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1. Introduction

In Landau gauge continuum Yang-Mills theory there are two confinement scenarios connected
to the infrared behaviour of the gluon and ghost propagators: the Kugo-Ojima scenario [1] and
the Gribov-Zwanziger picture [2]. Both predict an infraredenhanced ghost propagator and an
infrared suppressed gluon propagator (for reviews see [3]). In the Kugo-Ojima scenario BRST-
symmetry is used to define a physical subspace of BRST-singlets within the complete state space
of covariant gauge QCD. Provided global gauge symmetry is unbroken one can show that the
space of BRST-singlets indeed contains colourless objectsonly. This condition is connected to the
infrared behaviour of the ghost dressing function in Landaugauge QCD: The global colour charge
is well-defined if and only if the ghost dressing function is singular in the infrared. This so called
Kugo-Ojima condition is necessary, but not sufficient, for confinement in the Kugo-Ojima scenario.
The Gribov-Zwanziger scenario, on the other hand, postulates that gauge field configurations on
the Gribov-horizon are responsible for the confining natureof the quark-antiquark potential. In
terms of Green’s functions these gauge field configurations have been identified to induce infrared
enhancement in the ghost and infrared suppression of the gluon propagator [2, 4, 5].

Studies of (untruncated) Dyson-Schwinger equations (DSE)and functional renormalisation
group equations (FRGE) in the infinite volume/continuum limit strongly support these scenarios.
In Landau gauge the ghost and gluon propagators are given by

DG(p2) = −
G(p2)

p2 , Dµν(p2) =

(

δµν −
pµ pν

p2

)

Z(p2)

p2 . (1.1)

whereG(p2) denotes the ghost dressing function andZ(p2) the dressing function of the gluon. One
finds [6] that the small momentum behaviour of these functions is given by power laws, i.e.

G(p2) ∼ (p2)−κ , Z(p2) ∼ (p2)2κ . (1.2)

Here the exponents of ghost and glue are uniquely related by the anomalous dimensionκ . Sim-
ilar expressions have been found for all other one-particleirreducible (1PI) Greens’s functions in
Landau gauge [7, 8]; see section 2. In the notation (1.2) the Kugo-Ojima and Gribov-Zwanziger
scenarios translate to the conditionκ ≥ 1/2. Indeed, in the DSE and FRGE approaches one obtains
κ = (93−

√
1201)/98≈ 0.595 [4, 9, 10], which satisfies both criteria.

On the lattice the verification of the relations (1.2) in gauge fixed calculations turned out to
be extremely cumbersome, for latest results see [11, 12, 13,14, 15, 16, 17, 18, 19, 20]. To extract
information on the power laws (1.2) from studies on a finite volume it is most important to address
the volume dependence of the long-range behaviour of these correlations. It is only when this
dependence is under control that firm conclusions can be drawn from extrapolations to the infinite
volume and continuum limits.

In order to understand possible patterns of such volume effects it is an obvious and necessary
step forward to adapt the continuum methods to finite volumes[21, 22]. We summarise these
efforts in section 3 and compare the results to available lattice data.
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2. Infrared exponents of 1PI Green’s functions

The infrared behaviour of the one-particle irreducible (1PI) Green’s functions of Yang-Mills
theory have been investigated in a number of works. The basicrelation (1.2) between the dressing
functions of the gluon and ghost propagator has been extracted first in [6]. These findings have been
generalised to Green’s functions with an arbitrary number of legs in [7]. The analysis rests upon
a separation of scales, which takes place in the deep infrared momentum region. Provided there
is only one external momentump2 much smaller thanΛQCD, a self-consistent infrared asymptotic
solution of the whole tower of DSEs or FRGEs for these functions is given by

Γn,m(p2) ∼ (p2)(n−m)κ . (2.1)

Here Γn,m(p2) denotes the dressing function of the infrared leading tensor structure of the 1PI-
Green’s function with 2n external ghost legs andm external gluon legs. It is important to note that
the solution (2.1) is unique [8] which follows from a comparison of untruncated towers of DSEs
and FRGEs. The exponentκ is known to be positive [23, 9]. We emphasise that these findings do
not rely on any truncation scheme.

