table 7.8: Calibration coefficients for various smoothing algorithms on the 163 × 32
lattice at β = 4.38. Entries describe the relative smoothing rate for the algorithm
ratio formed by selecting an entry from the numerator column and dividing it by the
heading of the denominator columns. For example equation Eq. (7.59) corresponds to
the first column of the third row.

Denominator
Numerator αnape(α) αδnIape(α) nc nIc

α′ nape(α
′) 1.00(2) 0.81(2) 1.69(3) 1.30(2)

α′δnIape(α
′) 1.25(3) 1.01(2) 2.13(5) 1.61(3)

nc 0.59(1) 0.47(1) 1 0.75(1)
nIc 0.77(1) 0.62(1) 1.33(2) 1

Table 7.9: Calibration coefficients for various smoothing algorithms on the 243 × 36
lattice at β = 5.00. Entries describe the relative smoothing rate for the algorithm
ratio formed by selecting an entry from the numerator column and dividing it by the
heading of the denominator columns. For example equation Eq. (7.58) corresponds to
the second column of the first row.

Denominator
Numerator αnape(α) αδnIape(α) nc nIc

α′ nape(α
′) 1.00(2) 0.81(2) 1.64(2) 1.37(1)

α′δnIape(α
′) 1.25(3) 1.01(2) 2.04(4) 1.67(3)

nc 0.611(9) 0.49(1) 1 0.84(1)
nIc 0.734(8) 0.60(1) 1.19(1) 1

equation Eq. (7.56) is satisfied. Similarly the entry comparing improved smearing with
itself reports the level to which the ansatz of equation Eq. (7.57) is satisfied.

Cooling versus Improved cooling

Figure 7.56 reports a comparison of standard cooling with improved cooling on eleven
configurations from the coarse 163 × 32 lattice. There the ratio nc/nIc < 1 confirms
the expectation that standard cooling does not preserve action on the lattice as well as
the O(a2)-improved cooling. Fewer standard cooling sweeps are required to reach the
same action threshold. Calibration of the algorithms appears plausible for the first 80
sweeps of improved cooling, after which the two algorithms smooth the configurations
in very different manners. Any calibration at this lattice spacing is only very approx-
imate beyond 80 sweeps of improved cooling where distinct configuration-dependent
trajectories become visible. This result is contrasted by the analogous analysis on our
fine 243 × 36 lattice illustrated in Fig. 7.57. While nc/nIc remains less than one, it is
closer to one here than for the coarser lattice as one might expect.
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Figure 7.56: The ratio nc/nIc versus nIc for numerous action thresholds
on the 163 × 32 lattice at β = 4.38. The significant differences between
the algorithms are revealed by the gauge-configuration dependence of the
trajectories.

Figure 7.57: The ratio nc/nIc versus nIc for numerous action thresholds
on the 243 × 36 lattice at β = 5.00.
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7.8.5 Summary

I have introduced an improved version of the APE smearing algorithm founded on the
connection between cooling Eq. (7.24) and the projection of the APE smeared link
back to the SUc(3) gauge group via Eq. (7.38). This connection motivates the use of
additional extended paths combined with the standard “staple” as governed by the
action to reduce the introduction O(a2) errors in the smearing projection process.

Clear signs of improvement are observed. For a given smearing fraction α defined
in equation (7.32), improved smearing preserves the action better than standard APE
smearing at each smearing sweep. At the same time improved smearing brings the
improved topological charge to an integer value faster than standard APE smearing.

The extended nature of the “staple” in improved smearing reduces the stability
regime for the smearing fraction. I found the improved smearing algorithm to be stable
for α ≤ 0.5. At α = 0.6 the algorithm is unstable whereas standard APE smearing
remains stable for α ≤ 0.75.

Given the wide variety of smoothing algorithms under investigation in the field of
lattice gauge theory, I have cross calibrated the speed with which the algorithms remove
action from the field configurations. In particular I have cross calibrated the smoothing
rates of APE smearing at seven values of the smearing fraction; improved smearing at
five values of the smearing fraction; cooling; and improved cooling. I explored smearing
fractions in 0.1 intervals starting at α = 0.1.

The calibration has been investigated over a range of 200 sweeps for each smearing
algorithm on O(a2)-improved gauge field configurations. The results of this analysis
allows one to make qualitative comparisons between cooling and smearing algorithms
and in fact make quantitative comparisons of smearing algorithms with different smear-
ing fractions on lattices as coarse as 0.165(2) fm. On our fine lattice where the lattice
spacing is 0.077(1) fm, the calibration is quantitative in general.

We have found the relative smoothing rates are described via simple relationships
as reported in Tables 7.8 and 7.9 for our coarse 163 × 32 and fine 243 × 36 lattices
respectively. There the sensitivity of the calibration results on the lattice spacing may
be reviewed.

It is worth noting, that a necessary correction to the APE smearing ratio rule,
Eq. (7.46), needs to be made when improved smearing is considered. These algorithms
may be calibrated via

nape(α
′)

nape(α)
=
α

α′ , and
nIape(α

′)
nIape(α)

=
( α
α′

)δ
, (7.60)

for APE smearing and improved smearing respectively. I find δ = 0.914(1) without a
significant dependence on the lattice spacing.

We have seen evidence that the topology of Yang-Mills gauge fields cannot be
reliably studied on lattice spacings as coarse as 0.165(2) fm. Different algorithms lead
to different topological charges, differing quite widely in some cases as reported in
Figs. 7.35 and 7.36. Moreover, subtle differences in the cooling algorithms can lead to
different topological charge determinations as illustrated in Figs. 7.27 and 7.28. These
results indicate that the characteristic size of topological fluctuations in Yang-Mills
gauge fields is at the scale of the coarse lattice spacing of 0.165(2) fm.

In contrast, the fine 243 × 36 lattice results where a = 0.077(1) fm display excellent
agreement among every smoothing algorithm considered. In this case it appears that
the lattice spacing on these O(a2)-improved gauge field configurations is finer than
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the characteristic size of topological fluctuations such that the gauge fields are already
sufficiently smooth to unambiguously extract the topology of the gauge fields.

As a final comparison of the smoothing algorithms, we provide a visual represen-
tation of a gauge field configuration after applying various smoothing algorithms is
provided. Figure 7.58 illustrates a rendering of the topological charge density for a
slice of one of the fine 243 × 36 lattice configurations. While the calibration has been
carried out by considering the total action of the gauge fields, the following analysis
allows one to examine the extent to which the calibration is accurate at a microscopic
level.

In Fig. 7.58, red shading indicates large positive topological charge density with
decreasing density becoming yellow in colour, while blue shading indicates large in
magnitude, negative topological charge density decreasing in magnitude through the
colour green. Here cooling (a), improved cooling (b), APE smearing at α = 0.70 (c),
APE smearing at α = 0.30 (d), improved smearing at α = 0.50 (e) and improved
smearing at α = 0.30 (f), are compared at the number of smoothing iterations required
for each algorithm to produce an approximately equivalent smoothed gauge field con-
figuration. While Fig. b) for improved cooling differs somewhat due to round off in the
sweep number, the remaining plots compare very favourably with each other. These
visualizations confirm that the different smoothing algorithms considered in this in-
vestigation can be accurately related via the calibration analysis presented here and
summarized in Tables 7.8 and 7.9.
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Figure 7.58: The topological charge density of a 243 ×36 lattice for fixed
x coordinate. The instantons (anti-instantons) are coloured red to yellow
(blue to green). Fig. a) shows the topological charge density after 9 cool-
ing sweeps. Each of the following figures display the result of a different
smoothing algorithm calibrated according to Table 7.9 to reproduce as
closely as possible the results depicted in Fig. a). Fig. b) illustrates the
topological charge density after 11 sweeps of improved cooling. Fig. c)
shows the topological charge density after 21 APE smearing steps at
α = 0.70. Fig. d) illustrates the topological charge density after 49 APE
smearing steps at α = 0.30. In Fig. e) the topological charge density
is displayed after 35 sweeps of improved smearing at α = 0.50. Finally,
Fig. f) shows the topological charge density after 55 sweeps of improved
smearing at α = 0.30. Apart from Fig. b) for improved cooling, which
differs largely due to round off in the sweep number, all the plots compare
very favourably with each other.
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Chapter 8

Gauge Fixing in Landau Gauge

In certain applications in lattice QCD like the study of the gluon [62] or quark prop-
agator [77, 78] or any other gauge dependent quantities, it is of crucial importance to
fix the gauge prior engaging into such calculation in order to make any sense of the
lattice data. There are various ways in fixing the gauge, here we are going to focus our
attention on the Landau gauge and on ways to alternate this standard gauge fixing
definition using a mean-field-improved perturbation theory [10] to compare different
lattice definitions of the Landau gauge, and quantify the sizes of the discretisation
errors. On the lattice, the standard Landau gauge condition[56] is the same as the
continuum condition,

∑
µ ∂µAµ = 0, only to leading order in the lattice spacing a. In

particular, I review [63] how a new O(a2) improved Landau-gauge-fixing functional is
derived and how it plays a central role in estimating the discretisation errors made
with the standard functionals. These results primarily due to Patrick Bowman may be
found in [63].

8.1 Landau Lattice Gauge Fixing

On the lattice, the idea of the gauge fixing method is based on the maximization of
the usual Landau gauge fixing functional [56]

FG
1 [{U}] =

∑
µ,x

1

2
Tr
{
UG
µ (x) + UG

µ (x)†
}
, (8.1)

where the gauge rotated links are defined by

UG
µ (x) = G(x)Uµ(x)G(x+ µ̂)† and Uµ(x) ≡ P exp

{
ig

∫ a

0

dtAµ(x + µ̂t)

}
. (8.2)

with gauge transformation proportional to the generators of the gauge group:

G(x) = exp

{
−i
∑
a

ωa(x)T a

}
. (8.3)

In the continuum the maximization condition, of Eq. (8.1), corresponds to finding the
stationary points of

F [G] = ||AG|| =

∫
d4xTr

(
AGµ (x)

)2
. (8.4)
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Where AGµ (x) are the gauge rotated gluon fields.
If we take the functional derivative of Eq. (8.1), we obtain

δFG
1

δωa(x)
=

1

2
i
∑
µ

Tr
{[
UG
µ (x− µ̂) − UG

µ (x) − (UG
µ (x− µ̂) − UG

µ (x)
)†]

T a
}
. (8.5)

The continuum limit of this functional is obtained by performing a Taylor expansion
on the gluon field Aµ(x + µ̂t) about the point x, and then integrating term-by-term
followed by expanding the exponential as a power series in g up to leading order.
Eq. (8.5) then become

δFG
1

δωa(x)
= ga2

∑
µ

Tr

{[
∂µAµ(x) +

1

12
a2∂3

µAµ(x) +
a4

360
∂5
µAµ(x) + O(a6)

]
T a
}

+O(g3a4).

(8.6)
To lowest order in a, an extremum of Eq. (8.1) satisfies

∑
µ ∂µAµ(x) = 0, which

corresponds to the continuum Landau gauge condition. In praxis, this means that on
the lattice that ∑

µ

∂µAµ(x) =
∑
µ

{
−a

2

12
∂3
µAµ(x) −H1

}
. (8.7)

The operator H1 represents O(a4) and higher-order terms, as it is written in Eq. (8.6).
The terms on the R.H.S. of Eq. (8.7) are significantly large compared to the numerical
accuracy possible in gauge fixing algorithms.

Using two-link terms, one could write down an alternative gauge fixing,

FG
2 =

∑
x,µ

1

2
Tr
{
UG
µ (x)UG

µ (x+ µ̂) + h.c.
}
. (8.8)

Performing the same steps as for Eq. (8.5) and expanding to O(a4) we obtain

δFG
2

δωa(x)
= 4ga2

∑
µ

Tr

{[
∂µAµ(x) +

a2

3
∂3
µAµ(x) +

16

360
a4∂5

µAµ(x) + O(a6)

]
T a
}

+O(g3a4),

(8.9)
which again implies the continuum Landau-gauge-fixing condition to lowest order in a.

O(a2) errors can be eliminated in the same as for the gauge action, that is done by
simply taking a linear combination of the two functionals FG

1 and FG
2 :

δ
{

4
3
FG

1 − 1
12u0

FG
2

}
δωa(x)

= ga2
∑
µ

Tr

{[
∂µAµ(x) − 4

360
a4∂5

µAµ(x) + O(a6)

]
T a
}

+O(g3a4).

(8.10)
The mean-field (tadpole) improvement parameter u0, Eq. (5.19), was introduced to
ensure that our perturbative calculation is not spoiled by large renormalisations [10].

Note that the higher order g3a4 terms of Eqs. (8.6) (8.9) and (8.10) are to be
viewed in terms of the mean-field-improved perturbation theory [10]. We shall define
this improved functional as:

FG
Imp ≡ 4

3
FG

1 − 1

12u0

FG
2 . (8.11)

The algorithm for fixing the Landau gauge are mostly local. Local algorithms
generate, at each sites, a gauge matrix that maximizes the functional in question. this
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matrix is then applied to the lattice. This procedure is iterated over until the global
maximum is found. The algorithm of preference is the “steepest descents” approach
[56]. Absorbing terms of O(a4) and higher into the Hi, three difference operators can
be constructed, namely:

∆1(x) ≡ 1

u0

∑
µ

[Uµ(x− µ) − Uµ(x) − h.c.]traceless

= −2iga2
∑
µ

{
∂µAµ(x) +

a2

12
∂3
µAµ(x) + H1

}
, (8.12)

∆2(x) ≡ 1

4u2
0

∑
µ

[Uµ(x− 2µ)Uµ(x− µ) − Uµ(x)Uµ(x+ µ) − h.c.]traceless

= −2iga2
∑
µ

{
∂µAµ(x) +

a2

3
∂3
µAµ(x) + H2

}
, (8.13)

∆Imp(x) ≡ 4

3
∆1(x) − 1

3
∆2(x)

= −2iga2
∑
µ

{∂µAµ(x) + HImp} . (8.14)

where the subscript, “traceless” denotes subtraction of the average of the colour-trace
from each of the diagonal colour elements. The resulting gauge transformation is

Gi(x) = exp
{α

2
∆i(x)

}
= 1 +

α

2
∆i(x) + O(α2). (8.15)

The parameter α can be tuned and will vary according to the lattice spacing a. The
index i denotes the choice of operator taken into consideration, and will depend on order
of the gauge action. During the iterative process, the gauge transformation, Gi(x), is
reunitarized through an orthonormalization procedure similar to the one described in
Section 4.3 with the omission of the Lorentz index and with an SUc(3) matrix attached
at each lattice sites instead of an SUc(2) as shown in Appendix. E.5, the routine may
be found in Appendix. E.22.

The algorithm first calculates the relevant ∆i, and then applies the associated gauge
transformation, Eq. (8.15), to the gauge field.

8.2 Monitoring Discretisation Errors on the Lattice

The convergence criterion to Landau gauge is usually monitored by a quantity such as

θi =
1

V Nc

∑
x

Tr
{
∆i(x)∆i(x)

†} , (8.16)

where Nc is the number of colours, and V represents the lattice volume. The quantity
is designed to approach a prefixed quality factor as we sweep through the lattice, in
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praxis this number is of the order of 10−12. When this criterion is reached the algorithm
stops.

We may rewrite Eq. (8.13) by substituting in Eq. (8.7), leading to

∆2(x) = −2iga2
∑
µ

{
−a

2

12
∂3
µAµ(x) +

a2

3
∂3
µAµ(x) −H1 + H2

}
= −2iga2

∑
µ

{
a2

4
∂3
µAµ(x) −H1 + H2

}
. (8.17)

In the same way, we may rewrite the improved term as:

∆Imp(x) = −2iga2
∑
µ

{
−a

2

12
∂3
µAµ(x) −H1 + HImp

}
. (8.18)

Eq. (8.18) provides an estimate of the absolute size of these discretisation errors, be-
cause the improved measure has no O(a2) error of its own.

The exploration of the gauge fixing errors was done on 64 lattices at a variety of β for
both the standard Wilson gauge action, Eq. (2.19), and the 1×2, 2×1 improved gauge
action, Eq. (5.16). These are defined in Sec. 2.1.3 and Sec. 5.1 respectively. Details of
the simulation is put into a tabular form in Table. 8.1. The gauge field configuration
were generated in the same way as in the simulations described in Chapter 7, and were
gauge fixed using Conjugate Gradient Fourier Acceleration [58] with a quality stopping
criterion of θ1 < 10−12.

8.2.1 Numerical Simulations

Once the gauge field configuration was gauge fixed, θImp and θ2 were measured, giving
the possibility to see the size of the residual higher order terms. In fig. 8.1, I show the
evolution of the gauge fixing measures as a function of iteration. The data is for a 64

lattice with Wilson action at β = 6.0.
The same procedure was repeated with each of the other two functionals on all the

lattices mentioned in Table. 8.1, a summary of the results may be found in Table. 8.2.
The first six columns of Table. 8.2 correspond to the results obtained when the gauge
field configurations are generated with the standard Wilson gauge action while the
remaining six columns, on the left hand side of the table, are for the 1×2, 2×1 improved
gauge action.

We can now compare the results coming from different functionals, if we compare
Eq. (8.7) with Eq. (8.18), we observe that the improved measure, θImp, consist entirely

Table 8.1: Parameters of the gauge fixing numerical simulation.

Action Volume NTherm NSamp β a (fm) Physical Volume (fm)
Wilson 63 × 6 5000 1000 5.70 0.18 1.083 × 1.08
Wilson 63 × 6 5000 1000 6.00 0.10 0.63 × 0.6
Wilson 63 × 6 5000 1000 6.20 0.07 0.423 × 0.42

Improved 63 × 6 5000 1000 3.92 0.353 2.123 × 2.12
Improved 63 × 6 5000 1000 4.38 0.165(2) 0.993 × 0.99
Improved 63 × 6 5000 1000 5.00 0.077(1) 0.463 × 0.46
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Figure 8.1: The gauge fixing measures for a 64 lattice with Wilson action
at β = 6.0. This lattice was gauge fixed with ∆1, so θ1 drops steadily
whilst θ2 and θImp plateau at much higher values.

Wilson Improved

β u0 F θImp θ2
θImp

θ2
β u0 F θImp θ2

θImp

θ2

5.7 0.865 1 0.0679 0.611 0.111 3.92 0.837 1 0.102 0.921 0.111
6.0 0.877 1 0.0578 0.520 0.111 4.38 0.880 1 0.0585 0.526 0.111
6.2 0.886 1 0.0522 0.469 0.111 5.00 0.904 1 0.0410 0.369 0.111

β u0 F θImp θ1
θ1
θImp

β u0 F θImp θ1
θ1
θImp

5.7 0.865 2 59.0 33.2 0.563 3.92 0.837 2 57.5 32.3 0.563
6.0 0.877 2 65.1 36.6 0.563 4.38 0.880 2 53.4 30.0 0.563
6.2 0.886 2 61.7 34.7 0.563 5.00 0.904 2 52.2 29.4 0.563

β u0 F θ1 θ2
θ1
θ2

β u0 F θ1 θ2
θ1
θ2

5.7 0.865 Imp 0.0427 0.684 0.0625 3.92 0.837 Imp 0.0638 1.02 0.0625
6.0 0.877 Imp 0.0367 0.588 0.0625 4.38 0.880 Imp 0.0366 0.586 0.0625
6.2 0.886 Imp 0.0332 0.531 0.0625 5.00 0.904 Imp 0.0261 0.417 0.0625

Table 8.2: Left side of the table, the Values of the gauge-fixing measures obtained using
the Wilson gluon action on 64 lattices at three values of the lattice spacing, fixed to
Landau gauge with the one-link, two-link and improved functionals respectively. The
ones obtained using the improved gluon action on 64 lattices at three values of the
lattice spacing are shown in the right side of the table.

of discretization errors when the one–link functional is used to gauge fix a configuration

119



to Landau gauge. Looking at table 8.2, shows that at β = 6.0,

θImp =
1

V Nc

∑
x

Tr
{

∆Imp(x) (∆Imp(x))
†
}

=
1

V Nc

∑
x

Tr

⎧⎨⎩∑
µ

∂µAµ(x)

(∑
ν

∂νAν(x)

)†⎫⎬⎭ = 0.058, (8.19)

which is a significant deviation from the continuum Landau gauge if compared with
the prefixed quality stopping criterion, θ1 < 10−12.

As a check of the simulations, we note that the definition for ∆Imp, Eq. (8.14),
provides a constraint on the measures when gauge fixed. For example

θImp

θ2
=

(− 1
12

)2

(− 1
12

+ 1
3
)2

=
1

9
� 0.111. (8.20)

Similarly, by fixing with ∆2(x) we expect

θ1
θImp

=
(−1

3
+ 1

12
)2

(−1
3
)2

=
9

16
� 0.563, (8.21)

and fixing with ∆Imp(x) leads to

θ1
θ2

=
1

16
= 0.0625. (8.22)

These ratios are reproduced by the data of tables 8.2.
A gauge field configuration that is gauge fixed using ∆Imp(x) will satisfy∑

µ

∂µAµ(x) =
∑
µ

{−HImp} . (8.23)

Inserting this into Eq. (8.12) yields

∆1(x) = −2iga2
∑
µ

{
a2

12
∂3
µAµ(x) + H1 −HImp

}
, (8.24)

which differs from Eq. (8.18) only by an overall minus sign. This overall minus sign
become irrelevant in the calculation of the corresponding θi.

One would expect that the three different methods to gauge fixed to Landau gauge
presented above would all fix the gauge field configuration in the same way. This
means, for example that, the θImp of a configuration fixed with ∆1, would be equal
to θ1 when the gauge field configuration is fixed with ∆Imp. Looking at Table. 8.2,
we can see it is not the case, this tells us that higher-order derivative terms ∂nµAµ(x)
take different values depending on the gauge fixing functional used. Furthermore, the
values in Table 8.2 reveals that in every case θ1 is smaller when fixed with the improved
functional than θImp under the one-link functional. This suggests that the additional
long range information used by the improved functional is producing a gauge fixed
configuration with smaller, higher-order derivatives; a secondary effect of improvement.

On the same principle, the value of θ2 when fixed using the one-link functional, and
θ1 when fixed using the two-link functional may be compared. The differences that
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are produced from the two are rather large and once again attributed to differences
in the size of higher-order derivatives of the gauge field. The two-link functional is
coarser, it knows little about short range fluctuations, and fails to constrain higher-
order derivatives. Similar conclusions are drawn from a comparison of θ2 fixed with
the improved functional and θImp fixed with the two link functional.

It is also interesting to note that in terms of the absolute errors, the Wilson action
at β = 6.0 is comparable to the improved lattice at β = 4.38, where the lattice spacing
is three times larger. Therefore showing the gain in performance in passing to improved
action.

To summarize: Using three different functionals to gauge fix to Landau gauge (the
one-link and the two-link functionals have O(a2) errors, the improved functional has
O(a4) errors) a method for estimating the discretisation errors has been devised. The
results show that order O(a2) improvement of the gauge fixing condition will improve
comparison with the continuum Landau gauge in two ways: 1) through the elimination
of O(a2) errors and 2) through a secondary effect of reducing the size of higher-order
errors.

These conclusions are robust with respect to lattice spacing and have also been
verified by considering additional configurations to that presented here.
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Chapter 9

Gluon Propagator with Improved
action

9.1 Introduction

There has been considerable interest in the infrared behaviour of the gluon propagator,
as a probe into the mechanism of confinement and as input for other calculations.
Lattice gauge theory is an excellent means to study such nonperturbative behaviour.
See, for example, Ref. [4, 3] for a recent survey. The analysis was primarily carried
out by Dr. Patrick O. Bowman and partly inspired by the one carried out in hep-
lat/0106023, see Sec. 7.8. While this gluon propagator work is not being presented
here as my own Ph. D. qualifying work, I am a co–author on the subsequent papers
and so I have therefore decided to include a review of this work.

Infrared quantities calculated in any lattice calculation may be affected by the
finite volume of the lattice. Larger volumes mean either more lattice points (with
increased computational cost) or coarser lattices (with corresponding discretization
errors). The desire for larger physical volumes thus provides strong motivation for
using improved actions. Improved actions have been shown to reduce discretization
effects [25], although some concerns have been expressed that coarse lattices may miss
important instanton physics.

In this chapter we are interested in the study of the gluon propagator in Landau
gauge. The first task is to determine if some significant changes are seen in the infrared
gluon propagator, even with a lattice spacing as coarse as 0.35 fm. We wish to find
the strength of the gluon propagator in the infrared, see if the gluon propagator is in-
frared finite and see if this behaviour is similar to the one observed in three-dimensional
SUc(2) studies [60]. This study is done in Landau gauge quenched QCD (pure SUc(3)
Yang-Mills), using both standard Wilson gauge action and the mean-field (tadpole) im-
proved [10] version of the tree–level O(a2) Symanzik improved gauge action [69, 70, 71].
These are defined in Sec. 2.1.3 and Sec. 5.1 respectively. The gauge field configura-
tion were generated with the Cabbibo-Marinari [21] pseudoheat-bath algorithm with
three diagonal SU(2) subgroups, the sampling was done in the same manner as in the
simulations described in Chapter 7. The gauge field configurations were gauge fixed
using the gauge fixing procedure described in Chapter 8 and in [63]. To ensure that
the gauge dependent quantities remain O(a2) improved, the O(a2) improved gauge
fixing functional, Eq. (8.11) was used. The various lattices used in this study are listed
in Table 9.1, each lattice has a label for easy referencing (for example the lattice 1w
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would correspond to the lattice generated with the standard Wilson gauge action on a
163 × 32 lattice at a coupling of β = 5.70).

Using the various lattices, listed in Table 9.1, the gluon propagator has been cal-
culated, see Table 9.1. Only two gluon propagators were generated using the standard
Wilson gauge action, lattice 1w and 6. Lattice 1w is comparable to lattice 1i since
they have the same lattice spacing hence roughly the same physical volume. Lattice 6
was generated and used in the study of the gluon propagator in Ref. [62]. The value
for the tadpole factor was reported to be u0 = 0.878, it has been used to normalize
the propagator with respect to the other lattices. This lattice will be used here for
comparison purposes only as it is the finest lattice out of the available set. All the
other lattices were generated with the O(a2) improved action.

The legend for denoting the data points is as follows. The data points coming from
the momenta lying along a spatial Cartesian direction are displayed using a square, (�),
while those lying in the temporal direction are denoted by triangles, (�). Since the
size of the temporal direction is larger than the spatial direction, the spread between
the two symbols may indicate that the propagator is affected by the finite volume of
the lattice. Points coming from just the four diagonal are marked by diamonds, (�).
Rotational symmetry breaking is manifested by the spread between the points coming
from the diagonal and those coming from other direction.

In the continuum, the scalar function is rotationally invariant. Although the hyper-
cubic lattice breaks O(4) invariance, it does preserve the subgroup of discrete rotations
Z(4) up to finite volume effects. In our case, this symmetry is reduced to Z(3) as one
dimension will be twice as long as the other three in each of the cases studied. We
exploit this discrete rotational symmetry to improve statistics through Z(3) averag-
ing. This is best explained through a simple example. Consider the propagator at
momentum q = (3, 2, 1, 4) (say). Z(3) symmetry means that

D(3, 2, 1, 4) = D(2, 3, 1, 4) = D(2, 1, 3, 4) = D(1, 2, 3, 4) = D(1, 3, 2, 4) = D(3, 1, 2, 4)

so we calculate the propagator for each of these values of momentum, and then average
the results.

Table 9.1: Parameters of the gluon propagator numerical simulation. Lattices 1w and
1i have the same dimensions and approximately the same lattice spacing, but were
generated with the Wilson and improved actions respectively. Lattice 6 was generated
with the Wilson action. Hundred configurations were used for the lattice 1w,1i,2,3,4,5
and seventy-five for lattice 6.

Action lattice Volume NTherm NSamp β a fm Physical Volume fm
Wilson 6 323 × 64 - 1000 6.00 0.099 3.183 × 6.34
Wilson 1w 163 × 32 5000 1000 5.70 0.180(1) 2.883 × 5.76

Improved 4 163 × 32 5000 1000 3.92 0.352(3) 5.633 × 11.26
Improved 1i 163 × 32 5000 1000 4.38 0.165(2) 2.643 × 5.28
Improved 5 123 × 24 5000 1000 4.10 0.272(2) 3.263 × 6.53
Improved 2 103 × 20 5000 1000 3.92 0.352(3) 3.523 × 7.04
Improved 3 83 × 16 5000 1000 3.75 0.41(1) 3.283 × 6.56

123



9.2 Landau Gauge Gluon Propagator

The dimensionless lattice gluon field Aµ(x) may be defined via

Aµ(x+ µ̂/2) =
1

2ig0

(
Uµ(x) − U †

µ(x)
)− 1

6ig0
Tr
(
Uµ(x) − U †

µ(x)
)
, (9.1)

accurate to O(a2). The gauge links are defined in the usual manner, Eq. (2.1). While
the infrared behaviour is unaffected by the improvement, the ultraviolet behaviour
suffers due to the extended nature of an improved operator.

The gluon propagator in coordinate space

Dab
µν(x, y) ≡ 〈Aaµ(x)Abν(y) 〉 , (9.2)

is calculated using (9.1). To improve statistics, we use translational invariance and
calculate

Dab
µν(y) =

1

V
〈
∑
x

Aaµ(x)A
b
ν(x+ y) 〉 . (9.3)

In this report we focus on the scalar part of the propagator,

D(y) =
1

Nd − 1

∑
µ

1

N2
c − 1

∑
a

Daa
µµ(y), (9.4)

where Nd = 4 and Nc = 3 are the number of dimensions and colours. This is then
Fourier transformed followed by summing over the Lorentz components1 of the Fourier
transform

D(q̂) =
1

Nd − 1

∑
µ

∑
y

eiq̂·yDµµ(y) , (9.5)

where the available momentum values, q̂, are given by

q̂µ =
2πnµ
aLµ

, nµ ∈
(
−Lµ

2
,
Lµ
2

]
, (9.6)

and Lµ is the length of the box in the µ direction. In the continuum, the scalar function
D(q2) is related to the Landau gauge gluon propagator via

Dab
µν(q) = (δµν − qµqν

q2
)δabD(q2) . (9.7)

The bare, dimensionless lattice gluon propagator D(qa) is related to the renormal-
ized continuum propagator DR(q;µ) by

a2D(qa) = Z3(µ, a)DR(q;µ), (9.8)

for momenta, q, sufficiently small compared to the cutoff, π/a. DR(q;µ) is independent
of a for sufficiently fine lattices; i.e., in the scaling regime. The renormalization con-
stant Z3(µ, a) is determined by imposing a renormalization condition at some chosen
renormalization scale µ, e.g.,

DR(q)|q2=µ2 =
1

µ2
. (9.9)

1The Landau gauge condition in momentum space, qµDµν(q) = 0 places a constraint on the
Lorentz components of the propagator so that, for non-zero momentum, there are Nd − 1 degrees of
freedom [60].
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The renormalized gluon propagator can be computed both nonperturbatively on the
lattice and perturbatively in the continuum for choices of the renormalization point in
the ultraviolet. It can then be related to the propagator in other continuum renormal-
ization schemes such as MS. The first task is to compare our two improved, coarse
lattices with the unimproved, finer one, it is sufficient to consider only their relative
renormalizations. We have slightly rescaled the improved propagators so as to provide
a reasonable match with old one. The relevant quantity is

Z3(0.10)/Z3(0.35) = 1.02. (9.10)

All the propagators are plotted in physical units, which was obtain from the string
tension [28] with

√
σ = 440 MeV.

9.3 Uncorrected Gluon Propagator

I first would like to show the gluon propagator as it comes out from the lattice sim-
ulation. The untouched gluon propagator calculated from the standard Wilson gauge
action, lattice 1w, and from an improved gauge action 1i is shown in Figures 9.1 and 9.2
respectively. Both of these have been plotted as functions of q̂, Eq. (9.6), for all avail-
able momenta. Both of these propagators show large divergences in the ultraviolet
region, most of which appear more severe in the case of the standard Wilson action
than in the case of the improved gauge action where the finite spacing errors do not
exceed the infrared peak and the UV tail is generally flatter. In both of these figures
neither tree–level correction or data cuts have been performed.

One way to deal with these divergences is to throw out some of the points in the
ultraviolet by considering only momenta out to half of the Brillouin zone. For each of
the four Cartesian directions,

q̂ ≤ π

2a
. (9.11)

This momentum cut is referred to as the “half-cut” and in Fig. 9.3 and Fig. 9.4
we see that this removes the worst of the artifacts. This cut sacrifices data in the
ultraviolet. Nevertheless, the two propagators, show plausible asymptotic behaviours,
but there are still clear signs of lattice artifacts. As far as the infrared is concerned these
two problems are of no significant weight, but as we will see, something as crude as the
half-cut is not necessary and we can do much better at minimizing lattice artifacts.

Comparing Figs. 9.1 and 9.2, we see that the ultraviolet points are not so spread
out with the improved gauge action, this shows an excellent restoration of rotational
symmetry all the way to the edge of the Brillouin zone with an improved action.

9.4 Tree–level Correction on the Gluon Propaga-

tors

Perturbation theory tells us that the asymptotic behaviour of the gluon propagator, in
the continuum, as p2 → ∞, has the form:

D(p) =
1

p2
, (9.12)
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Figure 9.1: Uncorrected gluon propagator from lattice 1w (β = 5.70, 163 × 32, Wilson
action), plotted as a function of q̂. The dramatic “fanning” is caused by finite spacing
errors which quickly destroy the signal at large momenta.

Figure 9.2: Uncorrected gluon propagator from lattice 1i (β = 4.38, 163×32, improved
action), plotted as a function of q̂. Lattice artifacts are reduced by the improved action,
but are still large.
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Figure 9.3: Uncorrected gluon propagator from lattice 1w (β = 5.70, 163 × 32, Wilson
action), plotted as a function of q̂ with the momentum “half-cut” applied.

Figure 9.4: Uncorrected gluon propagator from lattice 1i (β = 4.38, 163×32, improved
action), plotted as a function of q̂ with the momentum “half-cut” applied. The im-
proved propagator has different normalization to the Wilson case due to a difference
in the Z3 renormalization constant.
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up to logarithmic corrections. We can then use this knowledge to ameliorate our lattice
results and make better contact with the continuum. It is also well known that the
lattice propagator for a free massless boson with an unimproved action is inversely
proportional to a trigonometric function of the discrete momentum,

D(q̂) =
1

4
a2

∑
µ sin2( q̂µa

2
)
. (9.13)

It was suggested, in Ref. [62] and elsewhere, that the correct momentum variable
to use when examining the gluon propagator on the lattice, with the Wilson action, is
not Eq. (9.6), but2

qµ ≡ 2

a
sin

q̂µa

2
. (9.14)

It has been observed that this choice ensures that the propagator takes its asymptotic
form at large lattice momenta [62, 73].

The improved action Eq. (5.16) together with the gluon field defined in Eq. (9.21)
has the O(a2) improved tree-level behaviour [69, 70]

D−1(q̂) =
4

a2

∑
µ

{
sin2
( q̂µa

2

)
+

1

3
sin4
( q̂µa

2

)}
. (9.15)

Equations (9.13) and (9.15) will be used to obtain the correct momentum variable
for each action.

The idea is to eliminate the irrelevant lattice operators and in doing so emphasise
the nonperturbative aspects of the propagator. The procedure consist in dividing the
propagator by its perturbative form. In this case we expect the propagator to approach
as q2 → ∞, up to logarithmic corrections, a constant. We will see that performing
such a step on the gluon propagator significantly improves its ultraviolet behaviour.
Hence, all figures are plotted against q2D(q2), unless specified otherwise.

We will define our lattice momentum variables as

qWµ ≡ 2

a
sin

q̂µa

2
, (9.16)

for the standard Wilson gauge action, and

qIµ ≡ 2

a

√
sin2
( q̂µa

2

)
+

1

3
sin4
( q̂µa

2

)
, (9.17)

for our improved action. A similar approach was used in Ref. [59] for their study of
the gluon propagator.

In the continuum the scalar part of the gluon propagator in Landau gauge can be
written as:

p2D(p2) =
1

1 + Π(p2)
=

D(p2)

Dtree(p2)
, (9.18)

where Π(p2) is the scalar vacuum polarization. Asymptotic freedom predicts that
1/[1 + Π(p2)] → 1 up to logarithmic corrections.

It is argued here that first the lattice version of D(p2)/Dtree(p2) experiences asymp-
totic freedom just as in the continuum and secondly that this quantity will approach

2Many authors have q and q̂ defined the other way around, but in this context our terminology is
more natural.
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its continuum form according to the lattice spacing. So on the lattice we expect
D(p2)/Dtree(p2) → 1 as p2 → ∞ just as in the continuum, even though the lattice
artifacts in both D(p2) and Dtree(p2) may themselves be large.

This procedure is called tree-level correction. This philosophy motivated the tree–
level correction applied in recent studies of the quark propagator [74], and in the work
presented in this thesis, especially in Chapter 10.

In figures where q2D(q2) is plotted vs. q, the “q” in q2D(q2) (plotted on the y-axis)
is always the same as the q that is used on the x-axis, where q = q̂, qW or qI as
described in the text.

Let us now see what happens when we tree-level correct to the gluon propagator
through the alternative momentum variables derived from the tree–level behaviour of
the actions. The effects of tree-level correction may be seen in Fig. 9.5 and Fig. 9.6,
where the Wilson propagator has been plotted as a function of qW (qWD(qW ) vs. qW )
and the improved propagator as a function of qI (qID(qI) vs. qI) for all momenta of
the Brillouin zone.

Both Figs. 9.5 and 9.6 are consistent with the study of Ref. [62]. In Figures 9.1
and 9.2 we saw an excellent restoration of rotational symmetry right through the mo-
mentum spectrum with improved action. Comparing Figs. 9.5 and 9.6 we clearly see
that it is also the case once the gluon propagator has been tree–level corrected. Fur-
thermore, there is a clear discrepancy between the diagonal and Cartesian points in
Fig. 9.5 showing a clear sign of rotational symmetry breaking for the standard Wilson
action. This compares with Fig. 9.6 where the spread of points is substantially smaller
with the improved action. The gluon propagator from lattice 1i was examined versus
the lattice momentum qW , Eq. (9.16), this lead to a propagator which was strongly
affected by lattice artifacts especially in the ultraviolet region where a sharp drop was
observed. This is clearly a poor choice of momentum variable for this action as ex-
pected on the basis of our tree-level correction. The best prescription for optimum
results at finite lattice spacing is to use the lattice momentum that is determined from
the tree level behaviour of the propagator for the choice of action and gluon field.

9.5 Analysis of Lattice Artifacts on Coarse Lattices

To study the non–perturbative behaviour of the gluon propagator, one divides by its
tree–level result known from lattice perturbation theory. Hence, plotted in Figs. 9.7,
9.8 and 9.11 is q2D(q2) versus the lattice momentum defined in Eq. (9.14). In the
deep ultraviolet region we expect the gluon propagator to approach, up to logarithmic
corrections, a constant.

The noisy behaviour of the propagator and lattice artifacts may be better managed
by selecting the momentum points that only lie within a cylinder of radius of two spatial
momentum units centred about the lattice diagonal. This will enable us to eliminate
these large momenta values that are most susceptible to finite lattice artifacts. To
select the points appropriately, we calculate the distance ∆q̂ of a momentum vector q̂
from the diagonal using

∆q̂ = |q̂| sin θ, (9.19)

where the angle θ is given by

cos θ =
q̂ · n̂
|q̂| , (9.20)
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Figure 9.5: Uncut gluon propagator from lattice 1w (β = 5.70, 163×32, Wilson action),
plotted as a function of qW for all momenta. The tree-level correction has greatly
reduced discretization errors from those seen in Fig. 9.1.

Figure 9.6: Uncut gluon propagator from lattice 1i (β = 4.38, 163 × 32, improved
action), plotted as a function of qI for all momenta. The combination of improved
action and tree-level correction has produced a remarkably clean signal over the entire
range of accessible momenta. This figure should be compared with Fig. 9.2, and with
Fig. 9.5 for the Wilson action at a similar lattice spacing.
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and n̂ = 1
2
(1, 1, 1, 1) is the unit vector along the diagonal. The method for selecting

the momentum in a such a way is known as cylinder cut [62].

Figure 9.7: Gluon propagator from 75 standard, Wilson configurations, on a 323 × 64
lattice with spacing a = 0.10fm.

Figure 9.8: Gluon propagator from 75 tree-level improved configurations on a 103 × 20
lattice with spacing a = 0.35fm, and a physical volume of 3.53 × 7fm4.

In Ref. [62], the gluon propagator was calculated using the Wilson gauge action,
Eq. (2.19) on a 323 × 64 lattice at β = 6.0, corresponding to a lattice spacing of 0.1
fm. The resulting gluon propagator is reproduced in Fig. 9.7. From this figure, we
can clearly see the asymptotic behaviour of the gluon propagator as well as its infrared
behaviour (the main results reported in [62]). A detailed analysis shows the anisotropic
finite volume errors are small, however, it is not possible to rule out isotropic finite
volume artifacts.

Using the improved action described in Sec. 5.1, the gluon propagator was calculated
on a small 103 × 20 lattice at a coarse spacing of a = 0.35 fm. The resulting graph is
shown in Fig. 9.8. Comparing Fig. 9.8 with Fig. 9.7, and despite the coarseness of the
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lattice, we clearly see that the improved coarse lattice reproduces the infrared behaviour
of Fig. 9.8. Furthermore, if the volume is increased to 5.63 × 11.2 fm generated from a
163 × 32 lattice at the same lattice spacing (lattice 4) we also see a perfect agreement
in the infrared region. The improved lattice is illustrated in Fig. 9.11. We could make
further comparison between the two actions after tree–level correction has been applied
and once the data sets have undergone cylinder cutting. As in Sec. 9.2 and Eq. (9.10),
the improved propagator need to be rescaled to make the comparison between the
two actions possible. The rescaling is dependent on the lattice spacing, so for each
lattice it will be slightly different. So the unimproved propagator has been multiplied
by a relative renormalization of 1.09. This factor is deduced by adjusting the vertical
scales of the two data sets until they agreed. In Fig. 9.9, we are comparing the gluon
propagator coming from the Wilson gauge action at β = 5.70 (lattice 1w) and lattice
1i at β = 4.38. Both lattices have roughly the same physical volumes. Apart from the
superior performance of the improved propagator, the two actions produces the same
results.

We may also compare the results coming from the fine lattice (lattice 6) to those
coming from a coarser lattice (lattice 1i) for completeness. Lattice 1i is 60% coarser
than the fine lattice. Both sets of data are cylinder cut and each is tree–level cor-
rected according to its action. The relative renormalization has been determined to
be Z3(improved)/Z3(Wilson) = 1.08. Once again, it can be seen from Fig. 9.10 that
both propagators remain consistent, as we saw above for lattice 4, moreover that the
ultraviolet performance of lattice 1i is remarkable. The propagator from Ref. [62] had
the momentum half-cut applied, whereas the improved propagator with lattice spacing
a = 0.165(2)fm is shown for the entire Brillouin zone. The propagator was calculated
over the same range of momenta as Ref. [62], despite using a much coarser lattice.

We can therefore conclude that these results largely agree with each other and
that the behaviour of q2D(q2) is not significantly affected by volume changes for the
volumes considered.

Juxtaposing the three lattices and plotting D(q2) instead of q2D(q2) versus the
lattice momentum, to allow cross examination of the deep infrared, Fig. 9.12. The
points beyond 0.35 GeV are all in very strong agreement with each other giving a very
robust results with respect to the volume. Fig. 9.12 also shows that only the very
lowest momenta points contain some signs of finite volume effects.

At this point, it is good to compare the effects of making the lattice spacing coarser
when using an improved action. Let us consider three different lattices which are getting
progressively coarser, Figures 9.13, 9.14 and 9.15. These figures show the uncut gluon
propagator after being tree-level corrected, the lattice spacing are a = 0.27, 0.35 and
0.41 fm for lattices 5, 2 and 3 respectively. A visual comparison of the three, clearly
shows that as the UV cut off has been lowered, the perturbative tail of the propagator,
slowly fades off while the infrared remains significantly present. There are no signal of
loss of information in the infrared as the lattice become coarser.

Using these three lattices in conjunction to lattice 1i and 1w, we can examine the
effect on the propagator as the lattice is getting coarser. The first four lattices are
shown in Fig. 9.16. Comparing Figures 9.9 and 9.16 we see that the Wilson β = 5.7
and improved β = 4.10 and β = 4.38 results all agree well, which suggests that these are
“fine enough” lattices for the study of the gluon propagator on the lattice. Examining
Fig. 9.16, shows that the β = 3.75 and β = 3.92 propagators do not quite line up with
the others and the UV tail of the 3rd lattice rises slightly as the lattice becomes coarser.
It is important to note that the propagator on lattice 3 was calculated with only 100
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Figure 9.9: Comparison of the gluon propagator from lattices 1w at β = 5.70 and 1i at
β = 4.38. Data has been cylinder cut and tree-level correction has been applied. We
have determined Z3(improved)/Z3(Wilson) = 1.09 by matching the vertical scales of
the data.

Figure 9.10: Comparison of the gluon propagator from the finest improved lattice
(lattice 1i, β = 4.38) and the finest Wilson lattice (lattice 6, β = 6.0). Data has been
cylinder cut and the appropriate tree-level corrections have been applied. The data
from lattice 6 is half-cut whereas lattice 1i displays the full Brillouin zone. We have
determined Z3(improved)/Z3(Wilson) = 1.08 by matching the vertical scales of the
data.
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Figure 9.11: Gluon propagator from 75 tree-level improved configurations, on a 163×32
lattice with spacing a = 0.35 fm and a physical volume of 5.63 × 11.2fm4.

Figure 9.12: Comparison of the gluon propagator on the three different lattices. The
volumes are 3.23 × 6.4fm4, 3.53 × 7.0fm4, and 5.63 × 11.2fm4.
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Figure 9.13: Gluon propagator from lattice 5 at β = 4.10, which has spacing a � 0.27fm
on 123×24. This has the same physical volume as lattice 3 of Fig. 9.15. The propagator
is shown for all momenta (no data cuts) after tree-level correction.

Figure 9.14: Gluon propagator from lattice 2, the smaller lattice at β = 3.92 which
has spacing a � 0.35 fm on a 103 × 20 lattice. Finite volume errors are just detectable
as indicated by momenta along the time axis (filled triangles) falling below the rest of
the data. Tree-level correction has been used, but no data cuts have been applied.
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configurations on a 83 × 16 lattice (corresponding to a reasonable physical volume of
3.303 × 6.60). Nevertheless, it is an indication of a loss of scaling. The lattices at
β = 3.92 and β = 3.75 having a = 0.35 and 0.41 fm respectively are too coarse for the
tree-level correction to completely correct the entire Brillouin zone. The physics near
the cutoff is examined here by these coarse lattice, and it is possible to conclude that
such coarse lattices should be half-cut. Nevertheless, the propagators all agree in the
infrared.

This gives us great confidence in the exploitation of improved actions on coarse
lattice for studying the nonperturbative physics and motivated us for creating a lattice
at a = 0.35 fm on a very large volume. The results are shown in Fig 9.17, no signs
of significant finite volume artifacts are observed when compared with Fig. 9.14 which
has the same lattice spacing, but a smaller volume.

We will use this large volumes to extrapolate to the infinite volume limit in con-
junctions with more lattices with different spacing, see Sec. 9.6. Nevertheless, at this
point in time, we see that at the very lowest momentum points, a decrease in the value
of the propagator as the volume increases. This strongly suggests an infrared finite
gluon propagator.

To summarize: the infrared behaviour of the gluon propagator calculated with an
improved gauge field action remains in good agreement with the one calculated on
a finer lattice with the standard Wilson gauge action. The increase of volume left
the propagator largely unchanged, in particular the turn over in the infrared region
observed in [62] is not a finite volume effect.

The q−4 behaviour popular in Dyson-Schwinger studies, and any infrared singularity
appears to be unlikely. An infrared finite propagator is most plausible. The gluon
propagator would need to drop rapidly for momenta below ∼ 350 MeV in order to
vanish as suggested by Zwanziger[65] and others.

9.6 Infinite volume behaviour of the Propagator

In this section we are interested in making a contact with the infinite volume behaviour
of the gluon propagator. Here, we are going to use the various lattices already men-
tioned in the previous section plus some other ones for completeness. In Table 9.1, the
various lattice with their respective simulation parameter are summarised.

In this analysis the gluon propagator is defined in the same as in Sec. 9.2. Given
that the gauge links Uµ(x) are expressed in terms of the continuum gluon fields as in
Eq. (2.1), the dimensionless lattice gluon field Aµ(x) may be obtained from the gauge
links via

Aµ(x+ µ̂/2) =
1

2igu0
{Uµ(x) − U †

µ(x), }traceless , (9.21)

which is accurate to O(a2). This is, of course, only one of many possible ways to
calculate the gluon field on the lattice. In Eq. (9.21), Aµ is calculated at the midpoint
of the link to remove O(a) terms. The tadpole factor was included to improve the
normalization.

The gluon propagator in coordinate space is then calculated using Eq. (9.2) using
Eq. (9.21). It is then Fourier transformed into momentum space via Eq. (9.5). To
perform the infinite volume linear fit the propagator at p = 0 is used, i.e.

D(0) =
1

Nd

∑
µ

∑
y

Dµµ(y). (9.22)
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Figure 9.15: Gluon propagator from lattice 3 at β = 3.75, which has spacing a � 0.41
fm on 83 × 16. The propagator is shown for all momenta (no data cuts) after tree-level
correction. This propagator is consistent with that obtained on much finer lattices.

Figure 9.16: Comparison of the gluon propagator from lattices 1i (β = 4.38), 2 (β =
3.92, small), 3 (β = 3.75), and 5 (β = 4.10), which have a variety of lattice spacings.
Data has been cylinder cut and tree-level correction has been applied. Data from the
two finest improved lattices (0.165(2) and 0.27 fm) are consistent. A clear violation of
scaling is seen in the coarsest two lattices (0.35 and 0.41 fm), where the spacing is too
coarse for tree-level correction to completely restore the full Brillouin zone behavior.
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To consider the volume dependence of the gluon propagator. We superimpose all of
our improved propagators to examine the variation of the propagators as a function of
the coupling, see Fig. 9.18. This plot, which shows the cylinder-cut data for the scalar
function D(q2) for each of the improved lattices, provides a strong demonstration of
lattice artifacts. In the ultraviolet all the propagators are in perfect agreement but as
we move towards lower momentum values (below ∼ 500 MeV) we notice that the points
are starting to disentangle themselves from one another, showing clear differences in
the points distribution. This is a sign of finite volume effect. As the volume increases
the low momenta data points drop towards a plateau or flattens off. The grouping of
points at about 400 MeV suggest that we are, with the two largest lattices, getting
close to the infinite volume limit. The two largest lattices are consistent right through
the momentum spectrum, even though the volume difference between the two is signif-
icant. This brings confidence in the result. For comparison, the tree-level, perturbative
expression D(q2) = 1/q2 is also shown, suitably normalized.

In Fig. 9.16 we see for our coarse lattices a rise in the UV tail beyond ∼ 1 GeV
showing a loss of scaling. This is not apparent when we plot the scalar part of the
propagator. The multiplication of the propagator by q2 is required in order to amplify
this region of interest and to really pinpoint when the lattice spacing artifacts are
present. Doing otherwise may be misleading as far as the effectiveness of improvement
in the gluon propagator is concerned. Thus it is always best to plot q2D(q2) versus q2,
when the hypercubic UV artifacts are of interest.

We can compare the results of a perturbative thee loop calculation [75] with the
lattice data in a specific momentum window. There we can see where the transition
from perturbative to non–perturbative physics take place. In Fig. 9.19, the perturbative
expression for the free propagator is also shown. The parameters used here are from
Ref. [66], where at the renormalization point, µ = 5.48 GeV, the strong coupling
constant was found to be α(µ) = 0.255. That was a quenched calculation, so this
number should not be compared directly with experiment. The lattice data agree very
well with three-loop perturbation theory down to q � 2.5 GeV. Below q ∼ 2 GeV we
see that three-loop perturbation theory begins to fail.

9.6.1 Extrapolation to the Continuum Limit

In the previous sections we saw how a singular gluon propagator is highly unlikely and
that in the deep infrared the value for the gluon propagator plateaued for the large
lattices. In this case, an extrapolation to the continuum limit appears to be reason-
able. Here we are going to use the gluon propagator calculated at zero momentum
to extrapolate to the continuum limit. The values at zero momentum for the gluon
propagator (Statistical errors are given in parentheses) are listed in Table 9.2 for each
of the lattices created in this investigation.

