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Abstract

Over the past three decades numerous lake ecosystem models incorporating algal 

population dynamics have been developed and published. However, most of these models 

have been constructed, calibrated and validated ad hoc to suit one specific lake application. 

Even though many models, including SALMO (Benndorf and Recknagel, 1982; Recknagel 

and Benndorf, 1982), were designed and validated as being generic for a range of lake 

properties they were always rigid in their process equations and parameter values. This 

study discusses the concept, implementation and testing of SALMO-OO towards a more 

generic simulation library for lakes by taking advantage of object-oriented design and Java 

programming. A library of three phytoplankton growth and three grazing process models 

have been implemented in SALMO-OO, with the aim to increase the generality and 

flexibility of SALMO-OO for simulations of lakes with different trophic states and mixing 

conditions.

The initial focus was on phytoplankton models that were of the form of ordinary 

differential equations (ODEs) that displayed a similar model rationale to the original 

SALMO model. Three phytoplankton growth and three grazing models implemented in the 

full object-oriented version of the model (SALMO-OO) as a simulation library of 

alternative process models. Combinations of different growth and grazing functions were 

tested within the simulation library to find generic model structures for lakes with different 

trophic state and mixing conditions. The validation of the SALMO-OO simulation library 

was based on comparison between the simulation library experiments and the results 

produced by the original SALMO-OO growth and grazing functions for phytoplankton 

biomass, zooplankton biomass, phosphate concentration and algal functional groups 

abundances. Root-mean square error (RMSE) and r
2
 values are given as a quantitative 

measure of fit between the measured data and the model outputs for each state variable. 

The results demonstrate the ability of the SALMO-OO model to simulate a variety of 

trophic and mixing conditions for freshwater lakes using a generic approach, and the 

ability of the simulation library to improve the validation results for each lake simulated. 

Generic model structures were found for different categories of lakes based on trophic state 

(eu-/hyper-, meso- and oligotrophic) and mixing conditions (dimictic and warm 

monomictic). A key factor that has determined a particular generic model structure has 

been the realistic simulation of phytoplankton functional groups dynamics. By providing 

the simulation library as an additional validation toolbox this has improved the overall 

model performance to give more accurate and realistic results for phytoplankton dynamics. 

As a result, the SALMO-OO model is a more comprehensive decision support tool for lake 

and reservoir management, which can be used to support the ranking of management 

scenarios and to base decisions on understanding and expert knowledge. 

Future research for the SALMO-OO simulation library includes the integration of a 

multiple parameter optimisation option based on evolutionary algorithms. This will 

calibrate parameter values within their range of variance to improve the accuracy of 

simulation results. It is concluded that the object-oriented implementation of ODE based 

ecosystem models significantly improves its knowledge base, functionality and accuracy. 
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