This specific value ofκ = (93−
√

1201)/98≈ 0.595, however, depends on the assumption that
a bare ghost-gluon vertex is a good approximation to the fullvertex in the infrared. This assumption
has been tested in the continuum [24] and on the lattice [18, 25], and found to be adequate. Possible
corrections by regular dressings in the infrared have been investigated within the DSE framework
in [9], where a possible range 0.5≤ κ < 0.7 has been given. Note that the valueκ = 1/2 marks
the watershed between an infrared vanishing (κ > 1/2) and an infrared divergent (κ < 1/2) gluon
propagator. The first option necessarily entails that the gluon propagator violates positivity as can
be seen from

0 = D(p = 0) =

∫

d4x ∆(x) , (2.2)

with D(p) = Z(p2)/p2. This relation implies that the propagator function in coordinate space, the
Schwinger function∆(x), must contain positive as well as negative norm contributions, with equal
integrated strengths. Therefore infrared vanishing gluons cannot be part of the positive definite,
physical state space of Yang-Mills theory. While the infrared vanishing of the gluon propagator
is not at all necessary for the positivity violations of transverse gluons, one needs to analyse the
convexity in Euclidean time of its one-dimensional Fouriertransform to establish this, if the gluon
is infrared finite or even divergent.

Further interesting consequences of the solution (2.1) arethe existence of infrared fixed points
in the running couplings of Yang-Mills theory [6, 7].

3. Dyson-Schwinger equations on a torus

There are several caveats in comparing results from the continuum Dyson-Schwinger approach
to those of lattice calculations. First, the quantitative aspects of the continuum solutions (i.e. the
value of κ and numerical results at intermediate momenta) depend on the details of the chosen
truncation scheme, whereas the lattice calculations areab initio. On the other hand, simulations
are performed on finite lattices and one has to deal with the effects due to the finiteness of volume
and lattice spacing.
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To quantify the ’plain’ volume effects (i.e. those not connected to the gauge fixing procedure)
we formulated the DSEs on a torus [21, 22], employing the sametruncation scheme as in the infinite
volume/continuum framework [26]. One would then expect to see differences to the continuum
solution for small volumes, which disappear continuously when the volume is chosen larger and
larger. This expectation is supported by the FRGE infrared studies with an explicit infrared cut-off
[10]. In earlier works on DSEs on the torus [21] this issue could not be resolved but an improved
finite-volume renormalisation procedure indeed led to a smooth transition [22].
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Figure 1: Numerical solutions on tori with different volumes compared to the infinite volume limit. The
upper graph shows the gluon propagator, whereas on the lowergraph the ghost dressing function is plotted.

The corresponding numerical results on different volumes are shown in Figure 1. The mo-
mentum scale is fixed by comparison with corresponding lattice calculations, see [22] for details.
We discuss results on seven different volumesV = L4; the corresponding box lengthsL are given
in the legends of Figure 1. One clearly observes that the infinite volume solutions of the gluon
propagatorD(p2) and ghost dressing functionG(p2) are more and more approached by the torus
solutions with increasing volume. Qualitatively one can see the following behaviour: the gluon
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Figure 2: DSE results for the gluon propagator and ghost dressing function on tori with different volumes
compared to recent lattice calculations on similar manifolds. The lattice data are taken from Refs. [20, 17].

propagator seems to be divergent at volumes ofV ≈ (4−8fm)4. For larger volumes the propagator
bends downwards to reach a plateau at roughlyV ≈ (9fm)4 and atV ≈ (10fm)4 the propagator
is infrared vanishing and therefore qualitatively similarto the infinite volume limit given in (1.2).
For the ghost we observe that the first two points on each volume bend away from the power law
behaviour of the infinite volume solution. With increasing volume more and more of the remaining
points are in the ’scaling region’, where the infinite volumepower law develops.