The renormalization condition of Eq. (9.9) is enforced at the renormalization point
µ = 4.0 GeV, which sets the scale for D(q2). It is interesting to note that as the volume
increases the value of the gluon propagator at zero momentum is reduced, as shown in
Fig. 9.20, where I show the renormalized gluon propagator for five lattices. The zero
momentum points are included in this plot. Fig. 9.21 illustrates the data with a linear
fit in the inverse volume according to

D(0) = c
1

V
+D∞(0) . (9.23)
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Figure 9.17: Gluon propagator from lattice 4, the larger lattice at β = 3.92, which has
spacing a � 0.35 fm on a 163 × 32 lattice providing the largest physical volume of any
in this study. Tree-level correction has been used, but no data cuts have been applied.

Figure 9.18: Comparison of the gluon propagator generated with an improved action
on five different lattices. We find good agreement down to q � 500 MeV. At the lowest
accessible momenta the data points drop monotonically with increasing volume, but
the lowest point (on the largest lattice) shows signs of having converged to its infinite
volume value. For comparison with perturbation theory, a plot of the continuum,
tree-level gluon propagator (i.e., 1/q2 appropriately scaled) has been included.
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Figure 9.19: Comparison of the lattice gluon propagator with that obtained from per-
turbation theory, in the ultraviolet to intermediate regime. The continuum expressions
are tree-level (i.e., 1/q2 appropriately scaled) and the three-loop expression used in
Ref. [2].

The results were reported in Ref. [29], there we found that the parameter values c =
245(22) fm4 GeV−2 andD∞(0) = 7.95(13) GeV −2, gave a reasonable fit. Here, D∞(0) is
the infinite volume limit of the zero-momentum gluon propagator. This brings further
evidence for an infrared finite gluon propagator in the infrared.

The results presented in this section can be compared with recent calculations of
the gluon propagator in Laplacian gauge [76]. Laplacian gauge is interesting because
it is free of any gauge ambiguity. In that gauge, the asymptotic region resembles the
one of Landau gauge giving an infrared finite propagator. The results obtained for the
propagator in Laplacian gauge is seen to have the same behaviour as the one shown
here.

Table 9.2: The value of gluon propagator at zero four-momentum for each of the lattices
created in this investigation, in order of increasing volume. The raw (dimensionless)
and physical values are given. In obtaining the physical values we have set the renor-
malization condition D(µ2) = 1/µ2 at µ = 4.0 GeV. An estimate of the uncertainty in
the last figure is given in parentheses.

Lattice Dimensions β a fm D(0) D(0) (GeV−2) Volume (fm4)
1i 163 × 32 4.38 0.165(2) 32.0 (8) 10.4 (2) 97.2
1w 163 × 32 5.70 0.180(1) 24.0 (5) 10.0 (2) 137
5 123 × 24 4.10 0.272(2) 10.6 (3) 9.0 (2) 227
3 83 × 16 3.75 0.41(1) 4.3 (1) 8.9 (2) 231
2 103 × 20 3.92 0.352(3) 5.7 (1) 8.6 (2) 307
4 163 × 32 3.92 0.352(3) 5.4 (1) 8.2 (2) 2012
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Figure 9.20: The renormalized gluon propagator is shown in the infrared region, in-
cluding the points at zero four-momentum, from five lattices.

Figure 9.21: Values for the gluon propagator at zero four-momentum, D(0), plotted
as a function of the inverse lattice volume. The solid line represents a linear fit to the
lattice results. The fit indicates the largest volume results are very close to the infinite
volume limit and D(0) = 7.95(13) GeV−2 in the infinite volume limit.

9.7 Conclusions

In this chapter the gluon propagator was calculated on various lattices with O(a2)
improved gauge action. The infrared behaviour of the gluon propagator in Landau
gauge was clearly established. It was shown that the tree–level correction is a powerful
tool that can be used to suppress the ultraviolet lattice artifacts and to reduce rotational
symmetry breaking.

It was also shown, in Sec. 9.5, that O(a2) improved action produces superior results
compared with a standard Wilson gauge action. One of the main improvements was
that one is able to go to much coarser lattices while remaining in perfect agreement.

In Fig. 9.10, we saw the comparison between a gluon propagator calculated on a
323×64 with standard gauge fields at β = 6.00 and an improved gauge field calculated
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on a 163 × 32 lattice at β = 4.38. The comparison showed that the turn over was
consistently reproduced. This was also the case as we made the lattice coarser. This
produces a robust result that shows that the turn over of the propagator is infrared
finite. The increase of volume for the two largest volumes left the propagator unchanged
indicating that finite volume effects are small for these. The tree-level corrected results
from the β = 3.92 (a = 0.353 fm) 163 × 32 lattice with a physical volume of 5.653 ×
11.30 = 2038 fm4 may be regarded as an excellent estimate of the infinite volume. An
extrapolation of D(0) via a linear ansatz inversely proportional to the physical lattice
volume provides a reasonable fit. Results from the largest volume lattice sit very close
to the infinite volume limit. In a finite ensemble we will never find two configurations
which are Gribov copies of each other, since there is an infinite number of gauge orbits.
In that sense the issue of Gribov copies is not a relevant here. It is nevertheless
interesting to compare with different gauge fixing schemes, such as Laplacian gauge,
where Gribov copies are removed by construction.
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Chapter 10

Quark Propagators in Lattice QCD
Using Improved Actions

One of the special features of QCD is that at short distances the effective coupling
constant vanishes. This is known as asymptotic freedom. Hence in that regime, the
gluons and the quarks can be well described by perturbation theory.

The quark propagator is really a description of how the quark propagates in the
QCD vacuum and is one of the most fundamental building blocks of QCD. By studying
the momentum dependent quark mass function in the infrared region, the scalar part
of the propagator, we can gain some insights into the mechanism of chiral symmetry
breaking. Chiral symmetry is dynamically broken in the QCD vacuum. This gives rise
to mass generation in the infrared.

The infrared and asymptotic behaviour of the quark propagator can be studied on
the lattice but the level of accuracy in the result will strongly reflect the quality of the
discretised quark action. In the deep infrared region, artifacts associated with the finite
size of the lattice spacing become small. This is the most interesting region as non-
perturbative physics lies here. However, the ultraviolet behaviour at large momentum
of the lattice propagator will in general strongly deviate from the correct continuum
behaviour. This behaviour will be action dependent. Some interesting progress has
been made in improving the ultraviolet behaviour of the propagator.

A method has recently been developed to reduce the ultraviolet noise. The method
is referred to as tree–level correction. Tree–level correction was first introduced in the
gluon propagator work [29] as reviewed in Chapter 9. The method was then used in
quark propagator studies [77] where the correction was performed to subtract the lattice
artifacts. This method was later refined to a multiplicative correction in Ref. [78].

In this chapter I present the first study of the overlap quark propagator mass and
renormalisation function. The overlap quark action is O(a)–improved and respects
exact chiral symmetry on the lattice. To really emphasise the need for the improved
action and to show the superiority of the results, just like in Chap. 7 and 9, I compare
it to an O(a) quark action, the Wilson fermion, Sec. 10.4.3. I make a small detour
via NNN quark action, Sec. 10.2.2. No numerical work is performed with that quark
action, but I present some analytical work which may be used in future works. Also,
a systematic method is written down to perform tree–level correction for any quark
action, Sec. 10.3.1. Finally I extract the quark condensate, Sec. 10.4.4, and compare
the results to latest phenomenological studies.
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10.1 Lattice Gauge Action for SUc(3)

The tree–level O(a2)–improved action is defined as in Sec. 5.1. Fifty configurations
have been generated on a 123×24 lattice at β = 4.60. Configurations are selected after
5000 thermalization sweeps from a cold start, and every 500 sweeps thereafter with a
fixed mean link value. Lattice parameters are summarized in Table 10.1.

The gauge field configurations were gauge fixed to the Landau gauge using a
Conjugate Gradient Fourier Acceleration [58] algorithm with an accuracy of θ ≡∑ |∂µAµ(x)|2 < 10−12. The gauge fixing method was used appropriately to keep the
discretization errors to their minimum. The various functionals and methods used for
the gauge fixing are described in Chapter 8.

10.2 Fermion Actions on the Lattice

10.2.1 Wilson Fermions Revisited

We saw in Sec. 2.1.3 that the simplest O(a) fermion action on the lattice with no
fermion doubling problem was defined by the Wilson fermion, Eq. (2.25).

The quark propagator can always be derived directly from the quark action. The
QCD gauge links can be expressed as Uµ(x) = exp(igaAµ(x)), where gluon field Aµ(x)
is contained in the colour octet SUc(3) Lie Algebra, i.e., Aµ(x) =

∑8
a=1 t

aAaµ(x). These
gauge links may be expanded to extract the various n–point functions. For example, at
the zeroth order in g the quark propagator will arise, at the order of g the quark–gluon
vertex will appear and so on. We perform the expansion of Uµ(x), grouping the terms
in zeroth order in g and then transforming the gluon and quark fields to momentum
space using the following momentum prescription over the Brillouin zone, [−π/a, π/a]

ψ(x) =

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)eip·x, and ψ(x) =

∫ π
a

−π
a

d4p′

(2π)4
ψ̃(p′)e−ip

′·x, (10.1)

which implies that

ψ(x+ aµ̂) =

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)eip·xeipµa, and ψ(x+ aµ̂) =

∫ π
a

−π
a

d4p′

(2π)4
ψ̃(p′)e−ip

′·xe−ip
′
µa.

Similarly for the gluon field, Aµ(x), one would take the fourier transform in the same
way as for the quark field:

Aµ(x) =

∫ π
a

−π
a

d4p′′

(2π)4
Ãµ(p

′′)eip
′′·x. (10.2)

The Wilson quark action, at the zeroth order in g, takes the form

S
(0)
W [U, ψ, ψ] =

∑
x

∫ π
a

−π
a

d4p

(2π)4

d4p′

(2π)4
ψ̃(p′)eix·(p−p

′)

Table 10.1: Parameters of generated lattices.

Action Volume NTherm NSamp β a fm u0 Physical Volume (fm)
Improved 123 × 24 5000 1000 4.60 0.125 0.88888 1.53 × 3.00
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×
[
(mq + 4r) − 1

2

∑
µ

(r − γµ)e
ipµa + (r + γµ)e

−ip′µa
]
ψ̃(p). (10.3)

One of the momentum integrals may be cancelled using the delta function, δ(p −
p′) =

∑
x e

ix·(p−p′). Moreover one may use trivial trigonometric identities to rewrite the
exponential factor in Eq. (10.3),

eipµa + e−ip
′
µa = 2 cos(pµa) = 2 cos

(
2pµa

2

)
= 2
[
1 − 2 sin2

(pµa
2

)]
,

e−ip
′
µa − eipµa = −2i sin(pµa) .

We then obtain the following expression

S
(0)
W =

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)

[
(mq + 4r) − 1

2

∑
µ

r
(
2 − 4 sin2

(pµa
2

))
− 2i sin(pµa)γµ

]
ψ̃(p)

=

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)

[
mq + 2r

∑
µ

sin2
(pµa

2

)
+ i
∑
µ

sin(apµ)γµ

]
ψ̃(p)

=

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)DW (p)ψ̃(p) . (10.4)

Where DW (p) is the Wilson fermion operator in momentum space. The quark propa-
gator in momentum space is given by taking the inverse of the Wilson fermion operator
in momentum space,

S(0)(p) = [DW (p)]−1 =
1

mq + 2r
∑

µ sin2(pµa
2

) + i
∑

µ sin(pµa)γµ

=
Z(0)(p)

iak/+M (0)(p)
. (10.5)

Here M (0)(p) and Z(0)(p) are the tree–level mass and renormalization functions in
momentum space. For Wilson fermions these are given by

M (0)(p) = mq + 2r
∑
µ

sin2(
pµa

2
)≡M (ana)(p), and Z(0)(p) = 1. (10.6)

The lattice momentum kµ = (1/a) sin(pµa) is constructed from discrete momentum
values for a lattice of size N3

i ×Nt. The boundary condition for the dicrete momentum
is periodic in the spatial direction while being anti–periodic in the temporal direction.
Then for ni = 1, .., Ni and nt = 1, .., Nt the discrete momentum values are

pi =
2π

Nia

(
ni − Ni

2

)
, and pt =

2π

Nta

(
nt − 1

2
− Nt

2

)
. (10.7)

These values are distributed over the Brillouin zone. Eq.(10.5) is the analytical form
for the quark propagator at tree–level.

145



10.2.2 Next–to–Nearest Neighbour Action

The Next–to–Nearest Neighbour fermion action is a specific case of the general class of
the D234 actions [80] in which the improvement terms are calibrated to remove the sec-
ond order chiral symmetry breaking Wilson term. This action also known as Dχ34 [80]
breaks chiral symmetry as well, but at the fourth order. This O(a2)–improved fermion
action [81, 82] is defined as,

SI [U, ψ, ψ] =
∑
x

[
(mq + 4r)ψ(x)ψ(x)

− 2

3

∑
µ

ψ(x)(r − γµ)
Uµ(x)

u0

ψ(x+ aµ̂) + ψ(x+ aµ̂)(r + γµ)
U †
µ(x)

u0

ψ(x)

+ ψ(x)(−r
4

+
1

8
γµ)

Uµ(x)

u0

Uµ(x+ aµ̂)

u0
ψ(x+ 2aµ̂)

+ ψ(x+ 2aµ̂)(−r
4
− 1

8
γµ)

U †
µ(x+ aµ̂)

u0

U †
µ(x)

u0
ψ(x)

]
=
∑
xy

ψ(x)KI(x, y)ψ(y), (10.8)

with KI(x, y) the fermion operator:

KI(x, y) = (m+ r)δxy − (10.9)

2

3

∑
µ

(r − γµ)
Uµ(x)

u0
δy,x+aµ̂ + (r + γµ)

U †
µ(x− aµ̂)

u0
δy,x−aµ̂ +(

−r
4
− 1

8
γµ

)
Uµ(x)Uµ(x+ aµ̂)

u2
0

δy,x+2aµ̂ +(
−r

4
+

1

8
γµ

)
U †
µ(x− aµ̂)U †

µ(x− 2aµ̂)

u2
0

δy,x−2aµ̂.

The tree–level expression for the quark propagator in momentum space for the NNN
quark action is given by expending the gauge links, Uµ(x), and only considering the
terms involving the zeroth order in the coupling g and then transforming to momentum
space. Hence, this quark action takes the form at tree–level of

S
(0)
W [U, ψ, ψ] =

∑
x

∫ π
a

−π
a

d4p

(2π)4

d4p′

(2π)4
ψ̃(p′)eix·(p−p

′)

[
(mq + 4r) − 2

3

∑
µ

(r − γµ)
eipµa

u0

+

(r + γµ)
e−ip

′
µa

u0
+

(
−r

4
+

1

8
γµ

)
ei2pµa

u2
0

+

(
−r

4
− 1

8
γµ

)
e−i2p

′
µa

u2
0

]
ψ̃(p)

=

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)

[
(mq + 4r) − 2

3u0

∑
µ

r

[(
2 − 4 sin2

(pµa
2

))
− 1

4u0

(
2 − 4 sin2(pµa)

)]
− iγµ

[
2 sin(pµa) − 1

4u0
sin(2pµa)

]]
ψ̃(p)

=

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)

[
i
∑
µ

fµ(p)γµ +M
(0)
I (p)

]
ψ̃(p) =

∫ π
a

−π
a

d4p

(2π)4
ψ̃(p)KI(p)ψ̃(p).
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The quark propagator is then defined as:

S
(0)
I (p) = [KI(p)]

−1 =
Z

(0)
I (p)

i
∑

µ fµ(p)γµ +M
(0)
I (p)

. (10.10)

Where the momentum dependent function fµ(p) is given by

fµ(p) =
4

3u0

[
akµ − 1

8u0
sin(2pµa)

]
, (10.11)

and the tree–level mass function M
(0)
I (p) is given by

M
(0)
I (p) = mq + r

[
4 − 16

3u0

(
1 − 1

4u0

)]
+

2a2r

3u0

[
k̃2 − k2

u0

]
. (10.12)

Here the lattice momentum kµ and k̃µ are defined as:

kµ =
1

a
sin(pµa) and k̃µ =

2

a
sin
(pµa

2

)
.

10.2.3 Overlap Fermions

The overlap fermion [84] realizes exact chiral symmetry on the lattice, and can be em-
ployed to derive chiral symmetry relations and the anomaly at finite lattice spacing.
This action produces propagators that are O(a) improved. Neuberger’s polar decom-
position approximation to the overlap Dirac operator for the auxiliary Hamiltonian,
H , has the following form for the massive case [85]

D(m0) = 1 +
m0a

2
+
(
1 − m0a

2

)
γ5ε(H), (10.13)

where ε(H) = H/
√
H2 is the matrix sign function of H which we take to be the

Hermitian Wilson–Dirac operator, i.e. H = γ5Dw. Here Dw is the Wilson fermion
operator:

Dw(x, y) = (mq + 4r)δx,y −
1

2

∑
µ

(r − γµ)Uµ(x)δy,x+aµ̂ + (r + γµ)U
†
µ(x− aµ̂)δy,x−aµ̂, (10.14)

except with a negative mass parameter which corresponds to κc < κ < 0.25. The
massless operator D(m0 = 0) is shown [86] to satisfy the Ginsparg–Wilson relation [87]:

{γ5, D(0)} = D(0)γ5D(0), (10.15)

as a consequence the fermion propagator anti–commutes with γ5 and chiral symme-
try is exactly preserved. The bare mass parameter m0 is proportional to the quark
mass without any additive constant [88]. The sign function is approximated using the
optimal rational approximation [89] with a ratio of polynomials of degree 12 in the
Remez algorithm. The matrix, V = γ5ε(H), is unitary [88]. It was found that for a
matrix equation of the type V x = b, then

∣∣x†x− b†b
∣∣ ∼ 10−9. Since V is unitary one

can exploit the identity: (1 + V †)(1 + V ) = 2 + V † + V , in order to use the conjugate
gradient algorithm on the hermitian matrix V † +V instead of V †V which has a higher
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condition number. Furthermore, since [V + V †, γ5] = 0, one can use a chiral source,
i.e. γ5b = ±b to save one matrix multiplication [89] per iteration.

The massive overlap Dirac operator may be rewritten as:

D(µ) =
1

2

[
1 + µ+ (1 − µ)

Dw√
D†
wDw

]
,

with 0≤µ ≤ 1 describing fermions with a +ve mass from 0 to ∞. For Small µ,
µ is proportional to the fermion mass. In simulation, µ, is the tuneable parameter in
analogy with the κ value for the Wilson fermion. In the overlap formalism, the hopping
parameter is given by

κ =
1

−2m+ 8r
and m ≡ −1

2

(
1

κ
− 1

κcr

)
.

To describe a single massless Dirac Fermion for D(0) we must have

mc≤m ≤ 2 ,

for a critical Wilson Dirac mass, mc, at tree level.
It may be shown [90], that the physical overlap propagator is given by

D̃−1(µ) = (1 − µ)−1[D−1(µ) − 1],

which is related to the continuum propagator (the inverse of the matrix operator) by

D−1
c (mq) = ZψD̃

−1(µ), with mq = Z−1
m µ. (10.16)

The constants Zψ and Zm are the mass and wave function renormalization constants.
At tree–level it is found [91] that:

Z(0)
ψ = Z−1

m = 2m =
1

κ
(0)
cr

− 1

κ
, (10.17)

where the κ
(0)
cr takes the same value as in the Wilson fermion case at tree–level, i.e.

κ
(0)
cr = 1/8. However, in the interacting case κcr is defined as the value of κ at which

the pion mass vanishes. Therefore, at tree–level, the free propagator becomes:[
D(0)
c (mq)

]−1
=
[
Z(0)
ψ D̃(0)(µ)

]−1

,

and when the interactions are turned on we have:

[Dc(mq)]
−1 =

[
ZψD̃(µ)

]−1

.

10.3 The Quark Propagator on the Lattice

In a Lorentz covariant gauge, the most general structure for the quark propagator is

S(p) =
1

iγ · pA(p2;α2) +B(p2;α2)
=

Z(p2;α2)

iγ · p+M(p2;α2)
. (10.18)
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Here, the parameter α represents the renormalization point. The functions A(p2;α2)
and B(p2;α2) carries all the effects of vector and scalar quark dressing induced by the
quark interactions with its own gluon field. Using these functions we may extract the
functions of interest, namely the Z(p2;α2) and M(p2;α2) for various quark actions.

On the lattice we expect the bare quark propagators, in momentum space, to have
a similar form as in the continuum [77, 78, 79]. Hence, the dimensionless inverse lattice
bare quark propagator takes the general form of:

S−1(p) ≡ i

(∑
µ

Cµ(p)γµ

)
+B(p), (10.19)

with C2(p) =
∑

µ(Cµ(p))2. Then the quark propagator may be written as

S(p) =
−i
(∑

µCµ(p)γµ

)
+B(p)

C2(p) +B2(p)
≡ −i

(∑
µ

Cµ(p)γµ
)

+ B(p). (10.20)

Taking the trace we obtain:

Cµ(p) =
i

4Nc

Tr[γµS(p)], and B(p) =
1

4Nc

Tr[S(p)], (10.21)

which is used to construct the Cµ(p) and B(p)

Cµ(p) =
Cµ(p)

C2(p) + B2(p)
, (10.22)

B(p) =
B(p)

C2(p) + B2(p)
. (10.23)

At tree–level, that is when all the gauge links are set to the identity, the inverse lattice
quark propagator takes the same form as Eq.(10.19), so we have

(S(0)(p))−1 ≡ i

(∑
µ

C(0)
µ (p)γµ

)
+B(0)(p) =

i
(∑

µ C(0)
µ (p)γµ

)
+ B(0)(p)

(C(0)(p))2 + (B(0)(p))2
. (10.24)

The analytical form of C
(0)
µ (p) and B(0)(p) have the same form as Eq.(10.22) and

Eq.(10.23) respectively.
It is then possible to extract the lattice momentum directly from numerical simu-

lations by calculating C
(0)
µ (p). At tree–level we identify the function A(0)(p) to be 1 for

all p. Hence the lattice momentum qµ is given by

qµ ≡ C(0)
µ (p) =

C(0)
µ (p)

(C(0)(p))2 + (B(0)(p))2
. (10.25)

We know that the momentum extracted from the lattice, Eq. (10.25), at low momenta
should be equal to the discrete momentum, Eq. (10.7). Hence, this can be verified by
plotting one versus the other. In Fig. 10.1 I show the relationship between the two
definitions over a wide range of the momentum spectrum, the data is uncut. We can
see that at low momentum the discrete momentum is equal to the lattice momentum.
In Fig. 10.1 I also show the two momentum plotted versus each other but this time
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Figure 10.1: The lattice momentum q versus the discrete momentum
p, both in GeV. The points going up are for the overlap fermion (�)
and those heading down (◦) with a sinusoidal shape are for the Wilson
fermion. Top graph is for the full data and the bottom graph is for the
cylinder cut data.

with a cylinder cut applied onto the data. The resulting graph is cleaner and gives a
much better view on the relationship. Using these two figures, Fig. 10.1, it is therefore
possible to conclude that we have extracted the momentum correctly from the lattice
for the overlap fermion. From these figures we can also observe how the two momentum
definition diverge from one another. It therefore becomes a reasonable question to ask
which definition of the momentum should one plot the functions M(q2) and Z(R)(q2)
against. This question should be the subject of a short discussion in the next section
where the numerical results are presented.

In Fig. 10.2 I show the mass function for the Wilson fermion. It is possible to
see from these two figures, Fig. 10.2 and 10.3, the irrelevant operators impose some
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Figure 10.2: The uncorrected mass function M(q2) for the Wilson
fermions.

Figure 10.3: The uncorrected mass function M(q2) for the Wilson
fermions, on a smaller scale.

strong divergence from the current quark mass in the ultraviolet region. Moreover, past
500 MeV the mass function becomes unreliable. In order to make it possible to infer
anything from these fermions it is therefore necessary to perform some corrections.

10.3.1 Corrected Mass and Renormalization Functions

The dimensionless inverse lattice bare quark propagator takes the form

S−1(p) ≡ iaq/A(p) +B(p) = [ZL(p)]−1
(
iaq/+ML(p)

)
. (10.26)
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The momentum function ML(p) = B(p)/A(p) is the lattice mass function and ZL(p) =
1/A(p) the lattice renormalization function. The functions A(p) and B(p) may be
written as:

A(p) =
A(p)

A(p)q2 + B(p)
, and B(p) =

B(p)

A(p)q2 + B(p)
. (10.27)

Hence we can write an equivalent definition for the quark propagator as

S(p) ≡ −iaq/A(p) + B(p). (10.28)

The lattice momentum, qµ, is given by Eq.(10.25). Extracting the functions A(p) and
B(p) is simply done by taking the trace of the S(p):

A(p) =
i

4Ncaq2
Tr[q/S(p)], and B(p) =

1

4Nc
Tr[S(p)]. (10.29)

It is then possible to use Eq.(10.29) to construct Eq.(10.27).
The tree–level correction is performed on each of the A(p) and B(p). The correction

is not affected by the lattice momenta chosen because it is divided out during the
correction, as shown in the previous section. The tree–level multiplicative correction is
given by taking the ratio of the lattice function calculated over the ensemble average
and the function calculated when the links are set to the identity times the expected
form obtained from the continuum limit:

A(c)(p) =
A(p)

A(0)(p)
1, and B(c)(p) =

B(p)

B(0)(p)
mq. (10.30)

Where A(0)(p) and B(0)(p) are the tree–level corrected functions, obtained when all the
gauge links Uµ(x) are set to the identity. The quark mass is the bare lattice quark
mass. The deviation of A(p) from A(0)(p) is a direct measure of the gluonic interaction
on the quarks. The tree–level corrected mass function M (c)(p) and the renormalization
function Z(c)(p) can then be constructed using Eq.(10.30):

M (c)(p) =

(
B(c)(p)

A(c)(p)

)
, and Z(c)(p) =

1

A(c)(p)
. (10.31)

In the case of the Wilson Fermions it is certainly true that the lattice momentum
is given by kµ = (1/a) sin(a pµ), then C

(0)
µ (p) is just equal to kµ. But in the case of

a more elaborate quark action such as the overlap fermions and the D234 fermions,
an analytical expression at tree–level is cumbersome to extract. Hence the lattice
momenta definition becomes more obscure and diverges from kµ = (1/a) sin(a pµ). It is
then more appropriate to extract the momentum numerically from Eq.(10.24) by just
setting all the links to the identity (i.e. Uµ(x) = I) according to Eq.(10.25).

10.4 Numerical Results

The quark propagator has been calculated using 2 different fermion actions on the
same lattice. In both cases I have used the same improved glue defined in Section 10.1,
see Table 10.1. For the Wilson fermion we have used five different masses, Table 10.2.
starting from about 220 MeV to about 62 MeV, these are roughly equally spaced. One
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Table 10.2: Summary of the lattice parameters for the quark propagators. N[U ] is
the number of gauge field configurations considered in the simulation. The second
kappa was selected to match the strange quark mass. The corresponding masses for
the 123 × 24 are {221, 181.5, 138.3, 99.91, 62.04} MeV.

Quark Action β N[U ] u0 κ κcr
Wilson 4.60 100 0.88888 0.1337,0.1346,0.1356,0.1365,0.1374 0.1389

Wilson Tree 4.60 1 0.88888 0.1207,0.1215,0.1223,0.1230,0.1237 0.1250

of them was selected to match the strange quark mass. For the overlap ten different
masses were used, see Table 10.3.

The standard procedure that was adopted for the overlap, was to extract the mo-
mentum q directly from the lattice via Eq. (10.25). Using this definition of the mo-
mentum I then moved on to calculate the functions M(q2) and Z(R)(q2). The overall
renormalization of the lattice propagator tells us that for the interacting case it should
be multiplied by Zψ to get the continuum propagator. The tree–level lattice propaga-

tor is used to extract the momentum qµ with an overall renormalization of Z(0)
ψ . In the

case of the Wilson fermions, the tree–level propagators were calculated with an exact
correspondence of the κ values from the interacting to the free case with κcr set to its
tree value.

The Wilson fermion required tree–level correction, unlike the overlap fermion which
did not require tree–level correction to extract a well behaved M(q2) and Z(R)(q2)
function. The tree–level form of A(0)(p) and B(0)(p) can be verified numerically. Indeed,
in Fig. 10.4 I show the numerical results for A(0)(p) and B(0)(p) in physical units for all
of the different µ values. It can therefore be concluded that tree–level form of A(0)(p)
and B(0)(p) are just constants, i.e.

B(0)(p) = Z(0)
ψ µ = mq and A(0)(p) = 1, (10.32)

hence, when we perform a tree–level correction on M(q2), we see that the corrected

Table 10.3: Parameters for Overlap fermions. N[U ] is the number of gauge field config-

urations considered in the simulation. The corresponding masses, mq = Z(0)
ψ µ for

the 123 × 24 are {103.69, 120.97, 138.25, 172.81, 207.38} MeV for the first five and
{259.22, 345.63, 432.04, 518.45, 604.85} MeV for the remaining five.

Quark Action a fm N[U ] u0 µ κ
(0)
cr

Overlap Wilson 0.125 50 0.88888 0.024,0.028 0.1250
0.032,0.400
0.048,0.060
0.080,0.100
0.120,0.140

κ m = 1
2
[(κ

(0)
cr )−1 − κ−1] Z(0)

ψ = 2m Zψ κcr

0.19 1.36842 2.73684 1.93101 0.139
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Figure 10.4: The tree–level values for the A(0)(p) and B(0)(p) functions in

GeV versus the lattice momentum q. Showing that B(0)(p) = Z(0)
ψ µ = mq

and A(0)(p) = 1. The top strip of points corresponds to the heaviest mass
as opposed to the bottom band which corresponds to the lightest mq.

mass becomes:

M (c)(p) =
B(p)

B(0)(p)
mq

A(0)(p)

A(p)
=
B(p)

A(p)
= M(q2), (10.33)

showing that the mass function is not affected by the tree–level correction procedure.

All of the propagators are plotted in physical units versus p =
√∑

p2
µ obtained

from the discrete momentum value, Eq. (10.7). The scale has been determined by the
static quark potential with a string tension of

√
σ = 440 MeV [28]. Just as for the

gluon propagator work in Chap. 9
It is possible to use the fact that the hypercubic lattices preserves the subgroup

of discrete rotations Z(4). However the lattice size used in this analysis reduces this
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symmetry to a Z(3) symmetry. This symmetry may be used to improve the statistics
and reduce the number of identical momentum points. Since we are plotting versus

p =
√∑

p2
µ, that is a squared momentum value, we can also perform a reflection

average. This average treats the negative momentum combinations in the same way
as the positive ones. For example, consider S(1, 2, 3, 4), then

S(1, 2, 3, 4) = S(−1, 2, 3, 4) = S(1,−2, 3, 4) = S(1, 2,−3, 4) =

S(1, 2, 3,−4) = S(−1,−2, 3, 4) = S(−1, 2,−3, 4) = S(−1, 2, 3,−4) =

S(−1,−2,−3, 4) = S(−1,−2, 3,−4) = S(−1, 2,−3,−4) = S(1,−2,−3, 4) =

S(1,−2, 3,−4) = S(1, 2,−3,−4) = S(1,−2,−3,−4) = S(−1,−2,−3,−4).

The propagator is calculated for each of these values and then averaged.

10.4.1 Data Cuts

Having identified possible lattice artifacts, cuts may be applied to clean up the data,
making it easier to draw conclusions about continuum physics. I employ the same
method to cut out data as in Refs. [77, 78, 62, 53]. The method is briefly reviewed in
Sec. 9.5 .

10.4.2 The Results for the Overlap Fermion

I first start by showing the mass and renormalization function, M(q2) and Z(R)(q2)
respectively, calculated at ten different masses, Fig. 10.5. The functions are plotted
versus the discrete momentum p and no tree–level correction is applied here. The
functions have been half cut over the Brillouin zone, the mass function is shown in the
top half of the figure whereas Z(R)(q2) is shown in the bottom half.

QCD is a renormalizable theory which means that the bare propagator is related
to the renormalized one by the quark wavefunction renormalization constant, Z2

Sbare(a; p)≡Z2(ζ ; a)S(ζ ; p). (10.34)

Here ζ is the renormalization point. In such theory, the quantities that are renor-
malizable become independent of the regularization parameter in the continuum limit.
Lattice simulation produces the regularized (but not renormalized) propagator which
means that the scale of the field renormalization function, Z(R)(q2), is dependent of the
renormalization point unlike the mass function, M(q2). Therefore a change of renor-
malization point is just an overall rescaling of the Z function [77]. In this simulation,
I set the renormalization point for Z(R)(q2) at ζ = 3.9 GeV when the data is plotted
versus p.

From the mass function graph we can see the behaviour of the function is very well
behaved, producing very clear trajectories all the way to 5 GeV. The top set of points
comes from the largest µ value corresponding to the heaviest quark mass amongst the
parameter set as opposed to the lower set of points corresponding to the lightest quark
mass. We can also see that the fall off in the mass function becomes sharper as the
quark mass is driven towards lighter values. This is confirmed in the behaviour of the
Z(R)(q2) function where the size of the dip is a lot more pronounced at lighter quark
mass. The size of the dip, in the deep infrared, is a clear indication of the amplitude
of the chiral symmetry breaking taking place in the mass function. I also plot these
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Figure 10.5: The functions M(q2) and Z(R)(q2), (half cut data), for the
Overlap fermions plotted versus the discrete momentum values defined

in Eq. (10.7), p =
√∑

p2
µ, over the interval of [0,5] GeV. The Z(R)(q2)

function has been renormalized at ζ ∼ 3.9 GeV. The µ values, from top to
bottom set of points, are µ = {0.14, 0.12, 0.10, 0.08, 0.06} for the first five
and {0.048, 0.040, 0.032, 0.028, 0.024} for the other five, on the 123 × 24
at β = 4.60.
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Figure 10.6: The functions M(q2) and Z(R)(q2), (half cut data),
for the Overlap fermions plotted versus the lattice momentum val-

ues defined in Eq. (10.25), q =
√∑

q2
µ, over the interval of

[0,12] GeV. The Z(R)(q2) function has been renormalized at ζ ∼ 8.2
GeV. The µ values, from top to bottom set of points, are µ =
{0.14, 0.12, 0.10, 0.08, 0.06, 0.048, 0.040, 0.032, 0.028, 0.024}, on the 123 ×
24 at β = 4.60.
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Figure 10.7: The function M(q2) and Z(R)(q2), (cylinder cut) for the
Overlap fermions plotted versus the discrete momentum values defined

in Eq. (10.7), p =
√∑

p2
µ, over the interval of [0,5] GeV. The Z(R)(q2)

function has been renormalized at ζ ∼ 3.9 GeV. The µ values, from top to
bottom set of points, are µ = {0.14, 0.12, 0.10, 0.08, 0.06} for the first five
and {, 0.048, 0.040, 0.032, 0.028, 0.024} for the other five, on the 123 × 24
at β = 4.60.

functions versus the lattice momentum q, this is shown in Fig. 10.6. In that case we
see that the points are pushed out further along the momentum axis, all the way to 12
GeV. Comparing Figs. 10.5 and 10.6, shows that the infrared region remains totally
consistent in both cases. In Fig. 10.6, Z(R)(q2) has been renormalized at ζ = 8.2 GeV.

In Fig. 10.7 and Fig. 10.8, I show the same data but this time with a cylinder
cut applied onto it, the trajectories become clearer and distinct in both of the cases
when plotted versus p and q. So far it is not very clear versus which momentum one
should be plotting the propagators in order to keep the anisotropy under control. One
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Figure 10.8: The functions M(q2) and Z(R)(q2), (cylinder cut) for the
Overlap fermions plotted versus the lattice momentum values defined in

Eq. (10.25), q =
√∑

q2
µ, over the interval of [0,12] GeV. The Z(R)(q2)

function has been renormalized at ζ ∼ 8.2 GeV. The µ values, from top to
bottom set of points, are µ = {0.14, 0.12, 0.10, 0.08, 0.06} for the first five
and {0.048, 0.040, 0.032, 0.028, 0.024} for the other five, on the 123 × 24
at β = 4.60.
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Figure 10.9: The function B(p), (full data) plotted versus both the
discrete momentum (×) and the lattice momentum values defined in
Eq. (10.25) (�), over the interval of [0,12] GeV. The graph corresponds
to µ = 0.0240. The bottom graph shows an enlargement of a subset
of points. The points (�) are more stretched out and form a smoother
curve than when the function is plotted versus p (×).

way to see which possesses the least anisotropy is to select a small subset of points
and examine the spread of points. For example in Fig. 10.9, I plot the trace of the
propagator, B, versus both p (×) and versus q (�) when µ = 0.0240 for a given subset
of the momentum points that were the most recurrent. The spread of points appears
to be reduced when B is plotted versus the lattice momentum, Eq. (10.25), therefore
suggesting that there is more anisotropy when the data is plotted versus p than when
it is plotted versus q.
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10.4.3 Wilson Fermion versus the Overlap Fermion

The technique of tree–level correction is a powerful tool when the quark action possesses
large O(a) errors. The data presented in Figures 10.2, 10.3 and 10.10 is over half

Figure 10.10: The corrected mass function, M (c)(p), and Z(c)(p) (half
cut) for the Wilson fermions plotted versus the discrete momentum

values defined in Eq.(10.7), p =
√∑

p2
µ, over the interval of [0,5]

GeV. The kappa values, from top to bottom set of points, are κ =
0.1337, 0.1346, 0.1356, 0.1365, 0.1374 corresponds to a current quark mass
of mq∼221, 181.5, 138.3, 99.91, 62.04 MeV respectively, on the 123×24 at
β = 4.60.

the momentum region, i.e. half cut. A direct comparison of Figs. 10.3 and 10.10
clearly shows the effectiveness of the technique and that it is possible to obtain a mass
function that converges to the current quark mass (up to logarithmic corrections) in the
ultraviolet region. A similar scenario is seen in comparing Figs. 10.2 and 10.11 where
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Figure 10.11: The corrected mass function, M (c)(p), and Z(c)(p) (half
cut) for the Wilson fermions plotted versus the discrete momentum

values defined in Eq.(10.25), q =
√∑

q2
µ, over the interval of [0,5]

GeV. The kappa values, from top to bottom set of points, are κ =
0.1337, 0.1346, 0.1356, 0.1365, 0.1374 corresponds to a current quark mass
of mq∼221, 181.5, 138.3, 99.91, 62.04 MeV respectively, on the 123×24 at
β = 4.60.

the lattice momentum q has been used instead of discrete momentum p. In Chapter 9,
we saw that in order to recover a well behaved gluon propagator in the ultraviolet
region, tree–level correction was a crucial step. On the other hand, even without any
tree–level correction, it was possible to extract from the untouched propagator some
results in the infrared region. Here however, the O(a) errors for the Wilson quark
action are relatively large making it difficult to say anything definitive about either the
infrared and the ultraviolet region. Comparing these results with Figs. 10.5 and 10.6
where no tree–level correction was required, we see clear evidence of the effects of action
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improvement for the overlap case.
It is interesting to note from Fig. 10.10, where both functions are plotted versus p

and from Fig. 10.11 where everything is plotted versus q, the way the points are shifted
along the x–axis. When the functions are plotted versus the discrete momentum, the
points are moved away from the origin as opposed to the case when the functions are
plotted versus the lattice momentum q. This is completely the opposite to the overlap
as we saw from Figs. 10.5 and 10.6. This may be understood by looking at Fig. 10.1,
for the overlap a graph of p against q (�) drive the set of points sharply above the line
p = q, contrarily to the wilson fermion (◦) with its sinusoidal momentum structure for
the lattice momentum.

It is therefore crucial, in order to understand the true nature of the behaviour for
both of these functions to first get some insights on the lattice momentum extracted
from Eq. (10.25).

In fig. 10.12, I show the same data as in Fig. 10.10 but cylinder cut this time. A clear
signal for each of the different masses is obtained and we can really see the structure of
the curve. The renormalization function Z(c)(p) for the Wilson fermions is not affected
by tree–level correction because A(0)(p) = 1, but we can see a dip in the deep infrared
as the quark mass is driven towards its chiral limit. This is perfectly consistent with
the overlap fermion and previous studies. A particular aspect of the mass function that
one should notice is that as mq −→ 0 a dip in the infrared is enhanced. The second
thing is the significant curvature of the function in the region between 1 to 3 GeV for
the Wilson. This curvature appears to be part of the action and was also observed in
some work done with non–perturbatively improved action [77, 78].

10.4.4 Linear Extrapolated Values

In this section I report the results from a linear extrapolation to the chiral limit, for both
M(q2) and Z(R)(q2). In the infrared region both Z(R)(q2) and M(q2) strongly deviate
from their perturbative behaviour, this enhancement is a characteristic of dynamical
chiral symmetry breaking. Similarly for Z(R)(q2) at large p, Z(R)(q2) = 1, up to small
logarithmic corrections. As in DSE studies it is typically found that Z(R)(q2), at small
p, the function is approximately 0.5 or so [94].

In the top graph of Fig. 10.13, the linearly extrapolated mass function, M(q2), is
plotted versus p (×) and in the bottom graph the same data but plotted versus q
(�). Both graphs contain all the available data (full data). Comparing the two using
the cylinder cut data shown in Fig. 10.14, shows a more rapid fall off in the chiral
limit when plotted versus p than when plotted versus q. In the deep infrared I find
M(0) = 297(11) MeV when plotted versus either. A similar effect is observed for the
linearly extrapolated Z(R)(q2) function, shown in the bottom half of Fig. 10.14. In the
low momentum region Z(R)(q2) reports a value of 0.48(2).

The Wilson fermion reports a slightly different value for the extrapolated Z(c)(p),
0.65(3), Fig. 10.15. There is a clear distinction between the two actions in the way
they behave. The Wilson has this obvious bump in the region from 1 to 2.5 GeV, this
bump gets carried over to the mass function. Hence there is a clear signal of the O(a)
lattice artifacts in the A(p) function for the Wilson fermions. Looking at Fig. 10.15 the
linearly extrapolated mass function, clearly shows the transcription from a bump to a
dip. This dip was also observed in the work with O(a) improved quark propagators
used in [77, 78]. These propagators ignore the gauge non–invariant terms. A discussion
of this procedure may be found in [92, 93]. The Wilson action is not really suitable
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Figure 10.12: The corrected mass function, M (c)(p), and Z(c)(p) (cylin-
der cut) for the Wilson fermions plotted versus the discrete momen-

tum values defined in Eq.(10.25), p =
√∑

p2
µ, over the interval of [0,5]

GeV. The kappa values, from top to bottom set of points, are κ =
0.1337, 0.1346, 0.1356, 0.1365, 0.1374 corresponds to a current quark mass
of mq∼221, 181.5, 138.3, 99.91, 62.04 MeV respectively, on the 123×24 at
β = 4.60.

for extracting the quark condensate. So from now on I will concentrate on the overlap
results.

In the continuum, at one loop order in perturbation theory, the mass function in
the assymptotic regime is given by

M(p2)
p2−→∞

=
m̂(

1
2
ln
[

p2

Λ2
QCD

])γm
, (10.35)
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Figure 10.13: The linearly extrapolated mass function, M(q2), (full data)
for the Overlap fermions plotted versus both the discrete momentum val-
ues defined in Eq. (10.7) and the momentum extracted from the lattice,
Eq. (10.25). Here M(0) = 297(11) MeV.

with γm = 12/(33−2Nf). This is referred to as the running quark mass, m(µ) ≡ M(µ2).
Here the number of flavours is zero, i.e. Nf = 0, since we are working in quenched
QCD and m̂ is the renormalization point independent current quark mass. In QCD,
γm is independent of the gauge parameter to all orders and the chiral limit is defined
by taking m̂ = 0 in the chiral limit M(p2) 
= 0 is only possible if and only if the quark
condensate is non–vanishing. In the presence of explicit chiral symmetry breaking,
Eq. (10.35) describes the form of M(p2) for p2 > 1 GeV2. In the chiral limit, however
the ultraviolet behaviour [4, 94] is given by

M0(p2)
p2−→∞

=
4π2γm

3

(−〈qq〉0)
p2
(
ln
[

p2

Λ2
QCD

])1−γm
, (10.36)
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Figure 10.14: The linearly extrapolated mass function, M(q2), (cylinder
cut) for the Overlap fermions plotted versus both the discrete momen-
tum values defined in Eq. (10.7) and the momentum extracted from the
lattice, Eq. (10.25). Here M(0) = 297(11) MeV and Z(0) = 0.48(2).

where (−〈qq〉0) is the renormalization point independent vacuum quark condensate.

A gauge invariant expression for the renormalization–point–dependent vacuum quark
condensate was derived in [96]. At one–loop order the renormalization point dependent
vacuum quark condensate is given by

〈qq〉ζ =

[
ln

(
ζ2

Λ2
QCD

)]γm

(−〈qq〉0). (10.37)

Using the lattice data I extract (−〈qq〉0) from Eq. (10.36). Here I use the full data,
and a QCD scale of ΛQCD = 0.234 GeV [94, 95] as the major scale parameter on various
fitting regions. I also explore different scales like ΛQCD = 200, 300 and 380 MeV.
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Figure 10.15: The linearly extrapolated mass, M(q2), and Z(c)(p) func-
tion (cylinder cut), for the Wilson fermions plotted versus the discrete

momentum values defined in Eq.(10.25), p =
√∑

p2
µ. Here M(0) =

237(13) MeV. The lowest momentum value gives Z(0) = 0.65(3).

I have fitted the lattice data versus both definitions of the momentum, and found
that when the fits were performed versus the discrete momentum the quark condensate
was closer to its continuum, i.e., when calculated from phenomenological studies. A
summary of the fitting results is shown in Table 10.4 for various fitting regions and
scales when the data is plotted versus the discrete momentum and in Table 10.5 for the
lattice momentum. A typical fitting window for the quark condensate is chosen to be
p = [4, 6] GeV, the resulting fit is shown in Fig. 10.16. Setting the renormalization point
at ζ = 1 GeV and using Eq. (10.37), we obtain a value for the renormalization point
dependent quark condensate of 〈qq〉ζ=1GeV = −(286 MeV)3 when the data is plotted

versus the discrete momentum p and a condensate of 〈qq〉ζ=1GeV = −(608 MeV)3 when

167



Figure 10.16: The linearly extrapolated mass function, M(q2), (full data)
for the Overlap fermions plotted versus the lattice momentum (�) de-

fined in Eq. (10.25), q =
√∑

q2
µ (top graph). The quark condensate

estimated from Eq. (10.36), gives 〈qq〉ζ=1GeV = −(607 MeV)3. In the

bottom graph we show the graph when the M(q2) is plotted and fitted

versus the discrete momentum p =
√∑

p2
µ, the resulting condensate is

〈qq〉ζ=1GeV = −(286 MeV)3. ΛQCD = 0.234 GeV.

plotted versus the lattice momentum q.

The programs used to carry out the above analysis may be found in Appendix E.23
and E.24.
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Table 10.4: Summary of the results for 〈qq〉ζ extracted from Eq. (10.37) in MeV and
renormalized at ζ = 1.0 GeV. The fit was done using Eq. (10.36) at various scales
ΛQCD = 200, 234, 300 and 380 MeV on various momentum windows for the discrete
momentum p in GeV.
ΛQCD 200 MeV 234 MeV 300 MeV 380 MeV
p 〈qq〉ζ χ2/df 〈qq〉ζ χ2/df 〈qq〉ζ χ2/df 〈qq〉ζ χ2/df

3-5 342.66(30) 0.92 334.60(29) 0.92 320.79(28) 0.92 306.14(27) 0.92
3-6 337.64(34) 0.97 329.76(33) 0.97 316.27(31) 0.97 301.94(30) 0.97
3-7 339.97(32) 1.01 332.03(31) 1.01 318.46(29) 1.01 304.04(28) 1.01
3-8 340.37(31) 0.98 332.43(30) 0.98 318.83(29) 0.98 304.40(28) 0.98
3-9 340.48(31) 0.98 332.53(30) 0.98 318.93(29) 0.98 304.49(28) 0.98
4-5 289.64(98) 0.74 282.95(96) 0.74 271.51(92) 0.74 259.36(88) 0.74
4-6 293.49(91) 0.89 286.75(89) 0.89 275.23(85) 0.89 262.99(82) 0.89
4-7 303.20(77) 0.96 296.24(75) 0.96 284.32(71) 0.96 271.67(69) 0.96
4-8 304.60(74) 0.94 297.60(72) 0.94 285.62(69) 0.94 272.91(66) 0.94
4-9 304.87(74) 0.93 297.86(72) 0.93 285.88(69) 0.93 273.15(66) 0.93
5-6 302.39(92) 1.03 295.56(90) 1.03 283.89(86) 1.03 271.49(83) 1.03
5-7 326.06(65) 1.09 318.72(63) 1.09 306.16(61) 1.09 292.82(59) 1.09
5-8 328.95(64) 1.03 321.54(62) 1.03 308.87(60) 1.03 295.41(57) 1.03
5-9 329.61(63) 1.03 322.18(62) 1.03 309.49(60) 1.03 295.99(57) 1.03

10.5 Conclusion

In this Chapter, I have presented the first study of the quark propagator using an
overlap quark action. This study is based on a set of ten different quark masses. We
can see considerable improvement in the behaviour of the quark propagator when the
Dirac Wilson operator is inserted into the overlap fermion formalism which produces
an O(a) improved quark action with an exact chiral symmetry.

The overlap quark propagator did not require any tree–level correction unlike the
Wilson fermion quark action or any other actions resembling to the Wilson fermions.
The overlap quark action produces remarkable results for both functions Z(R)(q2) and
M(q2). From just a linear extrapolation I was able to produce consistent results cal-
culated in DSE studies. In the deep infrared in the chiral limit, we get for the mass
and renormalization function, M(0) = 297(11) MeV and Z(0) = 0.48(2) respectively.
Comparing the results coming from the two quark actions clearly shows the superiority
of the overlap formalism.

Using the extrapolated data, I was able to extract the quark condensate using the
known one–loop renormalization group UV behaviour of chiral QCD preserved by DSE
model, Eq. (10.36). From there the one–loop renormalized point dependent vacuum
quark condensate at various QCD scales was calculated. At ΛQCD = 0.234 GeV with
a fitting window of p = [4, 6] GeV we obtain at a renormalization point of ζ = 1 GeV,
a condensate of 〈qq〉ζ=1GeV = −(286 MeV)3 compared with a momentum window of

p = [3, 6] GeV giving a slightly higher condensate of 〈qq〉ζ=1GeV = −(330 MeV)3 when
the data is plotted versus the discrete momentum p compared with a condensate of
〈qq〉ζ=1GeV = −(608 MeV)3 and 〈qq〉ζ=1GeV = −(599 MeV)3 for the respective fitting
window when the data is plotted versus the lattice momentum q. These results, obtain
from a quenched simulation, are to be compared with earlier work [77, 78] giving a
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Table 10.5: Summary of the results for 〈qq〉ζ extracted from Eq. (10.37) in MeV and
renormalized at ζ = 1.0 GeV. The fit was done using Eq. (10.36) at various scales
ΛQCD = 200, 234, 300 and 380 MeV on various momentum windows for the lattice
momentum q in GeV.
ΛQCD 200 MeV 234 MeV 300 MeV 380 MeV
q 〈qq〉ζ χ2/df 〈qq〉ζ χ2/df 〈qq〉ζ χ2/df 〈qq〉ζ χ2/df

3- 5 610.80(76) 0.25 596.20(74) 0.25 571.22(71) 0.25 544.71(67) 0.26
3- 6 613.06(77) 0.28 598.60(76) 0.28 573.85(72) 0.28 547.57(69) 0.29
3- 7 603.21(71) 0.57 589.18(69) 0.57 565.18(66) 0.56 539.67(63) 0.56
3- 8 603.70(66) 0.64 589.75(64) 0.64 565.89(62) 0.64 540.52(59) 0.64
3- 9 599.89(61) 0.70 586.11(60) 0.70 562.52(57) 0.70 537.44(55) 0.70
3-10 599.97(56) 0.69 586.22(54) 0.69 562.69(53) 0.68 537.67(50) 0.68
3-11 599.12(51) 0.68 585.43(50) 0.68 561.99(48) 0.68 537.06(46) 0.68
3-12 598.14(48) 0.73 584.50(47) 0.73 561.14(45) 0.73 536.29(43) 0.73
4- 5 622.98(89) 0.23 608.54(87) 0.23 583.84(84) 0.24 557.62(80) 0.24
4- 6 621.79(87) 0.29 607.57(85) 0.29 583.27(81) 0.29 557.45(78) 0.29
4- 7 602.09(73) 0.66 588.52(72) 0.66 565.31(69) 0.66 540.65(66) 0.66
4- 8 603.06(66) 0.73 589.56(64) 0.73 566.45(62) 0.73 541.89(59) 0.73
4- 9 597.10(59) 0.78 583.80(57) 0.78 561.04(55) 0.78 536.84(53) 0.77
4-10 597.36(52) 0.74 584.09(51) 0.74 561.38(49) 0.74 537.24(47) 0.74
4-11 596.15(47) 0.73 582.94(46) 0.73 560.34(44) 0.73 536.30(42) 0.72
4-12 594.71(43) 0.78 581.56(42) 0.78 559.06(40) 0.77 535.11(39) 0.77
5- 6 620.49(85) 0.34 606.52(83) 0.34 582.63(80) 0.34 557.26(77) 0.34
5- 7 589.63(66) 0.82 576.53(65) 0.82 554.12(62) 0.82 530.30(59) 0.81
5- 8 593.97(58) 0.86 580.84(57) 0.86 558.39(55) 0.85 534.52(52) 0.85
5- 9 586.49(51) 0.87 573.60(50) 0.87 551.54(48) 0.87 528.09(46) 0.87
5-10 587.62(46) 0.81 574.74(45) 0.81 552.70(43) 0.81 529.26(42) 0.81
5-11 586.42(42) 0.78 573.60(41) 0.77 551.67(40) 0.77 528.33(38) 0.77
5-12 584.70(40) 0.82 571.94(39) 0.82 550.11(38) 0.82 526.89(36) 0.82
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condensate 〈qq〉ζ=1GeV = −(248 MeV)3 for the lattice fitted data and 〈qq〉ζ=1GeV =

−(241 MeV)3 from the DSE model [4, 95], moreover comparing the results to QCD
sum rule phenomenological studies obtained a value of −(236(8) MeV)3.

If we compare the results for the quark condensate obtained from the overlap and
that obtained phenomenologically one, we observe that the condensate for the overlap
is higher. As pointed out in Ref. [97], for a small quark mass, the quark condensate
has the form

〈qq〉 =
〈|Q|〉
µV

+ c0 + c1µ. (10.38)

A fit of Eq. (10.38) was shown to be in agreement with the lattice data1. The first term
in Eq. (10.38) arises from the zero modes. This effect is a direct consequence of the
quenched approximation which gives rise to too many instantons. These instantons
increase the number of zero modes which imply a high condensate. This effect is
expected to be suppressed when the determinant of the fermion matrix is included in
the dynamical fermion simulations.

This calculation was done at a relatively small volume with only one lattice. The
objective of the calculation was to get some insight into the structure of the quark
propagator in the overlap formalism. Further work is underway which will examine the
volume dependence in this formalism.

Extensive improvement in the quality of the results may really be seen when exam-
ining finer lattices and larger volumes with or without inserting a clover term especially
in the extraction of the quark condensate.

1The figure of interest is Fig. 1 and 2 in the first and second article of Ref. [97] respectively.
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Chapter 11

Summary and Prospects

11.1 Summary

In this thesis, I have shown numerical results for the 2D ising model and for both
SUc(2) and SUc(3) gauge field configurations. These results match perfectly within
statistical error those published in previous studies, [98]. I have also shown the effect
of O(a2) improvement.

Smoothing algorithms are now widely used in various ways in lattice simulations.
For example, APE smearing is used to smear the spatial gauge-field links in studies of
glueballs, the static quark potential, etc. APE smearing is of particular interest in the
construction of fat-link actions and of improved operators. Using the Wilson gauge
action, Eq. (2.19), I have shown that to a good approximation, the two-dimensionful
parameter space of the number of smearing sweeps nape(α) and the smearing fraction
α, may be reduced to a single dimension via the constraint

nape(α
′)

nape(α)
=
α

α′ , (11.1)

for α and α′ in the range 0.3 to 0.7.

This result is in agreement with fat-link perturbation theory expectations, and
survives for up to 200 sweeps over the lattice. This relation is expected to hold over
the entire APE smearing range 0 < α < 3/4. I found the same relation for AUS
smearing provided α ≤ 0.85. I have found that cooling, APE smearing and AUS
smearing produce qualitatively similar smoothed gauge field configurations at β = 6.0,
provided one calibrates the algorithms according to

nc � 0.600αnape(α) , nc � 0.618αnaus(α) and αnape(α) � 1.03α′ naus(α
′) .

(11.2)

I have used the topological charge analysis to confirm the action analysis results
at β = 6.0 and to further support the above relations. Comparing the results with a
lattice that has a coarser lattice spacing, β = 5.7, reveals that the evolution curves
for the topological charge take different trajectories. At that coarser spacing with an
unimproved action different smoothing algorithms will produce smoothed gauge field
configurations with similar action, but with different topological properties.

The difficulty with standard Wilson action is that the O(a2) errors in the action are
large and tend to spoil instantons under the cooling procedure by reducing the action
below the one instanton bound. For example, the action decreases monotonically to

172



zero while the topological charge sectors will still transition between integer values as
(anti)instantons are destroyed.

This analysis was then repeated for O(a2) improved operators, Sec. 7.8. The anal-
ysis was done in the same manner as the one with the standard algorithm. To carry
out the analysis I have introduced an improved version of the APE smearing algorithm
founded on the connection between cooling Eq. (7.24) and the projection of the APE
smeared link back to the SUc(3) gauge group via Eq. (7.38). This algorithm has the
advantage of bringing the topological charge to integer value faster than standard APE
smearing for 0.1 ≤ α ≤ 0.5. Furthermore, improved smearing preserves instantons in-
side the lattice for a larger period of time than standard APE smearing. This algorithm
remains stable for any smearing fraction α in the range of 0.1 ≤ α ≤ 0.5, which is a
slight decrease over the range available with standard APE smearing, 0.1 ≤ α ≤ 0.75.
This is due to the extended nature of the “staple” in the improved smearing algorithm.
Beyond α = 0.5 the improved smearing algorithm becomes unstable.

Using the cooling algorithm described in Sec. 7.3, I have inserted the O(a2)-improved
staple as explained in Sec. 7.4 to create an O(a2)-improved cooling algorithm. As a
final tool I have created an O(a2)-improved topological charge operator. So, using
the cooling algorithms and the algorithms described in Sec. 7.5.1 and in Sec. 7.6.2,
I have cross calibrated the speed with which the algorithms remove action from the
field configurations. In particular I have cross calibrated the smoothing rates of APE
smearing at seven values of the smearing fraction; improved smearing at five values of
the smearing fraction; cooling; and improved cooling. I explored smearing fractions in
0.1 intervals starting at α = 0.1.

From this extended analysis I found that the results obtained in Sec. 7.7 with
unimproved cooling, action and topological charge are consistent with those obtained
using an O(a2)-improved cooling, action and topological charge, Sec. 7.8. I also found
that it was possible to make qualitative comparisons between cooling and smearing
algorithms. The comparisons were made on lattices as coarse as 0.165(2) fm and on a
fine lattice where the lattice spacing is 0.077(1) fm.

I found that the relative smoothing rates can also be described via simple relation-
ships for the O(a2) case. I have summarized the results in Tables 7.8 and 7.9 for both
the coarse 163×32 and fine 243×36 lattices, respectively. I discovered that a necessary
correction to the APE smearing ratio rule, Eq. (11.1), had to be made when improved
smearing is considered. These algorithms may be calibrated via

nape(α
′)

nape(α)
=
α

α′ and
nIape(α

′)
nIape(α)

=
( α
α′

)δ
, (11.3)

for APE smearing and improved smearing respectively. I found δ = 0.914(1) without
a significant dependence on the lattice spacing.

I also found that the calibration was only possible through the action and not
through the the topological charge when improved operators were used. This is because
the topological charge remains to a fixed integer for hundreds of sweeps while the action
is monotonically decreasing, as we saw in Figs. 7.37. This makes the calibration using
the topological charge only possible at the very early stages of the smoothing procedure,
when the topological fluctuations are large.

However, the O(a2)-improved topological charge operator gave us some clear ev-
idence that, in order to study the topology of pure gauge, one had to have lattices
with a spacing finer than 0.165(2) fm. This argument is based on the fact that various
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algorithms lead the topological charge to completely different trajectories as reported
in Figs. 7.35 and 7.36.

Moreover, as demonstrated in Sec. 7.8.1, small differences in the cooling algorithms
can lead to different topological charge determinations, as illustrated in Figs. 7.27
and 7.28. These results indicate that the characteristic size of topological fluctuations
in Yang-Mills gauge fields is at the scale of the coarse lattice spacing of 0.165(2) fm.

Now, when we compared the results obtained on the fine 243 × 36 lattices where
a = 0.077(1) fm, Sec. 7.8.3, we saw that on this lattice all algorithms considered were
in excellent agreement. In this case it appears that the lattice spacing on these O(a2)-
improved gauge field configurations is finer than the characteristic size of topological
fluctuations, such that the gauge fields are already sufficiently smooth to unambigu-
ously extract the topology of the gauge fields.

As a final comparison of the smoothing algorithms, I have provided a visual repre-
sentation of a gauge field configuration after applying various smoothing algorithms.
This demonstrates the quality of the calibration after applying the various smooth-
ing algorithms. For the calibration results for the unimproved and improved case see
Fig. 7.58 and in Fig. 7.26 respectively. The parameters used to generate these Figures
can be found at the end of Secs. 7.7 and 7.8 respectively.

In Chapter 9 the gluon propagator was calculated on various lattices with O(a2)
improved gauge action. The infrared behaviour of the gluon propagator in the Landau
gauge was clearly established. It was shown that the tree–level correction is a pow-
erful tool that can be used to minimize the ultraviolet lattice artifacts and to reduce
rotational symmetry breaking.

It was also shown in Sec. 9.5 that O(a2) improved action produces superior results
in comparison with those of a standard Wilson gauge action. One of the main im-
provements was that one is able to go to much coarser lattices while retaining good
scaling.

In Fig. 9.10 we saw the comparison between a gluon propagator calculated on a
323×64 with standard gauge fields at β = 6.00 and an improved gauge field calculated
on a 163 × 32 lattice at β = 4.38. The comparison showed that the turn–over was
consistently reproduced. This was also the case as we made the lattice coarser. This
produced robust results that demonstrated that the turn over of the propagator is
infrared finite. There is, however, some scaling violation at large momentum for very
coarse lattices. The increase of volume for the two largest volumes left the propagator
unchanged, indicating that finite volume effects are small. The tree-level corrected
results from the β = 3.92 (a = 0.353 fm) 163 × 32 lattice with a physical volume
of 5.653 × 11.30 = 2038 fm4 may be regarded as an excellent estimate of the infinite
volume limit. An extrapolation of D(0) via a linear ansatz inversely proportional to
the physical lattice volume provides a reasonable fit. Moreover results from the largest
volume lattice reside very close to the infinite volume limit.

In Chapter 10 I have presented the first study of the quark propagator using an
overlap quark action. The study was based on a set of ten different quark masses. In
this analysis we can see considerable improvement in the behaviour of the quark prop-
agator when the Dirac Wilson operator is inserted into the overlap fermion formalism
which produces an O(a) improved quark action with an exact chiral symmetry.

The overlap quark propagator did not require any tree–level correction unlike the
Wilson fermion quark action or other actions resembling Wilson fermions. The action
produced credible results for both functions Z(R)(q2) and M(q2).

The quark condensate was then extracted using Eqs. (10.36) and (10.37). At
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ΛQCD = 0.234 GeV with a fitting window of p = [4, 6] GeV we obtain at a renor-
malization point of ζ = 1 GeV, a condensate of 〈qq〉ζ=1GeV = −(286 MeV)3 and

〈qq〉ζ=1GeV = −(608 MeV)3 for q = [4, 6] GeV. The discrepancy between the phe-
nomenological value and the one extracted from the overlap simulation is due to the
quenched approximation as discussed in Sec. 10.5 and is expected to go away in full
QCD simulation.

This calculation was done at a relatively small volume with only one lattice. The
objective of the calculation was to get some insight into the structure of the quark
propagator in the overlap formalism. Further work is underway which will examine the
volume dependence and scaling in this formalism.

Combining these three sections together, we have clear evidence that improved
actions are very successful at bringing lattice results closer to the continuum, infinite
volume limit while minimizing computational cost.
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Appendix A

Gauge Group Representation and
Conventions

A.1 SUc(2)

The generators for the SUc(2) Lie group ti = σi/2 where σi are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A.2 SUc(3)

This group is a topological group, and a simple Lie group. This Lie group has eight
generators ta = λa/2 (a = 1, .., 8), there is generator one for each gluon fields. These
matrices are commonly known as the Gell–Mann matrices:

λ1 =

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ , λ2 =

⎛⎝ 0 −i 0
i 0 0
0 0 0

⎞⎠ , λ3 =

⎛⎝ 1 0 0
0 −1 0
0 0 0

⎞⎠ ,

λ4 =

⎛⎝ 0 0 1
0 0 0
1 0 0

⎞⎠ , λ5 =

⎛⎝ 0 0 −i
0 0 0
i 0 0

⎞⎠ , λ6 =

⎛⎝ 0 0 0
0 0 1
0 1 0

⎞⎠ ,

λ7 =

⎛⎝ 0 0 0
0 0 −i
0 i 0

⎞⎠ , λ8 =
1√
3

⎛⎝ 1 0 0
0 1 0
0 0 −2

⎞⎠ . (A.1)

The matrices λa satisfy the following commutation relations (the Lie Algebra):

[ta, tb] = 4ifabctc and Tr{ta, tb} =
1

2
δab, (A.2)

where the constants fabc are the structure constants of the Lie Algebra, these are fully
antisymmetric with respect to interchange of indices. The independent constants which
are different from zero have the following values

f123 = 1 , f147 = f246 = f345 = f516 = f257 = f637 =
1

2
, f458 = f678 =

√
3

2
. (A.3)
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A.3 The Spinor matrices

The Euclidean hermitian γ matrices satisfy

γµ = γ†µ and {γµ, γν} = 2δµν . (A.4)

The representation used in this thesis

γ =

(
0 iσ
−iσ 0

)
, γ4 =

(
1 0
0 −1

)
, γ5 =

(
0 1
1 0

)
.

The Bjorken and Drell Representation:

iγiBD = γi , γ0
BD = γ4 and γ5

BD = γ5. (A.5)

The matrices γ1 and γ3 are purely imaginary and γ2, γ4 and γ5 are real.
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Appendix B

Mathematical Background and
Definitions

B.1 Mathematical Background

Topology is the mathematical study of the properties of the space and the sets of
functions connecting spaces. In general, topology is not only concerned with finite
dimensional spaces like subspaces of Rn, but also in infinite dimensional ones such as
the spaces that we find in quantum field theory. Topology is concerned with the space
of maps between two topological spaces, and how this space of maps is connected.

Two maps f0 : X −→ Y and f1 : X −→ Y belong to the same space of maps if
and only if they can be continuously deformed into one another, that is if there is a
continuous family of maps, indexed by a parameter t ∈ [0, 1] that connects f0 and f1.
The collection of maps, ft can be looked at as a single map F (x, t) from X ∈ [0, 1]
into Y such that ft(x) = F (x, t). The map F must be continuous and its restriction to
X×{0} and X×{1} is specified by the condition F (x, 0) = f0(x) and F (x, 1) = f1(x).
The map F or the family of maps ft is referred to as a homotopy between f0 and f1,
and we say that f0 and f1 are homotopic if there is a homotopy between them.

In this way, all the maps from X to Y can be grouped into homotopy classes each
class consisting of maps homotopic to one another.

A simple example of this would be the mapping of the circle S1 on a circle S1 that
brings the south pole x0 of the circle S1 into a fixed point y0 of the space S1. If a point
on the circle is specified by the polar angle φ then each mapping of the circle on the
circle can be described by a function f(φ) satisfying:

f(2π) = f(0) + 2πn,

where n is an integer. This number indicates how many times the circle is wound
around itself and is referred to as the winding number. All the mapping with the same
winding number can be continuously deformed into one another, hence homotopic.

If X is a single point then the homotopy classes of maps X −→ Y are in one–to–one
correspondence with the connected components of Y . In fact the space of maps between
the two topological spaces X and Y is homeomorphic (i.e. topologically equivalent)
to Y . On the other hand a map X −→ Y is called null–homotopic (see Def. B.9), or
homotopically trivial, if it is homotopic to a map that takes all of X to a single point
of Y (a constant map). If Y is connected, all null–homotopic maps are homotopic to
one another, in that case the homotopy class of these maps is called the trivial class or
zero class.

178



One of the most fundamental topological spaces, is the n–sphere, Sn. The n–sphere
can be thought of as a topological subspace of Rn+1. For example S1 lives in a two
dimensional plane, namely R2. The map of Sn through the homotopy group onto an
arbitrary topological space is one of the deepest concepts in topology. A special case
of this, is the event that if every map from a k–sphere into a space X is null homotopic
then one says that the topological space X is aspherical (see Def. B.10) in dimension
k.

The set of homotopy classes form an Abelian group, some of which are finite and
others are infinite. The group is commonly denoted as πk(X). The subscript indicates
the dimension of the spatial sphere subjected to the mapping onto which topological
space the mapping is performed (indicated in the parenthesis). When k = 1, π1(X) is
called the fundamental group. We know that a path in a space X, is a map from the
interval [0, 1] to X, we can equally think of a path as a continuous parameterized curve
inX. The space is connected if any two of its points can be joined by a path. If the path
starts and end at the same point x0 = x1, then the path is closed forming a loop, with
x0 being the basepoint. Such a loop is null–homotopic if it is homotopic to the trivial
loop with image x0. If we now consider all the loops in the space X, whose basepoint
is some fixed point x0, then the set of such loops can be divided into homotopy classes
with all loops in the same class homotopic to one another. This partitioning into classes
is possible because homotopy is an equivalence relation (i.e. when f0 is homotopic to
f1 implies that f1 is homotopic to f0 which makes it symmetric, it is also transitive
because if two loops are homotopic to a third then they are homotopic to one another).
The set of homotopy classes of loops in X with basepoint x0 is the fundamental group.

In general the fundamental group applies to simple topological system like magnetic
monopoles in U(1) theories, but in the case of more complicated gauge theories like
QCD one has to go into higher dimensional homotopy groups.

Let’s now consider a topological space E with a fixed basepoint e0, then a k–
dimensional spheroid of E is a map Sk −→ E that takes the south pole s of Sk to
e0 ∈ E, the fixed basepoint of E. A null spheroid happens when the map Sk −→ E
is the constant map whose image is the fixed basepoint e0 and when a spheroid is
homotopic to the null spheroid, it is then null homotopic. Furthermore, two spheroids
f0 and f1 are homotopic if there is a homotopy ft between the two maps such that
ft(s) = e0, for all t. Note that f0 and f1 are homotopic as maps but not as spheroids
when the homotopy between f0 and f1 cannot be chosen in such a way that s is mapped
to e0 all the time. Homotopic spheroids also form an equivalence relation, which means
that in this case too, we get a partition of the space into homotopy classes of spheroids
and within each class all spheroids are homotopic to one another. The set πk(E, e0) can
be given a group structure for k ≥ 1. The resulting group is called the kth–homotopy
group of E.

The calculation of these groups is in general non–trivial, the task is actually made
easier by creating a fibration of the total topological space. The technique represent
a powerful tool for the study of non–trivial topological spaces. A fibration can be
thought of as a partitioned domain in the total space and it is defined as follows.
Given a map p from a space E onto a space B, we can partition the domain into
disjoint sets Fb = p−1(b) for b ∈ B. We then say that p defines a fibration if all sets
Fb are homeomorphic (see Def. B.6) to one another. In this case Fb is called the fiber
over b. The space B is called the base space of the fibration, E the total space and p is
the projection map. The fibers of a fibration are usually contained in a space that we
may call the fiber space F . So a fibration with total space E, base space B and fiber
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F via a projection p is denoted by (E,B, F ).
Let’s look at simple examples. The orthogonal projection of a solid cylinder onto

the base space defines a fibration. The total space E is the solid cylinder, the base
space B is the disk and the fiber space F is homeomorphic to an interval. Another
example is a k–dimensional submanifold Ω of Rn. For a point x ∈ Ω, let Tx⊂Rn be
the space of tangent vectors to Ω at x. Let TΩ be the space of pairs (x, ζ) where x ∈ Ω
and ζ ∈ Tx. Each such pairs can be thought of as a tangent vector based at x. There
is a natural projection p : TΩ −→ Ω assigning to (x, ζ) the point x ∈ Ω. Since p−1(x)
can be regarded as a tangent space Tx and since Tx is homeomorphic to Rk, we can see
that p gives a fibration with base Ω and fiber Rk. This is called the tangent fibration
to Ω. A variation of this construction can be done by replacing Tx by the set of unit
tangent vectors at x which gives the unit tangent fibration with fibers homeomorphic
to Sk−1.

Now consider a topological group (see Def. B.12) G acting on a space E by trans-
formations φg for g ∈ G. There is then a partition of E into subsets, the orbit (see
Def. B.16) of G. If e ∈ E is a continuous map, α, can be constructed from G onto the
orbit of e by setting α(g) = φg(e). This map is one–to–one if and only if the stabilizer
(see Def. B.17) He is trivial, since He is the subgroup of G that takes e to itself. If, in
addition G is compact α is a homomorphism (see Def. B.13) since every one–to–one
map from a compact space onto a Hausdorff space (see Def. B.11) is a homeomorphism.
It can be concluded that when a compact group G acts freely (an action, Def. B.15, is
free when all stabilizers are trivial) on a space E, all orbits are homeomorphic to G.

It then follows, the decomposition of E into orbits give rise to a fibration. Fibration
that arise in this way are called principal. Thus a principal fibration (E,B,G) is one
in which the model fiber G is a topological group and there is a free action of G on
E whose orbits are the fibers. Using the Stiefel manifold [43], it can be shown that a
principal fibration for SO(n) (the group of orthogonal matrices with unit determinant)
is given by:

(SO(n), Sn−1, SO(n− 1)). (B.1)

A similar principal fibration can be written down for SUc(N), so we have

(SUc(N), S2n−1, SUc(N − 1)), (B.2)

so when the total space is SUc(N) the base space is the (2n− 1)–sphere with fibers in
SUc(N − 1).

Furthermore the spaces forming the principal fibration may be related to the ho-
motopy groups when every spheroid f of E can be written in the form (f1, f2) where
f1 is a spheroid of the base space, B, and f2 is a spheroid of the fiber space F . A
continuous deformation in f gives continuous deformation in f1 and f2. Thus to each
element of α ∈ πk(E) we can associate a pair (α1, α2) ∈ πk(B) ⊕ πk(F ). Hence, we
have the following result, if E = B × F is a direct product of the base and fiber space
then the kth–homotopy of the total space E is isomorphic (see Def. B.14) to the direct
sum of the kth–homotopy of the base space πk(B) and the kth–homotopy of the fiber
space πk(F ), i.e.,

if E = B × F ⇒ πk(E) � πk(B) ⊕ πk(F ). (B.3)

Similarly, if the base space B of a fibration (E,B, F, p) is aspherical in dimension k
and k + 1 then the groups πk(E) and πk(F ) are isomorphic, that is,

if πk(B) � πk+1(B) � 0 ⇒ πk(E) � πk(F ). (B.4)
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If the fiber space F is aspherical in dimension k − 1 and k then πk(E) and πk(B) are
isomorphic. That is, we have the result that

if πk(F ) � πk−1(F ) � 0 ⇒ πk(E) � πk(B), (B.5)

and

if πk−1(E) � πk(E) � 0 ⇒ πk(B) � πk−1(F ). (B.6)

Using these relation it is now possible to calculate the homotopy groups for various
topological groups that are of physical interest. The classification of the sphere is given
in Appendix. B.3. We will use this classification to calculate the homotopy groups of
other topological groups.

For example, in the case of SO(2) which is isomorphic to U(1) and homeomorphic
to S1 we get

πk(SO(2))�πk(U(1))�πk(S
1)� 0 for k ≥ 2.

Now for SO(4), which has a homomorphic twofold cover, that is SUc(2)×SUc(2) −→
SO(4), using Eq. (B.3), the homotopy group for k ≥ 2 becomes:

πk(SO(4))�πk(SUc(2)×SUc(2))�πk(SUc(2)) ⊕ πk(SUc(2)),

but since SUc(2) is homeomorphic to S3 and that πk(S
n)� 0 for k < n and πk(S

n)�Z
for k = n, we have

π1(SO(4))�π2(SO(4))�0 and π3(SO(4))�Z⊕ Z. (B.7)

Using the principal fibration defined in Eq. (B.1) and the fact πk(S
n−1)� 0 for k ≤

n− 2, we have

πk(SO(n− 1))�πk(SO(n)) for k < n− 2.

The calculation of the homotopy group for SUc(N) is done using the principal
fibration defined in Eq. (B.2). The base space is then S2n−1 and the fiber space is
SUc(N − 1). The kth and (k + 1)th–homotopy group of the base space are aspherical
for k ≤ 2n− 2, we therefore have

πk(SUc(N − 1))�πk(SUc(N)) for k < 2n− 2.

In the case of SUc(3), the fibration becomes (SUc(3), S5, SUc(2)). Following the above
reasoning, we know that for k < 4, S5 is aspherical in dimension k and k + 1 i.e.

πk(S
5)�πk+1(S

5)� 0 for k < 4.

It then implies that the kth–homotopy of the total and fiber spaces are isomorphic and
homeomorphic to S3:

πk(SUc(3))�πk(SUc(2))�πk(S
3) for k < 4,

which gives:

πk(SU(3))�πk(SU(2))�πk(S
3)�

{
Z for k = 3
0 for k ≤ 2.

(B.8)
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This shows that the set of homotopy classes of maps S3 −→ SU(3) is in one–to–one
correspondence with the integers.

{S3, SU(3)}�π3(SU(3))�Z. (B.9)

It is now clear that the number of times the 3–sphere is mapped onto SUc(3) is an
integer and that it is characterised by the topological number or the topological charge.
The topological charge is really the degree of the map.

To really see how the true nature of the topological charge arises, one must go
into the homology groups of k–dimensional surfaces with vanishing boundaries. These
types of surfaces are called k–cycles. The Homology group and Homotopic group are
related through a homomorphism of the pull back map, recall that if f : M −→ M̃ is
any smooth map between smooth manifolds and x is a point in M , a k–dimensional
tensor with lower indices at the point f(x) ∈ M̃ can be pulled back to a tensor at
the point x ∈ M . This means that the pullback maps under homotopic maps are
homologous. A similar statement for cohomology groups can be made when one is
looking at differential forms of degree k, or simply k–forms.

The homomorphism in homology is closely connected with the homomorphism in
cohomology through Stoke’s theorem:∫

Γ

f �w =

∫
f(Γ)

w, (B.10)

where w is any k–forms on a smooth manifold M̃ and Γ is any k–cycle in M . This
connection between homology and homotopy can be used to assign to maps certain
homotopy invariants, that is the number defined by Eq. (B.10) does not change under
continuous deformation of the map f . The Hurewicz isomorphism theorem [43] tells
us that: if k ≥ 2 and the total space E is aspherical in dimensions less than k, the
Hurewicz homomorphism of the kth–homotopy of the space E, πk(E), and the kth–
homology Hk(E,Z) are isomorphic. Hence we have π3(SUc(3))�H3(SUc(3),Z). Then
Eq. (B.10) is just equal to an integer, the topological number or topological charge.

B.2 Definitions

Definition B.1 (Metric spaces): A metric space is a set E together with a metric.
A metric is a function that assigns to each pair of points (x, y) a distance ρ(x, y),
satisfying the following conditions:

1. ρ(x, y) ≥ 0 for x, y ∈ E, with equality iff x = y;

2. ρ(x, y) = ρ(y, x) for x, y ∈ E; and

3. ρ(x, z)≤ρ(x, y) + ρ(y, z) for x, y, z ∈ E.

Definition B.2 (A topology): A topology τ for a space X is a collection of subsets
of X that has the following properties:

1. 0 ∈ τ and X ∈ τ ;

2. if Uα ∈ τ for each α ∈ A then
⋃
α∈A Uα ∈ τ ;
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3. if {U1, .., Uk} ∈ τ then
⋃k
i=1 Ui ∈ τ .

Definition B.3 (A topological space): The pair (X, τ) consisting of a space X and
a topology τ for X is a topological space.

Definition B.4 (Open cover): An open cover of E is a family {Uα} of open subsets
of E whose union is all of E. Compactness means that we can choose finitely many
indices α1, .., αk such that {Uα1 , .., Uαn} is still a cover for E.

Definition B.5 (Compactness): A topological space E is compact if every open
cover of E has a finite subcover.

Definition B.6 (Homeomorphic): A continuous, one to one map h of X onto Y
for which h−1 : Y −→ X is also continuous is called a homeomorphism.

Definition B.7 (Disconnected): A space X is said to be disconnected if X can be
written as X = H∪K, where H and K are disjoint non–empty open sets in X, the
pair {H,K} is then called a disconnection of X.

Definition B.8 (Connected): if a space X has no disconnection then it is connected.

Definition B.9 (Null–homotopic): A map X −→ Y is called null–homotopic or
homotopically trivial if it is homotopic to a map that takes all of X to a single point
of Y (i.e. a constant map).

Definition B.10 (Aspherical in dimension k): if every map from the k–sphere,
Sk, into a space X is null homotopic, then the space X is aspherical in dimension k.

Definition B.11 (Hausdorff spaces): A topological space is said to be Hausdorff if
whenever x and y are distinct points of x there exists open sets Ux and Uy in X with
x∈Ux and y∈Uy and Ux∩Uy = ∅ (distinct points can be separated by disjoint open sets).

Definition B.12 (Topological groups): A topological group is a Hausdorff topolog-
ical space G that is also a group in which the operations of multiplication

(x, y) −→ xy : G×G −→ G, (B.11)

and inversion

x −→ x−1 : G −→ G (B.12)

are continuous. A subgroup of a topological group is also a topological group.

Definition B.13 (Homomorphism): A map φ : G −→ G′ from one topological
group to another is a homomorphism if it preserves multiplication, i.e.

if φ(ab) = φ(a)φ(b). (B.13)
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Definition B.14 (Isomorphism): An isomorphism is a homomorphism that is one–
to–one and onto. If the isomorphism of the group is onto itself then it is an automor-
phism.

Definition B.15 (A right action): a right action of a topological group, G, on a
topological space, Y , is a continuous map σ : Y ×G −→ Y which satisfies:

1. σ(y, e) = y ∀ y ∈ Y (e is the identity in G)

2. σ(y, g1g2) = σ(σ(y, g1), g2) ∀ y ∈ Y and ∀ g1, g2 ∈ G.

Definition B.16 (Orbit): given any point in a topological space, y ∈ Y , the orbit of
y under the action σ is the subset {y · g : g ∈ G} of Y .

Definition B.17 (Stabilizer): The stabilizer of Hx of a point in x ∈ H is the set of
elements of G that leave x fixed that is h ∈ Hx if φh(x) = x, Hx is a subgroup of G.

B.3 Classification of the Sphere

π1(S
1) � Z

πk(S
1) � 0 for k ≥ 2

π1(S
2) � 0

π2(S
2)�π3(S

2) � Z

π4(S
2)�π5(S

2) � Z2

π6(S
2) � Z12

π1(S
3)�π2(S

3) � 0

πk(S
3) � πk(S

2) for k ≥ 3

πk(S
n) � 0 for k < n

πn(S
n) � Z

πn+1(S
n)�πn+2(S

n) � Z2 forn ≥ 3

πn+3(S
n) � Z24 forn ≥ 5

πn+4(S
n) � 0 forn ≥ 6

πn+5(S
n) � 0 forn ≥ 7

πm(Sn) � πm+1(S
n+1) form < 2n− 1

π4n−1(S
2n) � Z + finite group.

All groups πm(Sn), except for πn(S
n) and π4n−1(S

2n), are finite.
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Appendix C

Markov Chain Terminology

In this section I explain the terminology used in Section 3.1. These definition may be
found for example in Ref. [5].

1. A chain is called irreducible if, starting from an arbitrary configuration there
exists a finite probability of reaching any other configuration Cj after a finite
number of Markov steps. In other words there exist a finite N such that

P
(N)
ij =

∑
ik

Pii1Pi1i2 ...PiN−1j 
= 0. (C.1)

2. A Markov chain is called aperiodic if PN
ii 
= 0 for any N .

3. A state is called positive if its mean recurrence time is finite. If P
(n)
ii is the

transition probability to get from Ci to Ci in n–steps of the Markov chain, without
reaching this configuration at any intermediate step, then the mean recurrence
time of Ci is given by

τi =

∞∑
n=1

nP
(n)
ii . (C.2)
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Appendix D

Generating Uniformly Distributed
Random Numbers

When measuring an observable quantity in Monte Carlo simulations, one must generate
a sequence of random numbers which are uniformly distributed on the group manifold.
This could easily be done by considering the unit n–sphere, Sn, which is a topological
subspace of Rn+1, to select points that are inside the n–sphere according to

∑n+1
i=1 xi ≤

1. In 2D the situation is depicted in Fig.(D.1).

This method is easy to implement, but the probability of getting points selected in-
side Sn with a uniform distribution decreases as the number of dimensions, n, increases.
For example, in 2D the probability of getting points inside S1, Pin, is approximately
75 percent of the time. In 3D, Pin = 4π/24 ≈ 50 percent, and in 4D the probability
of getting points inside S3 is roughly Pin = 4π2/32, about 30 percent. Moreover the
points are not uniformly distributed.

r=1

y

x1

1

Figure D.1: The unit circle in 2D, r = x2 + y2 = 1.

D.1 Random Numbers with a Gaussian Probability

Distribution Function

An alternative approach [19] is generating random numbers with a Gaussian probability
distribution function. In R1 such functions take the analytic form of P (x) = exp(−x2)
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and in Rn+1 we have

n+1∏
i=1

P (xi) = exp(−
n+1∑
i=1

x2
i ) = exp(−r2), (D.1)

where r2 = 1, since we are working on the unit sphere. To bring the points on the
surface of the unit sphere one just needs to divide by the norm of the vector space, i.e.
(
∑n+1

i=1 x
2
i )

1/2. These numbers can be used construct a randomly uniformly distributed
vector in R2. Let’s consider 1 random number r that is uniformly distributed on [0, 1],
and another uniformly distributed number θ ∈ [0, 2π]. To construct our uniformly
distributed vector of random numbers in R2 with Gaussian probability distribution,
one need to consider

r ∈ [0, 1] =⇒ ln(r) ∈ (−∞, 0]=⇒
√
−2 ln(r) ∈ [0,∞). (D.2)

To make it uniformly distributed onto the surface of the sphere set

a
′
0 =
√

−2 ln(r)cos(θ) and a
′
1 =
√

−2 ln(r)sin(θ), (D.3)

and divide by its norm. One can now build a vector random vector in R4 by just
considering two sets of the 2 dimensional vectors with r1, r2 ∈ [0, 1] and θ1, θ2 ∈ [0, 2π]
and combine them together as such:

aµ =

[
ln

1

(r1r2)2

] 1
2

×(√
−2 ln(r1)cosθ1,

√
−2 ln(r1)sinθ1,√

−2 ln(r2)cosθ2,
√
−2 ln(r2)sinθ2

)
. (D.4)

In Rn+1, one just needs to consider n/2 sets, when n+ 1 is odd just keep n/2− 1 and
half of the next set.
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Appendix E

Computer Codes to Generate
Gauge Fields Configurations

E.1 Masking Routine for the Wilson Action

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c MaskWilson subroutine establishes the x y z and t masks.
c This mask is only to be used for the use of ordinary plaquette action
c
c Author: Frederic Bonnet fbonnet@physics.adelaide.edu.au
c Updated 14 Sept. 2000 by DBL
c

subroutine MaskWilson(mask)

implicit none
include ’latticeSize.h’
integer,parameter :: mu=4
integer,parameter :: nmask=16
logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask

cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)

c local variables

integer :: ix,iy,iz,it

c start of the execution commands

mask = .false.
c
c Our first idea
c
c forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt,mod(iy+iz+it,2) .eq. 0 )
c & mask(ix,iy,iz,it,1,1)=.true.
c forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt,mod(ix+iz+it,2) .eq. 0 )
c & mask(ix,iy,iz,it,2,1)=.true.
c forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt,mod(ix+iy+it,2) .eq. 0 )
c & mask(ix,iy,iz,it,3,1)=.true.
c forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt,mod(ix+iy+iz,2) .eq. 0 )
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c & mask(ix,iy,iz,it,4,1)=.true.
c
c Checker Board this time
c

forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt,mod(ix+iy+iz+it,2) .eq. 0 )
& mask(ix,iy,iz,it,1,1)=.true.
forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt,mod(ix+iy+iz+it,2) .eq. 0 )
& mask(ix,iy,iz,it,2,1)=.true.
forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt,mod(ix+iy+iz+it,2) .eq. 0 )
& mask(ix,iy,iz,it,3,1)=.true.
forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt,mod(ix+iy+iz+it,2) .eq. 0 )
& mask(ix,iy,iz,it,4,1)=.true.

mask(:,:,:,:,:,2) = .not. mask(:,:,:,:,:,1)

return
end subroutine MaskWilson

E.2 Generating Random SUc(2) Matrices with a Heat–

Bath Method

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & D.B. Leinweber; date: 28th of Jully 1998.
c subroutine that implements the pseudo-heatbath algorithm
c
c

subroutine pseudoheat(urnewsu2,uinewsu2,phbsr,phbsi,mask,imask,beta,ihat)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: ncsu2=2
integer,parameter :: nsigma=ncsu2*ncsu2
integer,parameter :: mu=4
integer,parameter :: nmask=16

integer :: ihat,imask
double precision :: beta

double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: urnewsu2,uinewsu2
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi

cmf$ layout urnewsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uinewsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)

logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask
cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)
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c local variables

integer,parameter :: nr=2
double precision,parameter :: pi=3.141592653d0
double precision,dimension(nx,ny,nz,nt) :: k,x,probrjk,random

cmf$ layout k(:news,:news,:news,:news)
cmf$ layout x(:news,:news,:news,:news)
cmf$ layout probrjk(:news,:news,:news,:news)
cmf$ layout random(:news,:news,:news,:news)

double precision,dimension(nx,ny,nz,nt) :: norm
cmf$ layout norm(:news,:news,:news,:news)

logical,dimension(nx,ny,nz,nt) :: update
cmf$ layout update(:news,:news,:news,:news)

double precision,dimension(nx,ny,nz,nt,nr) :: r,theta
cmf$ layout r(:news,:news,:news,:news,:serial)
cmf$ layout theta(:news,:news,:news,:news,:serial)

double precision,dimension(nx,ny,nz,nt,nsigma) :: a4vector
cmf$ layout a4vector(:news,:news,:news,:news,:serial)

double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: urprmsu2,uiprmsu2
cmf$ layout urprmsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uiprmsu2(:news,:news,:news,:news,:serial,:serial)

integer :: imu,isigma,ic,jc,kc
integer :: counter

c start of the execution commands

CALL CMF_random( r )
where( r==0.0d0 ) r = 1.0d0
r = sqrt( -2.0d0 * log(r) )
CALL CMF_random( theta )
theta = 2.0d0 * pi * theta

a4vector(:,:,:,:,1) = r(:,:,:,:,1) * cos( theta(:,:,:,:,1) )
a4vector(:,:,:,:,2) = r(:,:,:,:,1) * sin( theta(:,:,:,:,1) )
a4vector(:,:,:,:,3) = r(:,:,:,:,2) * cos( theta(:,:,:,:,2) )
a4vector(:,:,:,:,4) = 0.0d0

c calculates sqrt(a1^2+a2^2+a3^2+a4^2)=norm

norm = sqrt( sum( a4vector**2,dim=5 ) )

c calculates the determinant k=|\sum_{\alpha=1}^6\widetilde{U}_{\alpha}|^{1/2}
c where $\widetilde{U}_{\alpha}\equiv$ the six product of the three links
c variable which interact with the link in question, i.e. stapler and staplei

k = sqrt( abs( phbsr(:,:,:,:,1,1) * phbsr(:,:,:,:,2,2) -
& phbsr(:,:,:,:,1,2) * phbsr(:,:,:,:,2,1) -
& phbsi(:,:,:,:,1,1) * phbsi(:,:,:,:,2,2) +
& phbsi(:,:,:,:,1,2) * phbsi(:,:,:,:,2,1) ) )

c the values of update is all true when imask=1 and all false when imask=2
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c the value of imask is passed in in the subroutine list and defined in the
c subroutine pseudosweep.

update = mask(:,:,:,:,ihat,imask)
counter = 0

c the do while makes sure that every links are updated on every sweep.
c an array dimensioned according to the volume of the lattice is reshaped
c and store in the variable x. x is a random double precision number,
c uniformely distributed within the region exp(-2*beta*k)<x<1.
c This generates a4vector distributed with exponential weight
c exp(beta*k*a4vector).
c To summarize, the algorithm begins with a trial a4vector=1+ln(x)/(beta*k)
c where x is a random number uniformely distributed in the region
c exp(-2*beta*k)<x<1. This generates a4vector distributed with exponential weight
c exp(beta*k*a4vector). To correct for the factor (1-a4vector**2)^1/2 in
c P(a4vector)~(1-a4vector**2)^1/2*exp(beta*k*a4vector), reject this a4vector
c with probability 1.0d0 - sqrt( 1.0d0 - a4vector**2 ) and select a new trial
c a4vector, repeat this until an a4vector is accepted.

c update starts to be true if probrjk is false then we have a true with a
c false which is false then update = ( update .and. probrjk >= random ) becomes
c true with a true which is true then we go around the while loop again. This
c time update is still true but probrjk < random is true then the where
c statement is true and a4vector=x (the trial). This means that
c update = ( update .and. probrjk >= random )
c becomes true with false which is false, therefore we exit the while loop.

do while( any(update) )
counter = counter + 1
call CMF_random( x )
x = ( 1.0d0 - exp( -2.0d0 * beta * k ) ) * x + exp( -2.0d0 * beta * k )
x = 1.0d0 + log( x ) / ( beta * k )
probrjk = 1.0d0 - sqrt( 1.0d0 - x**2 )
call CMF_random( random )
where( update .and. probrjk < random ) a4vector(:,:,:,:,4) = x(:,:,:,:)
update = ( update .and. probrjk >= random )

end do

do isigma=1,nsigma-1
a4vector(:,:,:,:,isigma) =

& ( a4vector(:,:,:,:,isigma) * sqrt( 1.0d0 - a4vector(:,:,:,:,4)**2 ) )
& / norm(:,:,:,:)
end do

c this calculates the link variable U=a4vector(4)*I+ia4vector(1to3)*sigma
c as in su2random, except here we are only interested in one specific
c direction ihat, the value of ihat is defined according to the loop over
c the 4 directions imu=1,mu in the subroutine pseudosweep.

c converting a4vector to an su2 matrix
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urprmsu2(:,:,:,:,1,1) = a4vector(:,:,:,:,4)
urprmsu2(:,:,:,:,2,2) = a4vector(:,:,:,:,4)
urprmsu2(:,:,:,:,1,2) = a4vector(:,:,:,:,2)
urprmsu2(:,:,:,:,2,1) =-a4vector(:,:,:,:,2)
uiprmsu2(:,:,:,:,1,1) = a4vector(:,:,:,:,3)
uiprmsu2(:,:,:,:,2,2) =-a4vector(:,:,:,:,3)
uiprmsu2(:,:,:,:,1,2) = a4vector(:,:,:,:,1)
uiprmsu2(:,:,:,:,2,1) = a4vector(:,:,:,:,1)

c this calculates U --> U’=U * staple^{\dag} / k, the U (full link) coming out
c of su2random is here replaced by U’(partial link,
c depends on ihat the direction)

urnewsu2 = 0.0d0
uinewsu2 = 0.0d0
do ic=1,ncsu2

do jc=1,ncsu2
do kc=1,ncsu2

urnewsu2(:,:,:,:,ic,jc) = urnewsu2(:,:,:,:,ic,jc) +
& ( urprmsu2(:,:,:,:,ic,kc) * phbsr(:,:,:,:,jc,kc) +
& uiprmsu2(:,:,:,:,ic,kc) * phbsi(:,:,:,:,jc,kc) )
& / k(:,:,:,:)

uinewsu2(:,:,:,:,ic,jc) = uinewsu2(:,:,:,:,ic,jc) +
& ( uiprmsu2(:,:,:,:,ic,kc) * phbsr(:,:,:,:,jc,kc) -
& urprmsu2(:,:,:,:,ic,kc) * phbsi(:,:,:,:,jc,kc) )
& / k(:,:,:,:)

end do
end do

end do

return
end subroutine pseudoheat

E.3 Generating Random SUc(2) Matrices

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & Derek B. Leinweber: June 1998.
c subroutine that calculates the random su2 configuration
c

subroutine su2random(ursu2,uisu2)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: ncsu2=2
integer,parameter :: nsigma=ncsu2*ncsu2
integer,parameter :: mu=4

double precision,dimension(nx,ny,nz,nt,mu,nsigma) :: a4vector
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cmf$ layout a4vector(:news,:news,:news,:news,:serial,:serial)
double precision,dimension(nx,ny,nz,nt,mu,ncsu2,ncsu2) :: ursu2,uisu2

cmf$ layout ursu2(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout uisu2(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables

integer,parameter :: nr=2
double precision,parameter :: pi=3.141592653d0
double precision,dimension(nx,ny,nz,nt,mu) :: norm

cmf$ layout norm(:news,:news,:news,:news,:serial)
double precision,dimension(nx,ny,nz,nt,mu,nr) :: r,theta

cmf$ layout r(:news,:news,:news,:news,:serial,:serial)
cmf$ layout theta(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx*ny*nz*nt*mu*nr) :: harvestr
cmf$ layout harvestr(:news)

integer,dimension(6) :: shaper=(/nx,ny,nz,nt,mu,nr/)
cmf$ layout shaper(:news)

integer :: ic,jc,isigma

c call one set of random numbers and put them in a big array called r,
c it can be splited into 2, accessing both sides of the array using parameter nr.
c the random number is in (0,1) taking the nat log maps it onto (-infty,0]
c multiplying it by -2 maps it to [0,infty)

CALL CMF_random( r )
where( r==0.0d0 ) r = 1.0d0

c where( harvestr==0.0d0 ) harvestr = 1.0d0
c r = reshape( harvestr,shaper )

r = sqrt( -2.0d0*log(r) )
CALL CMF_random( theta )

c theta = reshape( harvestr,shaper )
theta = 2.0d0 * pi * theta

c a4vetor 1 and 2 are independent and gaussian distributed with
c mean 0 and standard deviation 1. repeat process to get a4vec 3 and 4.
c It is the cos and sine that normally distributed.
c a4vector becomes normaly distributed on S^4

a4vector(:,:,:,:,:,1) = r(:,:,:,:,:,1) * cos( theta(:,:,:,:,:,1) )
a4vector(:,:,:,:,:,2) = r(:,:,:,:,:,1) * sin( theta(:,:,:,:,:,1) )
a4vector(:,:,:,:,:,3) = r(:,:,:,:,:,2) * cos( theta(:,:,:,:,:,2) )
a4vector(:,:,:,:,:,4) = r(:,:,:,:,:,2) * sin( theta(:,:,:,:,:,2) )

norm = sqrt( sum( a4vector**2,dim=6 ) )

c it when we divide by the norm= r1**2+r2**2 that the points are brought
c back onto the surface of the sphere

do isigma = 1, nsigma
a4vector(:,:,:,:,:,isigma) = a4vector(:,:,:,:,:,isigma) / norm(:,:,:,:,:)

end do
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c converting a4vector to an su2 matrix

ursu2(:,:,:,:,:,1,1) = a4vector(:,:,:,:,:,4)
ursu2(:,:,:,:,:,2,2) = a4vector(:,:,:,:,:,4)
ursu2(:,:,:,:,:,1,2) = a4vector(:,:,:,:,:,2)
ursu2(:,:,:,:,:,2,1) =-a4vector(:,:,:,:,:,2)
uisu2(:,:,:,:,:,1,1) = a4vector(:,:,:,:,:,3)
uisu2(:,:,:,:,:,2,2) =-a4vector(:,:,:,:,:,3)
uisu2(:,:,:,:,:,1,2) = a4vector(:,:,:,:,:,1)
uisu2(:,:,:,:,:,2,1) = a4vector(:,:,:,:,:,1)

return
end subroutine su2random

E.4 Generating Random SUc(3) Matrices

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & Derek B. Leinweber: Jully 1998.
c subroutine su3random calculates the random su3 configuration
c it gets a complete set of random number for the lattice in the SU(3)
c group.
c

subroutine su3random(ur,ui)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: ncsu2=2,nc=3
integer,parameter :: mu=4

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: urprm,uiprm
cmf$ layout urprm(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout uiprm(:news,:news,:news,:news,:serial,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,ncsu2,ncsu2) :: ursu2,uisu2
cmf$ layout ursu2(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout uisu2(:news,:news,:news,:news,:serial,:serial,:serial)

integer :: ic,jc,kc

interface
subroutine su2random(ursu2,uisu2)
implicit none

194



include ’latticeSize.h’
integer,parameter :: ncsu2=2
integer,parameter :: mu=4
double precision,dimension(nx,ny,nz,nt,mu,ncsu2,ncsu2):: ursu2,uisu2

cmf$ layout ursu2(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout uisu2(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine su2random
end interface

c start of the executable commands

c we call su2random to form a matrix called matrixa,matrixb.
c these two matrix have the form matrixa = [ [SU(2)] 0 ], matrixb[ 1 0 ].
c [ 0 1 ], [ 0 [SU(2)] ]
c Where [SU(2)] is hotwired vi ursu2,uisu2.
c Both matrixa and matrixb have a double precision and imaginary part.
c matrixar,matrixai,
c similarly for matrixb

call su2random(ursu2,uisu2)

c we next make a product of the matrices in such a way that
c link Urpm=urprm+iuiprm=( ar + iai ) * ( ur + iui )
c =( ar*ur - ai*ui ) + i( ar*ui + ai*ur)
c by hardwiring the matrix indices for optimization

do ic=1,nc-1
do jc=1,nc
urprm(:,:,:,:,:,ic,jc) =

& ( ursu2(:,:,:,:,:,ic,1) * ur(:,:,:,:,:,1,jc) +
& ursu2(:,:,:,:,:,ic,2) * ur(:,:,:,:,:,2,jc) -
& uisu2(:,:,:,:,:,ic,1) * ui(:,:,:,:,:,1,jc) -
& uisu2(:,:,:,:,:,ic,2) * ui(:,:,:,:,:,2,jc) )

uiprm(:,:,:,:,:,ic,jc) =
& ( ursu2(:,:,:,:,:,ic,1) * ui(:,:,:,:,:,1,jc) +
& ursu2(:,:,:,:,:,ic,2) * ui(:,:,:,:,:,2,jc) +
& uisu2(:,:,:,:,:,ic,1) * ur(:,:,:,:,:,1,jc) +
& uisu2(:,:,:,:,:,ic,2) * ur(:,:,:,:,:,2,jc) )

end do
end do

do jc=1,nc
urprm(:,:,:,:,:,3,jc) = ur(:,:,:,:,:,3,jc)
uiprm(:,:,:,:,:,3,jc) = ui(:,:,:,:,:,3,jc)

end do

c we next make a product of the matrices in such a way that link
c Udblerpm=urdbleprm+iuidbleprm = ( br + ibi ) * ( urprm + iuiprm )
c = ( br*urprm - bi*uiprm ) + i( br*uiprm + bi*urprm)

call su2random(ursu2,uisu2)
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do ic=2,nc
do jc=1,nc
ur(:,:,:,:,:,ic,jc) =