We now compare our results from DSEs on a torus to the ones fromlattice calculations. Nowa-
days, lattice data for the gluon propagator are available onimpressively large lattices. The authors
of [12] report on anSU(2)-study on a 524-lattice, whereas in [20] results from anSU(3) calculation
on a 564-lattice are discussed. Results on even larger lattices have been presented at this conference
[27, 28]. In the upper graph of Figure 2 we display theSU(3)-results of [20] together with data on
a smaller volume [17] and compare with DSE-results on tori with similar volumes.

The qualitative agreement of the solutions at similar volumes in the infrared is interesting.1

1Differences in the intermediate momentum regime at approximately 1 GeV are truncation artefacts of the DSE
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Whereas both, the lattice and the DSE result at the smaller volumeV ≈ (4.6fm)4 seem to diverge,
one starts to observe an infrared finite one, or perhaps even aslight infrared suppression, at the
larger volumesV ≈ (9.7fm)4. This indicates that the scaling behaviour of the lattice results with
volume may be similar to the ones of the DSE solution. If this is correct one should see a turnover
of the gluon propagator at even larger volumes.

The situation is far less clear for the ghost dressing function. Our results for three different
volumes,V = (3.9,4.6,9.7fm)4, are compared to the SU(3) lattice results of [20, 17]. For the
DSE solutions we observe a characteristic deviation of the two lowest momentum points at each
volume from the infinite volume solution, corresponding to aghost mass which goes to zero in the
infinite volume limit [22]. The lattice results do not seem toshow such behaviour as yet. Even
though the lattice volumes herein are roughly between 3 fm and 4.5 fm, and thus still rather small,
there appears to be not much sign of a volume dependence at allat this point. However, it has
been observed that effects at intermediate momenta can in a subtle way influence the finite-volume
effects in the ghost propagator [29]. As these are truncation-dependent in the DSEs, this may
explain the difference to the results in lattice calculations.

4. Epilogue

In this conference first results have been presented for the gluon propagator on very large lat-
tices (1284 [27] and 1124 [28]). Both groups do not see a turnover of the gluon propagator, even
though the volumes exceed(10fm)4 by far. Does this mean that the gluon propagator is finite in
the infrared, i.e.κ = 0.5 ? In principle there is not much to say against this scenariofrom the pure
DSE/FRGE-perspective. It could be that the IR-regular dressing of the nonperturbative ghost-gluon
vertex provides the necessary corrections to drive the IR-anomalous dimension towardsκ ∼= 0.5.
However, it is an unambiguous and truncation independent prediction of the Dyson-Schwinger and
the functional renormalisation group framework that the ghost dressing function should then di-
verge asG(p2) ∼ (p2)−0.5 [8]. Current lattice results in four dimensions do not seem to support
this relation. On the other hand, lattice data in two dimensions [29] agree well with the correspond-
ing DSE-results [30]. The usual suspects for the remaining discrepancy in four dimensions then
being gauge fixing or renormalisation problems. Gauge fixingalgorithms are known to be less ef-
ficient at larger lattices where the number of Gribov copies increases exponentially. Naturally this
effect also depends on the number of dimensions. Furthermore, it is also known, that effects from
Gribov copies influence the ghost propagator much stronger than the glue [17, 19]. Finally, very
recent lattice results allowing a wider class of gauge transformations in the minimisation procedure
[13] tend to result in an additional suppression of the gluonpropagator at low momenta, which is
observed already in rather moderate volumes ofV = (6.5fm)4.

Also in the continuum one probably needs additional verification for Zwanziger’s idea that
gauge fixing on the first Gribov region (as done in DSEs and FRGEs) is enough to avoid effects
from Gribov copies [4]. This idea underlies all continuum studies of infrared anomalous dimen-
sions so far. Therefore, the final settlement of the infraredbehaviour of ghost and glue awaits
further clarification in both, the continuum and lattice studies.

solutions. One can show analytically that this is the only region where the omitted gluonic two-loop diagrams contribute
significantly.
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