& ( ursu2(:,:,:,:,:,ic-1,1) * urprm(:,:,:,:,:,2,jc) +
& ursu2(:,:,:,:,:,ic-1,2) * urprm(:,:,:,:,:,3,jc) -
& uisu2(:,:,:,:,:,ic-1,1) * uiprm(:,:,:,:,:,2,jc) -
& uisu2(:,:,:,:,:,ic-1,2) * uiprm(:,:,:,:,:,3,jc) )

ui(:,:,:,:,:,ic,jc) =
& ( ursu2(:,:,:,:,:,ic-1,1) * uiprm(:,:,:,:,:,2,jc) +
& ursu2(:,:,:,:,:,ic-1,2) * uiprm(:,:,:,:,:,3,jc) +
& uisu2(:,:,:,:,:,ic-1,1) * urprm(:,:,:,:,:,2,jc) +
& uisu2(:,:,:,:,:,ic-1,2) * urprm(:,:,:,:,:,3,jc) )

end do
end do

do jc=1,nc
ur(:,:,:,:,:,1,jc) = urprm(:,:,:,:,:,1,jc)
ui(:,:,:,:,:,1,jc) = uiprm(:,:,:,:,:,1,jc)

end do

return
end subroutine su3random

E.5 Reunitarization of the SUc(2) Matrices

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c subroutine that fixes the su2 links. This subroutine needs to
c called after a certain amount thermalisation has been done, the
c purpose being to keep the links within the SU(2) algebra. This
c subroutines forces the condition of unity U*Udag=I
c

subroutine fixsu2(ur,ui)
implicit none

c global variables

integer,parameter :: nx=8,ny=8,nz=8,nt=8 !lattice size
integer,parameter :: nc=2 !color
integer,parameter :: mu=4 !direction

real,dimension(nx,ny,nz,nt,mu,nc,nc):: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ align ui(a,b,c,d,e,f,g) with ur(a,b,c,d,e,f,g)

c local variables

real,dimension(nx,ny,nz,nt,mu) :: normr,normi
cmf$ align normr(a,b,c,d,e) with ur(a,b,c,d,e,1,1)
cmf$ align normi(a,b,c,d,e) with ui(a,b,c,d,e,1,1)

integer :: jc !counters
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c
c first normalise first row
c

normr = sqrt( ur(:,:,:,:,:,1,1)**2 + ur(:,:,:,:,:,1,2)**2 +
& ui(:,:,:,:,:,1,1)**2 + ui(:,:,:,:,:,1,2)**2 )

do jc=1,nc
ur(:,:,:,:,:,1,jc) = ur(:,:,:,:,:,1,jc) / normr(:,:,:,:,:)
ui(:,:,:,:,:,1,jc) = ui(:,:,:,:,:,1,jc) / normr(:,:,:,:,:)

end do
c
c now compute row2 - (row2 dot row1)*row1
c

normr = ur(:,:,:,:,:,2,1) * ur(:,:,:,:,:,1,1) +
& ui(:,:,:,:,:,2,1) * ui(:,:,:,:,:,1,1) +
& ur(:,:,:,:,:,2,2) * ur(:,:,:,:,:,1,2) +
& ui(:,:,:,:,:,2,2) * ui(:,:,:,:,:,1,2)

normi = ui(:,:,:,:,:,2,1) * ur(:,:,:,:,:,1,1) -
& ur(:,:,:,:,:,2,1) * ui(:,:,:,:,:,1,1) +
& ui(:,:,:,:,:,2,2) * ur(:,:,:,:,:,1,2) -
& ur(:,:,:,:,:,2,2) * ui(:,:,:,:,:,1,2)

do jc=1,nc
ur(:,:,:,:,:,2,jc) = ur(:,:,:,:,:,2,jc) -

& ( normr * ur(:,:,:,:,:,1,jc) - normi * ui(:,:,:,:,:,1,jc) )
ui(:,:,:,:,:,2,jc) = ui(:,:,:,:,:,2,jc) -

& ( normr * ui(:,:,:,:,:,1,jc) + normi * ur(:,:,:,:,:,1,jc) )
end do

c
c Now normalise the second row
c

normr = sqrt( ur(:,:,:,:,:,2,1)**2 + ui(:,:,:,:,:,2,1)**2 +
& ur(:,:,:,:,:,2,2)**2 + ui(:,:,:,:,:,2,2)**2 )

do jc=1,nc
ur(:,:,:,:,:,2,jc) = ur(:,:,:,:,:,2,jc) / normr(:,:,:,:,:)
ui(:,:,:,:,:,2,jc) = ui(:,:,:,:,:,2,jc) / normr(:,:,:,:,:)

end do

return
end subroutine fixsu2

E.6 Calculating the Staples

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & D. B. Leinweber: October 1998.
c the subroutine staples combines the wilson staples(squares plaquettes) and
c the improved staples(the rectangles plaquettes) for one passed in xhat
c direction. It returns the variables stapler and staplei.
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c
subroutine staples(ur,ui,stapler,staplei,xhat,local,itype,uzero)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3
integer,parameter :: mu=4

integer :: xhat
integer :: itype
double precision :: uzero

logical :: local

double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei
cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables

double precision,dimension(nx,ny,nz,nt,nc,nc) :: rectr,recti
cmf$ layout rectr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout recti(:news,:news,:news,:news,:serial,:serial)

interface
SUBROUTINE squares(ur,ui,squarer,squarei,xhat,local)
IMPLICIT NONE
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
integer :: xhat
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: squarer,squarei

cmf$ layout squarer(:news,:news,:news,:news,:serial,:serial)
cmf$ layout squarei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end SUBROUTINE squares
SUBROUTINE rectangles(ur,ui,rectr,recti,xhat,local)
IMPLICIT NONE
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
integer :: xhat
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: rectr,recti
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cmf$ layout rectr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout recti(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end SUBROUTINE rectangles
end interface

c start of the executions commands

call squares(ur,ui,stapler,staplei,xhat,local)

if(itype==1) then
call rectangles(ur,ui,rectr,recti,xhat,local)
stapler = ( 5.0d0 / 3.0d0 ) * stapler -

& ( 1.0d0 / ( 12.0d0 * uzero**2 ) ) * rectr
staplei = ( 5.0d0 / 3.0d0 ) * staplei -

& ( 1.0d0 / ( 12.0d0 * uzero**2 ) ) * recti
end if

return
end subroutine staples

E.7 Calculating the 1 × 1 Wilson Loop

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 28th of Jully 1998.
c computes the product of links for the action associated with a link in the
c xhat direction.
c

subroutine squares(ur,ui,squarer,squarei,xhat,local)
implicit none
include ’latticeSize.h’

c global variable

integer,parameter :: nc=3
integer,parameter :: mu=4

integer :: xhat
logical :: local

double precision,dimension(nx,ny,nz,nt,nc,nc) :: squarer,squarei
cmf$ layout squarer(:news,:news,:news,:news,:serial,:serial)
cmf$ layout squarei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables, temporary product variables
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integer,dimension(3) :: yhat
cmf$ layout yhat(:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: tr,ti,tsr,tsi
cmf$ layout tr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ti(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tsi(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: usqr,usqi
cmf$ layout usqr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout usqi(:news,:news,:news,:news,:serial,:serial)

integer :: ic,jc,kc,imu,i

c starting of the execution commands

c setting up the yhat array
c the yhat(1)=yhat,yhat(2)=zhat and yhat(3)=that when xhat eq 1
c the yhat(1)=zhat,yhat(2)=that and yhat(3)=xhat when xhat eq 2
c the yhat(1)=that,yhat(2)=xhat and yhat(3)=yhat when xhat eq 3
c the yhat(1)=xhat,yhat(2)=yhat and yhat(3)=zhat when xhat eq 4

do imu=1,mu-1
yhat(imu) = mod( xhat + imu ,4 )
if(yhat(imu) .eq. 0) then

yhat(imu) = 4
end if

end do

c calculation of the link products in the positive plaquette.
c starting point in the xhat direction with the mask

squarer = 0.0d0
squarei = 0.0d0

c the xy,xz and xt contour when xhat eq 1
c the yz,yt and yx contour when xhat eq 2
c the zt,zx and zy contour when xhat eq 3
c the tx,ty and tz contour when xhat eq 4

do i=1,mu-1 !loop over the yhat array
tr = 0.0d0
ti = 0.0d0
tsr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
tsi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
usqr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
usqi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr(:,:,:,:,ic,jc) = tr(:,:,:,:,ic,jc) +
& ( tsr(:,:,:,:,ic,kc) * usqr(:,:,:,:,jc,kc) +
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& tsi(:,:,:,:,ic,kc) * usqi(:,:,:,:,jc,kc) )
ti(:,:,:,:,ic,jc) = ti(:,:,:,:,ic,jc) +

& ( tsi(:,:,:,:,ic,kc) * usqr(:,:,:,:,jc,kc) -
& tsr(:,:,:,:,ic,kc) * usqi(:,:,:,:,jc,kc) )

end do
end do

end do
do ic=1,nc

do jc=1,nc
do kc=1,nc

squarer(:,:,:,:,ic,jc) = squarer(:,:,:,:,ic,jc) +
& ( tr(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) +
& ti(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) )

squarei(:,:,:,:,ic,jc) = squarei(:,:,:,:,ic,jc) +
& ( ti(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) -
& tr(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) )

end do
end do

end do

c calculation of the link products in the negative plaquette
c starting point in the x direction

c the negative xy,xz and xt contour when xhat eq 1
c the negative yz,yt and yx contour when xhat eq 2
c the negative zt,zx and zy contour when xhat eq 3
c the negative tx,ty and tz contour when xhat eq 4

c .true. when we calculate the full staple
c .false. when we calculte plaqbar where
c only the upper 3 plaquette are needed

if(local .eq. .true.) then

tr = 0.0d0
ti = 0.0d0
tsr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
tsi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
usqr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
usqi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr(:,:,:,:,ic,jc) = tr(:,:,:,:,ic,jc) +
& ( tsr(:,:,:,:,kc,ic) * usqr(:,:,:,:,jc,kc) -
& tsi(:,:,:,:,kc,ic) * usqi(:,:,:,:,jc,kc) )

ti(:,:,:,:,ic,jc) = ti(:,:,:,:,ic,jc) +
& (-tsr(:,:,:,:,kc,ic) * usqi(:,:,:,:,jc,kc) -
& tsi(:,:,:,:,kc,ic) * usqr(:,:,:,:,jc,kc) )

end do
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end do
end do

usqr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
usqi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

squarer(:,:,:,:,ic,jc) = squarer(:,:,:,:,ic,jc) +
& ( tr(:,:,:,:,ic,kc) * usqr(:,:,:,:,kc,jc) -
& ti(:,:,:,:,ic,kc) * usqi(:,:,:,:,kc,jc) )

squarei(:,:,:,:,ic,jc) = squarei(:,:,:,:,ic,jc) +
& ( tr(:,:,:,:,ic,kc) * usqi(:,:,:,:,kc,jc) +
& ti(:,:,:,:,ic,kc) * usqr(:,:,:,:,kc,jc) )

end do
end do

end do

end if !closes the .true. if
end do !closes the i=1,3 loop

return
end subroutine squares

E.8 Calculating the (1× 1), (1× 2) and (2× 1) Wilson

Loop

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: October 1998.
c computes the product of links for the action associated with a link in the
c xhat direction. This computes the product of the six rectangular plaquettes
c associated with the improved action.
c

subroutine rectangles(ur,ui,rectr,recti,xhat,local)
implicit none
include ’latticeSize.h’

c global variable

integer,parameter :: nc=3
integer,parameter :: mu=4

integer :: xhat
logical :: local

double precision,dimension(nx,ny,nz,nt,nc,nc) :: rectr,recti
cmf$ layout rectr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout recti(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
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cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables, temporary product variables

integer,dimension(3) :: yhat
cmf$ layout yhat(:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: t1r,t1i,t2r,t2i
cmf$ layout t1r(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t1i(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t2r(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t2i(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: usr,usi
cmf$ layout usr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout usi(:news,:news,:news,:news,:serial,:serial)

integer :: ic,jc,kc,imu,i

c starting of the execution commands

c setting up the yhat array
c the yhat(1)=yhat,yhat(2)=zhat and yhat(3)=that when xhat eq 1
c the yhat(1)=zhat,yhat(2)=that and yhat(3)=xhat when xhat eq 2
c the yhat(1)=that,yhat(2)=xhat and yhat(3)=yhat when xhat eq 3
c the yhat(1)=xhat,yhat(2)=yhat and yhat(3)=zhat when xhat eq 4

do imu=1,mu-1
yhat(imu) = 0

end do

do imu=1,mu-1
yhat(imu) = mod( xhat + imu ,4 )
if(yhat(imu) .eq. 0) then

yhat(imu) = 4
end if

end do

c calculation of the link products in the positive plaquette.
c starting point in the xhat direction with the maskrect

c first calculate the positive forward 2a x a rectangle

rectr = 0.0d0
recti = 0.0d0

do i=1,mu-1 !loop over the yhat array
t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
t2i = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=2)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=2)
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do ic=1,nc
do jc=1,nc

do kc=1,nc
t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +

& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=1),dim=xhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=1),dim=xhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

do ic=1,nc
do jc=1,nc

do kc=1,nc
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rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) +
& t1i(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) +
& t1i(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) )

end do
end do

end do

c now calculating the positive upper rectangles a x 2a

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
t2i = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
usr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=1)
usi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=2)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
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usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=1)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

do ic=1,nc
do jc=1,nc

do kc=1,nc
rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +

& ( t1r(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) +
& t1i(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) +
& t1i(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) )

end do
end do

end do

c .true. when we calculate the full staple
c .false. when we calculte impbar where
c only the upper 3 plaquette are needed

if(local .eq. .true.) then

c now calculate the positive backward 2a x a retangle

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
t2i = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
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end do
end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=1),dim=xhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=1),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do
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end do

c calculation of the link products in the negative plaquette
c starting point in the x direction

c the negative xy,xz and xt contour when xhat eq 1
c the negative yz,yt and yx contour when xhat eq 2
c the negative zt,zx and zy contour when xhat eq 3
c the negative tx,ty and tz contour when xhat eq 4

c first calculate the negative forward 2a x a rectangle

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
t2i = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
usr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=2),dim=yhat(i),shift=-1)
usi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=2),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do
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t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

c calculate the negative backward 2a x a rectangle

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
t2i = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) )

209



end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=-1),dim=yhat(i),shift=-1)
usi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=-1),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
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& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )
end do

end do
end do

c now calculating the negative lower rectangles a x 2a

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=-1)
t2i = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=-1)
usr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=-2)
usi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-2)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-2)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-2)
do ic=1,nc
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do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

end if
end do

return
end subroutine rectangles

E.9 Constructing SUc(3) Matrices

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & D. B. Leinweber: 4th of August 1998.
c subroutine pseudosweep updates the current link using a psedo-heatbath
c algorithm. It calls the staples and pseudoheat.
c

subroutine pseudosweep(ur,ui,mask,umask,beta,itype,nsub,uzero)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3,ncsu2=2
integer,parameter :: nsigma=ncsu2*ncsu2
integer,parameter :: mu=4
integer,parameter :: nmask=16
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integer :: itype
integer :: nsub
integer :: umask

double precision :: uzero
double precision :: beta

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask
cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)

c local variables

double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei
double precision,dimension(nx,ny,nz,nt,nc,nc) :: ltsr,ltsi
double precision,dimension(nx,ny,nz,nt,nc,nc) :: urprmsu3,uiprmsu3

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ltsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ltsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout urprmsu3(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uiprmsu3(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: ursu2,uisu2

cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ursu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uisu2(:news,:news,:news,:news,:serial,:serial)

double precision :: betanew
integer :: of1
integer :: imask,ihat,ic,jc,kc,ic3
integer :: isub

interface
SUBROUTINE staples(ur,ui,stapler,staplei,xhat,local,itype,uzero)
IMPLICIT NONE
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
integer :: xhat
integer :: itype
double precision :: uzero
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
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cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)
end SUBROUTINE staples
subroutine pseudoheat(urnewsu2,uinewsu2,phbsr,phbsi,mask,imask,beta,ihat)
implicit none
include ’latticeSize.h’
integer,parameter :: ncsu2=2
integer,parameter :: mu=4
integer,parameter :: nmask=16
double precision :: beta
integer :: ihat,imask
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: urnewsu2,uinewsu2

cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout urnewsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uinewsu2(:news,:news,:news,:news,:serial,:serial)

logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask
cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)

end subroutine pseudoheat
end interface

c starts of the running commands

c Here we need to multiply Beta by a factor of 2/nc=3 because for the su2 case
c there is a factor of which cancels the one 1/ncsu2 in the probability
c distribution function. This beta value is to be passed into pseudoheat

betanew = ( 2.0d0 / nc ) * beta

c the ihat do loop, is to loop over all the possible Euclidean directions.
c The imask do loop, is to ensure that the entire lattice is considered:
c all true then all false.

do ihat=1,mu
do imask=1,umask

c calculate the staple in the ihat direction

call staples(ur,ui,stapler,staplei,ihat,.true.,itype,uzero)

do isub=1,nsub
c
c case 1. a_1
c
c The Wilson action can be written as S(U)=Sum_p(Re(U*U_p))+constant
c =Re(Tr(U*R))+constant
c R is just the sum over the six plaquette namely the staples: stapler,staplei.

c now we need to calculate the product of the staples time the link variable in
c each direction U*R=ltsr+iltsi=( ur + iui ) * ( stapler + istaplei )
c =(ur*stapler - ui*staplei)+i(ur*staplei + ui*staplei)

ltsr = 0.0d0

214



ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) +
& ui(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

c The distribution we are interested in the following
c dP(a_k) = d^{(k)}a_k * exp[-beta * S(a_k*U^{(k-1)})]/Z_k(U^{(k-1)})
c where d^{(k)}a_k is the Haar measure on the SU(2)_k and
c Z_k(U^{(k-1)}) = \int_{SU(2)_k} da exp[-beta * S(aU)]. If a{\in}SU(2)_K then
c Z_k(aU) = Z_k(U). In order to generate the above distribution for the minimal
c set F of SU(2) subgroup of SU(N) namely {F:SU(2)_k, k=1,..,nc-1}, let’s first
c note that S(a_k*U)=Re(Tr a_k * U*R) = Re(Tr \alpha_k * r_k)
c + terms independent of \alpha_k.
c Where r_k is the 2x2 subgroup of the U*R (i.e. link*staples : lts), this matix
c has the same block structure as the matrix a_k. This means that \alpha_k and
c r_k = r_0 * I + i \vec{\sigma}\dot\vec{r} are the same block in the ncxnc
c matrix located at the (k,k+1)th rows and column.

c For the first call of the pseudo-heatbath we need to match the matrix block,
c if this is not done wrong information will be sent to the subroutine therefore
c returning the wrong numbers. To do that we use an offset parameter called of1
c with this of1 we can acces the correct entries of the ncxnc lts matrix. We then
c reconstruct a SU(2) matrix that can be passed into pseudoheat which will also
c return a SU(2) matrix.

of1 = 0

phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1+of1,1+of1) +
& ltsr(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1+of1,2+of1) -
& ltsr(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)

phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1+of1,1+of1) -
& ltsi(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1+of1,2+of1) +
& ltsi(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c now calling the pseudo-heatbath algorithm to update, where the
c mask is .true., the full QCD configuration
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c we call pseudoheat to form 2 SU(3) matrices.
c These two matrices have the form matrixa = [ [SU(2)] 0 ], matrixb[ 1 0 ].
c [ 0 1 ], [ 0 [SU(2)] ]
c Where [SU(2)] is hotwired via ursu2,uisu2 and ursu2,uisu2.

call pseudoheat(ursu2,uisu2,phbsr,phbsi,mask,imask,betanew,ihat)

c We next make a product of the matrices in such a way that
c link Uprmsu3 = urprmsu3+iuiprmsu3 = ( ar + iai ) * ( ur + iui )
c = ( ar*ur - ai*ui ) + i( ar*ui + ai*ur)
c by hotwiring the matrix indices for optimization.

do ic=1,nc-1
do jc=1,nc

where( mask(:,:,:,:,ihat,imask) )
urprmsu3(:,:,:,:,ic,jc) =

& ( ursu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,2,jc) -
& uisu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) -
& uisu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,2,jc) )

uiprmsu3(:,:,:,:,ic,jc) =
& ( ursu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,2,jc) +
& uisu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& uisu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,2,jc) )

elsewhere
urprmsu3(:,:,:,:,ic,jc) = ur(:,:,:,:,ihat,ic,jc)
uiprmsu3(:,:,:,:,ic,jc) = ui(:,:,:,:,ihat,ic,jc)

end where
end do

end do

do jc=1,nc
urprmsu3(:,:,:,:,3,jc) = ur(:,:,:,:,ihat,3,jc)
uiprmsu3(:,:,:,:,3,jc) = ui(:,:,:,:,ihat,3,jc)

end do
c
c case 2. a_2
c
c here we calculate the next bit of the product, link*staples.
c We use the old staples to multiply it with Uprmsu3 = a_1 * U
c lts = matrixa = [ [SU(2)] 0 ]*lts[ ele in SU(3) 0 ].
c [ 0 1 ] [ 0 0 ]

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( urprmsu3(:,:,:,:,ic,kc) * stapler(:,:,:,:,kc,jc) -
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& uiprmsu3(:,:,:,:,ic,kc) * staplei(:,:,:,:,kc,jc) )
ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +

& ( urprmsu3(:,:,:,:,ic,kc) * staplei(:,:,:,:,kc,jc) +
& uiprmsu3(:,:,:,:,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

c Here again after having calculated the new ltsr and ltsi ( Uprmsu3*R ) with
c the old staples R, Uprmsu3 = a_1 * U. We use an offset of1=1 to access the
c lower block of the ncxnc lts matrix. Then once again we reshape these
c entries by hardwiring them into a SU(2) matrix called pseudo-heatbath
c staples namely phbsr and phbsi. The resulting SU(2) matrix is then
c passed into pseudoheat.

of1 = 1

phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1+of1,1+of1) +
& ltsr(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1+of1,2+of1) -
& ltsr(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)

phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1+of1,1+of1) -
& ltsi(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1+of1,2+of1) +
& ltsi(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c we next make a product of the matrices in such a way that link
c Udblerpm=urdbleprmsu3+iuidbleprmsu3
c =( br + ibi ) * ( urprmsu3 + iuiprmsu3 )
c =( br*urprmsu3 - bi*uiprmsu3 ) + i( br*uiprmsu3 + bi*urprmsu3)
c = a_2 * Uprmsu3
c Where the a_1 and a_2 have the form of matrixa and matrixb mentioned above.

c Calling pseudoheat to obtain two new SU(2) matrices with the linkprmsu3*staples
c calculated above.
c Allocating by hardwiring to the urnew and uinew which are the return
c variables of these products.

call pseudoheat(ursu2,uisu2,phbsr,phbsi,mask,imask,betanew,ihat)

c Now mapping these variables to the full QCD link, ur and ui. For each
c direction mu, the main loop imu.

do ic=2,nc
do jc=1,nc

where( mask(:,:,:,:,ihat,imask) )
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ur(:,:,:,:,ihat,ic,jc) =
& ( ursu2(:,:,:,:,ic-1,1) * urprmsu3(:,:,:,:,2,jc) +
& ursu2(:,:,:,:,ic-1,2) * urprmsu3(:,:,:,:,3,jc) -
& uisu2(:,:,:,:,ic-1,1) * uiprmsu3(:,:,:,:,2,jc) -
& uisu2(:,:,:,:,ic-1,2) * uiprmsu3(:,:,:,:,3,jc) )

ui(:,:,:,:,ihat,ic,jc) =
& ( ursu2(:,:,:,:,ic-1,1) * uiprmsu3(:,:,:,:,2,jc) +
& ursu2(:,:,:,:,ic-1,2) * uiprmsu3(:,:,:,:,3,jc) +
& uisu2(:,:,:,:,ic-1,1) * urprmsu3(:,:,:,:,2,jc) +
& uisu2(:,:,:,:,ic-1,2) * urprmsu3(:,:,:,:,3,jc) )

elsewhere
ur(:,:,:,:,ihat,ic,jc) = urprmsu3(:,:,:,:,ic,jc)
ui(:,:,:,:,ihat,ic,jc) = uiprmsu3(:,:,:,:,ic,jc)

end where
end do

end do

do jc=1,nc
ur(:,:,:,:,ihat,1,jc) = urprmsu3(:,:,:,:,1,jc)
ui(:,:,:,:,ihat,1,jc) = uiprmsu3(:,:,:,:,1,jc)

end do
c
c case 3. a_3
c
c forming another SU(2) subgroup of the form
c These two matrices have the form matrixa = [ x 0 x ]
c [ 0 1 0 ]
c [ x 0 x ]

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) +
& ui(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1,1) + ltsr(:,:,:,:,3,3) ) / 2.0d0
phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1,3) - ltsr(:,:,:,:,3,1) ) / 2.0d0
phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)

phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1,1) - ltsi(:,:,:,:,3,3) ) / 2.0d0
phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1,3) + ltsi(:,:,:,:,3,1) ) / 2.0d0
phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
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phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c now calling the cooling algorithm.

call pseudoheat(ursu2,uisu2,phbsr,phbsi,mask,imask,betanew,ihat)

c We next make a product of the matrices in such a way that
c link Uprmsu3 = urprmsu3+iuiprmsu3 = ( ar + iai ) * ( ur + iui )
c = ( ar*ur - ai*ui ) + i( ar*ui + ai*ur)
c by hotwiring the matrix indices for optimization.

do ic=1,nc-1
do jc=1,nc

ic3 = ic
if(ic3 == 2 ) ic3 = 3
where( mask(:,:,:,:,ihat,imask) )

urprmsu3(:,:,:,:,ic3,jc) =
& ( ursu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,3,jc) -
& uisu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) -
& uisu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,3,jc) )

uiprmsu3(:,:,:,:,ic3,jc) =
& ( ursu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,3,jc) +
& uisu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& uisu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,3,jc) )

elsewhere
urprmsu3(:,:,:,:,ic3,jc) = ur(:,:,:,:,ihat,ic3,jc)
uiprmsu3(:,:,:,:,ic3,jc) = ui(:,:,:,:,ihat,ic3,jc)

end where
end do

end do

do jc=1,nc
ur(:,:,:,:,ihat,1,jc) = urprmsu3(:,:,:,:,1,jc)
ui(:,:,:,:,ihat,1,jc) = uiprmsu3(:,:,:,:,1,jc)
ur(:,:,:,:,ihat,3,jc) = urprmsu3(:,:,:,:,3,jc)
ui(:,:,:,:,ihat,3,jc) = uiprmsu3(:,:,:,:,3,jc)

end do

end do

end do
end do

return
end subroutine pseudosweep
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E.10 Front End of the Gauge Field Generator for

Anisotropic Lattices

c
c A program to generate some random configuration in
c SU(N) non-abelian group here N=3 on an anisotropic lattice.
c This program contains the timers, the two files for data measurements
c It fixes every five sweeps, has while loop and fixes every
c partial sweep in the subroutine pseudosweepani (optional).
c -----------------------------------------------------------------------
c SU(3) Gauge configuration maker
c -----------------------------------------------------------------------
c Author: F.D.R. Bonnet & D.B. Leinweber
c supervised by: D.B. Leinweber and A.G. Williams
c
c starting condition
c istart = -1 cold start (ordered start, calling initialsu2)
c istart = 0 hot start (random start, calling su2random)
c istart = 1 read in an old configuration
c
c Output:
c for the configuration
c unit 3,unformatted: nfig,beta,nx,ny,nz,nt,ur,ui
c for the report
c unit 1: su2conf.log
c
c To compile
c
c cmf -cm5 -vu -nopadding -extend_source -f90syntax aniimpsu3confNTimp.fcm -o
c outputfile -lcmsslcm5vu
c ----------------------------------------------------------------------------

PROGRAM aniimpsu3conf
IMPLICIT NONE
include ’../GeneralSupport/latticeSize.h’

c global variables

integer,parameter :: nc=3 !color
integer,parameter :: mu=4 !direction
integer,parameter :: nmask=16 !# of masks

double precision :: beta
double precision :: xi0

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui !link variable
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

double precision,dimension(nx,ny,nz,nt) :: action
cmf$ layout action(:news,:news,:news,:news)

logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask
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cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)
logical,dimension(nx,ny,nz,nt,mu,nmask) :: maskrect !sweep maskrect

cmf$ layout maskrect(:news,:news,:news,:news,:serial,:serial)

c local variables

double precision :: lastPlaq
double precision :: uzeroprm=1.0d0, uzeroprmupdate=1.0d0, uzeroprmavg
double precision :: uzeros =1.0d0, uzerosupdate =1.0d0, uzerosavg
double precision :: uzerot =1.0d0, uzerotupdate =1.0d0, uzerotavg
double precision :: uzero =1.0d0, uzeroupdate =0.0d0, uzeroavg
double precision :: ut_on_us=1.0d0 !ratio ut/us
double precision :: plaqbar,plaqbarAvg
integer :: ireport,isweep
integer :: istart,itype,iseed
integer :: nsweep
integer :: nfig,nreport,nfix,u0switch,tmswitch=1,u0tswitch=1
integer :: umask
integer :: nsub !# su2sub=nsub*3
character(len=1) :: nsubfile
character(len=4) :: confnum
character(len=80) :: newconfig,lastconfig
character(len=80) :: datafile

integer,parameter :: naver=20
double precision,parameter :: naver2=20.0d0
double precision,dimension(naver) :: plqbrvec=0.0d0

cmf$ layout plqbrvec(:serial)
double precision :: deltaplqbr,stdplqbrvec
integer :: iaver
integer :: sweep !sweep counter

integer :: strlen

integer :: nxold,nyold,nzold,ntold
double precision :: betaold,xi0old

INTERFACE
subroutine ReadLinksani(filename,ur,ui,nfig,beta,nxf,nyf,nzf,ntf,

& lastPlaq,plaqbarAvg,itype,tmswitch,uzeros,uzerot,xi0)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

character(len=80) :: filename
integer :: nfig,nxf,nyf,nzf,ntf
integer :: itype,tmswitch
double precision :: beta,xi0
double precision :: lastPlaq,plaqbarAvg,uzeros,uzerot
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end subroutine ReadLinksani
subroutine WriteLinksani(filename,ur,ui,nfig,beta,nxf,nyf,nzf,ntf,

& lastPlaq,plaqbarAvg,itype,tmswitch,uzeros,uzerot,xi0)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
character(len=80) :: filename
integer :: itype,tmswitch
integer :: nfig,nxf,nyf,nzf,ntf
double precision :: beta,xi0
double precision :: lastPlaq,plaqbarAvg,uzeros,uzerot
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine WriteLinksani
subroutine initialu(ur,ui)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine initialu
subroutine su3random(ur,ui)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine su3random
subroutine SetMask(mask, umask, itype)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: mu=4
integer,parameter :: nmask=16
integer :: umask, itype
logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask

cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)
end subroutine SetMask
subroutine GetActionani(ur,ui,action,plaqbar,itype,tmswitch,uzeros,uzerot,xi0)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
integer :: itype,tmswitch
double precision :: xi0
double precision :: uzeros,uzerot
double precision :: plaqbar
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double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

double precision,dimension(nx,ny,nz,nt) :: action
cmf$ layout action(:news,:news,:news,:news)

end subroutine GetActionani
subroutine tadpoleimpani(ur,ui,uzero)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3 !sigma,color
integer,parameter :: mu=4 !direction
double precision :: uzero
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine tadpoleimpani
subroutine tadpoleimpspace(ur,ui,uzeros,xi0)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3 !sigma,color
integer,parameter :: mu=4 !direction
double precision :: xi0
double precision :: uzeros
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine tadpoleimpspace
subroutine tadpoleimptime(ur,ui,uzeros,uzerot,xi0)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3 !sigma,color
integer,parameter :: mu=4 !direction
double precision :: xi0
double precision :: uzeros,uzerot
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine tadpoleimptime
subroutine fixsu3(ur,ui)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine fixsu3
subroutine pseudosweepani(ur,ui,mask,umask,beta,itype,

& nsub,tmswitch,uzeros,uzerot,xi0)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3

223



integer,parameter :: mu=4
integer,parameter :: nmask=16
integer :: itype,tmswitch
integer :: umask
integer :: nsub
double precision :: uzeros,uzerot
double precision :: beta,xi0
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask
cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)

end subroutine pseudosweepani
END INTERFACE

write(*,*)
write(*,*)’Please enter a beta value.’
read(*,*) beta

write(*,*) beta

write(*,*)’Enter the configuration number: ’
read(*,’(a4)’) confnum
write(*,*)

write(*,*) confnum

write(*,*)
write(*,*)’How many times that you would like to wrappe around the’
write(*,*)’3 su2 subgroups. nsub*3su2=su3’
read(*,*) nsub

write(*,*) nsub

write(*,*)
write(*,*)’please enter the same number as previous entry, for file purposes’
write(*,*)’3 su2 subgroups. nsub*3su2=su3, ’
read(*,’(a1)’) nsubfile

write(*,*) nsubfile

write(*,*)
write(*,*)’Please enter a value for xi_0=a_s/a_t, the bare anisotropy.’
read(*,*) xi0

write(*,*) xi0

write(*,*)
write(*,*)’which Action should we use this time’
write(*,*)’ 0: Pseudo-heatbath algorithm with standard Wilson Action’
write(*,*)’ 1: Pseudo-heatbath algorithm with improved Wilson Action’
read(*,*) itype
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write(*,*) itype

c if(itype==1) then
write(*,*)
write(*,*)’Would you like to improve in

& the time direction as well?. 0=no, 1=yes’
read(*,*) tmswitch

write(*,*) tmswitch
c end if

write(*,*)
write(*,*)’Would you like to have u0 updated at report time?. 0=no, 1=yes’
read(*,*) u0switch

write(*,*) u0switch

write(*,*)
write(*,*)’Would you like to calculate time mean field
& improvement factor u0_t?. 0=no, 1=yes’
read(*,*) u0tswitch

write(*,*) u0tswitch

write(*,*)
write(*,*)’How many sweeps would you like to be done between reports?’
read(*,*) nreport

write(*,*) nreport

write(*,*)
write(*,*)’How often would you like to reuniterize the group matrix’
read (*,*) nfix

write(*,*) nfix

write(*,*)
write(*,*)’How many sweeps would you like to be done?,’
write(*,*)’must be a multiple of the sweep report number.’
read(*,*) nsweep

write(*,*) nsweep

write(*,*)
write(*,*)’How shall we run this time?’
write(*,*)’ -1: cold start’
write(*,*)’ 0: hot start’
write(*,*)’ 1: read in from an old configuration’
read(*,*) istart

write(*,*) istart
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if (istart .eq. 1) then
write(*,*)
write(*,*)’Which file are we reading from?’
read (*,’(a80)’) lastConfig
write(*,’(a)’) lastConfig

endif

write(*,*)
write(*,*)’Please enter a seed number,’
write(*,*)’The Wolfram random number generator cannot be seeded with -1 or 0.’
read(*,*) iseed

write(*,*) iseed

write(*,*)
write(*,*)’Enter a filename for this new configuration, output file.’
read(*,’(a80)’) newconfig

write(*,’(a)’) newconfig

call CMF_randomize(iseed)

if( itype == 0 ) then
open(1,file=’aniSu3conf.DoNloop.3su2.log’,status=’unknown’,position=’append’)
datafile = ’aniSu3confphb.Do’
datafile = datafile(1:strlen(datafile))//nsubfile//’loop.3su2.dat.c’//confnum

elseif( itype == 1 ) then
open(1,file=’aniImpSu3conf.Doloop.3su2.log’,status=’unknown’,position=’append’)
datafile = ’aniImpSu3confphb.Do’
datafile = datafile(1:strlen(datafile))//nsubfile//’loop.3su2.dat.c’//confnum

end if

write(1,*)
write(1,*)’=================================================================’
write(1,*)’ SU(3) Gauge Configuration Maker on an Anisotropic Lattice ’
write(1,*)’=================================================================’

write(1,*)
write(1,*)’*******************************************************************’
if(itype==0) then

write(1,*)’ Using a pseudo-heatbath algorithm with standard Wilson Action ’
elseif(itype==1) then

write(1,*)’ Using a pseudo-heatbath algorithm with improved Wilson Aciton ’
end if
write(1,*)’*******************************************************************’
write(1,*)
write(1,’(a,i3,a,i3,a,i3,a,i3)’)’lattice size = ’,nx,’x’,ny,’x’,nz,’x’,nt
write(1,’(a,i3)’)’PHB, number of types -1:cold start, 0:hot start.’,istart
write(1,’(a,i4)’)’time improvement: tmswitch,0=off,1=on,=’,tmswitch
write(1,’(a,i4)’)’u_0 calculation: u0switch,0=off,1=on,=’,u0switch
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write(1,’(a,i4)’)’u_0t calculation: u0tswitch,0=off,1=on,=’,u0tswitch
write(1,’(a,i4)’)’no of sweeps :’,nsweep
write(1,’(a,i4)’)’no of sweeps between reports:’,nreport
write(1,’(a,i10)’)’The starting seed was:’,iseed
write(1,’(a,i4)’)’no of times the group matrix are reuniterized:’,nfix
if(istart .eq. -1) then

nfig = 0
write(1,*)’starting with a cold start’
call initialu(ur,ui)
call GetActionani(ur,ui,action,plaqbar,itype,tmswitch,uzeros,uzerot,xi0)

elseif(istart .eq. 0) then
nfig = 0
write(1,*)’starting with a hot start’
call initialu(ur,ui)
call su3random(ur,ui)
call GetActionani(ur,ui,action,plaqbar,itype,tmswitch,uzeros,uzerot,xi0)

elseif(istart .eq. 1) then

call ReadLinksani(lastconfig,ur,ui,nfig,betaold,nxold,
& nyold,nzold,ntold,lastPlaq,plaqbarAvg,
& itype,tmswitch,uzeros,uzerot,xi0old)

write(1,’(a,i3,2x,a,2x,a)’)’for configuration number’,
& nfig,’the input file =’,lastconfig

nfig = nfig + 1

if (beta.ne.betaold) pause ’mismatch in beta’
if (xi0.ne.xi0old) pause ’mismatch in xi0’
if (nx.ne.nxold) pause ’mismatch in nx’
if (ny.ne.nyold) pause ’mismatch in ny’
if (nz.ne.nzold) pause ’mismatch in nz’
if (nt.ne.ntold) pause ’mismatch in nt’

end if

write(1,*)’printing the average plaquette from Pseudo-heatbath algo routine’
write(1,’(a,f4.2,2x,a,f6.4)’)’for beta = ’,beta,
& ’and with bare anysotropy xi_0 = ’,xi0
write(1,’(3x,a,f12.8)’)’calling GetActionani, untouched action, plaqbar = ’,plaqbar
write(1,’(a,f12.8)’)’starting moving avg. mean link (uzero) = ’,uzero
write(1,’(a,f12.8)’)’starting moving avg. mean link spatial (uzeros) = ’,uzeros
write(1,’(a,f12.8)’)’starting moving avg. mean link temporal (uzerot) = ’,uzerot
write(1,’(a,f12.8)’)’starting moving avg. mean link ratio (u_t/u_s) = ’,ut_on_us
write(1,’(2x,a,4x,a,9x,a,4x,a,6x,a,8x,a,8x,a,8x,a,8x,a)’)
& ’sweep’,’plaqbar’,’plaqbaravg’,’deltaplqbr’,
& ’uzeros’,’uzerot’,’uzeroprm’,’uzero’,’ut/us’
write(*,’(2x,a,4x,a,9x,a,4x,a,6x,a,8x,a,8x,a,8x,a,8x,a)’)
& ’sweep’,’plaqbar’,’plaqbaravg’,’deltaplqbr’,
& ’uzeros’,’uzerot’,’uzeroprm’,’uzero’,’ut/us’

c calling the mask subroutine, to be passed into metropolis,
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c pseudoheat as well as pseudosweepani

call SetMask(mask, umask, itype)

open(4,file=’phbAniimpsu3confNTimp.dat’,status=’unknown’,position=’append’)
open(5,file=’su3avebeta.dat’,status=’unknown’,position=’append’)

c calling the subroutine pseudoseep,n times, nthermphb
c these are the thermalisation sweeps using a pseudo-heatbath algo

sweep = 0
do isweep=1,nsweep/nreport

uzerosavg = 0.0d0
uzerotavg = 0.0d0
uzeroavg = 0.0d0
uzeroprmavg = 0.0d0
do ireport=1,nreport

sweep = sweep + 1
call pseudosweepani(ur,ui,mask,umask,beta,itype,

& nsub,tmswitch,uzeros,uzerot,xi0)
if(mod(sweep,nfix).eq.0) call fixsu3(ur,ui)
if(u0switch==1) then

call tadpoleimpspace(ur,ui,uzerosupdate,xi0)
if( u0tswitch == 1 ) then

call tadpoleimptime(ur,ui,uzerosupdate,uzerotupdate,xi0)
end if
if( xi0 == 1.0d0 ) then

call tadpoleimpani(ur,ui,uzeroupdate)
uzeroprmavg = uzeroprmavg +

& ( ( uzerosupdate**4 + (uzerosupdate**2) * (uzerotupdate**2) )
& / 2.0d0 ) ** (0.25d0)

write(*,*)’uzerosupdate,uzerotupdate,uzeroprm,uzeroupdate’
write(*,’(4f20.15)’) uzerosupdate,uzerotupdate,

& ( ( uzerosupdate**4 + (uzerosupdate**2) * (uzerotupdate**2) )
& / 2.0d0 ) ** (0.25d0),uzeroupdate

uzerosupdate = uzeroupdate
uzerotupdate = uzeroupdate

end if
uzerosavg = uzerosavg + uzerosupdate
uzerotavg = uzerotavg + uzerotupdate
uzeroavg = uzeroavg + uzeroupdate

end if
end do
if(u0switch==1) then

uzeros = uzerosavg / nreport
uzerot = uzerotavg / nreport
uzero = uzeroavg / nreport
uzeroprm = uzeroprmavg / nreport

end if
ut_on_us = uzerot / uzeros
call GetActionani(ur,ui,action,plaqbar,itype,tmswitch,uzeros,uzerot,xi0)
do iaver = 1, naver-1
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plqbrvec(iaver) = plqbrvec(iaver + 1)
end do
plqbrvec(naver) = plaqbar
plaqbarAvg = sum(plqbrvec) / naver2
stdplqbrvec = sqrt( sum( (plqbrvec - plaqbarAvg)**2 ) / (naver2 - 1.0d0) )
deltaplqbr = stdplqbrvec / sqrt(naver2)
write(*,’(2x,i5,2x,f12.8,4x,f12.8,6(2x,f12.8))’) sweep,plaqbar,

& plaqbarAvg,deltaplqbr,uzeros,uzerot,uzeroprm,uzero,ut_on_us
write(1,’(2x,i5,2x,f12.8,4x,f12.8,6(2x,f12.8))’) sweep,plaqbar,

& plaqbarAvg,deltaplqbr,uzeros,uzerot,uzeroprm,uzero,ut_on_us
write(4,’(2x,i5,2x,f12.8,4x,f12.8,2x,f12.8)’)sweep,plaqbar,plaqbarAvg,deltaplqbr

end do

write(*,’(f12.8)’) plqbrvec
write(1,’(a,i3,a,i2,a,f12.8)’)’after:’,nsweep,
& ’ sweeps the average over the last ’,naver,
& ’ ending average plaquette is = ’,plaqbarAvg
write(1,’(a,f12.8)’)’with statistical error of ’,deltaplqbr
write(5,’(2x,f5.2,3(2x,f25.8))’) beta,plaqbarAvg,stdplqbrvec,deltaplqbr

call WriteLinksani(newconfig,ur,ui,nfig,beta,nx,ny,nz,nt,lastPlaq,plaqbarAvg,
& itype,tmswitch,uzeros,uzerot,xi0)

write(1,*)
write(1,’(a,i3,2x,a,2x,a)’)’for configuration number’,nfig,
& ’the output file =’,newconfig
write(1,’(a,f12.8)’)’Ending average plaquette is = ’,plaqbar
write(1,’(a,f12.8)’)’Ending moving avg. plaq. is = ’,plaqbarAvg
write(1,’(a,f12.8)’)’Ending moving avg. mean link (uzero) = ’,uzero
write(1,’(a,f12.8)’)’Ending moving avg. mean link spatial (uzeros)= ’,uzeros
write(1,’(a,f12.8)’)’Ending moving avg. mean link temporal(uzerot)= ’,uzerot

close(1)
close(4)
close(5)

end program aniimpsu3conf

E.11 Anisotropic Version for Constructing SUc(3)

Matrices

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & D. B. Leinweber: 12th of August 1999.
c subroutine pseudosweepani updates the current link using a psedo-heatbath
c algorithm. It calls the staplesani and pseudoheat.
c

subroutine pseudosweepani(ur,ui,mask,umask,beta,itype,
& nsub,tmswitch,uzeros,uzerot,xi0)
implicit none
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include ’../GeneralSupport/latticeSize.h’

c global variables

integer,parameter :: nc=3,ncsu2=2
integer,parameter :: nsigma=ncsu2*ncsu2
integer,parameter :: mu=4
integer,parameter :: nmask=16

integer :: itype,tmswitch
integer :: umask
integer :: nsub

double precision :: uzeros,uzerot
double precision :: beta,xi0

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask
cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)

c local variables

double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei
double precision,dimension(nx,ny,nz,nt,nc,nc) :: ltsr,ltsi
double precision,dimension(nx,ny,nz,nt,nc,nc) :: urprmsu3,uiprmsu3

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ltsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ltsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout urprmsu3(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uiprmsu3(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: ursu2,uisu2

cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ursu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uisu2(:news,:news,:news,:news,:serial,:serial)

double precision :: betanew
integer :: of1
integer :: imask,ihat,ic,jc,kc,ic3
integer :: isub

interface
SUBROUTINE staplesani(ur,ui,stapler,staplei,xhat,local,

& itype,tmswitch,uzeros,uzerot,xi0)
IMPLICIT NONE
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
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integer :: xhat
integer :: itype,tmswitch
double precision :: xi0
double precision :: uzeros,uzerot
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end SUBROUTINE staplesani
subroutine pseudoheat(urnewsu2,uinewsu2,phbsr,phbsi,mask,imask,beta,ihat)
implicit none
include ’../GeneralSupport/latticeSize.h’
integer,parameter :: ncsu2=2
integer,parameter :: nc=3
integer,parameter :: mu=4
integer,parameter :: nmask=16
double precision :: beta
integer :: ihat,imask
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: urnewsu2,uinewsu2

cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout urnewsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uinewsu2(:news,:news,:news,:news,:serial,:serial)

logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask
cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)

end subroutine pseudoheat
end interface

c starts of the running commands

c Here we need to multiply Beta by a factor of 2/nc=3 because for the su2 case
c there is a factor of which cancels the one 1/ncsu2 in the probability
c distribution function. This beta value is to be passed into pseudoheat

betanew = ( 2.0d0 / nc ) * beta
c betanew = ( 2.0d0 / nc ) * beta * uzeros**4

c the ihat do loop, is to loop over all the possible Euclidean directions.
c The imask do loop, is to ensure that the entire lattice is considered:
c all true then all false.

do ihat=1,mu
do imask=1,umask

c calculate the staple in the ihat direction

call staplesani(ur,ui,stapler,staplei,ihat,.true.,
& itype,tmswitch,uzeros,uzerot,xi0)

231



do isub=1,nsub
c
c case 1. a_1
c
c The Wilson action can be written as S(U)=Sum_p(Re(U*U_p))+constant
c =Re(Tr(U*R))+constant
c R is just the sum over the six plaquette namely the staplesani: stapler,staplei.

c now we need to calculate the product of the staplesani time the link variable in
c each direction U*R=ltsr+iltsi=( ur + iui ) * ( stapler + istaplei )
c =(ur*stapler - ui*staplei)+i(ur*staplei + ui*staplei)

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) +
& ui(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

c The distribution we are interested in the following
c dP(a_k) = d^{(k)}a_k * exp[-beta * S(a_k*U^{(k-1)})]/Z_k(U^{(k-1)})
c where d^{(k)}a_k is the Haar measure on the SU(2)_k and
c Z_k(U^{(k-1)}) = \int_{SU(2)_k} da exp[-beta * S(aU)]. If a{\in}SU(2)_K then
c Z_k(aU) = Z_k(U). In order to generate the above distribution for the minimal
c set F of SU(2) subgroup of SU(N) namely {F:SU(2)_k, k=1,..,nc-1}, let’s first
c note that S(a_k*U)=Re(Tr a_k * U*R) = Re(Tr \alpha_k * r_k)
c + terms independent of \alpha_k.
c Where r_k is the 2x2 subgroup of the U*R (i.e. link*staplesani : lts), this matix
c has the same block structure as the matrix a_k. This means that \alpha_k and
c r_k = r_0 * I + i \vec{\sigma}\dot\vec{r} are the same block in the ncxnc
c matrix located at the (k,k+1)th rows and column.

c For the first call of the pseudo-heatbath we need to match the matrix block,
c if this is not done wrong information will be sent to the subroutine therefore
c returning the wrong numbers. To do that we use an offset parameter called of1
c with this of1 we can acces the correct entries of the ncxnc lts matrix. We then
c reconstruct a SU(2) matrix that can be passed into pseudoheat which will also
c return a SU(2) matrix.

of1 = 0

phbsr(:,:,:,:,1,1) =
& ( ltsr(:,:,:,:,1+of1,1+of1) + ltsr(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)
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phbsr(:,:,:,:,1,2) =
& ( ltsr(:,:,:,:,1+of1,2+of1) - ltsr(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)

phbsi(:,:,:,:,1,1) =
& ( ltsi(:,:,:,:,1+of1,1+of1) - ltsi(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsi(:,:,:,:,1,2) =
& ( ltsi(:,:,:,:,1+of1,2+of1) + ltsi(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c now calling the pseudo-heatbath algorithm to update, where the
c mask is .true., the full QCD configuration

c we call pseudoheat to form 2 SU(3) matrices.
c These two matrices have the form matrixa = [ [SU(2)] 0 ], matrixb[ 1 0 ].
c [ 0 1 ], [ 0 [SU(2)] ]
c Where [SU(2)] is hotwired via ursu2,uisu2 and ursu2,uisu2.

call pseudoheat(ursu2,uisu2,phbsr,phbsi,mask,imask,betanew,ihat)

c We next make a product of the matrices in such a way that
c link Uprmsu3 = urprmsu3+iuiprmsu3 = ( ar + iai ) * ( ur + iui )
c = ( ar*ur - ai*ui ) + i( ar*ui + ai*ur)
c by hotwiring the matrix indices for optimization.

do ic=1,nc-1
do jc=1,nc

where( mask(:,:,:,:,ihat,imask) )
urprmsu3(:,:,:,:,ic,jc) = ( ursu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +

& ursu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,2,jc) -
& uisu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) -
& uisu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,2,jc) )

uiprmsu3(:,:,:,:,ic,jc) = ( ursu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,2,jc) +
& uisu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& uisu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,2,jc) )

elsewhere
urprmsu3(:,:,:,:,ic,jc) = ur(:,:,:,:,ihat,ic,jc)
uiprmsu3(:,:,:,:,ic,jc) = ui(:,:,:,:,ihat,ic,jc)

end where
end do

end do

do jc=1,nc
urprmsu3(:,:,:,:,3,jc) = ur(:,:,:,:,ihat,3,jc)
uiprmsu3(:,:,:,:,3,jc) = ui(:,:,:,:,ihat,3,jc)

end do
c
c case 2. a_2
c
c here we calculate the next bit of the product, link*staplesani.
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c We use the old staplesani to multiply it with Uprmsu3 = a_1 * U
c lts = matrixa = [ [SU(2)] 0 ]*lts[ ele in SU(3) 0 ].
c [ 0 1 ] [ 0 0 ]

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( urprmsu3(:,:,:,:,ic,kc) * stapler(:,:,:,:,kc,jc) -
& uiprmsu3(:,:,:,:,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( urprmsu3(:,:,:,:,ic,kc) * staplei(:,:,:,:,kc,jc) +
& uiprmsu3(:,:,:,:,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

c Here again after having calculated the new ltsr and ltsi ( Uprmsu3*R ) with
c the old staplesani R, Uprmsu3 = a_1 * U. We use an offset of1=1 to access the
c lower block of the ncxnc lts matrix. Then once again we reshape these
c entries by hardwiring them into a SU(2) matrix called pseudo-heatbath
c staplesani namely phbsr and phbsi. The resulting SU(2) matrix is then
c passed into pseudoheat.

of1 = 1

phbsr(:,:,:,:,1,1) =
& ( ltsr(:,:,:,:,1+of1,1+of1) + ltsr(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)
phbsr(:,:,:,:,1,2) =

& ( ltsr(:,:,:,:,1+of1,2+of1) - ltsr(:,:,:,:,2+of1,1+of1) ) / 2.0d0
phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)

phbsi(:,:,:,:,1,1) =
& ( ltsi(:,:,:,:,1+of1,1+of1) - ltsi(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsi(:,:,:,:,1,2) =
& ( ltsi(:,:,:,:,1+of1,2+of1) + ltsi(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c we next make a product of the matrices in such a way that link
c Udblerpm=urdbleprmsu3+iuidbleprmsu3
c =( br + ibi ) * ( urprmsu3 + iuiprmsu3 )
c =( br*urprmsu3 - bi*uiprmsu3 ) + i( br*uiprmsu3 + bi*urprmsu3)
c = a_2 * Uprmsu3
c Where the a_1 and a_2 have the form of matrixa and matrixb mentioned above.

c Calling pseudoheat to obtain two new SU(2) matrices with the linkprmsu3*staplesani
c calculated above.
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c Allocating by hardwiring to the urnew and uinew which are the return
c variables of these products.

call pseudoheat(ursu2,uisu2,phbsr,phbsi,mask,imask,betanew,ihat)

c Now mapping these variables to the full QCD link, ur and ui. For each
c direction mu, the main loop imu.

do ic=2,nc
do jc=1,nc

where( mask(:,:,:,:,ihat,imask) )
ur(:,:,:,:,ihat,ic,jc) = ( ursu2(:,:,:,:,ic-1,1) * urprmsu3(:,:,:,:,2,jc) +

& ursu2(:,:,:,:,ic-1,2) * urprmsu3(:,:,:,:,3,jc) -
& uisu2(:,:,:,:,ic-1,1) * uiprmsu3(:,:,:,:,2,jc) -
& uisu2(:,:,:,:,ic-1,2) * uiprmsu3(:,:,:,:,3,jc) )

ui(:,:,:,:,ihat,ic,jc) = ( ursu2(:,:,:,:,ic-1,1) * uiprmsu3(:,:,:,:,2,jc) +
& ursu2(:,:,:,:,ic-1,2) * uiprmsu3(:,:,:,:,3,jc) +
& uisu2(:,:,:,:,ic-1,1) * urprmsu3(:,:,:,:,2,jc) +
& uisu2(:,:,:,:,ic-1,2) * urprmsu3(:,:,:,:,3,jc) )

elsewhere
ur(:,:,:,:,ihat,ic,jc) = urprmsu3(:,:,:,:,ic,jc)
ui(:,:,:,:,ihat,ic,jc) = uiprmsu3(:,:,:,:,ic,jc)

end where
end do

end do

do jc=1,nc
ur(:,:,:,:,ihat,1,jc) = urprmsu3(:,:,:,:,1,jc)
ui(:,:,:,:,ihat,1,jc) = uiprmsu3(:,:,:,:,1,jc)

end do
c
c case 3. a_3
c
c forming another SU(2) subgroup of the form
c These two matrices have the form matrixa = [ x 0 x ]
c [ 0 1 0 ]
c [ x 0 x ]

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) +
& ui(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do
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phbsr(:,:,:,:,1,1) =
& ( ltsr(:,:,:,:,1,1) + ltsr(:,:,:,:,3,3) ) / 2.0d0

phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)
phbsr(:,:,:,:,1,2) =

& ( ltsr(:,:,:,:,1,3) - ltsr(:,:,:,:,3,1) ) / 2.0d0
phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)

phbsi(:,:,:,:,1,1) =
& ( ltsi(:,:,:,:,1,1) - ltsi(:,:,:,:,3,3) ) / 2.0d0

phbsi(:,:,:,:,1,2) =
& ( ltsi(:,:,:,:,1,3) + ltsi(:,:,:,:,3,1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c now calling the cooling algorithm.

call pseudoheat(ursu2,uisu2,phbsr,phbsi,mask,imask,betanew,ihat)

c We next make a product of the matrices in such a way that
c link Uprmsu3 = urprmsu3+iuiprmsu3 = ( ar + iai ) * ( ur + iui )
c = ( ar*ur - ai*ui ) + i( ar*ui + ai*ur)
c by hotwiring the matrix indices for optimization.

do ic=1,nc-1
do jc=1,nc

ic3 = ic
if(ic3 == 2 ) ic3 = 3
where( mask(:,:,:,:,ihat,imask) )

urprmsu3(:,:,:,:,ic3,jc) =
& ( ursu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,3,jc) -
& uisu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) -
& uisu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,3,jc) )

uiprmsu3(:,:,:,:,ic3,jc) =
& ( ursu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,3,jc) +
& uisu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& uisu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,3,jc) )

elsewhere
urprmsu3(:,:,:,:,ic3,jc) = ur(:,:,:,:,ihat,ic3,jc)
uiprmsu3(:,:,:,:,ic3,jc) = ui(:,:,:,:,ihat,ic3,jc)

end where
end do

end do

do jc=1,nc
ur(:,:,:,:,ihat,1,jc) = urprmsu3(:,:,:,:,1,jc)
ui(:,:,:,:,ihat,1,jc) = uiprmsu3(:,:,:,:,1,jc)
ur(:,:,:,:,ihat,3,jc) = urprmsu3(:,:,:,:,3,jc)
ui(:,:,:,:,ihat,3,jc) = uiprmsu3(:,:,:,:,3,jc)

end do
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end do

end do
end do

return
end subroutine pseudosweepani

E.12 The Anisotropic Version for the Squares Rou-

tine

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & Derek B. Leinweber date: Ausgust 1999.
c computes the product of links for the action associated with a link in the
c xhat direction.
c

subroutine squaresani(ur,ui,squarer,squarei,xhat,local,itype,
& tmswitch,uzeros,uzerot,xi0)
implicit none
include ’../../GeneralSupport/latticeSize.h’

c global variable

integer,parameter :: nc=3
integer,parameter :: mu=4

integer :: xhat,itype,tmswitch
logical :: local
double precision :: uzeros,uzerot,xi0

double precision,dimension(nx,ny,nz,nt,nc,nc) :: squarer,squarei
cmf$ layout squarer(:news,:news,:news,:news,:serial,:serial)
cmf$ layout squarei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables, temporary product variables

double precision :: stfact,factorsq
integer,dimension(3) :: yhat

cmf$ layout yhat(:serial)
double precision,dimension(nx,ny,nz,nt,nc,nc) :: tr,ti,tsr,tsi

cmf$ layout tr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ti(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tsi(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: usqr,usqi
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cmf$ layout usqr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout usqi(:news,:news,:news,:news,:serial,:serial)

integer :: muloop
integer :: ic,jc,kc,imu,i

c starting of the execution commands

c setting up the yhat array
c the yhat(1)=yhat,yhat(2)=zhat and yhat(3)=that when xhat eq 1
c the yhat(1)=zhat,yhat(2)=that and yhat(3)=xhat when xhat eq 2
c the yhat(1)=that,yhat(2)=xhat and yhat(3)=yhat when xhat eq 3
c the yhat(1)=xhat,yhat(2)=yhat and yhat(3)=zhat when xhat eq 4

if( xhat == 1 ) then
yhat(1) = 2
yhat(2) = 3
yhat(3) = 4

elseif( xhat == 2 ) then
yhat(1) = 1
yhat(2) = 3
yhat(3) = 4

elseif( xhat == 3 ) then
yhat(1) = 1
yhat(2) = 2
yhat(3) = 4

elseif( xhat == 4 ) then
yhat(1) = 1
yhat(2) = 2
yhat(3) = 3

end if

if( xi0 < 0.0d0 ) then
xi0 = 1.0d0
muloop = mu - 2

else
muloop = mu - 1

end if

if( itype == 1 ) then
if( tmswitch == 0 ) then

stfact = 4.0d0 / 3.0d0
elseif( tmswitch == 1 ) then

stfact = 5.0d0 / 3.0d0
end if

elseif( itype == 0 ) then
stfact = 5.0d0 / 3.0d0

end if

squarer = 0.0d0
squarei = 0.0d0
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c calculation of the link products in the positive plaquette, POSITIVE a x a.

do i=1,muloop !loop over the yhat array

c putting the factors for the anisotropy lattices. xi0 = a_s/a_t

if( xhat /= 4 ) then
if( yhat(i) /= 4 ) then

factorsq = ( 1.0d0 / ( xi0 * uzeros**4 ) ) * ( 5.0d0 / 3.0d0 )
elseif( yhat(i) == 4 ) then

factorsq = ( xi0 / ( ( uzeros**2 ) * ( uzerot**2 ) ) ) * stfact
end if

elseif( xhat == 4 ) then
factorsq = ( xi0 / ( ( uzeros**2 ) * ( uzerot**2 ) ) ) * stfact

end if

tr = 0.0d0
ti = 0.0d0
tsr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
tsi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
usqr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
usqi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr(:,:,:,:,ic,jc) = tr(:,:,:,:,ic,jc) +
& ( tsr(:,:,:,:,ic,kc) * usqr(:,:,:,:,jc,kc) +
& tsi(:,:,:,:,ic,kc) * usqi(:,:,:,:,jc,kc) )

ti(:,:,:,:,ic,jc) = ti(:,:,:,:,ic,jc) +
& ( tsi(:,:,:,:,ic,kc) * usqr(:,:,:,:,jc,kc) -
& tsr(:,:,:,:,ic,kc) * usqi(:,:,:,:,jc,kc) )

end do
end do

end do
tr = factorsq * tr
ti = factorsq * ti
do ic=1,nc

do jc=1,nc
do kc=1,nc

squarer(:,:,:,:,ic,jc) = squarer(:,:,:,:,ic,jc) +
& ( tr(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) +
& ti(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) )

squarei(:,:,:,:,ic,jc) = squarei(:,:,:,:,ic,jc) +
& ( ti(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) -
& tr(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) )

end do
end do

end do

c calculation of the link products in the negative plaquette, NEGATIVE a x a.

c .true. when we calculate the full staple
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c .false. when we calculate half of the staple for plaqbar where only the
c upper 3 plaquettes are needed

if(local) then

tr = 0.0d0
ti = 0.0d0
tsr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
tsi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
usqr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
usqi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr(:,:,:,:,ic,jc) = tr(:,:,:,:,ic,jc) +
& ( tsr(:,:,:,:,kc,ic) * usqr(:,:,:,:,jc,kc) -
& tsi(:,:,:,:,kc,ic) * usqi(:,:,:,:,jc,kc) )

ti(:,:,:,:,ic,jc) = ti(:,:,:,:,ic,jc) +
& (-tsr(:,:,:,:,kc,ic) * usqi(:,:,:,:,jc,kc) -
& tsi(:,:,:,:,kc,ic) * usqr(:,:,:,:,jc,kc) )

end do
end do

end do

tr = factorsq * tr
ti = factorsq * ti

usqr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
usqi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

squarer(:,:,:,:,ic,jc) = squarer(:,:,:,:,ic,jc) +
& ( tr(:,:,:,:,ic,kc) * usqr(:,:,:,:,kc,jc) -
& ti(:,:,:,:,ic,kc) * usqi(:,:,:,:,kc,jc) )

squarei(:,:,:,:,ic,jc) = squarei(:,:,:,:,ic,jc) +
& ( tr(:,:,:,:,ic,kc) * usqi(:,:,:,:,kc,jc) +
& ti(:,:,:,:,ic,kc) * usqr(:,:,:,:,kc,jc) )

end do
end do

end do

end if !closes the .true. if
end do !closes the i=1,3 loop

if(itype == 0 ) then
squarer = ( 3.0d0 / 5.0d0 ) * squarer
squarei = ( 3.0d0 / 5.0d0 ) * squarei

end if
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return
end subroutine squaresani

E.13 The Anisotropic Version for the Rectangle Rou-

tine

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & D. B. Leinweber: August 1999.
c computes the product of links for the action associated with a link in the
c xhat direction. This computes the product of the six rectangular plaquettes
c associated with the improved action.
c

subroutine rectanglesani(ur,ui,rectr,recti,xhat,local,tmswitch,uzeros,uzerot,xi0)
implicit none
include ’../../GeneralSupport/latticeSize.h’

c global variable

integer,parameter :: nc=3 !sigma,color
integer,parameter :: mu=4 !direction

integer :: xhat,tmswitch
logical :: local
double precision :: uzeros,uzerot,xi0

double precision,dimension(nx,ny,nz,nt,nc,nc) :: rectr,recti
cmf$ layout rectr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout recti(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables, temporary product variables

double precision :: factorrect
integer,dimension(3) :: yhat

cmf$ layout yhat(:serial)
double precision,dimension(nx,ny,nz,nt,nc,nc) :: t1r,t1i,t2r,t2i

cmf$ layout t1r(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t1i(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t2r(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t2i(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: usr,usi
cmf$ layout usr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout usi(:news,:news,:news,:news,:serial,:serial)

integer :: muprm
integer :: ic,jc,kc,imu,i
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c starting of the execution commands

c setting up the yhat array
c the yhat(1)=yhat,yhat(2)=zhat and yhat(3)=that when xhat eq 1
c the yhat(1)=zhat,yhat(2)=that and yhat(3)=xhat when xhat eq 2
c the yhat(1)=that,yhat(2)=xhat and yhat(3)=yhat when xhat eq 3
c the yhat(1)=xhat,yhat(2)=yhat and yhat(3)=zhat when xhat eq 4

c do imu=1,mu-1
c yhat(imu) = 0
c end do

c do imu=1,mu-1
c yhat(imu) = mod( xhat + imu , 4 )
c if( yhat(imu) == 0 ) yhat(imu) = 4
c end do

if( xhat == 1 ) then
yhat(1) = 2
yhat(2) = 3
yhat(3) = 4

elseif( xhat == 2 ) then
yhat(1) = 1
yhat(2) = 3
yhat(3) = 4

elseif( xhat == 3 ) then
yhat(1) = 1
yhat(2) = 2
yhat(3) = 4

elseif( xhat == 4 ) then
yhat(1) = 1
yhat(2) = 2
yhat(3) = 3

end if

c calculation of the link products in the positive plaquette.
c starting point in the xhat direction with the maskrect

c first calculate the positive forward 2a x a rectangle

rectr = 0.0d0
recti = 0.0d0

do i=1,mu-1 !loop over the yhat array

c putting the factors for the anisotropy lattices. xi0 = a_s/a_t

if( xhat /= 4 ) then
if( yhat(i) /= 4 ) then

factorrect = 1.0d0 / ( xi0 * uzeros**6 )
elseif( yhat(i) == 4 ) then

factorrect = xi0 / ( ( uzeros**4 ) * ( uzerot**2 ) )
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end if
elseif( xhat == 4 ) then

if( tmswitch == 1 ) then
factorrect = xi0 / ( ( uzeros**2 ) * ( uzerot**4 ) )

elseif( tmswitch == 0 ) then
factorrect = 0.0d0

end if
end if

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
t2i = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=2)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t1r = factorrect * t1r
t1i = factorrect * t1i

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1),

& dim=xhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1),

& dim=xhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
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usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) +
& t1i(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) +
& t1i(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) )

end do
end do

end do

c now calculating the positive upper rectanglesani a x 2a

if( xhat /= 4 ) then
if( yhat(i) /= 4 ) then

factorrect = 1.0d0 / ( xi0 * uzeros**6 )
elseif( yhat(i) == 4 ) then

if( tmswitch == 1 ) then
factorrect = xi0 / ( ( uzeros**2 ) * ( uzerot**4 ) )

elseif( tmswitch == 0 ) then
factorrect = 0.0d0

end if
end if

elseif( xhat == 4 ) then
factorrect = xi0 / ( ( uzeros**4 ) * ( uzerot**2 ) )

end if

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
t2i = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
usr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=1)
usi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=1)
do ic=1,nc
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do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t1r = factorrect * t1r
t1i = factorrect * t1i

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=2)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=1)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

do ic=1,nc
do jc=1,nc

do kc=1,nc
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rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) +
& t1i(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat(i),jc,kc) +
& t1i(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat(i),jc,kc) )

end do
end do

end do

c .true. when we calculate the full staple
c .false. when we calculte impbar where
c only the upper 3 plaquette are needed

if(local) then

c now calculate the positive backward 2a x a retangle

if( xhat /= 4 ) then
if( yhat(i) /= 4 ) then

factorrect = 1.0d0 / ( xi0 * uzeros**6 )
elseif( yhat(i) == 4 ) then

factorrect = xi0 / ( ( uzeros**4 ) * ( uzerot**2 ) )
end if

elseif( xhat == 4 ) then
if( tmswitch == 1 ) then

factorrect = xi0 / ( ( uzeros**2 ) * ( uzerot**4 ) )
elseif( tmswitch == 0 ) then

factorrect = 0.0d0
end if

end if

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
t2i = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=1)
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = factorrect * t1r
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t1i = factorrect * t1i

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=1),dim=xhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=1),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do
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c calculation of the link products in the negative plaquette
c starting point in the x direction

c the negative xy,xz and xt contour when xhat eq 1
c the negative yz,yt and yx contour when xhat eq 2
c the negative zt,zx and zy contour when xhat eq 3
c the negative tx,ty and tz contour when xhat eq 4

c first calculate the negative forward 2a x a rectangle

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
t2i = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
usr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=2),dim=yhat(i),shift=-1)
usi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=2),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = factorrect * t1r
t1i = factorrect * t1i

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
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end do
end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

c calculate the negative backward 2a x a rectangle

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
t2i = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=1)
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
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& (-t2r(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = factorrect * t1r
t1i = factorrect * t1i

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=yhat(i),shift=-1),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=-1),dim=yhat(i),shift=-1)
usi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=-1),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc
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rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

c now calculating the negative lower rectanglesani a x 2a

if( xhat /= 4 ) then
if( yhat(i) /= 4 ) then

factorrect = 1.0d0 / ( xi0 * uzeros**6 )
elseif( yhat(i) == 4 ) then

if( tmswitch == 1 ) then
factorrect = xi0 / ( ( uzeros**2 ) * ( uzerot**4 ) )

elseif( tmswitch == 0 ) then
factorrect = 0.0d0

end if
end if

elseif( xhat == 4 ) then
factorrect = xi0 / ( ( uzeros**4 ) * ( uzerot**2 ) )

end if

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=-1)
t2i = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=-1)
usr = cshift(cshift(ur(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=-2)
usi = cshift(cshift(ui(:,:,:,:,yhat(i),:,:),

& dim=xhat,shift=1),dim=yhat(i),shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = factorrect * t1r
t1i = factorrect * t1i
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t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-2)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat(i),shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-2)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

usr = cshift(ur(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
usi = cshift(ui(:,:,:,:,yhat(i),:,:),dim=yhat(i),shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectr(:,:,:,:,ic,jc) = rectr(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

recti(:,:,:,:,ic,jc) = recti(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

end if
end do
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rectr = - ( 1.0d0 / 12.0d0 ) * rectr
recti = - ( 1.0d0 / 12.0d0 ) * recti

return
end subroutine rectanglesani

E.14 Calculating the Gauge Action

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & D.B. Leinweber: date: March 1999.
c GetAction subroutine will calculate the total action, which is a sum
c over all elementary action in the lattice.
c

subroutine GetAction(ur,ui,action,plaqbar,itype,uzero)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3
integer,parameter :: mu=4

integer :: itype
double precision :: uzero
double precision :: plaqbar

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

double precision,dimension(nx,ny,nz,nt) :: action
cmf$ layout action(:news,:news,:news,:news)

c local variables

double precision :: factor

double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei
cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

integer :: ihat,ic,kc

INTERFACE
SUBROUTINE staples(ur,ui,stapler,staplei,xhat,local,itype,uzero)
IMPLICIT NONE
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
integer :: xhat
integer :: itype
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double precision :: uzero
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end SUBROUTINE staples
end interface

c In the following do loop we are calculating the average plaquette.
c when calling staples only three plaquette are calculated.
c The ones in the positive direction ( not in the negative direction
c because of the local=.false. logical condition).
c at an arbitrary point we have
c at ihat=1, plaquette 12,13,14. At ihat=2, plaquette 21,23,24
c at ihat=3, plaquette 31,32,34. At ihat=4, plaquette 41,42,43

c Initialize action to zero here.

if( itype == 0 ) factor = 1.0d0
if( itype == 1 ) factor = 5.0d0 / 3.0d0 - 1.0d0 / ( 6.0d0 * uzero**2 )

action = 0.0d0
plaqbar = 0.0d0

do ihat=1,mu
call staples(ur,ui,stapler,staplei,ihat,.false.,itype,uzero)
do ic=1,nc

do kc=1,nc
action(:,:,:,:) = action(:,:,:,:) +

& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,ic) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,ic) )

end do
end do

end do

c each subroutine call to staples calculates 3 plaquettes (mu-1)
c when called with .false., and there are 4 calls, one for each direction (mu).

action = factor - action / ( nc * mu*(mu-1) )

plaqbar = sum(action) / ( nx*ny*nz*nt )

return
end subroutine GetAction

E.15 Calculating the Tadpole Factor, u0

c
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c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet: August 1998.
c tadpoleimp subroutine will calculate the u_0 which is just the fourth
c root of the average square plaquette. This uzero is uzero for the tadpole
c improvement.
c

subroutine tadpoleimp(ur,ui,uzero)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3 !sigma,color
integer,parameter :: mu=4 !direction

double precision :: uzero

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables

double precision,dimension(nx,ny,nz,nt) :: action
cmf$ layout action(:news,:news,:news,:news)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: squarer,squarei
cmf$ layout squarer(:news,:news,:news,:news,:serial,:serial)
cmf$ layout squarei(:news,:news,:news,:news,:serial,:serial)

integer :: ihat,ic,kc

interface
SUBROUTINE squares(ur,ui,squarer,squarei,xhat,local)
IMPLICIT NONE
include ’latticeSize.h’
integer,parameter :: nc=3 !sigma,color
integer,parameter :: mu=4 !direction
integer :: xhat
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: squarer,squarei

cmf$ layout squarer(:news,:news,:news,:news,:serial,:serial)
cmf$ layout squarei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end SUBROUTINE squares
end interface

c In the following do loop we are calculating the average plaquette.
c when calling staples only three plaquette are calculated.
c The ones in the positive direction ( not in the negative direction
c because of the local=.false. logical condition).
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c at an arbitrary point we have
c at ihat=1, plaquette 12,13,14. At ihat=2, plaquette 21,23,24
c at ihat=3, plaquette 31,32,34. At ihat=4, plaquette 41,42,43

action = 0.0d0
uzero = 0.0d0

do ihat=1,mu
call squares(ur,ui,squarer,squarei,ihat,.false.)
do ic=1,nc

do kc=1,nc
action(:,:,:,:) = action(:,:,:,:) +

& ( ur(:,:,:,:,ihat,ic,kc) * squarer(:,:,:,:,kc,ic) -
& ui(:,:,:,:,ihat,ic,kc) * squarei(:,:,:,:,kc,ic) )

end do
end do

end do

c now calculating the the fourth root of the plaquette. This uzero
c makes up the tadpole improvement 1/3ReTr(square) consists of only
c tadpole contributions. A large contribution of the tadpole contribution
c can be eliminated by divinding every link operator by u_0

uzero = ( sum(action) / ( nx*ny*nz*nt*nc*mu*(mu-1) ) ) ** ( 0.25d0 )

return
end subroutine tadpoleimp

E.16 Constructing the Topological Charge Opera-

tor on the Lattice

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 1st of March 2001.
c subtoutine to calculate the topological charge Q.
c

subroutine Qtop(Fr,Fi,QTopDensity,Q)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3 !no of colours
integer,parameter :: mu=4 !directions
integer,parameter :: nf=6 !# of Fmunu

double precision :: Q !topological charge

double precision,dimension(nx,ny,nz,nt) :: QTopDensity
cmf$ layout QTopDensity(:news,:news,:news,:news)
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double precision,dimension(nx,ny,nz,nt,nc,nc,nf) :: Fr,Fi !Fmunu
cmf$ layout Fr(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout Fi(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables

double precision :: pi=0.0d0

integer,dimension(2:mu,1:mu-1) :: Findex
cmf$ layout Findex(:serial,:serial)

integer :: i,j,ic,jc,kc

c start of the execution commands.

pi = 4.0d0 * atan(1.0d0)

c
c Set up the Findex
c

do i=2,mu
do j=1,i-1

Findex(i,j) = (i+j) - 3 * ( (i-j) / 3 ) - 1
end do

end do
c
c Calculation of topological charge density
c
c QTopDensity(x,y,z,t) is proportional to
c colourtrace{levicevita(mu,nu,rho,sigma) *
c F(x,y,z,t,a,b,mu,nu)F(x,y,z,t,a,b,rho,sigma)]}

QTopDensity = 0.0d0
do ic=1,nc

do kc=1,nc
QTopDensity(:,:,:,:) = QTopDensity(:,:,:,:) +

& ( Fr(:,:,:,:,ic,kc,Findex(2,1)) * Fr(:,:,:,:,kc,ic,Findex(4,3)) -
& Fr(:,:,:,:,ic,kc,Findex(3,1)) * Fr(:,:,:,:,kc,ic,Findex(4,2)) +
& Fr(:,:,:,:,ic,kc,Findex(4,1)) * Fr(:,:,:,:,kc,ic,Findex(3,2)) -
& Fi(:,:,:,:,ic,kc,Findex(2,1)) * Fi(:,:,:,:,kc,ic,Findex(4,3)) +
& Fi(:,:,:,:,ic,kc,Findex(3,1)) * Fi(:,:,:,:,kc,ic,Findex(4,2)) -
& Fi(:,:,:,:,ic,kc,Findex(4,1)) * Fi(:,:,:,:,kc,ic,Findex(3,2)) ) * 8.0d0

end do
end do

c
c Calculation and display of topological charge
c

QTopDensity = QTopDensity / ( 32.0d0 * ( pi**2 ) )
Q = sum(QTopDensity)

return
end subroutine Qtop
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E.17 Constructing The non–Abelian field strength

Tensor

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c author: Frederic D.R. Bonnet, January 2000.
c subroutine will calculate the topological charge using the field,
c strength tensor Fmunu. It is a sum over all elementary 4 plaquettes.
c It combines the standard term (the square contribution) and
c the rectangular part of the topological charge tensor.
c

subroutine Fmunu(ur,ui,Fr,Fi,uzero,itopo)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3
integer,parameter :: mu=4

integer,parameter :: nf=6

integer :: itopo !which Q.
double precision :: uzero

double precision,dimension(nx,ny,nz,nt,nc,nc,nf) :: Fr,Fi !Fmunu
cmf$ layout Fr(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout Fi(:news,:news,:news,:news,:serial,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables

double precision,dimension(nx,ny,nz,nt) :: TrFr !Trace Variable
cmf$ layout TrFr(:news,:news,:news,:news)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: Clr,Cli
cmf$ layout Clr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout Cli(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: rectClr,rectCli
cmf$ layout rectClr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout rectCli(:news,:news,:news,:news,:serial,:serial)

integer :: xhat,yhat
integer :: index
integer :: ic,jc,kc

interface
subroutine clover(ur,ui,sqCr,sqCi,muhat,nuhat)
implicit none
include ’latticeSize.h’
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integer,parameter :: nc=3
integer,parameter :: nd=4
integer,parameter :: nf=6 !# of F stored
integer :: muhat,nuhat
double precision,dimension(nx,ny,nz,nt,nc,nc) :: sqCr,sqCi!Clover Term

cmf$ layout sqCr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout sqCi(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nd,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine clover
subroutine impclover(ur,ui,rectCr,rectCi,xhat,yhat)
implicit none
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: nd=4
integer,parameter :: nf=6
integer :: xhat,yhat
double precision,dimension(nx,ny,nz,nt,nc,nc) :: rectCr,rectCi

cmf$ layout rectCr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout rectCi(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nd,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine impclover
end interface

c start of the execution commands.

c
c Now lets implement the Hermitian and traceless aspects of
c the Gell-Mann Matrices by subtracting the
c Hermitian conjugate of C which gives us a clover term of C = 2i*g*F_mu_nu.
c Hence multiply C by -i to get g*F_mu_nu.
c

Fr = 0.0d0
Fi = 0.0d0

do xhat=2,mu
do yhat=1,xhat-1

index = ( xhat + yhat ) - 3 * ( ( xhat-yhat ) / 3 ) - 1

call clover(ur,ui,Clr,Cli,xhat,yhat)

if(itopo==1) then
call impclover(ur,ui,rectClr,rectCli,xhat,yhat)
Clr = ( 5.0d0 / 3.0d0 ) * Clr -

& ( 1.0d0 / ( 6.0d0 * (uzero**2) ) ) * rectClr
Cli = ( 5.0d0 / 3.0d0 ) * Cli -

& ( 1.0d0 / ( 6.0d0 * (uzero**2) ) ) * rectCli
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end if

do ic=1,nc
do jc=1,nc

Fr(:,:,:,:,ic,jc,index) =
& ( Cli(:,:,:,:,ic,jc) + Cli(:,:,:,:,jc,ic) ) / 2.0d0

Fi(:,:,:,:,ic,jc,index) =
& - ( Clr(:,:,:,:,ic,jc) - Clr(:,:,:,:,jc,ic) ) / 2.0d0

end do
end do

c
c Fi is traceless, Fr is not, but the Gell-Mann Matrices are.
c Therefore subtract 1/3 the trace from each diagonal element of Fr.
c

TrFr = 0.0d0
do ic=1,nc

TrFr = TrFr + Fr(:,:,:,:,ic,ic,index)
end do
do ic=1,nc

Fr(:,:,:,:,ic,ic,index) = Fr(:,:,:,:,ic,ic,index) - ( TrFr ) / 3.0d0
end do

end do
end do

return
end subroutine Fmunu

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c author: Frederic D.R. Bonnet, Patrick Fitzhenry, D.B. Leinweber: February 1999.
c clover subroutine will calculate the topological charge using the field,
c strength tensor Fmunu. It is a sum over all elementary 4 plaquettes.
c

subroutine clover(ur,ui,sqCr,sqCi,muhat,nuhat)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3
integer,parameter :: mu=4

integer,parameter :: nf=6

double precision,dimension(nx,ny,nz,nt,nc,nc) :: sqCr,sqCi
cmf$ layout sqCr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout sqCi(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables
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double precision,dimension(nx,ny,nz,nt,nc,nc) :: tr1,ti1,tr2,ti2
cmf$ layout tr1(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ti1(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tr2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ti2(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: fsr,fsi
cmf$ layout fsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout fsi(:news,:news,:news,:news,:serial,:serial)

integer :: ic,jc,kc,muhat,nuhat
integer :: index

c start of the execution commands.
c
c Calculation of F_mu_nu for a given muhat and xhat.
c

c
c ReZero the clover term
c

sqCr = 0.0d0
sqCi = 0.0d0

c Calculate the index that represents the unique combination of
c muhat and nuhat.
c This is done to save storage.
c F(x,y,z,t,a,b,mu,nu) contains 16 elements but we can exploit the
c traceless antisymmetric properties of F and only store 6
c elements for each F.
c ie
c F(x,y,z,t,a,b,2,1)->F(x,a,b,2)
c F(x,y,z,t,a,b,3,1)->F(x,a,b,3)
c F(x,y,z,t,a,b,3,2)->F(x,a,b,4)
c F(x,y,z,t,a,b,4,1)->F(x,a,b,1)
c F(x,y,z,t,a,b,4,2)->F(x,a,b,5)
c F(x,y,z,t,a,b,4,3)->F(x,a,b,6)
c The unique muhat/nuhat index combination is rolled into the
c single index by the following relation

index = ( muhat + nuhat ) - 3 * ( ( muhat-nuhat ) / 3 ) - 1

c Calculation of link products for upper-right plaquette, #1

c t1 = U(x,mu)*U(x+mu,nu)

tr1 = 0.0d0
ti1 = 0.0d0
tr2 = cshift(ur(:,:,:,:,nuhat,:,:),dim=muhat,shift=1)
ti2 = cshift(ui(:,:,:,:,nuhat,:,:),dim=muhat,shift=1)
do ic=1,nc
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do jc=1,nc
do kc=1,nc

tr1(:,:,:,:,ic,jc) = tr1(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,muhat,ic,kc) * tr2(:,:,:,:,kc,jc) -
& ui(:,:,:,:,muhat,ic,kc) * ti2(:,:,:,:,kc,jc) )

ti1(:,:,:,:,ic,jc) = ti1(:,:,:,:,ic,jc) +
& ( ui(:,:,:,:,muhat,ic,kc) * tr2(:,:,:,:,kc,jc) +
& ur(:,:,:,:,muhat,ic,kc) * ti2(:,:,:,:,kc,jc) )

end do
end do

end do
c
c t2 = t1*Udagger(x+nu,mu)
c

tr2 = 0.0d0
ti2 = 0.0d0
fsr = cshift(ur(:,:,:,:,muhat,:,:),dim=nuhat,shift=1)
fsi = cshift(ui(:,:,:,:,muhat,:,:),dim=nuhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr2(:,:,:,:,ic,jc) = tr2(:,:,:,:,ic,jc) +
& ( tr1(:,:,:,:,ic,kc) * fsr(:,:,:,:,jc,kc) +
& ti1(:,:,:,:,ic,kc) * fsi(:,:,:,:,jc,kc) )

ti2(:,:,:,:,ic,jc) = ti2(:,:,:,:,ic,jc) +
& ( ti1(:,:,:,:,ic,kc) * fsr(:,:,:,:,jc,kc) -
& tr1(:,:,:,:,ic,kc) * fsi(:,:,:,:,jc,kc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*Udagger(x,nu)}/4
c

do ic=1,nc
do jc=1,nc

do kc=1,nc
sqCr(:,:,:,:,ic,jc) = sqCr(:,:,:,:,ic,jc) +

& ( tr2(:,:,:,:,ic,kc) * ur(:,:,:,:,nuhat,jc,kc) +
& ti2(:,:,:,:,ic,kc) * ui(:,:,:,:,nuhat,jc,kc) ) / 4.0d0

sqCi(:,:,:,:,ic,jc) = sqCi(:,:,:,:,ic,jc) +
& ( ti2(:,:,:,:,ic,kc) * ur(:,:,:,:,nuhat,jc,kc) -
& tr2(:,:,:,:,ic,kc) * ui(:,:,:,:,nuhat,jc,kc) ) / 4.0d0

end do
end do

end do
c
c Calculation of link products for upper-left plaquette, #2
c
c t1 = U(x,nu)*Udagger(x-mu+nu,mu)
c

tr1 = 0.0d0
ti1 = 0.0d0
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tr2 = cshift(cshift(ur(:,:,:,:,muhat,:,:),
& dim=muhat,shift=-1),dim=nuhat,shift=1)

ti2 = cshift(cshift(ui(:,:,:,:,muhat,:,:),
& dim=muhat,shift=-1),dim=nuhat,shift=1)

do ic=1,nc
do jc=1,nc

do kc=1,nc
tr1(:,:,:,:,ic,jc) = tr1(:,:,:,:,ic,jc) +

& ( ur(:,:,:,:,nuhat,ic,kc) * tr2(:,:,:,:,jc,kc) +
& ui(:,:,:,:,nuhat,ic,kc) * ti2(:,:,:,:,jc,kc) )

ti1(:,:,:,:,ic,jc) = ti1(:,:,:,:,ic,jc) +
& ( ui(:,:,:,:,nuhat,ic,kc) * tr2(:,:,:,:,jc,kc) -
& ur(:,:,:,:,nuhat,ic,kc) * ti2(:,:,:,:,jc,kc) )

end do
end do

end do
c
c t2 = t1*Udagger(x-mu,nu)
c

tr2 = 0.0d0
ti2 = 0.0d0
fsr = cshift(ur(:,:,:,:,nuhat,:,:),dim=muhat,shift=-1)
fsi = cshift(ui(:,:,:,:,nuhat,:,:),dim=muhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr2(:,:,:,:,ic,jc) = tr2(:,:,:,:,ic,jc) +
& ( tr1(:,:,:,:,ic,kc) * fsr(:,:,:,:,jc,kc) +
& ti1(:,:,:,:,ic,kc) * fsi(:,:,:,:,jc,kc) )

ti2(:,:,:,:,ic,jc) = ti2(:,:,:,:,ic,jc) +
& ( ti1(:,:,:,:,ic,kc) * fsr(:,:,:,:,jc,kc) -
& tr1(:,:,:,:,ic,kc) * fsi(:,:,:,:,jc,kc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*U(x-mu,mu)}/4
c

fsr = cshift(ur(:,:,:,:,muhat,:,:),dim=muhat,shift=-1)
fsi = cshift(ui(:,:,:,:,muhat,:,:),dim=muhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

sqCr(:,:,:,:,ic,jc) = sqCr(:,:,:,:,ic,jc) +
& ( tr2(:,:,:,:,ic,kc) * fsr(:,:,:,:,kc,jc) -
& ti2(:,:,:,:,ic,kc) * fsi(:,:,:,:,kc,jc) ) / 4.0d0

sqCi(:,:,:,:,ic,jc) = sqCi(:,:,:,:,ic,jc) +
& ( ti2(:,:,:,:,ic,kc) * fsr(:,:,:,:,kc,jc) +
& tr2(:,:,:,:,ic,kc) * fsi(:,:,:,:,kc,jc) ) / 4.0d0

end do
end do

end do
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c
c Calculation of link products for lower-left plaquette, #3
c
c
c t1 = Udagger(x-mu,mu)*Udagger(x-mu-nu,nu)
c

tr1 = 0.0d0
ti1 = 0.0d0
tr2 = cshift(ur(:,:,:,:,muhat,:,:),dim=muhat,shift=-1)
ti2 = cshift(ui(:,:,:,:,muhat,:,:),dim=muhat,shift=-1)
fsr = cshift(cshift(ur(:,:,:,:,nuhat,:,:),

& dim=muhat,shift=-1),dim=nuhat,shift=-1)
fsi = cshift(cshift(ui(:,:,:,:,nuhat,:,:),

& dim=muhat,shift=-1),dim=nuhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr1(:,:,:,:,ic,jc) = tr1(:,:,:,:,ic,jc) +
& ( tr2(:,:,:,:,kc,ic) * fsr(:,:,:,:,jc,kc) -
& ti2(:,:,:,:,kc,ic) * fsi(:,:,:,:,jc,kc) )

ti1(:,:,:,:,ic,jc) = ti1(:,:,:,:,ic,jc) +
& (-ti2(:,:,:,:,kc,ic) * fsr(:,:,:,:,jc,kc) -
& tr2(:,:,:,:,kc,ic) * fsi(:,:,:,:,jc,kc) )

end do
end do

end do
c
c t2 = t1*U(x-mu-nu,mu)
c

tr2 = 0.0d0
ti2 = 0.0d0
fsr = cshift(cshift(ur(:,:,:,:,muhat,:,:),

& dim=muhat,shift=-1),dim=nuhat,shift=-1)
fsi = cshift(cshift(ui(:,:,:,:,muhat,:,:),

& dim=muhat,shift=-1),dim=nuhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr2(:,:,:,:,ic,jc) = tr2(:,:,:,:,ic,jc) +
& ( tr1(:,:,:,:,ic,kc) * fsr(:,:,:,:,kc,jc) -
& ti1(:,:,:,:,ic,kc) * fsi(:,:,:,:,kc,jc) )

ti2(:,:,:,:,ic,jc) = ti2(:,:,:,:,ic,jc) +
& ( ti1(:,:,:,:,ic,kc) * fsr(:,:,:,:,kc,jc) +
& tr1(:,:,:,:,ic,kc) * fsi(:,:,:,:,kc,jc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*U(x-nu,nu)}/4
c

fsr = cshift(ur(:,:,:,:,nuhat,:,:),dim=nuhat,shift=-1)
fsi = cshift(ui(:,:,:,:,nuhat,:,:),dim=nuhat,shift=-1)

264



do ic=1,nc
do jc=1,nc

do kc=1,nc
sqCr(:,:,:,:,ic,jc) = sqCr(:,:,:,:,ic,jc) +

& ( tr2(:,:,:,:,ic,kc) * fsr(:,:,:,:,kc,jc) -
& ti2(:,:,:,:,ic,kc) * fsi(:,:,:,:,kc,jc) ) / 4.0d0

sqCi(:,:,:,:,ic,jc) = sqCi(:,:,:,:,ic,jc) +
& ( ti2(:,:,:,:,ic,kc) * fsr(:,:,:,:,kc,jc) +
& tr2(:,:,:,:,ic,kc) * fsi(:,:,:,:,kc,jc) ) / 4.0d0

end do
end do

end do
c
c Calculation of link products for lower-right plaquette, #4
c
c t1 = Udagger(x-nu,nu)*U(x-nu,mu)
c

tr1 = 0.0d0
ti1 = 0.0d0
tr2 = cshift(ur(:,:,:,:,nuhat,:,:),dim=nuhat,shift=-1)
ti2 = cshift(ui(:,:,:,:,nuhat,:,:),dim=nuhat,shift=-1)
fsr = cshift(ur(:,:,:,:,muhat,:,:),dim=nuhat,shift=-1)
fsi = cshift(ui(:,:,:,:,muhat,:,:),dim=nuhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr1(:,:,:,:,ic,jc) = tr1(:,:,:,:,ic,jc) +
& ( tr2(:,:,:,:,kc,ic) * fsr(:,:,:,:,kc,jc) +
& ti2(:,:,:,:,kc,ic) * fsi(:,:,:,:,kc,jc) )

ti1(:,:,:,:,ic,jc) = ti1(:,:,:,:,ic,jc) +
& (-ti2(:,:,:,:,kc,ic) * fsr(:,:,:,:,kc,jc) +
& tr2(:,:,:,:,kc,ic) * fsi(:,:,:,:,kc,jc) )

end do
end do

end do
c
c t2 = t1*U(x+mu-nu,nu)
c

tr2 = 0.0d0
ti2 = 0.0d0
fsr = cshift(cshift(ur(:,:,:,:,nuhat,:,:),

& dim=muhat,shift=1),dim=nuhat,shift=-1)
fsi = cshift(cshift(ui(:,:,:,:,nuhat,:,:),

& dim=muhat,shift=1),dim=nuhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

tr2(:,:,:,:,ic,jc) = tr2(:,:,:,:,ic,jc) +
& ( tr1(:,:,:,:,ic,kc) * fsr(:,:,:,:,kc,jc) -
& ti1(:,:,:,:,ic,kc) * fsi(:,:,:,:,kc,jc) )

ti2(:,:,:,:,ic,jc) = ti2(:,:,:,:,ic,jc) +
& ( ti1(:,:,:,:,ic,kc) * fsr(:,:,:,:,kc,jc) +
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& tr1(:,:,:,:,ic,kc) * fsi(:,:,:,:,kc,jc) )
end do

end do
end do

c
c Fnew = Fold + Im{t2*Udagger(x,mu)}/4
c

do ic=1,nc
do jc=1,nc

do kc=1,nc
sqCr(:,:,:,:,ic,jc) = sqCr(:,:,:,:,ic,jc) +

& ( tr2(:,:,:,:,ic,kc) * ur(:,:,:,:,muhat,jc,kc) +
& ti2(:,:,:,:,ic,kc) * ui(:,:,:,:,muhat,jc,kc) ) / 4.0d0

sqCi(:,:,:,:,ic,jc) = sqCi(:,:,:,:,ic,jc) +
& ( ti2(:,:,:,:,ic,kc) * ur(:,:,:,:,muhat,jc,kc) -
& tr2(:,:,:,:,ic,kc) * ui(:,:,:,:,muhat,jc,kc) ) / 4.0d0

end do
end do

end do

return
end subroutine clover

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c author: Frederic D.R. Bonnet, January 2000.
c Subroutine to calculate an improved topological charge operator.
c This operator will contain the 1x1 standard Wilson loop plus
c 1x2 and 2x1 Wilson loops.
c

subroutine impclover(ur,ui,rectCr,rectCi,xhat,yhat)
implicit none
include ’latticeSize.h’

c Global variables.

integer,parameter :: nc=3 !no. colours
integer,parameter :: mu=4 !no. dimensions

integer,parameter :: nf=6

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc,nf) :: rectFr,rectFi
cmf$ layout rectFr(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout rectFi(:news,:news,:news,:news,:serial,:serial,:serial)

c Local variables.

double precision,dimension(nx,ny,nz,nt) :: impTrFr
cmf$ layout impTrFr(:news,:news,:news,:news)
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double precision,dimension(nx,ny,nz,nt,nc,nc) :: t1r,t1i,t2r,t2i
cmf$ layout t1r(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t1i(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t2r(:news,:news,:news,:news,:serial,:serial)
cmf$ layout t2i(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: usr,usi
cmf$ layout usr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout usi(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: rectCr,rectCi
cmf$ layout rectCr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout rectCi(:news,:news,:news,:news,:serial,:serial)

integer :: xhat,yhat
integer :: index
integer :: ic,jc,kc,imu,i

c start of the execution commands

c calculation of the first set 2x1 upper forward + 1x2 upper forward.

rectCr = 0.0d0
rectCi = 0.0d0

c 2x1 upper forward.

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,xhat,ic,kc) * usr(:,:,:,:,kc,jc) -
& ui(:,:,:,:,xhat,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,xhat,ic,kc) * usi(:,:,:,:,kc,jc) +
& ui(:,:,:,:,xhat,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat,:,:),dim=xhat,shift=2)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=xhat,shift=2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )
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t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=1),

& dim=yhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=1),

& dim=yhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat,shift=1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*Udagger(x,nu)}/4
c

do ic=1,nc
do jc=1,nc

do kc=1,nc
rectCr(:,:,:,:,ic,jc) = rectCr(:,:,:,:,ic,jc) +

& ( t2r(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat,jc,kc) +
& t2i(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat,jc,kc) ) / 4.0d0

rectCi(:,:,:,:,ic,jc) = rectCi(:,:,:,:,ic,jc) +
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& (-t2r(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat,jc,kc) +
& t2i(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat,jc,kc) ) / 4.0d0

end do
end do

end do

c 1x2 upper forward.

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat,:,:),dim=xhat,shift=1)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=xhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,xhat,ic,kc) * usr(:,:,:,:,kc,jc) -
& ui(:,:,:,:,xhat,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,xhat,ic,kc) * usi(:,:,:,:,kc,jc) +
& ui(:,:,:,:,xhat,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat,:,:),

& dim=xhat,shift=1),dim=yhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,yhat,:,:),

& dim=xhat,shift=1),dim=yhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat,shift=2)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat,shift=2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
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& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat,:,:),dim=yhat,shift=1)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=yhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& 1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*Udagger(x,yhat)}/4
c

do ic=1,nc
do jc=1,nc

do kc=1,nc
rectCr(:,:,:,:,ic,jc) = rectCr(:,:,:,:,ic,jc) +

& ( t2r(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat,jc,kc) +
& t2i(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat,jc,kc) ) / 4.0d0

rectCi(:,:,:,:,ic,jc) = rectCi(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * ui(:,:,:,:,yhat,jc,kc) +
& t2i(:,:,:,:,ic,kc) * ur(:,:,:,:,yhat,jc,kc) ) / 4.0d0

end do
end do

end do

c calculation of the second set 2x1 upper backward + 1x2 upper backward.

c 2x1 upper backward

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1),

& dim=yhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1),

& dim=yhat,shift=1)
do ic=1,nc
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do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,yhat,ic,kc) * usr(:,:,:,:,jc,kc) +
& ui(:,:,:,:,yhat,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-ur(:,:,:,:,yhat,ic,kc) * usi(:,:,:,:,jc,kc) +
& ui(:,:,:,:,yhat,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=xhat,shift=-2),dim=yhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=xhat,shift=-2),dim=yhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat,:,:),dim=xhat,shift=-2)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=xhat,shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-2)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-2)
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do ic=1,nc
do jc=1,nc

do kc=1,nc
t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +

& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*Udagger(x-xhat,xhat)}/4
c

usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectCr(:,:,:,:,ic,jc) = rectCr(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) ) / 4.0d0

rectCi(:,:,:,:,ic,jc) = rectCi(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) ) / 4.0d0

end do
end do

end do

c 1x2 upper backward

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat,:,:),dim=yhat,shift=1)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=yhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,yhat,ic,kc) * usr(:,:,:,:,kc,jc) -
& ui(:,:,:,:,yhat,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,yhat,ic,kc) * usi(:,:,:,:,kc,jc) +
& ui(:,:,:,:,yhat,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1),
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& dim=yhat,shift=2)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1),

& dim=yhat,shift=2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat,:,:),dim=xhat,shift=-1),dim=yhat,shift=1)
usi = cshift(cshift(ui(:,:,:,:,yhat,:,:),dim=xhat,shift=-1),dim=yhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat,:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*U(x-xhat,xhat)}/4
c
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usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectCr(:,:,:,:,ic,jc) = rectCr(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) ) / 4.0d0

rectCi(:,:,:,:,ic,jc) = rectCi(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) ) / 4.0d0

end do
end do

end do

c calculation of the third set 2x1 downer backward + 1x2 downer backward.

c 2x1 downer backward

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
t2i = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-2)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat,:,:),

& dim=xhat,shift=-2),dim=yhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,yhat,:,:),

& dim=xhat,shift=-2),dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
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& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )
end do

end do
end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=xhat,shift=-2),dim=yhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=xhat,shift=-2),dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),

& dim=xhat,shift=-1),dim=yhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),

& dim=xhat,shift=-1),dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*U(x-yhat,yhat)}/4
c

usr = cshift(ur(:,:,:,:,yhat,:,:),dim=yhat,shift=-1)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectCr(:,:,:,:,ic,jc) = rectCr(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
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& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) ) / 4.0d0
rectCi(:,:,:,:,ic,jc) = rectCi(:,:,:,:,ic,jc) +

& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) ) / 4.0d0

end do
end do

end do

c 1x2 downer backward.

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
t2i = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=-1)
usr = cshift(cshift(ur(:,:,:,:,yhat,:,:),

& dim=xhat,shift=-1),dim=yhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,yhat,:,:),

& dim=xhat,shift=-1),dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat,:,:),

& dim=xhat,shift=-1),dim=yhat,shift=-2)
usi = cshift(cshift(ui(:,:,:,:,yhat,:,:),

& dim=xhat,shift=-1),dim=yhat,shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
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usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),
& dim=xhat,shift=-1),dim=yhat,shift=-2)

usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),
& dim=xhat,shift=-1),dim=yhat,shift=-2)

do ic=1,nc
do jc=1,nc

do kc=1,nc
t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +

& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,yhat,:,:),dim=yhat,shift=-2)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=yhat,shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& ( t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) +
& t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*U(x-yhat,yhat)}/4
c

usr = cshift(ur(:,:,:,:,yhat,:,:),dim=yhat,shift=-1)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

rectCr(:,:,:,:,ic,jc) = rectCr(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) ) / 4.0d0

rectCi(:,:,:,:,ic,jc) = rectCi(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) ) / 4.0d0

end do
end do

end do

c calculation of the fourth set 2x1 downer forward + 1x2 downer forward.
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c 2x1 downer forward

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,yhat,:,:),dim=yhat,shift=-1)
t2i = cshift(ui(:,:,:,:,yhat,:,:),dim=yhat,shift=-1)
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat,shift=-1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,kc,ic) * usr(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,kc,ic) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,kc,ic) * usi(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,kc,ic) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=1),

& dim=yhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=1),

& dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat,:,:),

& dim=xhat,shift=2),dim=yhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,yhat,:,:),

& dim=xhat,shift=2),dim=yhat,shift=-1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
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& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )
t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +

& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=xhat,shift=1)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& (-t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,jc,kc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,jc,kc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*Udagger(x,xhat)}/4
c

do ic=1,nc
do jc=1,nc

do kc=1,nc
rectCr(:,:,:,:,ic,jc) = rectCr(:,:,:,:,ic,jc) +

& ( t2r(:,:,:,:,ic,kc) * ur(:,:,:,:,xhat,jc,kc) +
& t2i(:,:,:,:,ic,kc) * ui(:,:,:,:,xhat,jc,kc) ) / 4.0d0

rectCi(:,:,:,:,ic,jc) = rectCi(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * ui(:,:,:,:,xhat,jc,kc) +
& t2i(:,:,:,:,ic,kc) * ur(:,:,:,:,xhat,jc,kc) ) / 4.0d0

end do
end do

end do

c 1x2 downer forward.

t1r = 0.0d0
t1i = 0.0d0
t2r = cshift(ur(:,:,:,:,yhat,:,:),dim=yhat,shift=-1)
t2i = cshift(ui(:,:,:,:,yhat,:,:),dim=yhat,shift=-1)
usr = cshift(ur(:,:,:,:,yhat,:,:),dim=yhat,shift=-2)
usi = cshift(ui(:,:,:,:,yhat,:,:),dim=yhat,shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
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& ( t2r(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,kc,ic) * usi(:,:,:,:,jc,kc) -
& t2i(:,:,:,:,kc,ic) * usr(:,:,:,:,jc,kc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(ur(:,:,:,:,xhat,:,:),dim=yhat,shift=-2)
usi = cshift(ui(:,:,:,:,xhat,:,:),dim=yhat,shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t1r = 0.0d0
t1i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat,:,:),

& dim=xhat,shift=1),dim=yhat,shift=-2)
usi = cshift(cshift(ui(:,:,:,:,yhat,:,:),

& dim=xhat,shift=1),dim=yhat,shift=-2)
do ic=1,nc

do jc=1,nc
do kc=1,nc

t1r(:,:,:,:,ic,jc) = t1r(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t2i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t1i(:,:,:,:,ic,jc) = t1i(:,:,:,:,ic,jc) +
& ( t2r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t2i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do

t2r = 0.0d0
t2i = 0.0d0
usr = cshift(cshift(ur(:,:,:,:,yhat,:,:),dim=xhat,shift=1),

& dim=yhat,shift=-1)
usi = cshift(cshift(ui(:,:,:,:,yhat,:,:),dim=xhat,shift=1),

& dim=yhat,shift=-1)
do ic=1,nc
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do jc=1,nc
do kc=1,nc

t2r(:,:,:,:,ic,jc) = t2r(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) -
& t1i(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) )

t2i(:,:,:,:,ic,jc) = t2i(:,:,:,:,ic,jc) +
& ( t1r(:,:,:,:,ic,kc) * usi(:,:,:,:,kc,jc) +
& t1i(:,:,:,:,ic,kc) * usr(:,:,:,:,kc,jc) )

end do
end do

end do
c
c Fnew = Fold + Im{t2*Udagger(x,xhat)}/4
c

do ic=1,nc
do jc=1,nc

do kc=1,nc
rectCr(:,:,:,:,ic,jc) = rectCr(:,:,:,:,ic,jc) +

& ( t2r(:,:,:,:,ic,kc) * ur(:,:,:,:,xhat,jc,kc) +
& t2i(:,:,:,:,ic,kc) * ui(:,:,:,:,xhat,jc,kc) ) / 4.0d0

rectCi(:,:,:,:,ic,jc) = rectCi(:,:,:,:,ic,jc) +
& (-t2r(:,:,:,:,ic,kc) * ui(:,:,:,:,xhat,jc,kc) +
& t2i(:,:,:,:,ic,kc) * ur(:,:,:,:,xhat,jc,kc) ) / 4.0d0

end do
end do

end do

return
end subroutine impclover

E.18 Cooling the SUc(3) matrices

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & D.B. Leinweber: February 1999.
c subroutine coolSweep updates the current link using a psedo-heatbath
c algorithm. It calls the staples and cooling.
c

subroutine coolSweep(ur,ui,mask,umask,beta,itype,nsub,uzero)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3,ncsu2=2
integer,parameter :: nsigma=ncsu2*ncsu2
integer,parameter :: mu=4
integer,parameter :: nmask=16

integer :: itype
integer :: nsub
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integer :: umask

double precision :: uzero
double precision :: beta

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

logical,dimension(nx,ny,nz,nt,mu,nmask) :: mask
cmf$ layout mask(:news,:news,:news,:news,:serial,:serial)

c local variables

double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei
double precision,dimension(nx,ny,nz,nt,nc,nc) :: ltsr,ltsi
double precision,dimension(nx,ny,nz,nt,nc,nc) :: urprmsu3,uiprmsu3

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ltsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ltsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout urprmsu3(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uiprmsu3(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: ursu2,uisu2

cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ursu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uisu2(:news,:news,:news,:news,:serial,:serial)

double precision :: betanew
integer :: of1
integer :: imask,ihat,ic,jc,kc,ic3
integer :: isub

interface
SUBROUTINE staples(ur,ui,stapler,staplei,xhat,local,itype,uzero)
IMPLICIT NONE
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
integer :: xhat
integer :: itype
double precision :: uzero
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end SUBROUTINE staples
subroutine cooling(urnewsu2,uinewsu2,phbsr,phbsi)
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implicit none
include ’latticeSize.h’
integer,parameter :: ncsu2=2
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: urnewsu2,uinewsu2

cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout urnewsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uinewsu2(:news,:news,:news,:news,:serial,:serial)

end subroutine cooling
end interface

c starts of the running commands

c Here we need to multiply Beta by a factor of 2/nc=3 because for the su2 case
c there is a factor of which cancels the one 1/ncsu2 in the probability
c distribution function. This beta value is to be passed into cooling

betanew = ( 2.0d0 / nc ) * beta

c the ihat do loop, is to loop over all the possible Euclidean directions.
c The imask do loop, is to ensure that the entire lattice is considered:
c all true then all false.

do ihat=1,mu
do imask=1,umask

c calculate the staple in the ihat direction

call staples(ur,ui,stapler,staplei,ihat,.true.,itype,uzero)

do isub=1,nsub
c
c case 1. a_1
c
c The Wilson action can be written as S(U)=Sum_p(Re(U*U_p))+constant
c =Re(Tr(U*R))+constant
c R is just the sum over the six plaquette namely the staples: stapler,staplei.

c now we need to calculate the product of the staples time the link variable in
c each direction U*R=ltsr+iltsi=( ur + iui ) * ( stapler + istaplei )
c =(ur*stapler - ui*staplei)+i(ur*staplei + ui*staplei)

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) +
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& ui(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) )
end do

end do
end do

c The distribution we are interested in the following
c dP(a_k) = d^{(k)}a_k * exp[-beta * S(a_k*U^{(k-1)})]/Z_k(U^{(k-1)})
c where d^{(k)}a_k is the Haar measure on the SU(2)_k and
c Z_k(U^{(k-1)}) = \int_{SU(2)_k} da exp[-beta * S(aU)]. If a{\in}SU(2)_K then
c Z_k(aU) = Z_k(U). In order to generate the above distribution for the minimal
c set F of SU(2) subgroup of SU(N) namely {F:SU(2)_k, k=1,..,nc-1}, let’s first
c note that S(a_k*U)=Re(Tr a_k * U*R) = Re(Tr \alpha_k * r_k)
c + terms independent of \alpha_k.
c Where r_k is the 2x2 subgroup of the U*R (i.e. link*staples : lts), this matix
c has the same block structure as the matrix a_k. This means that \alpha_k and
c r_k = r_0 * I + i \vec{\sigma}\dot\vec{r} are the same block in the ncxnc
c matrix located at the (k,k+1)th rows and column.

c For the first call of the pseudo-heatbath we need to match the matrix block,
c if this is not done wrong information will be sent to the subroutine therefore
c returning the wrong numbers. To do that we use an offset parameter called of1
c with this of1 we can acces the correct entries of the ncxnc lts matrix. We then
c reconstruct a SU(2) matrix that can be passed into cooling which will also
c return a SU(2) matrix.

of1 = 0

phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1+of1,1+of1) +
& ltsr(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1+of1,2+of1) -
& ltsr(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)

phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1+of1,1+of1) -
& ltsi(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1+of1,2+of1) +
& ltsi(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c now calling the pseudo-heatbath algorithm to update, where the
c mask is .true., the full QCD configuration

c we call cooling to form 2 SU(3) matrices.
c These two matrices have the form matrixa = [ [SU(2)] 0 ], matrixb[ 1 0 ].
c [ 0 1 ], [ 0 [SU(2)] ]
c Where [SU(2)] is hotwired via ursu2,uisu2 and ursu2,uisu2.

call cooling(ursu2,uisu2,phbsr,phbsi)

c We next make a product of the matrices in such a way that
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c link Uprmsu3 = urprmsu3+iuiprmsu3 = ( ar + iai ) * ( ur + iui )
c = ( ar*ur - ai*ui ) + i( ar*ui + ai*ur)
c by hotwiring the matrix indices for optimization.

do ic=1,nc-1
do jc=1,nc

where( mask(:,:,:,:,ihat,imask) )
urprmsu3(:,:,:,:,ic,jc) = ( ursu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +

& ursu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,2,jc) -
& uisu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) -
& uisu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,2,jc) )

uiprmsu3(:,:,:,:,ic,jc) = ( ursu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,2,jc) +
& uisu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& uisu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,2,jc) )

elsewhere
urprmsu3(:,:,:,:,ic,jc) = ur(:,:,:,:,ihat,ic,jc)
uiprmsu3(:,:,:,:,ic,jc) = ui(:,:,:,:,ihat,ic,jc)

end where
end do

end do

do jc=1,nc
urprmsu3(:,:,:,:,3,jc) = ur(:,:,:,:,ihat,3,jc)
uiprmsu3(:,:,:,:,3,jc) = ui(:,:,:,:,ihat,3,jc)

end do
c
c case 2. a_2
c
c here we calculate the next bit of the product, link*staples.
c We use the old staples to multiply it with Uprmsu3 = a_1 * U
c lts = matrixa = [ [SU(2)] 0 ]*lts[ ele in SU(3) 0 ].
c [ 0 1 ] [ 0 0 ]

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( urprmsu3(:,:,:,:,ic,kc) * stapler(:,:,:,:,kc,jc) -
& uiprmsu3(:,:,:,:,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( urprmsu3(:,:,:,:,ic,kc) * staplei(:,:,:,:,kc,jc) +
& uiprmsu3(:,:,:,:,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

c Here again after having calculated the new ltsr and ltsi ( Uprmsu3*R ) with
c the old staples R, Uprmsu3 = a_1 * U. We use an offset of1=1 to access the
c lower block of the ncxnc lts matrix. Then once again we reshape these
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c entries by hardwiring them into a SU(2) matrix called pseudo-heatbath
c staples namely phbsr and phbsi. The resulting SU(2) matrix is then
c passed into cooling.

of1 = 1

phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1+of1,1+of1) +
& ltsr(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1+of1,2+of1) -
& ltsr(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)

phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1+of1,1+of1) -
& ltsi(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1+of1,2+of1) +
& ltsi(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c we next make a product of the matrices in such a way that link
c Udblerpm=urdbleprmsu3+iuidbleprmsu3
c =( br + ibi ) * ( urprmsu3 + iuiprmsu3 )
c =( br*urprmsu3 - bi*uiprmsu3 ) + i( br*uiprmsu3 + bi*urprmsu3)
c = a_2 * Uprmsu3
c Where the a_1 and a_2 have the form of matrixa and matrixb mentioned above.

c Calling cooling to obtain two new SU(2) matrices with the linkprmsu3*staples
c calculated above.
c Allocating by hardwiring to the urnew and uinew which are the return
c variables of these products.

call cooling(ursu2,uisu2,phbsr,phbsi)

c Now mapping these variables to the full QCD link, ur and ui. For each
c direction mu, the main loop imu.

do ic=2,nc
do jc=1,nc

where( mask(:,:,:,:,ihat,imask) )
ur(:,:,:,:,ihat,ic,jc) = ( ursu2(:,:,:,:,ic-1,1) * urprmsu3(:,:,:,:,2,jc) +

& ursu2(:,:,:,:,ic-1,2) * urprmsu3(:,:,:,:,3,jc) -
& uisu2(:,:,:,:,ic-1,1) * uiprmsu3(:,:,:,:,2,jc) -
& uisu2(:,:,:,:,ic-1,2) * uiprmsu3(:,:,:,:,3,jc) )

ui(:,:,:,:,ihat,ic,jc) = ( ursu2(:,:,:,:,ic-1,1) * uiprmsu3(:,:,:,:,2,jc) +
& ursu2(:,:,:,:,ic-1,2) * uiprmsu3(:,:,:,:,3,jc) +
& uisu2(:,:,:,:,ic-1,1) * urprmsu3(:,:,:,:,2,jc) +
& uisu2(:,:,:,:,ic-1,2) * urprmsu3(:,:,:,:,3,jc) )

elsewhere
ur(:,:,:,:,ihat,ic,jc) = urprmsu3(:,:,:,:,ic,jc)
ui(:,:,:,:,ihat,ic,jc) = uiprmsu3(:,:,:,:,ic,jc)
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end where
end do

end do

do jc=1,nc
ur(:,:,:,:,ihat,1,jc) = urprmsu3(:,:,:,:,1,jc)
ui(:,:,:,:,ihat,1,jc) = uiprmsu3(:,:,:,:,1,jc)

end do
c
c case 3. a_3
c
c forming another SU(2) subgroup of the form
c These two matrices have the form matrixa = [ x 0 x ]
c [ 0 1 0 ]
c [ x 0 x ]

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) +
& ui(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1,1) + ltsr(:,:,:,:,3,3) ) / 2.0d0
phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1,3) - ltsr(:,:,:,:,3,1) ) / 2.0d0
phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)

phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1,1) - ltsi(:,:,:,:,3,3) ) / 2.0d0
phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1,3) + ltsi(:,:,:,:,3,1) ) / 2.0d0
phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

c now calling the cooling algorithm.

call cooling(ursu2,uisu2,phbsr,phbsi)

c We next make a product of the matrices in such a way that
c link Uprmsu3 = urprmsu3+iuiprmsu3 = ( ar + iai ) * ( ur + iui )
c = ( ar*ur - ai*ui ) + i( ar*ui + ai*ur)
c by hotwiring the matrix indices for optimization.

do ic=1,nc-1
do jc=1,nc
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ic3 = ic
if(ic3 == 2 ) ic3 = 3
where( mask(:,:,:,:,ihat,imask) )

urprmsu3(:,:,:,:,ic3,jc) =
& ( ursu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,3,jc) -
& uisu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) -
& uisu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,3,jc) )

uiprmsu3(:,:,:,:,ic3,jc) =
& ( ursu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,3,jc) +
& uisu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& uisu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,3,jc) )

elsewhere
urprmsu3(:,:,:,:,ic3,jc) = ur(:,:,:,:,ihat,ic3,jc)
uiprmsu3(:,:,:,:,ic3,jc) = ui(:,:,:,:,ihat,ic3,jc)

end where
end do

end do

do jc=1,nc
ur(:,:,:,:,ihat,1,jc) = urprmsu3(:,:,:,:,1,jc)
ui(:,:,:,:,ihat,1,jc) = uiprmsu3(:,:,:,:,1,jc)
ur(:,:,:,:,ihat,3,jc) = urprmsu3(:,:,:,:,3,jc)
ui(:,:,:,:,ihat,3,jc) = uiprmsu3(:,:,:,:,3,jc)

end do

end do

end do
end do

return
end subroutine coolSweep

E.19 Cooling the Gauge Field Configurations at the

SUc(2) Level

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet & D.B. Leinweber: date: February 1999.
c initializes the link variables
c subroutine that implements the pseudo-heatbath algorithm
c

subroutine cooling(urnewsu2,uinewsu2,phbsr,phbsi)
implicit none
include ’latticeSize.h’

c global variables
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integer,parameter :: ncsu2=2

double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: urnewsu2,uinewsu2
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi

cmf$ layout urnewsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uinewsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)

c local variables

double precision,dimension(nx,ny,nz,nt) :: k
cmf$ layout k(:news,:news,:news,:news)

integer :: ic,jc

c start of the execution commands

c calculates the determinant k=|\sum_{\alpha=1}^6\widetilde{U}_{\alpha}|^{1/2}
c where $\widetilde{U}_{\alpha}\equiv$ the six product of the three links
c variable which interact with the link in question, i.e. stapler and staplei

k = sqrt( abs( phbsr(:,:,:,:,1,1) * phbsr(:,:,:,:,2,2) -
& phbsr(:,:,:,:,1,2) * phbsr(:,:,:,:,2,1) -
& phbsi(:,:,:,:,1,1) * phbsi(:,:,:,:,2,2) +
& phbsi(:,:,:,:,1,2) * phbsi(:,:,:,:,2,1) ) )

c this calculates U --> U’= staple^{\dag} / k, the U (full link) coming out
c of su2random is here replaced by U’(partial link, depends on ihat the direction)
c this is for minimising the local action such that U*{\overline{U}}^{\dag}=I

urnewsu2 = 0.0d0
uinewsu2 = 0.0d0
do ic=1,ncsu2

do jc=1,ncsu2
urnewsu2(:,:,:,:,ic,jc) = phbsr(:,:,:,:,jc,ic) / k
uinewsu2(:,:,:,:,ic,jc) = - phbsi(:,:,:,:,jc,ic) / k

end do
end do

return
end subroutine cooling

E.20 APE Smearing and AUS Smearing

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Authors: F.D.R. Bonnet, D.B. Leinweber and M. Standford: February 1999
c Subroutine that simulates ape smearing taking the product of
c links in the opposite
c direction to ’staples’
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c
subroutine ape_smear(ur,ui,wparam,itype,nsub,uzero)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3 !sigma,color
integer,parameter :: mu=4 !direction

integer :: nsub
integer :: itype
double precision :: uzero
double precision :: wparam

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables

integer :: xhat
double precision :: g !g = (f)/(2*(mu-1))
double precision :: alpha !alpha = (1-f)

double precision,dimension(nx,ny,nz,nt,nc,nc) ::stapler,staplei
cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: urprm,uiprm
cmf$ layout urprm(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout uiprm(:news,:news,:news,:news,:serial,:serial,:serial)

integer :: ic,jc

INTERFACE
SUBROUTINE staples(ur,ui,stapler,staplei,xhat,local,itype,uzero)
IMPLICIT NONE
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
integer :: xhat
integer :: itype
double precision :: uzero
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end SUBROUTINE staples
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subroutine fixsu3(ur,ui)
implicit none
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine fixsu3
subroutine Newfixsu3(ur,ui,urprm,uiprm,nsub)
implicit none
include ’latticeSize.h’
integer,parameter :: nc=3,ncsu2=2
integer,parameter :: mu=4
integer :: nsub
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: urprm,uiprm

cmf$ layout urprm(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout uiprm(:news,:news,:news,:news,:serial,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end subroutine Newfixsu3
END INTERFACE

c starting the execution commands

g = ( wparam ) / ( 2 * (mu-1) )
alpha = ( 1.0d0 - wparam )

do xhat=1,mu
call staples(ur,ui,stapler,staplei,xhat,.true.,itype,uzero)
do ic=1,nc

do jc=1,nc
urprm(:,:,:,:,xhat,ic,jc) =

& alpha * ur(:,:,:,:,xhat,ic,jc) + g * stapler(:,:,:,:,jc,ic)
uiprm(:,:,:,:,xhat,ic,jc) =

& alpha * ui(:,:,:,:,xhat,ic,jc) - g * staplei(:,:,:,:,jc,ic)
end do

end do
end do

c call fixsu3(urprm,uiprm)
c ur = urprm
c ui = uiprm

call Newfixsu3(ur,ui,urprm,uiprm,nsub)

return
end subroutine ape_smear

c
c cccccsssssssccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Authors: F.D.R. Bonnet, D.B. Leinweber and M. Standford: February 1999
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c Subroutine that simulates ape smearing taking the product of links in the
c opposite direction to ’staples’
c

subroutine cool_smear(ur,ui,wparam,itype,uzero)
implicit none
include ’latticeSize.h’

c global variables

integer,parameter :: nc=3
integer,parameter :: mu=4

integer :: itype
double precision :: uzero
double precision :: wparam

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables

integer :: xhat
double precision :: g !g = (f)/(2*(mu-1))
double precision :: alpha !alpha = (1-f)

double precision,dimension(nx,ny,nz,nt,nc,nc) ::stapler,staplei
cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

integer :: ic,jc

INTERFACE
SUBROUTINE staples(ur,ui,stapler,staplei,xhat,local,itype,uzero)
IMPLICIT NONE
include ’latticeSize.h’
integer,parameter :: nc=3
integer,parameter :: mu=4
integer :: xhat
integer :: itype
double precision :: uzero
logical :: local
double precision,dimension(nx,ny,nz,nt,nc,nc) :: stapler,staplei

cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

end SUBROUTINE staples
SUBROUTINE fixsu3mu(ur,ui,imu)
IMPLICIT NONE
include ’latticeSize.h’
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integer,parameter :: nc=3
integer,parameter :: mu=4
double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui

cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

integer :: imu
end SUBROUTINE fixsu3mu

END INTERFACE

c starting of the execution commands

g = ( wparam ) / ( 2 * (mu-1) )
alpha = ( 1.0d0 - wparam )

do xhat=1,mu
call staples(ur,ui,stapler,staplei,xhat,.true.,itype,uzero)
do ic=1,nc

do jc=1,nc
ur(:,:,:,:,xhat,ic,jc) =

& alpha * ur(:,:,:,:,xhat,ic,jc) + g * stapler(:,:,:,:,jc,ic)
ui(:,:,:,:,xhat,ic,jc) =

& alpha * ui(:,:,:,:,xhat,ic,jc) - g * staplei(:,:,:,:,jc,ic)
end do

end do
call fixsu3mu(ur,ui,xhat)

end do

return
end subroutine cool_smear

E.21 Reunitarization Method Based onmaxRe Tr(UU †′)

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Authors: F.D.R. Bonnet, D.B. Leinweber: Date 28/4/2000.
c subroutine that fixes the su3 links, using a smearing and cooling
c techniques.
c

subroutine Newfixsu3(ur,ui,urprm,uiprm,nsub)
implicit none
include ’latticeSize.h’

c global variables.

integer,parameter :: nc=3,ncsu2=2
integer,parameter :: mu=4

integer :: nsub
integer :: itype
double precision :: uzero
double precision :: wparam
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double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: urprm,uiprm
cmf$ layout urprm(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout uiprm(:news,:news,:news,:news,:serial,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,mu,nc,nc) :: ur,ui
cmf$ layout ur(:news,:news,:news,:news,:serial,:serial,:serial)
cmf$ layout ui(:news,:news,:news,:news,:serial,:serial,:serial)

c local variables.

double precision,dimension(nx,ny,nz,nt,nc,nc) ::stapler,staplei
cmf$ layout stapler(:news,:news,:news,:news,:serial,:serial)
cmf$ layout staplei(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nc,nc) :: ltsr,ltsi
double precision,dimension(nx,ny,nz,nt,nc,nc) :: urprmsu3,uiprmsu3

cmf$ layout ltsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ltsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout urprmsu3(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uiprmsu3(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: ursu2,uisu2

cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout ursu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uisu2(:news,:news,:news,:news,:serial,:serial)

integer :: ihat,isub
integer :: of1
integer :: ic,jc,kc,ic3

INTERFACE
subroutine cooling(urnewsu2,uinewsu2,phbsr,phbsi)
implicit none
include ’latticeSize.h’
integer,parameter :: ncsu2=2
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: phbsr,phbsi
double precision,dimension(nx,ny,nz,nt,ncsu2,ncsu2) :: urnewsu2,uinewsu2

cmf$ layout phbsr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout phbsi(:news,:news,:news,:news,:serial,:serial)
cmf$ layout urnewsu2(:news,:news,:news,:news,:serial,:serial)
cmf$ layout uinewsu2(:news,:news,:news,:news,:serial,:serial)

end subroutine cooling
END INTERFACE

c starting the execution commands

c first calculate the uprimes.

do ihat=1,mu

c now setting the urprm and uiprm dageer to the staples.
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do ic=1,nc
do jc=1,nc

stapler(:,:,:,:,ic,jc) = urprm(:,:,:,:,ihat,jc,ic)
staplei(:,:,:,:,ic,jc) = - uiprm(:,:,:,:,ihat,jc,ic)

end do
end do

c now using the pseudosweep routine to cool the imformation at the
c su(2) level.

c here looping over the su(2) subgroups.

do isub=1,nsub
c
c case 1. a_1
c
c The Wilson action can be written as S(U)=Sum_p(Re(U*U_p))+constant
c =Re(Tr(U*R))+constant
c R is just the sum over the six plaquette namely the staples: stapler,staplei.

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) +
& ui(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

of1 = 0

phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1+of1,1+of1) +
& ltsr(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1+of1,2+of1) -
& ltsr(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)

phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1+of1,1+of1) -
& ltsi(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1+of1,2+of1) +
& ltsi(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)
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call cooling(ursu2,uisu2,phbsr,phbsi)

do ic=1,nc-1
do jc=1,nc

urprmsu3(:,:,:,:,ic,jc) =
& ( ursu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,2,jc) -
& uisu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) -
& uisu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,2,jc) )

uiprmsu3(:,:,:,:,ic,jc) =
& ( ursu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,2,jc) +
& uisu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& uisu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,2,jc) )

end do
end do

do jc=1,nc
urprmsu3(:,:,:,:,3,jc) = ur(:,:,:,:,ihat,3,jc)
uiprmsu3(:,:,:,:,3,jc) = ui(:,:,:,:,ihat,3,jc)

end do
c
c case 2. a_2
c
c here we calculate the next bit of the product, link*staples.
c We use the old staples to multiply it with Uprmsu3 = a_1 * U
c lts = matrixa = [ [SU(2)] 0 ]*lts[ ele in SU(3) 0 ].
c [ 0 1 ] [ 0 0 ]

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( urprmsu3(:,:,:,:,ic,kc) * stapler(:,:,:,:,kc,jc) -
& uiprmsu3(:,:,:,:,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( urprmsu3(:,:,:,:,ic,kc) * staplei(:,:,:,:,kc,jc) +
& uiprmsu3(:,:,:,:,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do

of1 = 1

phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1+of1,1+of1) +
& ltsr(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1+of1,2+of1) -
& ltsr(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)
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phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1+of1,1+of1) -
& ltsi(:,:,:,:,2+of1,2+of1) ) / 2.0d0

phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1+of1,2+of1) +
& ltsi(:,:,:,:,2+of1,1+of1) ) / 2.0d0

phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

call cooling(ursu2,uisu2,phbsr,phbsi)

do ic=2,nc
do jc=1,nc

ur(:,:,:,:,ihat,ic,jc) =
& ( ursu2(:,:,:,:,ic-1,1) * urprmsu3(:,:,:,:,2,jc) +
& ursu2(:,:,:,:,ic-1,2) * urprmsu3(:,:,:,:,3,jc) -
& uisu2(:,:,:,:,ic-1,1) * uiprmsu3(:,:,:,:,2,jc) -
& uisu2(:,:,:,:,ic-1,2) * uiprmsu3(:,:,:,:,3,jc) )

ui(:,:,:,:,ihat,ic,jc) =
& ( ursu2(:,:,:,:,ic-1,1) * uiprmsu3(:,:,:,:,2,jc) +
& ursu2(:,:,:,:,ic-1,2) * uiprmsu3(:,:,:,:,3,jc) +
& uisu2(:,:,:,:,ic-1,1) * urprmsu3(:,:,:,:,2,jc) +
& uisu2(:,:,:,:,ic-1,2) * urprmsu3(:,:,:,:,3,jc) )

end do
end do

do jc=1,nc
ur(:,:,:,:,ihat,1,jc) = urprmsu3(:,:,:,:,1,jc)
ui(:,:,:,:,ihat,1,jc) = uiprmsu3(:,:,:,:,1,jc)

end do
c
c case 3. a_3
c
c forming another SU(2) subgroup of the form
c These two matrices have the form matrixa = [ x 0 x ]
c [ 0 1 0 ]
c [ x 0 x ]

ltsr = 0.0d0
ltsi = 0.0d0
do ic=1,nc

do jc=1,nc
do kc=1,nc

ltsr(:,:,:,:,ic,jc) = ltsr(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) -
& ui(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) )

ltsi(:,:,:,:,ic,jc) = ltsi(:,:,:,:,ic,jc) +
& ( ur(:,:,:,:,ihat,ic,kc) * staplei(:,:,:,:,kc,jc) +
& ui(:,:,:,:,ihat,ic,kc) * stapler(:,:,:,:,kc,jc) )

end do
end do

end do
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phbsr(:,:,:,:,1,1) = ( ltsr(:,:,:,:,1,1) + ltsr(:,:,:,:,3,3) ) / 2.0d0
phbsr(:,:,:,:,1,2) = ( ltsr(:,:,:,:,1,3) - ltsr(:,:,:,:,3,1) ) / 2.0d0
phbsr(:,:,:,:,2,1) = - phbsr(:,:,:,:,1,2)
phbsr(:,:,:,:,2,2) = phbsr(:,:,:,:,1,1)

phbsi(:,:,:,:,1,1) = ( ltsi(:,:,:,:,1,1) - ltsi(:,:,:,:,3,3) ) / 2.0d0
phbsi(:,:,:,:,1,2) = ( ltsi(:,:,:,:,1,3) + ltsi(:,:,:,:,3,1) ) / 2.0d0
phbsi(:,:,:,:,2,1) = phbsi(:,:,:,:,1,2)
phbsi(:,:,:,:,2,2) = - phbsi(:,:,:,:,1,1)

call cooling(ursu2,uisu2,phbsr,phbsi)

c We next make a product of the matrices in such a way that
c link Uprmsu3 = urprmsu3+iuiprmsu3 = ( ar + iai ) * ( ur + iui )
c = ( ar*ur - ai*ui ) + i( ar*ui + ai*ur)
c by hotwiring the matrix indices for optimization.

do ic=1,nc-1
do jc=1,nc

ic3 = ic
if(ic3 == 2 ) ic3 = 3
urprmsu3(:,:,:,:,ic3,jc) =

& ( ursu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,3,jc) -
& uisu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) -
& uisu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,3,jc) )

uiprmsu3(:,:,:,:,ic3,jc) =
& ( ursu2(:,:,:,:,ic,1) * ui(:,:,:,:,ihat,1,jc) +
& ursu2(:,:,:,:,ic,2) * ui(:,:,:,:,ihat,3,jc) +
& uisu2(:,:,:,:,ic,1) * ur(:,:,:,:,ihat,1,jc) +
& uisu2(:,:,:,:,ic,2) * ur(:,:,:,:,ihat,3,jc) )

end do
end do

do jc=1,nc
ur(:,:,:,:,ihat,1,jc) = urprmsu3(:,:,:,:,1,jc)
ui(:,:,:,:,ihat,1,jc) = uiprmsu3(:,:,:,:,1,jc)
ur(:,:,:,:,ihat,3,jc) = urprmsu3(:,:,:,:,3,jc)
ui(:,:,:,:,ihat,3,jc) = uiprmsu3(:,:,:,:,3,jc)

end do

end do

end do

return
end subroutine Newfixsu3

298



E.22 The Reunitarization of the Gauge Transfor-

mation

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 29th of June 1998.
c subroutine that fixes the gauge links. This subroutine needs to
c be called after a the transformation the
c purpose being to keep the links within the SU(3) algebra. This
c routine reconstruct the su3 element by doing the row by row
c orthonormailzation method. Unlike fixsu3 the direction mu is not
c taken into consideration.
c

subroutine fixsgauge(tgr,tgi)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables

double precision,dimension(nx,ny,nz,nt,nc,nc) :: tgr,tgi
cmf$ layout tgr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tgi(:news,:news,:news,:news,:serial,:serial)

c local variables

integer,dimension(5) :: yvector
cmf$ layout yvector(:serial)

double precision,dimension(nx,ny,nz,nt) :: normr,normi
cmf$ layout normr(:news,:news,:news,:news)
cmf$ layout normi(:news,:news,:news,:news)

integer :: jc,imu

c
c First create an array to be looped over below
c y(1) = 1 , y(2) = 2 , y(3) = 3 , y(4) = 1 , y(5) = 2

do jc=1,nc
yvector(jc) = jc

end do
do jc=4,5

yvector(jc) = jc - 3
end do

c We’ll do a loop here to save memory demands

c
c first normalise first row
c

normr = sqrt( tgr(:,:,:,:,1,1)**2 + tgr(:,:,:,:,1,2)**2 +
& tgi(:,:,:,:,1,1)**2 + tgi(:,:,:,:,1,2)**2 +
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& tgr(:,:,:,:,1,3)**2 + tgi(:,:,:,:,1,3)**2 )

do jc=1,nc
tgr(:,:,:,:,1,jc) = tgr(:,:,:,:,1,jc) / normr
tgi(:,:,:,:,1,jc) = tgi(:,:,:,:,1,jc) / normr

end do
c
c now compute row2 - (row2 dot row1)*row1
c

normr = tgr(:,:,:,:,2,1) * tgr(:,:,:,:,1,1) +
& tgi(:,:,:,:,2,1) * tgi(:,:,:,:,1,1) +
& tgr(:,:,:,:,2,2) * tgr(:,:,:,:,1,2) +
& tgi(:,:,:,:,2,2) * tgi(:,:,:,:,1,2) +
& tgr(:,:,:,:,2,3) * tgr(:,:,:,:,1,3) +
& tgi(:,:,:,:,2,3) * tgi(:,:,:,:,1,3)

normi = tgi(:,:,:,:,2,1) * tgr(:,:,:,:,1,1) -
& tgr(:,:,:,:,2,1) * tgi(:,:,:,:,1,1) +
& tgi(:,:,:,:,2,2) * tgr(:,:,:,:,1,2) -
& tgr(:,:,:,:,2,2) * tgi(:,:,:,:,1,2) +
& tgi(:,:,:,:,2,3) * tgr(:,:,:,:,1,3) -
& tgr(:,:,:,:,2,3) * tgi(:,:,:,:,1,3)

do jc=1,nc
tgr(:,:,:,:,2,jc) = tgr(:,:,:,:,2,jc) -

& ( normr * tgr(:,:,:,:,1,jc) - normi * tgi(:,:,:,:,1,jc) )
tgi(:,:,:,:,2,jc) = tgi(:,:,:,:,2,jc) -

& ( normr * tgi(:,:,:,:,1,jc) + normi * tgr(:,:,:,:,1,jc) )
end do

c Now normalise the second row

normr = sqrt( tgr(:,:,:,:,2,1)**2 + tgi(:,:,:,:,2,1)**2 +
& tgr(:,:,:,:,2,2)**2 + tgi(:,:,:,:,2,2)**2 +
& tgr(:,:,:,:,2,3)**2 + tgi(:,:,:,:,2,3)**2 )

do jc=1,nc
tgr(:,:,:,:,2,jc) = tgr(:,:,:,:,2,jc) / normr
tgi(:,:,:,:,2,jc) = tgi(:,:,:,:,2,jc) / normr

end do

c now generate row3 = row1 cross row2

do jc=1,nc
tgr(:,:,:,:,3,jc) =

& tgr(:,:,:,:,1,yvector(jc+1)) * tgr(:,:,:,:,2,yvector(jc+2)) -
& tgi(:,:,:,:,1,yvector(jc+1)) * tgi(:,:,:,:,2,yvector(jc+2)) -
& tgr(:,:,:,:,1,yvector(jc+2)) * tgr(:,:,:,:,2,yvector(jc+1)) +
& tgi(:,:,:,:,1,yvector(jc+2)) * tgi(:,:,:,:,2,yvector(jc+1))

tgi(:,:,:,:,3,jc) =
& - tgr(:,:,:,:,1,yvector(jc+1)) * tgi(:,:,:,:,2,yvector(jc+2)) -
& tgi(:,:,:,:,1,yvector(jc+1)) * tgr(:,:,:,:,2,yvector(jc+2)) +
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& tgr(:,:,:,:,1,yvector(jc+2)) * tgi(:,:,:,:,2,yvector(jc+1)) +
& tgi(:,:,:,:,1,yvector(jc+2)) * tgr(:,:,:,:,2,yvector(jc+1))
end do

return
end subroutine fixsgauge

E.23 Program to calculate the Cµ(p) and B(p).

c program to first read in gauge field configuration and quark
c propagators. The program will then calcultate the color trace
c fourier transform the data and (optional) will calculate the invert
c of the 4x4 matrix in the Dirac space. Then calculate the full color trace
c multiply by an arbitrary gamma matrix the inverted propagator to give the
c Z(p) function.
c -----------------------------------------------------------------------------
c Quark-gluon vertex utility for SU(3) Gauge configuration
c -----------------------------------------------------------------------------
c Author: Frederic D.R. Bonnet; date: 14 of April 2000.
c 22 of November 2000.
c Included the Overlap fermion routines
c and front end ReadZlinks,ReadZprop
c 4th June 2001.
c Include the write out on a configuration
c basis of the curli B and curli C_\mu
c output files:
c are propagator.
c Transform.log.
c
c To compile
c
c f95 -fast -extend_source -convert big_endian
c -assume byterecl overlap.f Newroutine.f transform.f -o
c f95 -fast -extend_source overlap.f Newroutine.f Transform.f -o
c non overlap fermions.
c cmf -cm5 -vu -extend_source -f90syntax Transform.fcm -o outputfile
c -----------------------------------------------------------------------------

program Trans_Jack
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2 !momentum boundaries in x
integer,parameter :: nmy=-ny/2+1,npy=ny/2 !momentum boundaries in y
integer,parameter :: nmz=-nz/2+1,npz=nz/2 !momentum boundaries in z
integer,parameter :: nmt=-nt/2+1,npt=nt/2 !momentum boundaries in t

double precision :: bcx,bcy,bcz,bct !boundary conditions
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c local variables.

integer,parameter :: nreal=2
integer,parameter :: ngamma=3

logical :: uexists=.true.

integer :: nkappaQP
integer :: jx,jy,jz,jt !source
integer :: gfix !gfixed or not
integer :: flq !flink or not
character(len=4) :: fixname
character(len=4) :: cfg
character(len=80) :: quarkprop
character(len=80) :: lastconfig
character(len=80) :: corename,trivconf
character(len=100) :: datafile
character(len=100),dimension(10) :: dataf
character(len=5),dimension(nkappa) :: qpk
character(len=100),dimension(nkappa) :: qp

cmf$ layout dataf(:serial)
cmf$ layout qpk(:serial)
cmf$ layout qp(:serial)

double precision,dimension(nkappa) :: xkappa !kappa values
cmf$ layout xkappa(:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt)
& :: Bcurlr,Bcurli

cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt)
& :: pmrSCT,pmiSCT

cmf$ layout pmrSCT(:news,:news,:news,:news)
cmf$ layout pmiSCT(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd)
& :: pmrCT,pmiCT

cmf$ layout pmrCT(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCT(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx,ny,nz,nt,nd,nd) :: prCT,piCT
cmf$ layout prCT(:news,:news,:news,:news,:serial,:serial)
cmf$ layout piCT(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pr,pi
cmf$ layout pr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pi(:news,:news,:serial,:serial,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pgr,pgi
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cmf$ layout pgr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pgi(:news,:news,:serial,:serial,:serial,:serial)

c overlap stuff

double precision,dimension(nt) :: pionm,pionpr,pionpi
cmf$ layout pionm(:serial)
cmf$ layout pionpr(:serial)
cmf$ layout pionpi(:serial)

double precision,dimension(nd,nd) :: deltafunc,gam5
cmf$ layout deltafunc(:serial,:serial)
cmf$ layout gam5(:serial,:serial)

double precision,dimension(nd,nd,ngamma,nreal) :: gammai,gamma5i
cmf$ layout gammai(:serial,:serial,:serial,:serial)
cmf$ layout gamma5i(:serial,:serial,:serial,:serial)

integer :: ikappa,iprop
integer :: imu
integer :: id,jd,ic
integer :: ix,iy,iz,it
integer :: counter

INTERFACE
subroutine ReadProp(qp,pr,pi,flq,xkappa,ikappa,jx,jy,jz,jt)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: ikappa
integer :: flq
integer :: jx,jy,jz,jt
character(len=100),dimension(nkappa) :: qp
double precision,dimension(nkappa) :: xkappa

cmf$ layout xkappa(:serial)
double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pr,pi

cmf$ layout pr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pi(:news,:news,:serial,:serial,:serial,:serial)

end subroutine ReadProp
subroutine spintrace(pmrSCT,pmiSCT,pmrCT,pmiCT)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt)

& :: pmrSCT,pmiSCT
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cmf$ layout pmrSCT(:news,:news,:news,:news)
cmf$ layout pmiSCT(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd)
& :: pmrCT,pmiCT

cmf$ layout pmrCT(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCT(:news,:news,:news,:news,:serial,:serial)

end subroutine spintrace
subroutine curlCmu(Ccurlmur,Ccurlmui,pmrCT,pmiCT)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd)
& :: pmrCT,pmiCT

cmf$ layout pmrCT(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCT(:news,:news,:news,:news,:serial,:serial)

end subroutine curlCmu
subroutine CurliCandBout(Bcurlr,Bcurli,Ccurlmur,Ccurlmui,qpk,xkappa,

& dataf,ikappa,bcx,bcy,bcz,bct)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: ikappa
double precision :: bcx,bcy,bcz,bct
double precision,dimension(nkappa) :: xkappa

cmf$ layout xkappa(:serial)
character(len=100),dimension(10) :: dataf

cmf$ layout dataf(:serial)
character(len=5),dimension(nkappa) :: qpk

cmf$ layout qpk(:serial)
double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt):: Bcurlr,Bcurli

cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

end subroutine CurliCandBout
subroutine pion(pr,pi,pionm,pionpr,pionpi,deltafunc,gam5,gammai,gamma5i,it)
implicit none
include ’latticeSize.h’

304



include ’LatParamtrans.h’
integer :: it
integer,parameter :: nreal=2
integer,parameter :: ngamma=3
double precision,dimension(nt) :: pionm,pionpr,pionpi

cmf$ layout pionm(:serial)
cmf$ layout pionpr(:serial)
cmf$ layout pionpi(:serial)

double precision,dimension(nd,nd) :: deltafunc,gam5
cmf$ layout deltafunc(:serial,:serial)
cmf$ layout gam5(:serial,:serial)

double precision,dimension(nd,nd,ngamma,nreal) :: gammai,gamma5i
cmf$ layout gammai(:serial,:serial,:serial,:serial)
cmf$ layout gamma5i(:serial,:serial,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pr,pi
cmf$ layout pr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pi(:news,:news,:serial,:serial,:serial,:serial)

end subroutine pion
subroutine deltaNDgam(deltafunc,gam5,gammai,gamma5i)
implicit none
integer,parameter :: nd=4 !direction
integer,parameter :: nreal=2
integer,parameter :: ngamma=3
double precision,dimension(nd,nd) :: deltafunc,gam5

cmf$ layout deltafunc(:serial,:serial)
cmf$ layout gam5(:serial,:serial)

double precision,dimension(nd,nd,ngamma,nreal) :: gammai,gamma5i
cmf$ layout gammai(:serial,:serial,:serial,:serial)
cmf$ layout gamma5i(:serial,:serial,:serial,:serial)

end subroutine deltaNDgam
function strlen(string)
implicit none
character*(*) string
integer :: strlen
integer :: i, blank
end function strlen

end interface

c start of the execution commands.

c first read in the datafile ParamTrans.dat

open(11,file=’ParamTrans_CurliCB.dat’,form=’formatted’,
& status=’old’,action=’read’)

read (11,*) nkappaQP

if (nkappaQP /= nkappa) pause ’mismatch in nkappa’
do ikappa=1,nkappa

read (11,*) xkappa(ikappa)
read (11,’(a5)’) qpk(ikappa)

end do
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read (11,*) jx,jy,jz,jt
read (11,*) bcx,bcy,bcz,bct
close(11)

c first start by sreen input.

write(*,*)’Would you to examine fat link action:’
write(*,*)’ 0:no fat link’
write(*,*)’ 1:yes fat link.’
write(*,*)’ 2:overlap Fermions.’

read(*,’(i3)’) flq
write(*,*)

write(*,*) flq

write(*,*)’Would you like to deal with gauge fixed propagators, 0=no,1=yes.’
read(*,’(i3)’) gfix
write(*,*)

write(*,*) gfix

write(*,*)’Please enter the core name of the configuration:’
write(*,*)’Ex: SU3B600S6T18C’
read(*,’(a80)’) corename
write(*,*)

write(*,’(a)’) corename

write(*,*)’Please enter the fix name name of the configuration:’
write(*,*)’Ex: if 0.078 then enter .078. If no fixname leave blank’
read (*,’(a4)’) fixname
write(*,*)

write(*,’(a)’) fixname

write(*,*)
write(*,*)’Which Gauge field configuration are we reading from?’
write(*,*)’With its associated quark propagator.’
read (*,’(a3)’) cfg

write(*,’(a)’) cfg

lastconfig = corename(1:strlen(corename))//cfg
lastconfig = lastconfig(1:strlen(lastconfig))//fixname

write(*,*) lastconfig

open(1,file=’CurliCmuandB.log’,status=’unknown’,position=’append’)

write(1,*)
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write(1,*)’======================================================
& =========================’
write(1,’(a)’)’ The mass function for the Wilson Fermions for
& SU(3) Gauge configuration ’
write(1,*)’======================================================
& =========================’

write(1,’(4(a,i3))’)’lattice size = ’,nx,’x’,ny,’x’,nz,’x’,nt
write(1,’(a,i2)’)’The number of **kappa** value that are to be
& considered is =’,nkappa
write(1,’(a,4i3)’) ’The source position x, y, z, t is =’,jx,jy,jz,jt
write(1,’(a,4f8.4)’)’The bndary condition for
& fermion fields are=’,bcx,bcy,bcz,bct

c constructing the quark propagator filename.

do ikappa = 1,nkappa

c get the tree level curli B.

if ( gfix == 0 ) then
qp(ikappa) = lastconfig(1:strlen(lastconfig))//’.’//qpk(ikappa)
write(*,*)
write(*,’(a,3x,a100)’)’We are now reading from:’,qp(ikappa)
write(1,’(a,3x,a100)’)’We are now reading from:’,qp(ikappa)
call ReadProp(qp,pr,pi,flq,xkappa,ikappa,jx,jy,jz,jt)
write(*,’(a,3x,a100)’)’We have read from:’,qp(ikappa)
write(1,’(a,3x,a100)’)’We have read from:’,qp(ikappa)
write(*,’(a,3x,a100)’)’We are now gauge rotating to Landau gauge:’,qp(ikappa)
write(*,’(a,3x,a100)’)’using the gauge transformed :’,lastconfig//’.gag’
call GTransSofx(lastconfig,pr,pi,pgr,pgi,jx,jy,jz,jt)
write(*,’(a,3x,a100)’)’We have gauge rotated to Landau gauge:’,qp(ikappa)

elseif( gfix == 1 ) then
qp(ikappa) = lastconfig(1:strlen(lastconfig))//’.fix’//qpk(ikappa)
write(*,*)
write(1,*)
write(*,’(a,3x,a100)’)’We are now reading from:’,qp(ikappa)
write(1,’(a,3x,a100)’)’We are now reading from:’,qp(ikappa)
call ReadProp(qp,pr,pi,flq,xkappa,ikappa,jx,jy,jz,jt)
write(*,’(a,3x,a100)’)’We have read from:’,qp(ikappa)
write(1,’(a,3x,a100)’)’We have read from:’,qp(ikappa)

end if

c calculating the color Trace of the propagators.
c And reforming the propagators into more manageable arrays.
c first refreshing the variables by reopening the the file name.

prCT = 0.0d0
piCT = 0.0d0

counter = 0
do iz=1,nz
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do iy=1,ny
do ix=1,nx

counter = counter + 1
do ic=1,nc

prCT(ix,iy,iz,:,:,:) = prCT(ix,iy,iz,:,:,:) + pgr(counter,:,ic,:,ic,:)
piCT(ix,iy,iz,:,:,:) = piCT(ix,iy,iz,:,:,:) + pgi(counter,:,ic,:,ic,:)

end do
end do

end do
end do

prCT = (1.0d0/3.0d0) * prCT
piCT = (1.0d0/3.0d0) * piCT

call fourier(prCT,piCT,pmrCT,pmiCT,jx,jy,jz,jt)

c calculating the trace of Tr{S(p)}, for both the full n-point function p
c and the psi g.

call spintrace(Bcurlr,Bcurli,pmrCT,pmiCT)

if ( flq == 0 .or. flq == 1 ) then
pmrCT = ( 2.0d0 * xkappa(ikappa) ) * pmrCT
pmiCT = ( 2.0d0 * xkappa(ikappa) ) * pmiCT
Bcurlr = ( 2.0d0 * xkappa(ikappa) ) * Bcurlr
Bcurli = ( 2.0d0 * xkappa(ikappa) ) * Bcurli

end if

c get the tree level curli C.

call curlCmu(Ccurlmur,Ccurlmui,pmrCT,pmiCT)

c now dump the tree level culi C and B to disk

datafile = ’Bcurl’
datafile = datafile(1:strlen(datafile))//corename
datafile = datafile(1:strlen(datafile))//cfg
dataf(1) = datafile(1:strlen(datafile))//fixname

datafile = ’Ccurl’
datafile = datafile(1:strlen(datafile))//corename
datafile = datafile(1:strlen(datafile))//cfg
dataf(2) = datafile(1:strlen(datafile))//fixname

call CurliCandBout(Bcurlr,Bcurli,Ccurlmur,Ccurlmui,qpk,
& xkappa,dataf,ikappa,bcx,bcy,bcz,bct)

end do

close(1)

end program Trans_Jack
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c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 4th of June 2001.
c subroutine to calculate the uncorrected curli C_\mu(p) for the Jacknife.
c analysis.
c

subroutine curlCmu(Ccurlmur,Ccurlmui,pmrCT,pmiCT)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd):: pmrCT,pmiCT
cmf$ layout pmrCT(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCT(:news,:news,:news,:news,:serial,:serial)

c local variables.

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd)
& :: pmrCTG,pmiCTG

cmf$ layout pmrCTG(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCTG(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd)
& :: pmrCTGk,pmiCTGk

cmf$ layout pmrCTGk(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCTGk(:news,:news,:news,:news,:serial,:serial)

integer :: id,imu

c start of the execution commands.

interface
subroutine gammaXSp(pmrCTG,pmiCTG,pmrCT,pmiCT,imu)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: imu
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double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd)
& :: pmrCT,pmiCT

cmf$ layout pmrCT(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCT(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd)
& :: pmrCTG,pmiCTG

cmf$ layout pmrCTG(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCTG(:news,:news,:news,:news,:serial,:serial)

end subroutine gammaXSp
end interface

c start of the execution commands.

c first calculating the CurcC_{\mu}=(i/4)Tr[\gamma_\mu*S(p)]

Ccurlmur = 0.0d0
Ccurlmui = 0.0d0

do imu=1,mu
call gammaXSp(pmrCTG,pmiCTG,pmrCT,pmiCT,imu)

pmrCTGk = - pmiCTG
pmiCTGk = pmrCTG

do id=1,nd
Ccurlmur(:,:,:,:,imu) = Ccurlmur(:,:,:,:,imu) + pmrCTGk(:,:,:,:,id,id)
Ccurlmui(:,:,:,:,imu) = Ccurlmui(:,:,:,:,imu) + pmiCTGk(:,:,:,:,id,id)

end do

end do

Ccurlmur = (1.0d0/4.0d0) * Ccurlmur
Ccurlmui = (1.0d0/4.0d0) * Ccurlmui

return
end subroutine curlCmu

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c author: Frederic D.R. Bonnet, date 7th of June 2001.
c subroutine to calculate the spinor trace of the quark propagator
c

subroutine spintrace(pmrSCT,pmiSCT,pmrCT,pmiCT)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
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double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: pmrSCT,pmiSCT
cmf$ layout pmrSCT(:news,:news,:news,:news)
cmf$ layout pmiSCT(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd):: pmrCT,pmiCT
cmf$ layout pmrCT(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiCT(:news,:news,:news,:news,:serial,:serial)

c local variables

integer :: id

c start of the excution commands.

pmrSCT = 0.0d0
pmiSCT = 0.0d0

do id=1,nd
pmrSCT = pmrSCT + pmrCT(:,:,:,:,id,id)
pmiSCT = pmiSCT + pmiCT(:,:,:,:,id,id)

end do

pmrSCT = (1.0d0/4.0d0) * pmrSCT
pmiSCT = (1.0d0/4.0d0) * pmiSCT

return
end subroutine spintrace

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 4th of June 2001.
c subroutine to write out the curli C and curli B to disk.
c the routine writes out the curli on a configuration basis
c with a selection of the which array it needs to do.
c the switch for the curli B is 0; and the curli C_\mu is 1
c

subroutine CurliCandBout(Bcurlr,Bcurli,Ccurlmur,Ccurlmui,qpk,
& xkappa,dataf,ikappa,bcx,bcy,bcz,bct)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: ikappa

double precision :: bcx,bcy,bcz,bct
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double precision,dimension(nkappa) :: xkappa
cmf$ layout xkappa(:serial)

character(len=100),dimension(10) :: dataf
cmf$ layout dataf(:serial)

character(len=5),dimension(nkappa) :: qpk
cmf$ layout qpk(:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: Bcurlr,Bcurli
cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

c local variables.

character(len=100) :: datafile

integer :: imu

interface
function strlen(string)
implicit none
character*(*) string
integer :: strlen
integer :: i, blank

end function strlen
end interface

c start of the execution commands.

datafile = dataf(1)
datafile = datafile(1:strlen(datafile))//qpk(ikappa)

open(201,file=datafile,form=’unformatted’,status=’new’,action=’write’)

write(201) xkappa(ikappa),bcx,bcy,bcz,bct

write(201) Bcurlr(:,:,:,:)
write(201) Bcurli(:,:,:,:)

close(201)

datafile = dataf(2)
datafile = datafile(1:strlen(datafile))//qpk(ikappa)

open(301,file=datafile,form=’unformatted’,status=’new’,action=’write’)

write(301) xkappa(ikappa),bcx,bcy,bcz,bct

do imu=1,mu
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write(301) Ccurlmur(:,:,:,:,imu)
write(301) Ccurlmui(:,:,:,:,imu)

end do

close(301)

return
end subroutine CurliCandBout

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 29th of June 2000.
c this subroutine reads in the quark propagators.
c

subroutine ReadProp(qp,pr,pi,flq,xkappa,ikappa,jx,jy,jz,jt)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: ikappa
integer :: flq
integer :: jx,jy,jz,jt
character(len=100),dimension(nkappa) :: qp
double precision,dimension(nkappa) :: xkappa

cmf$ layout xkappa(:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pr,pi
cmf$ layout pr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pi(:news,:news,:serial,:serial,:serial,:serial)

c local variables.

integer,parameter :: nreal=2
integer,parameter :: ngamma=3
integer,parameter :: nxyz = nx*ny*nz

logical :: uexists=.true.
character(len=80) :: quarkprop

c overlap stuff

double precision,dimension(nt) :: pionm,pionpr,pionpi
cmf$ layout pionm(:serial)
cmf$ layout pionpr(:serial)
cmf$ layout pionpi(:serial)

double precision,dimension(nd,nd) :: deltafunc,gam5
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cmf$ layout deltafunc(:serial,:serial)
cmf$ layout gam5(:serial,:serial)

double precision,dimension(nd,nd,ngamma,nreal) :: gammai,gamma5i
cmf$ layout gammai(:serial,:serial,:serial,:serial)
cmf$ layout gamma5i(:serial,:serial,:serial,:serial)

double precision,dimension(nx*ny*nz*nt,nc,nd,nc,nd) :: gr,gi
cmf$ layout gr(:news,:serial,:serial,:serial,:serial)
cmf$ layout gi(:news,:serial,:serial,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: p2r,p2i
cmf$ layout p2r(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout p2i(:news,:news,:serial,:serial,:serial,:serial)

integer :: ixyz
integer :: it
integer :: id,jd,ic

interface
subroutine readZprop(quarkprop,gr,gi)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
character(len=80) :: quarkprop
double precision,dimension(nx*ny*nz*nt,nc,nd,nc,nd) :: gr,gi

cmf$ layout gr(:news,:serial,:serial,:serial,:serial)
cmf$ layout gi(:news,:serial,:serial,:serial,:serial)

end subroutine readZprop
subroutine pion(pr,pi,pionm,pionpr,pionpi,deltafunc,gam5,gammai,gamma5i,it)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer :: it
integer,parameter :: nreal=2
integer,parameter :: ngamma=3
double precision,dimension(nt) :: pionm,pionpr,pionpi

cmf$ layout pionm(:serial)
cmf$ layout pionpr(:serial)
cmf$ layout pionpi(:serial)

double precision,dimension(nd,nd) :: deltafunc,gam5
cmf$ layout deltafunc(:serial,:serial)
cmf$ layout gam5(:serial,:serial)

double precision,dimension(nd,nd,ngamma,nreal) :: gammai,gamma5i
cmf$ layout gammai(:serial,:serial,:serial,:serial)
cmf$ layout gamma5i(:serial,:serial,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pr,pi
cmf$ layout pr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pi(:news,:news,:serial,:serial,:serial,:serial)

end subroutine pion
subroutine deltaNDgam(deltafunc,gam5,gammai,gamma5i)
implicit none
integer,parameter :: nd=4 !direction
integer,parameter :: nreal=2
integer,parameter :: ngamma=3
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double precision,dimension(nd,nd) :: deltafunc,gam5
cmf$ layout deltafunc(:serial,:serial)
cmf$ layout gam5(:serial,:serial)

double precision,dimension(nd,nd,ngamma,nreal) :: gammai,gamma5i
cmf$ layout gammai(:serial,:serial,:serial,:serial)
cmf$ layout gamma5i(:serial,:serial,:serial,:serial)

end subroutine deltaNDgam
end interface

c start of the execution commands.

c initializing the arrays before allocation.

pr = 0.0d0
pi = 0.0d0

if ( flq == 0 .or. flq == 1 ) then

if ( flq == 0 ) then
open(200,file=’ptQ’//qp(ikappa),form=’unformatted’,

& status=’old’,action=’read’)
elseif ( flq == 1 ) then
open(200,file=’ptFLQ’//qp(ikappa),form=’unformatted’,

& status=’old’,action=’read’)
end if

do it = 1,nt
read(200) pr(:,it,:,:,:,:)
read(200) pi(:,it,:,:,:,:)

end do

close(200)

elseif ( flq == 2 ) then

c checkin the existence of the propagators.

quarkprop = ’ptQ’//qp(ikappa)

inquire(file=quarkprop,exist=uexists)

if(uexists) then
write(*,’(a,2x,a40,x,a)’)’the quark propagator:’,quarkprop,’exists’
write(*,’(a,2x,a40)’)’we are now proceeding with the reading of:’,

& quarkprop
elseif(.not. uexists ) then

write(*,’(a,2x,a40,x,a)’)’the quark propagator:’,
& quarkprop,’does not exists’

stop
end if

c initializing the pion propagators
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write(1,’(a,12x,a,11x,a)’)’time’,’C(t)’,’mt=ln(|C(t-1)/C(t)|)’

pionm = 0.0d0 !pi0+ prop function \bar{\psi}\psi
pionpr = 0.0d0 !pi0- prop function \bar{\psi}\gamma_5\psi
pionpi = 0.0d0

call deltaNDgam(deltafunc,gam5,gammai,gamma5i)

call readZprop(quarkprop,gr,gi)

do it=1,nt

do ixyz=1,nxyz
p2r(ixyz,it,:,:,:,:) = gr(ixyz+(it-1)*nxyz,:,:,:,:)
p2i(ixyz,it,:,:,:,:) = gi(ixyz+(it-1)*nxyz,:,:,:,:)

end do

call pion(p2r,p2i,pionm,pionpr,pionpi,deltafunc,gam5,gammai,gamma5i,it)

end do

do jd=1,2
pr(:,:,:,:,:,jd) = (1.0d0/sqrt(2.0d0)) *

& ( p2r(:,:,:,:,:,jd) + p2r(:,:,:,:,:,jd+2) )
pi(:,:,:,:,:,jd) = (1.0d0/sqrt(2.0d0)) *

& ( p2i(:,:,:,:,:,jd) + p2i(:,:,:,:,:,jd+2) )
end do

do jd=3,4
pr(:,:,:,:,:,jd) = - (1.0d0/sqrt(2.0d0)) *

& ( p2r(:,:,:,:,:,jd-2) - p2r(:,:,:,:,:,jd) )
pi(:,:,:,:,:,jd) = - (1.0d0/sqrt(2.0d0)) *

& ( p2i(:,:,:,:,:,jd-2) - p2i(:,:,:,:,:,jd) )
end do

end if

return
end subroutine ReadProp

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Returns the significant length of a string.
c Every character is significant with the
c exception of:
c blank (32)
c null (0)
c reqd. routines - NONE
c

function strlen(string)
implicit none
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c global variables.

character*(*) :: string
integer :: strlen

c local variables.

integer :: i, blank

c start of the execution commands.

blank = ichar(’ ’)

strlen = len(string)
i = ichar(string(strlen:strlen))
do while ((i.eq.blank .or. i.eq.0) .and. strlen.gt.0)

strlen = strlen - 1
i = ichar(string(strlen:strlen))

end do
return
end

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c author: frederic D.R. Bonnet, date: 27th of October 2000.
c subroutine to calculate pion correlation function and effective mass.
c

subroutine pion(pr,pi,pionm,pionpr,pionpi,deltafunc,gam5,gammai,gamma5i,it)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nreal=2
integer,parameter :: ngamma=3

double precision,dimension(nt) :: pionm,pionpr
double precision,dimension(nt) :: pionpi,rho,scalar1m

cmf$ layout pionm(:serial)
cmf$ layout pionpr(:serial)
cmf$ layout pionpi(:serial)
cmf$ layout rho(:serial)
cmf$ layout scalar1m(:serial)

double precision,dimension(nd,nd) :: deltafunc,gam5
cmf$ layout deltafunc(:serial,:serial)
cmf$ layout gam5(:serial,:serial)

double precision,dimension(nd,nd,ngamma,nreal) :: gammai,gamma5i
cmf$ layout gammai(:serial,:serial,:serial,:serial)
cmf$ layout gamma5i(:serial,:serial,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pr,pi
cmf$ layout pr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pi(:news,:news,:serial,:serial,:serial,:serial)
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integer :: it

c local variables.

double precision :: trof0,tiof0

double precision,dimension(nt) :: pionMss,pionCt
cmf$ layout pionMss(:serial)
cmf$ layout pionCt(:serial)

double precision,dimension(nx*ny*nz) :: v1r,v1i
cmf$ layout v1r(:news)
cmf$ layout v1i(:news)

double precision,dimension(nx*ny*nz,nc,nd,nc,nd) :: pmesr,pmesi
cmf$ layout pmesr(:news,:serial,:serial,:serial,:serial)
cmf$ layout pmesi(:news,:serial,:serial,:serial,:serial)

integer :: ic,jc
integer :: jd
integer :: ialp,ibet,igam,idel

c start of the execution commands.

c first initiallise the variables

pionCt(it) = 0.0d0

c we are now calculating the pion mass and the effective mass of the pion.

pionCt(it) = pionCt(it) + ( sum(pr(:,it,:,:,:,:)**2) +
& sum(pi(:,it,:,:,:,:)**2) )

pionMss(it) = 0.0d0
if ( it >= 2 ) then

pionMss(it) = log ( abs( pionCt(it-1) / pionCt(it) ) )
end if

write(1,’(i3,2x,f21.16,2x,f21.16)’)it,pionCt(it),pionMss(it)

return
end subroutine pion

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c author: Frederic D.R. Bonnet 2/11/00.
c subroutine to create a delta function.
c

subroutine deltaNDgam(deltafunc,gam5,gammai,gamma5i)
implicit none

c global variables
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integer,parameter :: nd=4
integer,parameter :: nreal=2
integer,parameter :: ngamma=3

double precision,dimension(nd,nd) :: deltafunc,gam5
cmf$ layout deltafunc(:serial,:serial)

double precision,dimension(nd,nd,ngamma,nreal) :: gammai,gamma5i
cmf$ layout gammai(:serial,:serial,:serial,:serial)
cmf$ layout gamma5i(:serial,:serial,:serial,:serial)

c local variables

integer :: id,jd

c start of the execution commands

gam5 = 0.0d0
deltafunc = 0.0d0

do id=1,nd
deltafunc(id,id) = 1.0d0

end do

do id=1,2
do jd=1,2

gam5(id,jd+2) = deltafunc(id,jd)
gam5(id+2,jd) = deltafunc(id,jd)

end do
end do

gammai = 0.0d0

c \gamma 1

gammai(1,4,1,2) = - deltafunc(1,1)
gammai(2,3,1,2) = - deltafunc(2,2)
gammai(3,2,1,2) = deltafunc(3,3)
gammai(4,1,1,2) = deltafunc(4,4)

c \gamma 2

gammai(1,4,2,1) = - deltafunc(1,1)
gammai(2,3,2,1) = deltafunc(2,2)
gammai(3,2,2,1) = deltafunc(3,3)
gammai(4,1,2,1) = - deltafunc(4,4)

c \gamma 3

gammai(1,3,3,2) = - deltafunc(1,1)
gammai(2,4,3,2) = deltafunc(2,2)
gammai(3,1,3,2) = deltafunc(3,3)
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gammai(4,2,3,2) = - deltafunc(4,4)

c now constracting the product of \gamma_5*( \gamma_1,\gamma_2,\gamma_3 )

gamma5i = 0.0d0

c \gamma_5*\gamma_1

gamma5i(1,2,1,2) = - deltafunc(1,1)
gamma5i(2,1,1,2) = - deltafunc(2,2)
gamma5i(3,4,1,2) = deltafunc(3,3)
gamma5i(4,3,1,2) = deltafunc(4,4)

c \gamma_5*\gamma_2

gamma5i(1,2,2,1) = - deltafunc(1,1)
gamma5i(2,1,2,1) = deltafunc(2,2)
gamma5i(3,4,2,1) = deltafunc(3,3)
gamma5i(4,3,2,1) = - deltafunc(4,4)

c \gamma_5*\gamma_3

gamma5i(1,3,3,2) = - deltafunc(1,1)
gamma5i(2,4,3,2) = deltafunc(2,2)
gamma5i(3,1,3,2) = deltafunc(3,3)
gamma5i(4,2,3,2) = - deltafunc(4,4)

return
end subroutine deltaNDgam

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c author: Frederic D.R. Bonnet, date 13th of June 2001.
c subroutine to create a delta function at all lattice sites.
c

subroutine getdelta(deltar)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: deltar
cmf$ layout deltar(:news,:news,:serial,:serial,:serial,:serial)

c local variables

integer :: ic,id

c start of the execution commands

deltar = 0.0d0
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do id=1,nd
do ic=1,nc

deltar(:,:,ic,id,ic,id) = 1.0d0
end do

end do

return
end subroutine getdelta

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c author: Frederic D.R. Bonnet 1/11/00.
c routine to read the overlap fermions quark propagators imported by Jianbo Zhang.
c

subroutine readZprop(quarkprop,gr,gi)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

character(len=80) :: quarkprop

c sink dirac ------ -------- source dirac
c | |
c

double precision,dimension(nx*ny*nz*nt,nc,nd,nc,nd) :: gr,gi
cmf$ layout gr(:news,:serial,:serial,:serial,:serial)
cmf$ layout gi(:news,:serial,:serial,:serial,:serial)

c local variables.

integer,parameter :: nreal=2

integer,parameter :: nxyzt = nx*ny*nz*nt

real(8),dimension(nxyzt) :: propa
cmf$ layout propa(:news)

integer :: n1
integer :: ic,jc,ireal,i
integer :: id,jd
integer :: islot
integer :: jdsrc,jcsrc

c start of the execution commands.

inquire(iolength=n1)propa

c n1=8*nxyzt

open(9,file=quarkprop, status=’unknown’,
& form=’unformatted’,access=’direct’,recl=n1)
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do jdsrc=1,nd
do jcsrc=1,nc

do jd =1,nd
do ireal=1,nreal

if ( ireal == 1 ) then
do jc =1,nc

islot=jc+nc*(jd-1+nd*(ireal-1+nreal*(jcsrc-1+nc*(jdsrc-1))))
read(9,rec=islot)(propa(i),i=1,nxyzt)

do i=1,nxyzt
gr(i,jc,jd,jcsrc,jdsrc)=propa(i)

enddo
end do

elseif( ireal == 2 ) then

do jc =1,nc

islot=jc+nc*(jd-1+nd*(ireal-1+nreal*(jcsrc-1+nc*(jdsrc-1))))
read(9,rec=islot)(propa(i),i=1,nxyzt)

do i=1,nxyzt
gi(i,jc,jd,jcsrc,jdsrc)=propa(i)

enddo
end do

end if

end do
end do

end do
end do

close(9)

return
end subroutine readZprop

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 29th of August 2000.
c subroutine to tranform the quark propagators in coordinate space before any tracing
c but after the propagator has been calculated by fermion matrix inverter with
c gauge fixed link variable.
c

subroutine GTransSofx(lastconfig,pr,pi,pgr,pgi,jx,jy,jz,jt)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
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c global variables

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: jx,jy,jz,jt
character(len=80) :: lastconfig

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pr,pi
cmf$ layout pr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pi(:news,:news,:serial,:serial,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: pgr,pgi
cmf$ layout pgr(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout pgi(:news,:news,:serial,:serial,:serial,:serial)

c local variables

double precision :: beta

double precision,dimension(nx,ny,nz,nt,nc,nc) :: tgr, tgi
cmf$ layout tgr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tgi(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nc) :: tcgr, tcgi
cmf$ layout tcgr(:news,:news,:serial,:serial)
cmf$ layout tcgi(:news,:news,:serial,:serial)

double precision,dimension(nx*ny*nz,nt,nc,nd,nc,nd) :: p1r,p1i
cmf$ layout p1r(:news,:news,:serial,:serial,:serial,:serial)
cmf$ layout p1i(:news,:news,:serial,:serial,:serial,:serial)

integer :: counter
integer :: ix,iy,iz,icounter
integer :: ic,jc,kc,id,jd

interface
subroutine Gaugein(lastconfig,tgr,tgi,beta)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
double precision :: beta
character(len=80) :: lastconfig
double precision,dimension(nx,ny,nz,nt,nc,nc) :: tgr, tgi

cmf$ layout tgr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tgi(:news,:news,:news,:news,:serial,:serial)

end subroutine Gaugein
end interface

c start of the execution commands

c calling the fully gauge fix variables created from gauge fixing.
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call Gaugein(lastconfig,tgr,tgi,beta)

c conpressing the spacial into one lattice site.

tcgr = 0.0d0
tcgi = 0.0d0

counter = 0
do iz=1,nz

do iy=1,ny
do ix=1,nx

counter = counter + 1
tcgr(counter,:,:,:) = tgr(ix,iy,iz,:,:,:)
tcgi(counter,:,:,:) = tgi(ix,iy,iz,:,:,:)

end do
end do

end do

c Now multiplying the propagators by the fully gauge transformed variable
c the compressed tgr,tgi : tcgr, tcgi. In color space.
c S’(x,0) = V(x)S(x,0)V^{\dagger}(0)

c the acting the gauge transformatin on the right.

do id=1,nd
do jd=1,nd

p1r(:,:,:,id,:,jd) = 0.0d0
p1i(:,:,:,id,:,jd) = 0.0d0

do ic=1,nc
do jc=1,nc

do kc=1,nc
p1r(:,:,ic,id,jc,jd) = p1r(:,:,ic,id,jc,jd) +

& ( pr(:,:,ic,id,kc,jd) * tcgr(jx+(jy-1)*nx+(jz-1)*nx*ny,jt,jc,kc) +
& pi(:,:,ic,id,kc,jd) * tcgi(jx+(jy-1)*nx+(jz-1)*nx*ny,jt,jc,kc) )

p1i(:,:,ic,id,jc,jd) = p1i(:,:,ic,id,jc,jd) +
& ( - pr(:,:,ic,id,kc,jd) * tcgi(jx+(jy-1)*nx+(jz-1)*nx*ny,jt,jc,kc) +
& pi(:,:,ic,id,kc,jd) * tcgr(jx+(jy-1)*nx+(jz-1)*nx*ny,jt,jc,kc) )

end do
end do

end do

pgr(:,:,:,id,:,jd) = 0.0d0
pgi(:,:,:,id,:,jd) = 0.0d0

do ic=1,nc
do jc=1,nc

do kc=1,nc
pgr(:,:,ic,id,jc,jd) = pgr(:,:,ic,id,jc,jd) +

& ( tcgr(:,:,ic,kc) * p1r(:,:,kc,id,jc,jd) -
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& tcgi(:,:,ic,kc) * p1i(:,:,kc,id,jc,jd) )
pgi(:,:,ic,id,jc,jd) = pgi(:,:,ic,id,jc,jd) +

& ( tcgr(:,:,ic,kc) * p1i(:,:,kc,id,jc,jd) +
& tcgi(:,:,ic,kc) * p1r(:,:,kc,id,jc,jd) )

end do
end do

end do

end do
end do

return
end subroutine GTransSofx

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 29th of August 2000.
c subroutine to write out the fixed links after a total gauge
c fixing.

subroutine Gaugein(lastconfig,tgr,tgi,beta)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables

double precision :: beta
character(len=80) :: lastconfig

double precision,dimension(nx,ny,nz,nt,nc,nc) :: tgr, tgi
cmf$ layout tgr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tgi(:news,:news,:news,:news,:serial,:serial)

c local variables

integer :: nxf,nyf,nzf,ntf
integer :: ic
logical :: uexists=.true.
character(len=84) :: gin

interface
subroutine fixsgauge(tgr,tgi)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
double precision,dimension(nx,ny,nz,nt,nc,nc) :: tgr,tgi

cmf$ layout tgr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tgi(:news,:news,:news,:news,:serial,:serial)

end subroutine fixsgauge
function strlen(string)
implicit none
character*(*) string
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integer :: strlen
integer :: i, blank

end function strlen
end interface

c start of the execution commands.

gin = lastconfig(1:strlen(lastconfig))//’.gag’

inquire(file=gin,exist=uexists)
if(uexists) then

write(*,’(a,2x,a25,x,a)’)’the gauge transformed configuration:’,gin,’exists’
write(*,’(a,2x,a25)’)’we are now proceeding with the reading of:’,gin

elseif(.not. uexists ) then
write(*,’(a,2x,a25,x,a)’)’the gauge transformed configuration:’,gin,

& ’does not exists’
stop

end if

open(29,file=gin,form=’unformatted’,status=’old’,action=’read’)

read(29) beta, nxf, nyf, nzf, ntf

do ic=1,nc-1
read(29) tgr(:,:,:,:,ic,:)
read(29) tgi(:,:,:,:,ic,:)

end do

close(29)

call fixsgauge(tgr,tgi)

return
end subroutine Gaugein

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 29th of June 1998.
c subroutine that fixes the gauge links. This subroutine needs to
c be called after a the transformation the
c purpose being to keep the links within the SU(3) algebra. This
c routine reconstruct the su3 element by doing the row by row
c orthonormailzation method. Unlike fixsu3 the direction mu is not
c taken into consideration.
c

subroutine fixsgauge(tgr,tgi)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables

double precision,dimension(nx,ny,nz,nt,nc,nc) :: tgr,tgi
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cmf$ layout tgr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout tgi(:news,:news,:news,:news,:serial,:serial)

c local variables

integer,dimension(5) :: yvector
cmf$ layout yvector(:serial)

double precision,dimension(nx,ny,nz,nt) :: normr,normi
cmf$ layout normr(:news,:news,:news,:news)
cmf$ layout normi(:news,:news,:news,:news)

integer :: jc,imu

c
c First create an array to be looped over below
c y(1) = 1 , y(2) = 2 , y(3) = 3 , y(4) = 1 , y(5) = 2

do jc=1,nc
yvector(jc) = jc

end do
do jc=4,5

yvector(jc) = jc - 3
end do

c We’ll do a loop here to save memory demands

c
c first normalise first row
c

normr = sqrt( tgr(:,:,:,:,1,1)**2 + tgr(:,:,:,:,1,2)**2 +
& tgi(:,:,:,:,1,1)**2 + tgi(:,:,:,:,1,2)**2 +
& tgr(:,:,:,:,1,3)**2 + tgi(:,:,:,:,1,3)**2 )

do jc=1,nc
tgr(:,:,:,:,1,jc) = tgr(:,:,:,:,1,jc) / normr
tgi(:,:,:,:,1,jc) = tgi(:,:,:,:,1,jc) / normr

end do
c
c now compute row2 - (row2 dot row1)*row1
c

normr = tgr(:,:,:,:,2,1) * tgr(:,:,:,:,1,1) +
& tgi(:,:,:,:,2,1) * tgi(:,:,:,:,1,1) +
& tgr(:,:,:,:,2,2) * tgr(:,:,:,:,1,2) +
& tgi(:,:,:,:,2,2) * tgi(:,:,:,:,1,2) +
& tgr(:,:,:,:,2,3) * tgr(:,:,:,:,1,3) +
& tgi(:,:,:,:,2,3) * tgi(:,:,:,:,1,3)

normi = tgi(:,:,:,:,2,1) * tgr(:,:,:,:,1,1) -
& tgr(:,:,:,:,2,1) * tgi(:,:,:,:,1,1) +
& tgi(:,:,:,:,2,2) * tgr(:,:,:,:,1,2) -
& tgr(:,:,:,:,2,2) * tgi(:,:,:,:,1,2) +
& tgi(:,:,:,:,2,3) * tgr(:,:,:,:,1,3) -
& tgr(:,:,:,:,2,3) * tgi(:,:,:,:,1,3)
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do jc=1,nc
tgr(:,:,:,:,2,jc) = tgr(:,:,:,:,2,jc) -

& ( normr * tgr(:,:,:,:,1,jc) -
& normi * tgi(:,:,:,:,1,jc) )

tgi(:,:,:,:,2,jc) = tgi(:,:,:,:,2,jc) -
& ( normr * tgi(:,:,:,:,1,jc) +
& normi * tgr(:,:,:,:,1,jc) )
end do

c Now normalise the second row

normr = sqrt( tgr(:,:,:,:,2,1)**2 + tgi(:,:,:,:,2,1)**2 +
& tgr(:,:,:,:,2,2)**2 + tgi(:,:,:,:,2,2)**2 +
& tgr(:,:,:,:,2,3)**2 + tgi(:,:,:,:,2,3)**2 )

do jc=1,nc
tgr(:,:,:,:,2,jc) = tgr(:,:,:,:,2,jc) / normr
tgi(:,:,:,:,2,jc) = tgi(:,:,:,:,2,jc) / normr

end do

c now generate row3 = row1 cross row2

do jc=1,nc
tgr(:,:,:,:,3,jc) = tgr(:,:,:,:,1,yvector(jc+1)) *

& tgr(:,:,:,:,2,yvector(jc+2)) -
& tgi(:,:,:,:,1,yvector(jc+1)) *
& tgi(:,:,:,:,2,yvector(jc+2)) -
& tgr(:,:,:,:,1,yvector(jc+2)) *
& tgr(:,:,:,:,2,yvector(jc+1)) +
& tgi(:,:,:,:,1,yvector(jc+2)) *
& tgi(:,:,:,:,2,yvector(jc+1))
tgi(:,:,:,:,3,jc) = - tgr(:,:,:,:,1,yvector(jc+1)) *

& tgi(:,:,:,:,2,yvector(jc+2)) -
& tgi(:,:,:,:,1,yvector(jc+1)) *
& tgr(:,:,:,:,2,yvector(jc+2)) +
& tgr(:,:,:,:,1,yvector(jc+2)) *
& tgi(:,:,:,:,2,yvector(jc+1)) +
& tgi(:,:,:,:,1,yvector(jc+2)) *
& tgr(:,:,:,:,2,yvector(jc+1))
end do

return
end subroutine fixsgauge

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 29th of June 2000.
c This subroutine is to calculate the fourier transform of the n-point functions.
c This subroputine maps a variable from cartesian coordinates space to a variable
c in momentum space. it takes in the color trace function and returns it in
c momentum space for all momentum value in the Brillouin zone [-pi/a,pi/a].
c
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subroutine fourier(prTr,piTr,pmrTr,pmiTr,jx,jy,jz,jt)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: jx,jy,jz,jt

double precision,dimension(nx,ny,nz,nt,nd,nd) :: prTr,piTr
cmf$ layout prTr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout piTr(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd):: pmrTr,pmiTr
cmf$ layout pmrTr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiTr(:news,:news,:news,:news,:serial,:serial)

c local variables

integer :: px,py,pz,pt
double precision :: pie
double precision :: qx,qy,qz,qt

double precision,dimension(nx,ny,nz,nt) :: phaser,phasei
cmf$ layout phaser(:news,:news,:news,:news)
cmf$ layout phasei(:news,:news,:news,:news)

integer :: id,jd
integer :: ix,iy,iz,it

c calculating the fourier transform of the traced quark propagator.
c The two point function (G2) or three point function (G3).
c The inverse Fourier transform is defined as
c S(p)=\sum_{n}\exp[(2i{\pi}/n)n{\cdot}p]S(n)
c for p_\mu=(2-n_\mu)/2,..,n_\mu/2.

pie = 4.0d0 * atan(1.0d0)

do pt=nmt,npt
do pz=nmz,npz

do py=nmy,npy
do px=nmx,npx

qx = ( ( 2.0d0 * pie ) / nx ) * px
qy = ( ( 2.0d0 * pie ) / ny ) * py
qz = ( ( 2.0d0 * pie ) / nz ) * pz
qt = ( ( 2.0d0 * pie ) / nt ) * ( pt - 1.0d0/2.0d0 )
forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt )

& phaser(ix,iy,iz,it) = cos( qx*(ix-jx) + qy*(iy-jy) +
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& qz*(iz-jz) + qt*(it-jt) )
forall( ix=1:nx,iy=1:ny,iz=1:nz,it=1:nt )

& phasei(ix,iy,iz,it) = sin( qx*(ix-jx) + qy*(iy-jy) +
& qz*(iz-jz) + qt*(it-jt) )

do id=1,nd
do jd=1,nd

pmrTr(px,py,pz,pt,id,jd) =
& sum( prTr(:,:,:,:,id,jd) * phaser -
& piTr(:,:,:,:,id,jd) * phasei )

pmiTr(px,py,pz,pt,id,jd) =
& sum( prTr(:,:,:,:,id,jd) * phasei +
& piTr(:,:,:,:,id,jd) * phaser )

end do
end do

end do
end do

end do
end do

return
end subroutine fourier

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 29th of June 2000.
c This subroutine is to multiply the quark propagators, by an arbitrary
c gamma matrix in the Sakurai representation.
c

subroutine gammaXSp(pmrTrG,pmiTrG,pmrTr,pmiTr,imu)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: imu

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd):: pmrTr,pmiTr
cmf$ layout pmrTr(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiTr(:news,:news,:news,:news,:serial,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,nd,nd)
& :: pmrTrG,pmiTrG

cmf$ layout pmrTrG(:news,:news,:news,:news,:serial,:serial)
cmf$ layout pmiTrG(:news,:news,:news,:news,:serial,:serial)

c local variables.

double precision :: gammaf
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integer :: id,jd,kd

c start of the execution commands.

c in the x-direction.

if ( imu == 1 ) then

do id=1,nd

if( id == 1 ) then
kd = 4
gammaf = - 1.0d0

else if( id == 2 ) then
kd = 3
gammaf = - 1.0d0

else if( id == 3 ) then
kd = 2
gammaf = 1.0d0

else if( id == 4 ) then
kd = 1
gammaf = 1.0d0

end if

do jd=1,nd
pmrTrG(:,:,:,:,id,jd) = - gammaf * pmiTr(:,:,:,:,kd,jd)
pmiTrG(:,:,:,:,id,jd) = gammaf * pmrTr(:,:,:,:,kd,jd)

end do
end do

c in the y-direction.

else if ( imu == 2 ) then

do id=1,nd

if( id == 1 ) then
kd = 4
gammaf = - 1.0d0

else if( id == 2 ) then
kd = 3
gammaf = 1.0d0

else if( id == 3 ) then
kd = 2
gammaf = 1.0d0

else if( id == 4 ) then
kd = 1
gammaf = - 1.0d0

end if

do jd=1,nd
pmrTrG(:,:,:,:,id,jd) = gammaf * pmrTr(:,:,:,:,kd,jd)
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pmiTrG(:,:,:,:,id,jd) = gammaf * pmiTr(:,:,:,:,kd,jd)
end do

end do

c in the z-direction.

else if ( imu == 3 ) then

do id=1,nd

if( id == 1 ) then
kd = 3
gammaf = - 1.0d0

else if( id == 2 ) then
kd = 4
gammaf = 1.0d0

else if( id == 3 ) then
kd = 1
gammaf = 1.0d0

else if( id == 4 ) then
kd = 2
gammaf = - 1.0d0

end if

do jd=1,nd
pmrTrG(:,:,:,:,id,jd) = - gammaf * pmiTr(:,:,:,:,kd,jd)
pmiTrG(:,:,:,:,id,jd) = gammaf * pmrTr(:,:,:,:,kd,jd)

end do
end do

c in the t-direction.

else if ( imu == 4 ) then

do id=1,nd

if( id == 1 ) then
kd = 1
gammaf = 1.0d0

else if( id == 2 ) then
kd = 2
gammaf = 1.0d0

else if( id == 3 ) then
kd = 3
gammaf = - 1.0d0

else if( id == 4 ) then
kd = 4
gammaf = - 1.0d0

end if

do jd=1,nd
pmrTrG(:,:,:,:,id,jd) = gammaf * pmrTr(:,:,:,:,kd,jd)
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pmiTrG(:,:,:,:,id,jd) = gammaf * pmiTr(:,:,:,:,kd,jd)
end do

end do

end if

return
end subroutine gammaXSp

E.24 Program to extract M(q2) and Z(q2) with Jack-

nife analysis

c program to first read in gauge field configuration and quark
c propagators. The program will then calcultate the color trace
c fourier transform the data and (optional) will calculate the invert
c of the 4x4 matrix in the Dirac space. Then calculate the full color trace
c multiply by an arbitrary gamma matrix the inverted propagator to give the
c Z(p) function.
c -----------------------------------------------------------------------------
c Quark-gluon vertex utility for SU(3) Gauge configuration
c -----------------------------------------------------------------------------
c Author: Frederic D.R. Bonnet; date: 14 of April 2000.
c 22 of November 2000.
c Included the Overlap fermion routines
c and front end ReadZlinks,ReadZprop
c 10th of June 2001.
c Read in the curli B and curli C_\mu.
c 20th of June 2001.
c Reproduce the results for the
c Wilson fermion
c for M^c(p) and Z^c(p).
c 25th of June 2001.
c Insertion of the complement sets.
c 29th of June 2001.
c Include the Jacknife analysis.
c 2nd of Jully 2001.
c Extrapolation to the chiral quark mass.
c
c output files:
c are propagator.
c Transform.log.
c
c To compile
c
c f95 -fast -extend_source -convert big_endian -assume byterecl overlap.f
c Newroutine.f transform.f -o
c f95 -fast -extend_source overlap.f Newroutine.f Transform.f -o non
c overlap fermions.
c cmf -cm5 -vu -extend_source -f90syntax Transform.fcm -o outputfile
c -----------------------------------------------------------------------------
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program JackMassAndZ
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: ncon=nprop-1

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

double precision,parameter :: rwil=1.0d0

double precision :: bcx,bcy,bcz,bct
double precision :: uzero=0.87208643d0
double precision :: mq
double precision :: kc
double precision :: ksim
double precision :: kappa
double precision :: Zpsi,Z0psi
double precision :: beta

c local variables.

logical :: uexists=.true.

integer :: nkappaQP
integer :: ncount
integer :: jx,jy,jz,jt
integer :: flq
character(len=4) :: fixname
character(len=4) :: cfg
character(len=80) :: quarkprop
character(len=80) :: lastconfig,corename

character(len=3),dimension(nprop) :: confnum
character(len=80),dimension(nprop) :: confs

cmf$ layout confs(:serial)
cmf$ layout confnum(:serial)

character(len=100) :: datafile
character(len=100),dimension(10) :: dataf
character(len=5),dimension(nkappa) :: qpk
character(len=100),dimension(nkappa) :: qp

cmf$ layout dataf(:serial)
cmf$ layout qpk(:serial)
cmf$ layout qp(:serial)

double precision,dimension(mu) :: pmu
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cmf$ layout pmu(:serial)

double precision,dimension(nkappa/2) :: mqk !mq(ikappa)
cmf$ layout mqk(:serial)

double precision,dimension(nkappa) :: xkappa
cmf$ layout xkappa(:serial)

double precision,dimension((npy-1)*npx*npt*(npz-1)) :: A0curlamr,A0curlami
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: B0curlamr,B0curlami

cmf$ layout A0curlamr(:news)
cmf$ layout A0curlami(:news)
cmf$ layout B0curlamr(:news)
cmf$ layout B0curlami(:news)

double precision,dimension((npy-1)*npx*npt*(npz-1)) :: Acurlamr,Acurlami
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: Bcurlamr,Bcurlami

cmf$ layout Acurlamr(:news)
cmf$ layout Acurlami(:news)
cmf$ layout Bcurlamr(:news)
cmf$ layout Bcurlami(:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt)
& :: A0curlr,A0curli,Acurlr,Acurli

cmf$ layout A0curlr(:news,:news,:news,:news)
cmf$ layout A0curli(:news,:news,:news,:news)
cmf$ layout Acurlr(:news,:news,:news,:news)
cmf$ layout Acurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt)
& :: B0curlr,B0curli,Bcurlr,Bcurli

cmf$ layout B0curlr(:news,:news,:news,:news)
cmf$ layout B0curli(:news,:news,:news,:news)
cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: C0curlmur,C0curlmui,Ccurlmur,Ccurlmui

cmf$ layout C0curlmur(:news,:news,:news,:news,:serial)
cmf$ layout C0curlmui(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: qmusq
cmf$ layout qmusq(:news,:news,:news,:news)

double precision,dimension((npy-1)*npx*npt*(npz-1)) :: qsqam,psqam,tempam
cmf$ layout qsqam(:news)
cmf$ layout psqam(:news)
cmf$ layout tempam(:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1):: qZ2sq,qZ3sq,tempZ3
cmf$ layout qZ2sq(:news,:news,:news,:news)
cmf$ layout qZ3sq(:news,:news,:news,:news)
cmf$ layout tempZ3(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu):: qmur,qmui
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cmf$ layout qmur(:news,:news,:news,:news,:serial)
cmf$ layout qmui(:news,:news,:news,:news,:serial)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: Br,Bi,B0r,B0i,B1r,B1i

cmf$ layout Br(:serial,:news)
cmf$ layout Bi(:serial,:news)
cmf$ layout B0r(:serial,:news)
cmf$ layout B0i(:serial,:news)
cmf$ layout B1r(:serial,:news)
cmf$ layout B1i(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: Ar,Ai,A0r,A0i,A1r,A1i

cmf$ layout Ar(:serial,:news)
cmf$ layout Ai(:serial,:news)
cmf$ layout A0r(:serial,:news)
cmf$ layout A0i(:serial,:news)
cmf$ layout A1r(:serial,:news)
cmf$ layout A1i(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)) :: Bcr,Bci
cmf$ layout Bcr(:serial,:news)
cmf$ layout Bci(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)) :: Acr,Aci
cmf$ layout Acr(:serial,:news)
cmf$ layout Aci(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)) :: Mcr,Zcr
cmf$ layout Mcr(:serial,:news)
cmf$ layout Zcr(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)) :: normA0
cmf$ layout normA0(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: A0curlcfgr,A0curlcfgi

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: B0curlcfgr,B0curlcfgi

cmf$ layout A0curlcfgr(:serial,:news)
cmf$ layout A0curlcfgi(:serial,:news)
cmf$ layout B0curlcfgr(:serial,:news)
cmf$ layout B0curlcfgi(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: Acurlcfgaver,Acurlcfgavei

cmf$ layout Acurlcfgaver(:serial,:news)
cmf$ layout Acurlcfgavei(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: Bcurlcfgaver,Bcurlcfgavei

cmf$ layout Bcurlcfgaver(:serial,:news)
cmf$ layout Bcurlcfgavei(:serial,:news)
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c the jacknife ananlysis variables.

double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1) :: Acurlgr,Acurlgi
cmf$ layout Acurlgr(:serial,:serial,:serial)
cmf$ layout Acurlgi(:serial,:serial,:serial)

double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1) :: Bcurlgr,Bcurlgi
cmf$ layout Bcurlgr(:serial,:serial,:serial)
cmf$ layout Bcurlgi(:serial,:serial,:serial)

double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1) :: Bcgr,Bcgi
cmf$ layout Bcgr(:serial,:serial,:serial)
cmf$ layout Bcgi(:serial,:serial,:serial)

double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1) :: Acgr,Acgi
cmf$ layout Acgr(:serial,:serial,:serial)
cmf$ layout Acgi(:serial,:serial,:serial)

double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1) :: Mcgr,Zcgr
cmf$ layout Mcgr(:serial,:serial,:serial)
cmf$ layout Zcgr(:serial,:serial,:serial)

double precision,dimension(nkappa/2,ncon,(npy-1)*npx*npt*(npz-1))
& :: Acurlcfgr,Acurlcfgi
double precision,dimension(nkappa/2,ncon,(npy-1)*npx*npt*(npz-1))
& :: Bcurlcfgr,Bcurlcfgi

cmf$ layout Acurlcfgr(:serial,:serial,:news)
cmf$ layout Acurlcfgi(:serial,:serial,:news)
cmf$ layout Bcurlcfgr(:serial,:serial,:news)
cmf$ layout Bcurlcfgi(:serial,:serial,:news)

c writing out to disk the bin files.

double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1,(npy-1)*npx*npt*(npz-1))
& :: Mcgrallq,Zcgrallq

cmf$ layout Mcgrallq(:serial,:serial,:serial,:news)
cmf$ layout Zcgrallq(:serial,:serial,:serial,:news)

double precision,dimension((npy-1)*npx*npt*(npz-1),0:ncon+2) :: Mextallq
cmf$ layout Mextallq(:news,:serial)

c output variables for the mass and z function, and the etrapolated values.

double precision,dimension(1,0:ncon+2) :: mcr1,mcr2
cmf$ layout mcr1(:serial,:serial)
cmf$ layout mcr2(:serial,:serial)

double precision,dimension(2,(npy-1)*npx*npt*(npz-1)) :: Mext,Zext
cmf$ layout Mext(:serial,:news)
cmf$ layout Zext(:serial,:news)

double precision,dimension(nkappa/2,2,(npy-1)*npx*npt*(npz-1)) :: Mcrq
cmf$ layout Mcrq(:serial,:serial,:news)

double precision,dimension(nkappa/2,2,(npy-1)*npx*npt*(npz-1)) :: Zcrq
cmf$ layout Zcrq(:serial,:serial,:news)

double precision,dimension(nkappa/2,2,(npy-1)*npx*npt*(npz-1)) :: Acrq
cmf$ layout Acrq(:serial,:serial,:news)

double precision,dimension(nkappa/2,2,(npy-1)*npx*npt*(npz-1)) :: Bcrq
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cmf$ layout Bcrq(:serial,:serial,:news)

double precision :: Acurlsqgr,Acurlsqgi
double precision :: A0curlsqgr,A0curlsqgi
double precision :: fgr,fgi,f0gr,f0gi
double precision :: normg,norm0g
double precision :: Agr,Agi,A0gr,A0gi
double precision :: Bgr,Bgi,B0gr,B0gi

integer :: icon,jcon,ido
integer :: ikappa,iprop,imu
integer :: ifile,incount
integer :: counter,cfgcount
integer :: px,py,pz,pt

INTERFACE
subroutine CurliCandBin(Bcurlr,Bcurli,Ccurlmur,Ccurlmui,qpk,xkappa,

& dataf,ikappa,bcx,bcy,bcz,bct)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: ikappa
double precision :: bcx,bcy,bcz,bct
double precision,dimension(nkappa) :: xkappa

cmf$ layout xkappa(:serial)
character(len=100),dimension(10) :: dataf

cmf$ layout dataf(:serial)
character(len=5),dimension(nkappa) :: qpk

cmf$ layout qpk(:serial)
double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt):: Bcurlr,Bcurli

cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

end subroutine CurliCandBin
subroutine Momentum(Cmur,Cmui,Ccurlmur,Ccurlmui,Bcurlr,Bcurli)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt):: Bcurlr,Bcurli

cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)
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double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu):: Cmur,Cmui
cmf$ layout Cmur(:news,:news,:news,:news,:serial)
cmf$ layout Cmui(:news,:news,:news,:news,:serial)

end subroutine Momentum

subroutine qZ2sqave(qZ2sq,qmusq)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: qmusq

cmf$ layout qmusq(:news,:news,:news,:news)
double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: qZ2sq

cmf$ layout qZ2sq(:news,:news,:news,:news)
end subroutine qZ2sqave
subroutine qZ3sqave(qZ3sq,qZ2sq)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: qZ3sq

cmf$ layout qZ3sq(:news,:news,:news,:news)
double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: qZ2sq

cmf$ layout qZ2sq(:news,:news,:news,:news)
end subroutine qZ3sqave
subroutine compression(ncount,psqam,amr,ami,AZ3r,AZ3i)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: ncount
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: psqam

cmf$ layout psqam(:news)
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: amr,ami

cmf$ layout amr(:news)
cmf$ layout ami(:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1):: AZ3r,AZ3i
cmf$ layout AZ3r(:news,:news,:news,:news)
cmf$ layout AZ3i(:news,:news,:news,:news)
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end subroutine compression
subroutine AcurlNdBam(ncount,Acurlamr,Acurlami,Bcurlamr,

& Bcurlami,qmur,Ccurlmur,Ccurlmui,Bcurlr,Bcurli)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: ncount
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: Acurlamr,Acurlami
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: Bcurlamr,Bcurlami

cmf$ layout Acurlamr(:news)
cmf$ layout Acurlami(:news)
cmf$ layout Bcurlamr(:news)
cmf$ layout Bcurlami(:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu):: qmur
cmf$ layout qmur(:news,:news,:news,:news,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt):: Bcurlr,Bcurli
cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

end subroutine AcurlNdBam
subroutine AandB(ncount,Ar,Ai,Br,Bi,Acurlaver,Acurlavei,

& Bcurlaver,Bcurlavei,qsqam,ikappa)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: ikappa
integer :: ncount
double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)):: Br,Bi

cmf$ layout Br(:serial,:news)
cmf$ layout Bi(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)) :: Ar,Ai
cmf$ layout Ar(:serial,:news)
cmf$ layout Ai(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: Bcurlaver,Bcurlavei

cmf$ layout Bcurlaver(:serial,:news)
cmf$ layout Bcurlavei(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: Acurlaver,Acurlavei

cmf$ layout Acurlaver(:serial,:news)
cmf$ layout Acurlavei(:serial,:news)
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double precision,dimension((npy-1)*npx*npt*(npz-1)) :: qsqam
cmf$ layout qsqam(:news)

end subroutine AandB

subroutine complement(gin,g)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: ncon=nprop-1
double precision,dimension(ncon) :: gin

cmf$ layout gin(:serial)
double precision,dimension(0:ncon+2,0:ncon+1) :: g

cmf$ layout g(:serial,:serial)
end subroutine complement
subroutine jack1(g,nlb,nle,lb,le)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: ncon=nprop-1
integer :: nlb,nle,lb,le,l,icon
double precision,dimension(nlb:nle,0:ncon+2) :: g

cmf$ layout g(:serial,:serial)
end subroutine jack1
subroutine jack2(g,nlb,nle,lb,le)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: ncon=nprop-1
integer :: nlb,nle,lb,le
double precision,dimension(nlb:nle,0:ncon+2,0:ncon+1) :: g

cmf$ layout g(:serial,:serial,:serial)
end subroutine jack2

subroutine extrapjack(m,mcr1,mqk)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: ncon=nprop-1
double precision,dimension(nkappa/2) :: mqk

cmf$ layout mqk(:serial)
double precision,dimension(1,0:ncon+2) :: mcr1

cmf$ layout mcr1(:serial,:serial)
double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1):: m

cmf$ layout m(:serial,:serial,:serial)
end subroutine extrapjack

subroutine writeMbin(Mcgrallq,Zcgrallq,qpk,ncount,ikappa)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: ncon=nprop-1
integer,parameter :: nmx=-nx/2+1,npx=nx/2
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integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: ncount
integer :: ikappa
character(len=5),dimension(nkappa) :: qpk

cmf$ layout qpk(:serial)
double precision,

& dimension(nkappa/2,0:ncon+2,0:ncon+1,(npy-1)*npx*npt*(npz-1))
& :: Mcgrallq,Zcgrallq

cmf$ layout Mcgrallq(:serial,:serial,:serial,:news)
cmf$ layout Zcgrallq(:serial,:serial,:serial,:news)

end subroutine writeMbin

function strlen(string)
implicit none
character*(*) string
integer :: strlen
integer :: i, blank

end function strlen
end interface

c start of the execution commands.

c first read in the datafile ParamTrans.dat

open(11,file=’ParamTrans_Jack.dat’,form=’formatted’,status=’old’,action=’read’)

read (11,*) nkappaQP

if (nkappaQP /= nkappa) pause ’mismatch in nkappa’
do ikappa=1,nkappa

read (11,*) xkappa(ikappa)
read (11,’(a5)’) qpk(ikappa)

end do

read (11,*) jx,jy,jz,jt
read (11,*) bcx,bcy,bcz,bct
close(11)

c first start by sreen input.

write(*,*)
write(*,*)’Please enter a beta value.’
read(*,*) beta

write(*,*) beta

write(*,*)’Would you to examine fat link action:’
write(*,*)’ 0:no fat link’
write(*,*)’ 1:yes fat link.’
write(*,*)’ 2:overlap Fermions.’
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read(*,’(i3)’) flq

write(*,*) flq

write(*,*)’Please enter the core name of the configuration:’
write(*,*)’Ex: SU3B600S6T18C’
read(*,’(a80)’) corename
write(*,*)

write(*,’(a)’) corename

write(*,*)’Please enter the fix name name of the configuration:’
write(*,*)’Ex: if 0.078 then enter .078. If no fixname leave blank’
read (*,’(a4)’) fixname
write(*,*)

write(*,’(a)’) fixname

do iprop=1,nprop

write(*,*)
write(*,*)’Which Gauge field configuration are we reading from?’
write(*,*)’With its associated quark propagator.’
read (*,’(a3)’) confnum(iprop)

write(*,’(a)’) confnum(iprop)

lastconfig = corename(1:strlen(corename))//confnum(iprop)
confs(iprop) = lastconfig(1:strlen(lastconfig))//fixname

end do

write(*,*) confs(1),confs(2)

open(1,file=’Jacknife.log’,status=’unknown’,position=’append’)

write(1,*)
write(1,*)’=======================================================
& ========================’
write(1,’(a)’)’ The mass function for the Wilson Fermions for
& SU(3) Gauge configuration ’
write(1,*)’=======================================================
& ========================’

write(1,’(4(a,i3))’)’lattice size = ’,nx,’x’,ny,’x’,nz,’x’,nt
write(1,’(a,i2)’)’The number of **kappa** value that are
& to be considered is =’,nkappa
write(1,’(a,4i3)’) ’The source position x, y, z, t is =’,jx,jy,jz,jt
write(1,’(a,4f8.4)’)’Boundary condition for fermion fields are=’,bcx,bcy,bcz,bct

c initializing the variables.
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A0curlcfgr = 0.0d0
A0curlcfgi = 0.0d0
B0curlcfgr = 0.0d0
B0curlcfgi = 0.0d0

Acurlcfgaver = 0.0d0
Acurlcfgavei = 0.0d0
Bcurlcfgaver = 0.0d0
Bcurlcfgavei = 0.0d0

c constructing the quark propagator filename.

if ( beta == 6.00d0 ) then
kc = 0.15699d0 * uzero

elseif( beta == 4.60d0 ) then
kappa = 0.19d0
if ( flq == 0 .or. flq == 1 ) then

kc = 0.1390d0
else if ( flq == 2 ) then

ksim = 0.1390d0
kc = 0.125d0

end if
elseif( beta == 4.286d0 ) then

kappa = 0.19d0
if ( flq == 2 ) then

ksim = 0.1464d0
kc = 0.125d0

end if
end if

do ikappa = 1,nkappa/2

if ( flq == 0 .or. flq == 1 ) then
mq = ( 1.0d0/2.0d0 ) * ( ( 1.0d0/xkappa(ikappa) ) - ( 1.0d0 / kc ) )
mqk(ikappa) = mq

elseif ( flq == 2 ) then
c Zpsi = (2.0d0/uzero)*( (-1.0d0/2.0d0)*( ( 1.0d0/kappa )
c & - ( 1.0d0 / kc ) ) - 4.0d0*(1.0d0-uzero) )

Zpsi = ( ( 1.0d0 / ksim ) - ( 1.0d0/kappa ) )
Z0psi = ( ( 1.0d0 / kc ) - ( 1.0d0/kappa ) )
mq = xkappa(ikappa) * Zpsi
mqk(ikappa) = mq

end if

write(*,*)
write(1,’(a,f25.16)’) ’the input kappa in the quark propagator code is

& k = ’,xkappa(ikappa)
write(1,’(a,f25.16)’) ’The Desy corresponding kappa value,

& k/uzero = ’,xkappa(ikappa)/uzero
write(1,’(a,f25.16)’) ’The wilson coefficient r,

& r = ’,rwil
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write(1,’(a,f25.16)’) ’the corrected kappa critical from Kc=.125 is
& kc = ’,kc

write(1,’(a,f25.16)’) ’the Desy kappa critical is
& kc_Desy = kc / uzero = ’,kc/uzero

write(1,’(a,f25.16,x,a)’)’Lattice bare q mass
& (1/2a)*(1/k-1/kc)*197.327(aMeV),
& mq = ’,mq*(197.33270d0),’(MeV)*a’

c get the tree level curli B.

lastconfig = confs(1)
if ( flq == 0 .or. flq == 1 ) then

qp(ikappa) = lastconfig(1:strlen(lastconfig))//
& ’.fix’//qpk(ikappa+nkappa/2)

elseif ( flq == 2 ) then
qp(ikappa) = lastconfig(1:strlen(lastconfig))//’.’//qpk(ikappa+nkappa/2)

end if

write(*,*)
write(*,’(a,3x,a100)’)’We are now reading from:’,qp(ikappa+nkappa/2)
write(1,’(a,3x,a100)’)’We are now reading from:’,qp(ikappa+nkappa/2)

c checkin the existence of the propagators.

quarkprop = ’ptQ’//qp(ikappa)

inquire(file=quarkprop,exist=uexists)

if(uexists) then
write(*,’(a,2x,a40,x,a)’)’the quark propagator:’,quarkprop,’exists’
write(*,’(a,2x,a40)’)’we are now proceeding with the reading of:’,

& quarkprop
elseif(.not. uexists ) then

write(*,’(a,2x,a40,x,a)’)’the quark propagator:’,
& quarkprop,’does not exists’

stop
end if

c now get the tree level culi C and B from disk

datafile = ’Bcurl’
datafile = datafile(1:strlen(datafile))//corename
datafile = datafile(1:strlen(datafile))//confnum(1)
dataf(1) = datafile(1:strlen(datafile))//fixname

datafile = ’Ccurl’
datafile = datafile(1:strlen(datafile))//corename
datafile = datafile(1:strlen(datafile))//confnum(1)
dataf(2) = datafile(1:strlen(datafile))//fixname

call CurliCandBin(B0curlr,B0curli,C0curlmur,C0curlmui,qpk,
& xkappa,dataf,ikappa+nkappa/2,bcx,bcy,bcz,bct)
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if ( flq == 2 ) then
C0curlmur = C0curlmur * ( Z0psi**(-1) )
C0curlmui = C0curlmui * ( Z0psi**(-1) )
B0curlr = B0curlr * ( Z0psi**(-1) )
B0curli = B0curli * ( Z0psi**(-1) )

end if

c now constrcutig the lattice momentum q_\mu

call Momentum(qmur,qmui,C0curlmur,C0curlmui,B0curlr,B0curli)

qmusq = 0.0d0
do imu=1,mu

qmusq(:,:,:,:) = qmusq(:,:,:,:) + ( qmur(:,:,:,:,imu)**2 )
end do

call qZ2sqave(qZ2sq,qmusq)
call qZ3sqave(qZ3sq,qZ2sq)

tempZ3 = 0.0d0
tempam = 0.0d0

call compression(ncount,psqam,qsqam,tempam,qZ3sq,tempZ3)

c now constraucting the Z2 and Z3 averaged curli A and B curli

call AcurlNdBam(ncount,A0curlamr,A0curlami,B0curlamr,B0curlami,
& qmur,C0curlmur,C0curlmui,B0curlr,B0curli)

A0curlcfgr(ikappa, :) = A0curlamr(:)
A0curlcfgi(ikappa, :) = A0curlami(:)
B0curlcfgr(ikappa, :) = B0curlamr(:)
B0curlcfgi(ikappa, :) = B0curlami(:)

write(*,*) ncount

c now repeating the same procedure for all the configurations.

cfgcount = 0
do iprop=2,nprop

cfgcount = cfgcount + 1
icon = iprop - 1

datafile = ’Bcurl’
datafile = datafile(1:strlen(datafile))//corename
datafile = datafile(1:strlen(datafile))//confnum(iprop)
dataf(1) = datafile(1:strlen(datafile))//fixname

datafile = ’Ccurl’
datafile = datafile(1:strlen(datafile))//corename
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datafile = datafile(1:strlen(datafile))//confnum(iprop)
dataf(2) = datafile(1:strlen(datafile))//fixname

call CurliCandBin(Bcurlr,Bcurli,Ccurlmur,Ccurlmui,qpk,
& xkappa,dataf,ikappa,bcx,bcy,bcz,bct)

if ( flq == 2 ) then
Ccurlmur = Ccurlmur * ( Zpsi**(-1) )
Ccurlmui = Ccurlmui * ( Zpsi**(-1) )
Bcurlr = Bcurlr * ( Zpsi**(-1) )
Bcurli = Bcurli * ( Zpsi**(-1) )

end if

call AcurlNdBam(ncount,Acurlamr,Acurlami,Bcurlamr,Bcurlami,
& qmur,Ccurlmur,Ccurlmui,Bcurlr,Bcurli)

Acurlcfgr(ikappa, icon, :) = Acurlamr(:)
Acurlcfgi(ikappa, icon, :) = Acurlami(:)
Bcurlcfgr(ikappa, icon, :) = Bcurlamr(:)
Bcurlcfgi(ikappa, icon, :) = Bcurlami(:)

Acurlcfgaver(ikappa,:) = Acurlcfgaver(ikappa,:) +
& Acurlcfgr(ikappa, icon, :)

Acurlcfgavei(ikappa,:) = Acurlcfgavei(ikappa,:) +
& Acurlcfgi(ikappa, icon, :)

Bcurlcfgaver(ikappa,:) = Bcurlcfgaver(ikappa,:) +
& Bcurlcfgr(ikappa, icon, :)

Bcurlcfgavei(ikappa,:) = Bcurlcfgavei(ikappa,:) +
& Bcurlcfgi(ikappa, icon, :)

write(*,*) ncount

end do

Acurlcfgaver(ikappa,:) = Acurlcfgaver(ikappa,:) / cfgcount
Acurlcfgavei(ikappa,:) = Acurlcfgavei(ikappa,:) / cfgcount
Bcurlcfgaver(ikappa,:) = Bcurlcfgaver(ikappa,:) / cfgcount
Bcurlcfgavei(ikappa,:) = Bcurlcfgavei(ikappa,:) / cfgcount

c opening the ouput files first.

c opening the ouput files first.

dataf(1) = ’Bcor.’
dataf(2) = ’Acor.’
dataf(3) = ’Mcor.’
dataf(4) = ’Zcor.’

do ifile=1,4
datafile = dataf(ifile)
datafile = datafile(1:strlen(datafile))//qpk(ikappa)//’.dat’
open(20+ifile+ikappa,file=datafile,status=’unknown’,position=’append’)
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end do

c now constructing the A and B. then performing the correction.

call AandB(ncount, Ar, Ai , Br , Bi , Acurlcfgaver, Acurlcfgavei,
& Bcurlcfgaver, Bcurlcfgavei, qsqam,ikappa)

if ( flq == 0 .or. flq == 1 ) then
call AandB(ncount, A0r, A0i, B0r, B0i, A0curlcfgr , A0curlcfgi ,

& B0curlcfgr , B0curlcfgi , qsqam,ikappa)
else if ( flq == 2 ) then

call AandB(ncount, A1r, A1i, B1r, B1i, A0curlcfgr , A0curlcfgi ,
& B0curlcfgr , B0curlcfgi , qsqam,ikappa)

c write(100,’(f21.15)’) A1r(ikappa,:)
c write(101,’(f21.15)’) A1i(ikappa,:)
c write(102,’(f21.15)’) B1r(ikappa,:)
c write(103,’(f21.15)’) B1i(ikappa,:)

A0r = 1.0d0
A0i = 0.0d0
B0r = 1.0d0
B0i = 0.0d0

end if

c now performing the tree level correction.

c the tree level correction for the B(p) function.

Bcr(ikappa,:) = 0.0d0
Bci(ikappa,:) = 0.0d0

normA0(ikappa,1:ncount) =
& ( B0r(ikappa,1:ncount)**2 + B0i(ikappa,1:ncount)**2 )

Bcr(ikappa,1:ncount) = ( Br(ikappa,1:ncount) * B0r(ikappa,1:ncount) +
& Bi(ikappa,1:ncount) * B0i(ikappa,1:ncount) )
& / normA0(ikappa,1:ncount)

Bci(ikappa,1:ncount) = ( - Br(ikappa,1:ncount) * B0i(ikappa,1:ncount) +
& Bi(ikappa,1:ncount) * B0r(ikappa,1:ncount) )
& / normA0(ikappa,1:ncount)

if ( flq == 0 .or. flq == 1 ) then
Bcr(ikappa,1:ncount) = Bcr(ikappa,1:ncount) * mq
Bci(ikappa,1:ncount) = Bci(ikappa,1:ncount) * mq

end if

do incount=1,ncount
write(21+ikappa,’(x,f25.16,2(2x,f25.16))’) psqam(incount),

& qsqam(incount),Bcr(ikappa,incount)
end do

c tree level correction for the C_{\mu}(p)

Acr(ikappa,:) = 0.0d0
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Aci(ikappa,:) = 0.0d0

normA0(ikappa,1:ncount) = A0r(ikappa,1:ncount)**2 + A0i(ikappa,1:ncount)**2

Acr(ikappa,1:ncount) = ( Ar(ikappa,1:ncount) * A0r(ikappa,1:ncount) +
& Ai(ikappa,1:ncount) * A0i(ikappa,1:ncount) )
& / normA0(ikappa,1:ncount)

Aci(ikappa,1:ncount) = ( - Ar(ikappa,1:ncount) * A0i(ikappa,1:ncount) +
& Ai(ikappa,1:ncount) * A0r(ikappa,1:ncount) )
& / normA0(ikappa,1:ncount)

Mcr(ikappa,1:ncount) = Bcr(ikappa,1:ncount) / Acr(ikappa,1:ncount)
Zcr(ikappa,1:ncount) = 1.0d0 / Acr(ikappa,1:ncount)

do incount=1,ncount
write(22+ikappa,’(x,f25.16,2(2x,f25.16))’) psqam(incount),qsqam(incount),

& Acr(ikappa,incount)
write(23+ikappa,’(x,f25.16,2(2x,f25.16))’) psqam(incount),qsqam(incount),

& Mcr(ikappa,incount)
write(24+ikappa,’(x,f25.16,2(2x,f25.16))’) psqam(incount),qsqam(incount),

& Zcr(ikappa,incount)
write(104+ikappa,’(x,f25.16,2(2x,f25.16))’) psqam(incount),qsqam(incount),

& Bcurlcfgaver(ikappa,incount)
end do

do ifile=1,4
close(20+ifile+ikappa)

end do

end do

c now calculating the errors on the ensemble averaged functions.

Acurlgr = 0.0d0
Acurlgi = 0.0d0
Bcurlgr = 0.0d0
Bcurlgi = 0.0d0

Bcgr = 0.0d0
Bcgi = 0.0d0
Acgr = 0.0d0
Acgi = 0.0d0
Mcgr = 0.0d0
Zcgr = 0.0d0

do incount=1,ncount

c first get the complement sets for the variables, for each kappa and momentum
c value.

do ikappa=1,nkappa/2

349



call complement(Acurlcfgr(ikappa,:,incount),Acurlgr(ikappa,:,:))
call complement(Acurlcfgi(ikappa,:,incount),Acurlgi(ikappa,:,:))

call complement(Bcurlcfgr(ikappa,:,incount),Bcurlgr(ikappa,:,:))
call complement(Bcurlcfgi(ikappa,:,incount),Bcurlgi(ikappa,:,:))

do icon=0,ncon
do jcon=0,ncon

ido = 0

if( icon == jcon .and. icon /= 0 ) then
ido = 1

elseif ( icon == 0 .and. jcon /= 0 ) then
ido = 1

end if

if ( ido /= 1 ) then

Acurlsqgr = ( Acurlgr(ikappa,icon,jcon)**2 -
& Acurlgi(ikappa,icon,jcon)**2 ) * qsqam(incount)

Acurlsqgi = ( 2.0d0 * Acurlgr(ikappa,icon,jcon) *
& Acurlgi(ikappa,icon,jcon) ) * qsqam(incount)

A0curlsqgr = ( A0curlcfgr(ikappa,incount)**2 -
& A0curlcfgi(ikappa,incount)**2 ) * qsqam(incount)

A0curlsqgi = ( 2.0d0 * A0curlcfgr(ikappa,incount) *
& A0curlcfgi(ikappa,incount) ) * qsqam(incount)

c Bsqcurlaver = Bcurlaver**2 - Bcurlavei**2
c Bsqcurlavei = 2.0d0 * Bcurlaver * Bcurlavei

fgr = Acurlsqgr + Bcurlgr(ikappa,icon,jcon)**2 -
& Bcurlgi(ikappa,icon,jcon)**2

fgi = Acurlsqgi + 2.0d0 * Bcurlgr(ikappa,icon,jcon) *
& Bcurlgi(ikappa,icon,jcon)

f0gr = A0curlsqgr + B0curlcfgr(ikappa,incount)**2 -
& B0curlcfgi(ikappa,incount)**2

f0gi = A0curlsqgi + 2.0d0 * B0curlcfgr(ikappa,incount) *
& B0curlcfgi(ikappa,incount)

normg = fgr**2 + fgi**2
norm0g = f0gr**2 + f0gi**2

Agr = ( Acurlgr(ikappa,icon,jcon) * fgr +
& Acurlgi(ikappa,icon,jcon) * fgi ) / normg

Agi = ( - Acurlgr(ikappa,icon,jcon) * fgi +
& Acurlgi(ikappa,icon,jcon) * fgr ) / normg

Bgr = ( Bcurlgr(ikappa,icon,jcon) * fgr +
& Bcurlgi(ikappa,icon,jcon) * fgi ) / normg

Bgi = ( - Bcurlgr(ikappa,icon,jcon) * fgi +
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& Bcurlgi(ikappa,icon,jcon) * fgr ) / normg

if ( flq == 0 .or. flq == 1 ) then
A0gr = ( A0curlcfgr(ikappa,incount) * f0gr +

& A0curlcfgi(ikappa,incount) * f0gi ) / norm0g
A0gi = ( - A0curlcfgr(ikappa,incount) * f0gi +

& A0curlcfgi(ikappa,incount) * f0gr ) / norm0g
B0gr = ( B0curlcfgr(ikappa,incount) * f0gr +

& B0curlcfgi(ikappa,incount) * f0gi ) / norm0g
B0gi = ( - B0curlcfgr(ikappa,incount) * f0gi +

& B0curlcfgi(ikappa,incount) * f0gr ) / norm0g
else if ( flq == 2 ) then

A0gr = 1.0d0
A0gi = 0.0d0
B0gr = 1.0d0
B0gi = 0.0d0

end if

c the tree level correction for the B(p) function.

normg = B0gr**2 + B0gi**2

if ( flq == 0 .or. flq == 1 ) then
Bcgr(ikappa,icon,jcon) = ( ( Bgr * B0gr + Bgi * B0gi )

& / normg ) * mqk(ikappa)
Bcgi(ikappa,icon,jcon) = ( ( - Bgr * B0gi + Bgi * B0gr )

& / normg ) * mqk(ikappa)
else if ( flq == 2 ) then

Bcgr(ikappa,icon,jcon) = ( ( Bgr * B0gr + Bgi * B0gi )
& / normg )

Bcgi(ikappa,icon,jcon) = ( ( - Bgr * B0gi + Bgi * B0gr )
& / normg )

end if

c tree level correction for the C_{\mu}(p)

normg = A0gr**2 + A0gi**2

Acgr(ikappa,icon,jcon) = ( Agr * A0gr + Agi * A0gi ) / normg
Acgi(ikappa,icon,jcon) = ( - Agr * A0gi + Agi * A0gr ) / normg

Mcgr(ikappa,icon,jcon) = Bcgr(ikappa,icon,jcon) /
& Acgr(ikappa,icon,jcon)

Zcgr(ikappa,icon,jcon) = 1.0d0 / Acgr(ikappa,icon,jcon)

end if

end do
end do

end do
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c storing the complement sets for the mass function into one
c array for all momemtum values

Mcgrallq(:,:,:,incount) = Mcgr(:,:,:)
Zcgrallq(:,:,:,incount) = Zcgr(:,:,:)

c here get the Jacknife methods Jack21

call jack2(Acgr,1,nkappa/2,1,nkappa/2)
call jack2(Bcgr,1,nkappa/2,1,nkappa/2)
call jack2(Mcgr,1,nkappa/2,1,nkappa/2)
call jack2(Zcgr,1,nkappa/2,1,nkappa/2)

call jack1(Acgr(:,0:ncon+2,0),1,nkappa/2,1,nkappa/2)
call jack1(Bcgr(:,0:ncon+2,0),1,nkappa/2,1,nkappa/2)
call jack1(Mcgr(:,0:ncon+2,0),1,nkappa/2,1,nkappa/2)
call jack1(Zcgr(:,0:ncon+2,0),1,nkappa/2,1,nkappa/2)

Acrq(:,0,incount) = Acgr(:,0,0)
Acrq(:,1,incount) = Acgr(:,ncon+1,0)
Bcrq(:,0,incount) = Bcgr(:,0,0)
Bcrq(:,1,incount) = Bcgr(:,ncon+1,0)

Mcrq(:,0,incount) = Mcgr(:,0,0)
Mcrq(:,1,incount) = Mcgr(:,ncon+1,0)
Zcrq(:,0,incount) = Zcgr(:,0,0)
Zcrq(:,1,incount) = Zcgr(:,ncon+1,0)

call extrapjack(Mcgr,mcr1,mqk)
Mext(0,incount) = mcr1(1,0)
Mext(1,incount) = mcr1(1,ncon+1)

Mextallq(incount,0:ncon+2) = mcr1(1,0:ncon+2)

call extrapjack(Zcgr,mcr2,mqk)
Zext(0,incount) = mcr2(1,0)
Zext(1,incount) = mcr2(1,ncon+1)

end do

c now printing out the values for all the momentum values

dataf(7) = ’Mcor_err.’
dataf(8) = ’Zcor_err.’
dataf(9) = ’Acor_err.’
dataf(10) = ’Bcor_err.’

do ikappa=1,nkappa/2

do ifile=7,10
datafile = dataf(ifile)
datafile = datafile(1:strlen(datafile))//qpk(ikappa)//’.dat’
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open(1000+ifile+ikappa,file=datafile,status=’unknown’,
& position=’append’,action=’write’)

end do

do incount=1,ncount

write(1007+ikappa,’(x,f25.16,4(2x,f25.16))’)
& psqam(incount),qsqam(incount),Mcr(ikappa,incount),
& Mcrq(ikappa,0,incount),Mcrq(ikappa,1,incount)

write(1008+ikappa,’(x,f25.16,4(2x,f25.16))’)
& psqam(incount),qsqam(incount),Zcr(ikappa,incount),
& Zcrq(ikappa,0,incount),Zcrq(ikappa,1,incount)

write(1009+ikappa,’(x,f25.16,4(2x,f25.16))’)
& psqam(incount),qsqam(incount),Acr(ikappa,incount),
& Acrq(ikappa,0,incount),Acrq(ikappa,1,incount)

write(1010+ikappa,’(x,f25.16,4(2x,f25.16))’)
& psqam(incount),qsqam(incount),Bcr(ikappa,incount),
& Bcrq(ikappa,0,incount),Bcrq(ikappa,1,incount)

end do

do ifile=7,10
close(1000+ifile+ikappa)

end do

call writeMbin(Mcgrallq,Zcgrallq,qpk,ncount,ikappa)

end do

datafile = ’Mextra.’
datafile = datafile(1:strlen(datafile))//’dat’
open(1011,file=datafile,status=’unknown’,position=’append’,action=’write’)
datafile = ’Zextra.’
datafile = datafile(1:strlen(datafile))//’dat’
open(1012,file=datafile,status=’unknown’,position=’append’,action=’write’)

datafile = ’Mextra_bin.’
datafile = datafile(1:strlen(datafile))//’.dat’
open(1013,file=datafile,form=’unformatted’,status=’replace’,action=’write’)

do icon=0,ncon+2
write(1013) Mextallq(1:ncount,icon)

end do
close(1013)

do incount=1,ncount
write(1011,’(x,f25.16,3(2x,f25.16))’) psqam(incount),qsqam(incount),

& Mext(0,incount),Mext(1,incount)
write(1012,’(x,f25.16,3(2x,f25.16))’) psqam(incount),qsqam(incount),

& Zext(0,incount),Zext(1,incount)
end do
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close(1011)
close(1012)

close(1)

end program JackMassAndZ
c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 18th of June 2001.
c subroutine to calculate the uncorrected C_\mu(p) and and B(p).
c

subroutine Z2averaging(AZ2r,AZ2i,Ar,Ai)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: Ar,Ai
cmf$ layout Ar(:news,:news,:news,:news)
cmf$ layout Ai(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: AZ2r,AZ2i
cmf$ layout AZ2r(:news,:news,:news,:news)
cmf$ layout AZ2i(:news,:news,:news,:news)

c local variables.

integer :: px,py,pz,pt

c start of the execution commands.

c first calculating the CurcC_{\mu}=(i/4)Tr[\gamma_\mu*S(p)]

AZ2r = 0.0d0
AZ2i = 0.0d0

do pt=0,npt-1
do pz=0,npz-1

do py=0,npy-1
do px=0,npx-1

AZ2r(px,py,pz,pt) = Ar( px, py, pz, pt+1) + Ar(-px, py, pz, pt+1) +
& Ar( px,-py, pz, pt+1) + Ar(-px,-py, pz, pt+1) +
& Ar( px, py,-pz, pt+1) + Ar(-px, py,-pz, pt+1) +
& Ar( px,-py,-pz, pt+1) + Ar(-px,-py,-pz, pt+1) +
& Ar( px, py, pz, -pt) + Ar(-px, py, pz, -pt) +
& Ar( px,-py, pz, -pt) + Ar(-px,-py, pz, -pt) +
& Ar( px, py,-pz, -pt) + Ar(-px, py,-pz, -pt) +
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& Ar( px,-py,-pz, -pt) + Ar(-px,-py,-pz, -pt)
AZ2i(px,py,pz,pt) = Ai( px, py, pz, pt+1) + Ai(-px, py, pz, pt+1) +

& Ai( px,-py, pz, pt+1) + Ai(-px,-py, pz, pt+1) +
& Ai( px, py,-pz, pt+1) + Ai(-px, py,-pz, pt+1) +
& Ai( px,-py,-pz, pt+1) + Ai(-px,-py,-pz, pt+1) +
& Ai( px, py, pz, -pt) + Ai(-px, py, pz, -pt) +
& Ai( px,-py, pz, -pt) + Ai(-px,-py, pz, -pt) +
& Ai( px, py,-pz, -pt) + Ai(-px, py,-pz, -pt) +
& Ai( px,-py,-pz, -pt) + Ai(-px,-py,-pz, -pt)

end do
end do

end do
end do

AZ2r = (1.0d0/16.0d0) * AZ2r
AZ2i = (1.0d0/16.0d0) * AZ2i

return
end subroutine Z2averaging

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 18th of June 2001.
c subroutine to calculate the uncorrected C_\mu(p) and and B(p).
c

subroutine Z3averaging(AZ3r,AZ3i,AZ2r,AZ2i)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: AZ3r,AZ3i
cmf$ layout AZ3r(:news,:news,:news,:news)
cmf$ layout AZ3i(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: AZ2r,AZ2i
cmf$ layout AZ2r(:news,:news,:news,:news)
cmf$ layout AZ2i(:news,:news,:news,:news)

c local variables.

integer :: px,py,pz,pt

c start of the execution commands.

c Calculating the Z3 averaging for the given array.

AZ3r = 0.0d0
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AZ3i = 0.0d0

do px = 0,npx-1
do py = 0,px

do pz=0,py
do pt=0,npt-1

AZ3r(px,py,pz,pt) = AZ2r(px,py,pz,pt) + AZ2r(px,pz,py,pt) +
& AZ2r(pz,px,py,pt) + AZ2r(pz,py,px,pt) +
& AZ2r(py,pz,px,pt) + AZ2r(py,px,pz,pt)

AZ3i(px,py,pz,pt) = AZ2i(px,py,pz,pt) + AZ2i(px,pz,py,pt) +
& AZ2i(pz,px,py,pt) + AZ2i(pz,py,px,pt) +
& AZ2i(py,pz,px,pt) + AZ2i(py,px,pz,pt)

end do
end do

end do
end do

AZ3r = AZ3r / 6.0d0
AZ3i = AZ3i / 6.0d0

return
end subroutine Z3averaging

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 19th of June 2001.
c subroutine to calculate the uncorrected C_\mu(p) and and B(p).
c

subroutine qZ3sqave(qZ3sq,qZ2sq)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: qZ3sq
cmf$ layout qZ3sq(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: qZ2sq
cmf$ layout qZ2sq(:news,:news,:news,:news)

c local variables.

integer :: px,py,pz,pt

c start of the execution commands.

c Calculating the Z3 averaging for the given array.
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qZ3sq(:,:,:,:) = 0.0d0

do px = 0,npx-1
do py = 0,px

do pz=0,py
do pt=0,npt-1

qZ3sq(px,py,pz,pt) = qZ2sq(px,py,pz,pt) + qZ2sq(px,pz,py,pt) +
& qZ2sq(pz,px,py,pt) + qZ2sq(pz,py,px,pt) +
& qZ2sq(py,pz,px,pt) + qZ2sq(py,px,pz,pt)

end do
end do

end do
end do

qZ3sq(:,:,:,:) = qZ3sq(:,:,:,:) / 6.0d0

return
end subroutine qZ3sqave

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 19th of June 2001.
c subroutine to calculate the uncorrected C_\mu(p) and and B(p).
c

subroutine qZ2sqave(qZ2sq,qmusq)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: qmusq
cmf$ layout qmusq(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: qZ2sq
cmf$ layout qZ2sq(:news,:news,:news,:news)

c local variables.

integer :: px,py,pz,pt

c start of the execution commands.

c calculating the Z2 averaging for the qmu arrays.

qZ2sq(:,:,:,:) = 0.0d0

do pt=0,npt-1
do pz=0,npz-1
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do py=0,npy-1
do px=0,npx-1

qZ2sq(px,py,pz,pt) = qmusq( px, py, pz, pt+1) +
& qmusq(-px, py, pz, pt+1) +
& qmusq( px,-py, pz, pt+1) +
& qmusq(-px,-py, pz, pt+1) +
& qmusq( px, py,-pz, pt+1) +
& qmusq(-px, py,-pz, pt+1) +
& qmusq( px,-py,-pz, pt+1) +
& qmusq(-px,-py,-pz, pt+1) +
& qmusq( px, py, pz, -pt) +
& qmusq(-px, py, pz, -pt) +
& qmusq( px,-py, pz, -pt) +
& qmusq(-px,-py, pz, -pt) +
& qmusq( px, py,-pz, -pt) +
& qmusq(-px, py,-pz, -pt) +
& qmusq( px,-py,-pz, -pt) +
& qmusq(-px,-py,-pz, -pt)

end do
end do

end do
end do

qZ2sq(:,:,:,:) = (1.0d0/16.0d0) * qZ2sq(:,:,:,:)

return
end subroutine qZ2sqave

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 2nd of February 2001.
c subroutine to calculate the uncorrected C_\mu(p) and and B(p).
c

subroutine Momentum(Cmur,Cmui,Ccurlmur,Ccurlmui,Bcurlr,Bcurli)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: Bcurlr,Bcurli
cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu):: Cmur,Cmui
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cmf$ layout Cmur(:news,:news,:news,:news,:serial)
cmf$ layout Cmui(:news,:news,:news,:news,:serial)

c local variables.

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt):: norm,fr,fi
cmf$ layout norm(:news,:news,:news,:news)
cmf$ layout fr(:news,:news,:news,:news)
cmf$ layout fi(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt):: Ccurlsqr,Ccurlsqi
cmf$ layout Ccurlsqr(:news,:news,:news,:news)
cmf$ layout Ccurlsqi(:news,:news,:news,:news)

integer :: id,imu

c start of the execution commands.

c start of the execution commands.

Cmur = 0.0d0
Cmui = 0.0d0

c now calculating the normal C_{\mu}(p) as defined by 1.
c similarly for the normal B(p) as defined by 2.

Ccurlsqr = 0.0d0
Ccurlsqi = 0.0d0

do imu=1,mu

Ccurlsqr = Ccurlsqr + ( Ccurlmur(:,:,:,:,imu)**2 - Ccurlmui(:,:,:,:,imu)**2 )
Ccurlsqi = Ccurlsqi +

& ( 2.0d0 * Ccurlmur(:,:,:,:,imu) * Ccurlmui(:,:,:,:,imu) )

end do

c Bsqcurlr = Bcurlr**2 - Bcurli**2
c Bsqcurli = 2.0d0 * Bcurlr * Bcurli

fr = Ccurlsqr + Bcurlr**2 - Bcurli**2
fi = Ccurlsqi + 2.0d0 * Bcurlr * Bcurli

norm = fr**2 + fi**2

do imu=1,mu

Cmur(:,:,:,:,imu) = ( Ccurlmur(:,:,:,:,imu) * fr +
& Ccurlmui(:,:,:,:,imu) * fi ) / norm

Cmui(:,:,:,:,imu) = ( - Ccurlmur(:,:,:,:,imu) * fi +
& Ccurlmui(:,:,:,:,imu) * fr ) / norm

359



end do

return
end subroutine Momentum

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 20th of June 2001.
c subroutine to get the compressed write curli A and B on a
c configuration basis for each kappa the information will be inserted
c after routine call.
c

subroutine AcurlNdBam(ncount,Acurlamr,Acurlami,Bcurlamr,Bcurlami,
& qmur,Ccurlmur,Ccurlmui,Bcurlr,Bcurli)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: ncount

double precision,dimension((npy-1)*npx*npt*(npz-1)) :: Acurlamr,Acurlami
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: Bcurlamr,Bcurlami

cmf$ layout Acurlamr(:news)
cmf$ layout Acurlami(:news)
cmf$ layout Bcurlamr(:news)
cmf$ layout Bcurlami(:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu):: qmur
cmf$ layout qmur(:news,:news,:news,:news,:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: qsq
cmf$ layout qsq(:news,:news,:news,:news)

double precision,dimension((npy-1)*npx*npt*(npz-1)) :: psqam
cmf$ layout psqam(:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: Bcurlr,Bcurli
cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

c local variables

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt):: Acurlr,Acurli
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cmf$ layout Acurlr(:news,:news,:news,:news)
cmf$ layout Acurli(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1):: AZ2curlr,AZ2curli
cmf$ layout AZ2curlr(:news,:news,:news,:news)
cmf$ layout AZ2curli(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1):: AZ3curlr,AZ3curli
cmf$ layout AZ3curlr(:news,:news,:news,:news)
cmf$ layout AZ3curli(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1):: BZ2curlr,BZ2curli
cmf$ layout BZ2curlr(:news,:news,:news,:news)
cmf$ layout BZ2curli(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1):: BZ3curlr,BZ3curli
cmf$ layout BZ3curlr(:news,:news,:news,:news)
cmf$ layout BZ3curli(:news,:news,:news,:news)

integer :: px,py,pz,pt
integer :: counter
integer :: imu

interface
subroutine Z2averaging(AZ2r,AZ2i,Ar,Ai)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: Ar,Ai

cmf$ layout Ar(:news,:news,:news,:news)
cmf$ layout Ai(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: AZ2r,AZ2i
cmf$ layout AZ2r(:news,:news,:news,:news)
cmf$ layout AZ2i(:news,:news,:news,:news)

end subroutine Z2averaging
subroutine Z3averaging(AZ3r,AZ3i,AZ2r,AZ2i)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: AZ3r,AZ3i

cmf$ layout AZ3r(:news,:news,:news,:news)
cmf$ layout AZ3i(:news,:news,:news,:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: AZ2r,AZ2i
cmf$ layout AZ2r(:news,:news,:news,:news)
cmf$ layout AZ2i(:news,:news,:news,:news)

end subroutine Z3averaging
subroutine compression(ncount,psqam,amr,ami,AZ3r,AZ3i)
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implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2
integer :: ncount
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: psqam

cmf$ layout psqam(:news)
double precision,dimension((npy-1)*npx*npt*(npz-1)) :: amr,ami

cmf$ layout amr(:news)
cmf$ layout ami(:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: AZ3r,AZ3i
cmf$ layout AZ3r(:news,:news,:news,:news)
cmf$ layout AZ3i(:news,:news,:news,:news)

end subroutine compression
end interface

c start of the execution commands

c now constrcutig the lattice momentum q_\mu

Acurlr = 0.0d0
Acurli = 0.0d0
qsq = 0.0d0

do imu=1,mu

Acurlr(:,:,:,:) = Acurlr(:,:,:,:) +
& ( qmur(:,:,:,:,imu) * Ccurlmur(:,:,:,:,imu) )

Acurli(:,:,:,:) = Acurli(:,:,:,:) +
& ( qmur(:,:,:,:,imu) * Ccurlmui(:,:,:,:,imu) )

qsq = qsq + qmur(:,:,:,:,imu)**2

end do

Acurlr = (1.0d0/qsq) * Acurlr
Acurli = (1.0d0/qsq) * Acurli

c now the Z2 averaging.

call Z2averaging(AZ2curlr,AZ2curli,Acurlr,Acurli)
call Z2averaging(BZ2curlr,BZ2curli,Bcurlr,Bcurli)

c Z3 averaging.

call Z3averaging(AZ3curlr,AZ3curli,AZ2curlr,AZ2curli)
call Z3averaging(BZ3curlr,BZ3curli,BZ2curlr,BZ2curli)

c now compresing the arrays.
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c insert cuts inside the loops.

call compression(ncount,psqam,Acurlamr,Acurlami,AZ3curlr,AZ3curli)
call compression(ncount,psqam,Bcurlamr,Bcurlami,BZ3curlr,BZ3curli)

return
end subroutine AcurlNdBam

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 2nd of February 2001.
c subroutine to calculate the uncorrected C_\mu(p) and and B(p).
c

subroutine AandB(ncount,Ar,Ai,Br,Bi,Acurlaver,Acurlavei,Bcurlaver,Bcurlavei,
& qsqam,ikappa)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: ikappa
integer :: ncount

double precision,dimension((npy-1)*npx*npt*(npz-1)) :: qsqam
cmf$ layout qsqam(:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)) :: Br,Bi
cmf$ layout Br(:serial,:news)
cmf$ layout Bi(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)) :: Ar,Ai
cmf$ layout Ar(:serial,:news)
cmf$ layout Ai(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: Bcurlaver,Bcurlavei

cmf$ layout Bcurlaver(:serial,:news)
cmf$ layout Bcurlavei(:serial,:news)

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1))
& :: Acurlaver,Acurlavei

cmf$ layout Acurlaver(:serial,:news)
cmf$ layout Acurlavei(:serial,:news)

c local variables.

double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)):: normj,f1r,f1i
cmf$ layout normj(:serial,:news)
cmf$ layout f1r(:serial,:news)
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cmf$ layout f1i(:serial,:news)
double precision,dimension(nkappa/2,(npy-1)*npx*npt*(npz-1)):: Acurlsqr,Acurlsqi

cmf$ layout Acurlsqr(:serial,:news)
cmf$ layout Acurlsqi(:serial,:news)

c start of the execution commands.

Ar(ikappa,:) = 0.0d0
Ai(ikappa,:) = 0.0d0

Br(ikappa,:) = 0.0d0
Bi(ikappa,:) = 0.0d0

c now calculating the normal C_{\mu}(p) as defined by 1.
c similarly for the normal B(p) as defined by 2.

Acurlsqr(ikappa,1:ncount) = ( Acurlaver(ikappa,1:ncount)**2 -
& Acurlavei(ikappa,1:ncount)**2 ) * qsqam(1:ncount)
Acurlsqi(ikappa,1:ncount) = ( 2.0d0 * Acurlaver(ikappa,1:ncount) *

& Acurlavei(ikappa,1:ncount) ) * qsqam(1:ncount)

c Bsqcurlaver = Bcurlaver**2 - Bcurlavei**2
c Bsqcurlavei = 2.0d0 * Bcurlaver * Bcurlavei

f1r(ikappa,1:ncount) = Acurlsqr(ikappa,1:ncount) +
& Bcurlaver(ikappa,1:ncount)**2 -
& Bcurlavei(ikappa,1:ncount)**2
f1i(ikappa,1:ncount) = Acurlsqi(ikappa,1:ncount) +

& 2.0d0 * Bcurlaver(ikappa,1:ncount) *
& Bcurlavei(ikappa,1:ncount)

normj(ikappa,1:ncount) = f1r(ikappa,1:ncount)**2 + f1i(ikappa,1:ncount)**2

Ar(ikappa,1:ncount) = ( Acurlaver(ikappa,1:ncount) * f1r(ikappa,1:ncount) +
& Acurlavei(ikappa,1:ncount) * f1i(ikappa,1:ncount) )
& / normj(ikappa,1:ncount)
Ai(ikappa,1:ncount) = ( - Acurlaver(ikappa,1:ncount) * f1i(ikappa,1:ncount) +

& Acurlavei(ikappa,1:ncount) * f1r(ikappa,1:ncount) )
& / normj(ikappa,1:ncount)

Br(ikappa,1:ncount) = ( Bcurlaver(ikappa,1:ncount) * f1r(ikappa,1:ncount) +
& Bcurlavei(ikappa,1:ncount) * f1i(ikappa,1:ncount) )
& / normj(ikappa,1:ncount)
Bi(ikappa,1:ncount) = ( - Bcurlaver(ikappa,1:ncount) * f1i(ikappa,1:ncount) +

& Bcurlavei(ikappa,1:ncount) * f1r(ikappa,1:ncount) )
& / normj(ikappa,1:ncount)

return
end subroutine AandB

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 25th of June 2001.
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c subroutine to get the compressed Z3 averaged functions. It also
c returns the momentum values.
c The cuts are to be inserted in this section of the code.
c

subroutine compression(ncount,psqam,amr,ami,AZ3r,AZ3i)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: ncount

double precision,dimension((npy-1)*npx*npt*(npz-1)) :: psqam
cmf$ layout psqam(:news)

double precision,dimension((npy-1)*npx*npt*(npz-1)) :: amr,ami
cmf$ layout amr(:news)
cmf$ layout ami(:news)

double precision,dimension(0:npx-1,0:npy-1,0:npz-1,0:npt-1) :: AZ3r,AZ3i
cmf$ layout AZ3r(:news,:news,:news,:news)
cmf$ layout AZ3i(:news,:news,:news,:news)

c loacal variables.

double precision :: pie
double precision :: psq=1.0d0,deltap

double precision,dimension(mu) :: pmu
cmf$ layout pmu(:serial)

integer :: px,py,pz,pt
integer :: counter

c start of the executions.

c insert the cuts in the do loop.

pie= 4.0d0 * atan(1.0d0)
counter = 0
do pt = 0, npt-1

do px = 0, npx-1
do py = 0, px

do pz = 0, py

pmu(1) = ( ( 2.0d0 * pie ) / nx ) * px
pmu(2) = ( ( 2.0d0 * pie ) / ny ) * py
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pmu(3) = ( ( 2.0d0 * pie ) / nz ) * pz
pmu(4) = ( ( 2.0d0 * pie ) / nt ) * ( pt + 1.0d0/2.0d0 )

psq = pmu(1)**2+pmu(2)**2+pmu(3)**2+pmu(4)**2
c deltap = sqrt(psq) * sin( acos( (pmu(1)+pmu(2)+pmu(3)+pmu(4))
c & / (2.0d0*sqrt(psq)) ) )

c performing the cuts half momentum and cylinder cut.

c if ( deltap < (4.0d0*pie/nx) .and. deltap > (-4.0d0*pie/nx) ) then
c if ( deltap < (2.0d0*pie/nx) .and. deltap > (-2.0d0*pie/nx) ) then
c if ( pmu(4) <= pie/2.0d0 .and. pmu(4) >= -pie/2.0d0) then

c if ( pmu(1) <= pie/2.0d0 .and. pmu(1) >= -pie/2.0d0 ) then
c if ( pmu(2) <= pie/2.0d0 .and. pmu(2) >= -pie/2.0d0) then
c if ( pmu(3) <= pie/2.0d0 .and. pmu(3) >= -pie/2.0d0) then
c if ( pmu(4) <= pie/2.0d0 .and. pmu(4) >= -pie/2.0d0) then

counter = counter + 1
psqam(counter) = pmu(1)**2+pmu(2)**2+pmu(3)**2+pmu(4)**2
amr(counter) = AZ3r(px,py,pz,pt)
ami(counter) = AZ3i(px,py,pz,pt)

c end if
c end if
c end if
c end if

end do
end do

end do
end do

ncount = counter

return
end subroutine compression

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c routine moified to only do second order Jacknife analysis.
c Author Frederic D.R. Bonnet, date 29th June 2001.
c configurations, arranged according to :
c g(0, 0) average over all configurations
c g(ncon+1,0) will be jackknifed error for g(0,0)
c g(ncon+2,0) will be gavg - g(0,0)
c g(i, 0) average over all but ’i’th conf.,
c (i=1,ncon)
c g(i,ncon+1) will be jackknifed error for g(i,0)
c g(i, j) average over all but ’i’th and ’j’th conf.
c (i,j=1,ncon), g(i,i,0)=g(i,0)
c g(i, j) will be jackknifed error for g(i,j)
c g(i, j) av. over all but ’i’th, ’j’th conf.
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c g(i,j)=g(i,j)
c

subroutine complement(gin,g)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: ncon=nprop-1

double precision,dimension(ncon) :: gin
cmf$ layout gin(:serial)

double precision,dimension(0:ncon+2,0:ncon+1) :: g
cmf$ layout g(:serial,:serial)

c local variables.

integer :: it,icon,jcon

c start of the execution commands.

g(0,0)=0.0d0

do icon=1,ncon
g(0,0) = g(0,0) + gin(icon)

end do

do icon=1,ncon
g(icon,0) = g(0,0) - gin(icon)
do jcon=1,ncon

g(icon,jcon) = g(icon,0) - gin(jcon)
end do

end do

c handling of normalization for first two levels of Jackknife

do icon=1,ncon

do jcon=1,ncon
g(icon,jcon) = g(icon,jcon) / ( ncon-2 )

end do

g(icon,0) = g(icon,0) / ( ncon-1 )

end do

g(0,0) = g(0,0) / ncon

return
end subroutine complement
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c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c subroutine jack1 to calculate the first order Jacknife.
c routine modified (from correlation.fcm) to f90 style and to suit only second
c order Jacknife.
c Author: Frederic D.R. Bonnet, date: 29th of June 2001.
c computes a first-order jackknife
c

subroutine jack1(g,nlb,nle,lb,le)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: ncon=nprop-1

integer :: nlb,nle,lb,le,l,icon

double precision,dimension(nlb:nle,0:ncon+2) :: g
cmf$ layout g(:serial,:serial)

c loacal variables.

double precision :: gavg

c start of the execution commands.

do l=lb,le
g(l,ncon+1)=0.0d0
gavg=0.0d0
do icon=1,ncon
gavg=gavg+g(l,icon)

end do
gavg=gavg/ncon
do icon=1,ncon
g(l,ncon+1)=g(l,ncon+1)+(g(l,icon)-gavg)**2

end do
g(l,ncon+1)=sqrt(g(l,ncon+1)*(ncon-1)/ncon)
g(l,ncon+2)=gavg - g(l,0)

end do

return
end subroutine jack1

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c subroutine jack2 to calculate the first order Jacknife.
c routine modified (from correlation.fcm) to f90 style and to suit only second
c order Jacknife.
c Author: Frederic D.R. Bonnet, date: 29th of June 2001.
c computes a second-order jackknife
c
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subroutine jack2(g,nlb,nle,lb,le)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: ncon=nprop-1

integer :: nlb,nle,lb,le

double precision,dimension(nlb:nle,0:ncon+2,0:ncon+1) :: g
cmf$ layout g(:serial,:serial,:serial)

c loacal variables.

integer :: l,icon,jcon
double precision :: gavg

c start of the execution commands.

do l=lb,le
do icon=1,ncon
g(l,icon,ncon+1)=0.0d0
gavg=0.0d0
do jcon=1,ncon

if (jcon.ne.icon) then
gavg=gavg+g(l,icon,jcon)

end if
end do
gavg=gavg/(ncon-1)
do jcon=1,ncon

if (jcon.ne.icon) then
g(l,icon,ncon+1)=g(l,icon,ncon+1) + (g(l,icon,jcon)-gavg)**2

end if
end do

g(l,icon,ncon+1)=sqrt(g(l,icon,ncon+1)*(ncon-2)/(ncon-1))

end do
end do

return
end subroutine jack2

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c extrapolates m to kappa_crit,
c jackknifes m(kappa_crit).
c subroutine adapted to f90 style by
c author: Frederic D.R. Bonnet; date: 30th of June 2001.
c

subroutine extrapjack(m,mcr1,mqk)
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implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables

integer,parameter :: ncon=nprop-1

double precision,dimension(nkappa/2) :: mqk
cmf$ layout mqk(:serial)

double precision,dimension(1,0:ncon+2) :: mcr1
cmf$ layout mcr1(:serial,:serial)

double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1) :: m
cmf$ layout m(:serial,:serial,:serial)

c local variables

integer :: icon,jcon,ikappa

double precision,dimension(0:ncon+2) :: mcr
cmf$ layout mcr(:serial)

interface
subroutine jack1(g,nlb,nle,lb,le)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
integer,parameter :: ncon=nprop-1
integer :: nlb,nle,lb,le,l,icon
double precision,dimension(nlb:nle,0:ncon+2) :: g

cmf$ layout g(:serial,:serial)
end subroutine jack1
subroutine extrap(m,merr,mcr,mqk)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’
double precision :: mcr,kapcr
double precision,dimension(nkappa/2) :: m,merr

cmf$ layout m(:serial)
cmf$ layout merr(:serial)

double precision,dimension(nkappa) :: mqk
cmf$ layout mqk(:serial)

end subroutine extrap
end interface

c start of the exceution commands

c first initialize the variables.

do icon=1,ncon
CALL extrap(m(1:nkappa/2,icon,0),m(1:nkappa/2,icon,ncon+1),mcr1(1,icon),mqk)
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end do
CALL extrap(m(1:nkappa/2,0,0),m(1:nkappa/2,ncon+1,0),mcr1(1,0),mqk)
CALL jack1(mcr1(:,0:ncon+2),1,1,1,1)

return
end subroutine extrapjack

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Least-squares fit of m versus 1/kappa
c extrapolates m linearly in 1/kappa to get m(1/kappa_crit).
c subroutine adapted to f90 style by
c author: Frederic D.R. Bonnet; date: 30th of June 2001.
c
c Solution by use of the Normal Equations.
c
c y_i=a_1 * R_1 (x_i) + a_2 * R_2 (x_i) + a_3 * R_3 (x_i)
c
c y_i=mcr
c x_i=xm
c
c R_1=1
c R_2=1/xkappa_i
c R_3=(1/xkappa_i - 1/kapcr)**d
c
c See Numerical Receipes Pages 509 to 511 (2nd edition 665-668)
c for reference.
c Note: r==alpha ; b == beta.
c

subroutine extrap(m,merr,mcr,mqk)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables

double precision :: mcr

double precision,dimension(nkappa/2) :: m,merr
cmf$ layout m(:serial)
cmf$ layout merr(:serial)

double precision,dimension(nkappa/2) :: mqk
cmf$ layout mqk(:serial)

c local variables

double precision :: varinv,x,y,det

double precision,dimension(2) :: a,b
cmf$ layout a(:serial)
cmf$ layout b(:serial)

double precision,dimension(2,2) :: r,ri
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cmf$ layout r(:serial,:serial)
cmf$ layout ri(:serial,:serial)

integer :: ikappa,i,j

b = 0.0d0
r = 0.0d0

c do i=1,3
c b(i)=0.0d0
c do j=1,3
c r(i,j)=0.0d0
c end do
c end do

do ikappa=1,nkappa/2
varinv=(1.0d0/(merr(ikappa)))**2
x=mqk(ikappa)
y=m(ikappa)
r(1,1)=r(1,1)+varinv
r(1,2)=r(1,2)+x*varinv
r(2,2)=r(2,2)+x**2*varinv
b(1)=b(1)+y*varinv
b(2)=b(2)+x*y*varinv

end do
r(2,1)=r(1,2)

c ri=r**-1

det=r(1,1)*r(2,2)-r(1,2)*r(2,1)
ri(1,1)=r(2,2)/det
ri(1,2)=-r(2,1)/det
ri(2,2)=r(1,1)/det
ri(2,1)=ri(1,2)

c best fit is y=a1+a2*x where a=(r**-1)b

a(1)=ri(1,1)*b(1)+ri(1,2)*b(2)
a(2)=ri(2,1)*b(1)+ri(2,2)*b(2)

c determine m(1/kappa_crit)

mcr=a(1)

return
end subroutine extrap

c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Author: Frederic D.R. Bonnet; date: 11th of June 2001.
c subroutine to write out the curli C and curli B to disk.
c the routine writes out the curli on a configuration basis
c with a selection of the which array it needs to do.
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c the switch for the curli B is 0; and the curli C_\mu is 1
c

subroutine CurliCandBin(Bcurlr,Bcurli,Ccurlmur,Ccurlmui,
& qpk,xkappa,dataf,ikappa,bcx,bcy,bcz,bct)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: ikappa

double precision :: bcx,bcy,bcz,bct

double precision,dimension(nkappa) :: xkappa
cmf$ layout xkappa(:serial)

character(len=100),dimension(10) :: dataf
cmf$ layout dataf(:serial)

character(len=5),dimension(nkappa) :: qpk
cmf$ layout qpk(:serial)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt) :: Bcurlr,Bcurli
cmf$ layout Bcurlr(:news,:news,:news,:news)
cmf$ layout Bcurli(:news,:news,:news,:news)

double precision,dimension(nmx:npx,nmy:npy,nmz:npz,nmt:npt,mu)
& :: Ccurlmur,Ccurlmui

cmf$ layout Ccurlmur(:news,:news,:news,:news,:serial)
cmf$ layout Ccurlmui(:news,:news,:news,:news,:serial)

c local variables.

logical :: uexists=.true.
character(len=100) :: datafile

integer :: imu

interface
function strlen(string)
implicit none
character*(*) string
integer :: strlen
integer :: i, blank

end function strlen
end interface

c start of the execution commands.
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datafile = dataf(1)
datafile = datafile(1:strlen(datafile))//qpk(ikappa)

inquire(file=datafile,exist=uexists)

if(uexists) then
write(*,’(a,2x,a40,x,a)’)’the Bcurli:’,datafile,’exists’
write(*,’(a,2x,a40)’)’we are now proceeding with the reading of:’,datafile

elseif(.not. uexists ) then
write(*,’(a,2x,a40,x,a)’)’the Ccurlimu:’,datafile,’does not exists’
stop

end if

open(201,file=datafile,form=’unformatted’,status=’old’,action=’read’)

read(201) xkappa(ikappa),bcx,bcy,bcz,bct

read(201) Bcurlr(:,:,:,:)
read(201) Bcurli(:,:,:,:)

close(201)

datafile = dataf(2)
datafile = datafile(1:strlen(datafile))//qpk(ikappa)

inquire(file=datafile,exist=uexists)

if(uexists) then
write(*,’(a,2x,a40,x,a)’)’the Ccurlimu:’,datafile,’exists’
write(*,’(a,2x,a40)’)’we are now proceeding with the reading of:’,datafile

elseif(.not. uexists ) then
write(*,’(a,2x,a40,x,a)’)’the Ccurlimu:’,datafile,’does not exists’
stop

end if

open(301,file=datafile,form=’unformatted’,status=’old’,action=’read’)

read(301) xkappa(ikappa),bcx,bcy,bcz,bct

do imu=1,mu
read(301) Ccurlmur(:,:,:,:,imu)
read(301) Ccurlmui(:,:,:,:,imu)

end do

close(301)

return
end subroutine CurliCandBin

c
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c subroutine to write out the jack1 to calculate the first order Jacknife.
c Author: Frederic D.R. Bonnet, date: 18th of October 2001.
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c
subroutine writeMbin(Mcgrallq,Zcgrallq,qpk,ncount,ikappa)
implicit none
include ’latticeSize.h’
include ’LatParamtrans.h’

c global variables.

integer,parameter :: ncon=nprop-1

integer,parameter :: nmx=-nx/2+1,npx=nx/2
integer,parameter :: nmy=-ny/2+1,npy=ny/2
integer,parameter :: nmz=-nz/2+1,npz=nz/2
integer,parameter :: nmt=-nt/2+1,npt=nt/2

integer :: ncount
integer :: ikappa

character(len=5),dimension(nkappa) :: qpk
cmf$ layout qpk(:serial)

double precision,dimension(nkappa/2,0:ncon+2,0:ncon+1,(npy-1)*npx*npt*(npz-1))
& :: Mcgrallq,Zcgrallq

cmf$ layout Mcgrallq(:serial,:serial,:serial,:news)
cmf$ layout Zcgrallq(:serial,:serial,:serial,:news)

c local variables.

character(len=100) :: datafile

interface
function strlen(string)
implicit none
character*(*) string
integer :: strlen
integer :: i, blank

end function strlen
end interface

c start of the execution commands.

datafile = ’Mcor_bin.’
datafile = datafile(1:strlen(datafile))//qpk(ikappa)//’.dat’
open(2000+ikappa,file=datafile,form=’unformatted’,
& status=’replace’,action=’write’)

write(2000+ikappa) Mcgrallq(ikappa,:,:,1:ncount)

close(2000+ikappa)

return
end subroutine writeMbin
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c
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Returns the significant length of a string.
c Every character is significant with the
c exception of:
c blank (32)
c null (0)
c reqd. routines - NONE
c

function strlen(string)
implicit none

c global variables.

character*(*) :: string
integer :: strlen

c local variables.

integer :: i, blank

c start of the execution commands.

blank = ichar(’ ’)

strlen = len(string)
i = ichar(string(strlen:strlen))
do while ((i.eq.blank .or. i.eq.0) .and. strlen.gt.0)

strlen = strlen - 1
i = ichar(string(strlen:strlen))

end do
return
end
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