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1. Introduction

In Landau gauge continuum Yang-Mills theory there are twafio@ment scenarios connected
to the infrared behaviour of the gluon and ghost propagatibrs Kugo-Ojima scenario [1] and
the Gribov-Zwanziger picture [2]. Both predict an infraredhanced ghost propagator and an
infrared suppressed gluon propagator (for reviews see [8]the Kugo-Ojima scenario BRST-
symmetry is used to define a physical subspace of BRST-singfiéhin the complete state space
of covariant gauge QCD. Provided global gauge symmetry iwaken one can show that the
space of BRST-singlets indeed contains colourless obgedys This condition is connected to the
infrared behaviour of the ghost dressing function in Langauge QCD: The global colour charge
is well-defined if and only if the ghost dressing functioniisgsilar in the infrared. This so called
Kugo-Ojima condition is necessary, but not sufficient, fanfinement in the Kugo-Ojima scenario.
The Gribov-Zwanziger scenario, on the other hand, possiltitat gauge field configurations on
the Gribov-horizon are responsible for the confining natfréhe quark-antiquark potential. In
terms of Green'’s functions these gauge field configuratiene been identified to induce infrared
enhancement in the ghost and infrared suppression of tlka gitopagator [2, 4, 5].

Studies of (untruncated) Dyson-Schwinger equations (Desigl) functional renormalisation
group equations (FRGE) in the infinite volume/continuumitlistrongly support these scenarios.
In Landau gauge the ghost and gluon propagators are given by

2 2
D®(p%) = —G(pg ) ) Duv(pz) = <5uv - p;?) Z(pg ) . (1.1)

whereG(p?) denotes the ghost dressing function Ziig?) the dressing function of the gluon. One
finds [6] that the small momentum behaviour of these funetisrgiven by power laws, i.e.

G(p?) ~ (P?) 7, Z(p%) ~ (p*)*. (1.2)

Here the exponents of ghost and glue are uniquely relatetidogtomalous dimensian. Sim-

ilar expressions have been found for all other one-particbelucible (1PI) Greens’s functions in
Landau gauge [7, 8]; see section 2. In the notation (1.2) thgokOjima and Gribov-Zwanziger
scenarios translate to the conditior®> 1/2. Indeed, in the DSE and FRGE approaches one obtains
K = (93— +/1201) /98~ 0.595 [4, 9, 10], which satisfies both criteria.

On the lattice the verification of the relations (1.2) in gadixed calculations turned out to
be extremely cumbersome, for latest results see [11, 124,35, 16, 17, 18, 19, 20]. To extract
information on the power laws (1.2) from studies on a finiteigee it is most important to address
the volume dependence of the long-range behaviour of theselations. It is only when this
dependence is under control that firm conclusions can berdiimm extrapolations to the infinite
volume and continuum limits.

In order to understand possible patterns of such volumetsffeis an obvious and necessary
step forward to adapt the continuum methods to finite volufgés 22]. We summarise these
efforts in section 3 and compare the results to availabtiedatlata.
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2. Infrared exponents of 1Pl Green’s functions

The infrared behaviour of the one-particle irreducibleljXBreen’s functions of Yang-Mills
theory have been investigated in a number of works. The Ibakition (1.2) between the dressing
functions of the gluon and ghost propagator has been eattdicst in [6]. These findings have been
generalised to Green’s functions with an arbitrary numtidegs in [7]. The analysis rests upon
a separation of scales, which takes place in the deep idfrasmentum region. Provided there
is only one external momentup? much smaller tha\qcp, a self-consistent infrared asymptotic
solution of the whole tower of DSEs or FRGESs for these fumdiis given by

(p%) ~ ()" (2.1)

Here I™™M(p?) denotes the dressing function of the infrared leading tessacture of the 1PI-
Green’s function with & external ghost legs and external gluon legs. It is important to note that
the solution (2.1) is unique [8] which follows from a comam of untruncated towers of DSEs
and FRGEs. The exponentis known to be positive [23, 9]. We emphasise that these fgsido
not rely on any truncation scheme.
This specific value ok = (93— +/1201) /98~ 0.595, however, depends on the assumption that

a bare ghost-gluon vertex is a good approximation to thevéutex in the infrared. This assumption
has been tested in the continuum [24] and on the lattice B3 aAd found to be adequate. Possible
corrections by regular dressings in the infrared have be@stigated within the DSE framework
in [9], where a possible range®< k < 0.7 has been given. Note that the vakie= 1/2 marks
the watershed between an infrared vanishimg-(1/2) and an infrared divergenk (< 1/2) gluon
propagator. The first option necessarily entails that therglpropagator violates positivity as can
be seen from ‘

0=D(p=0) :/d”’xA(x), 2.2)

with D(p) = Z(p?)/p?. This relation implies that the propagator function in cboate space, the
Schwinger functior\(x), must contain positive as well as negative norm contrilmstiovith equal
integrated strengths. Therefore infrared vanishing gducemnot be part of the positive definite,
physical state space of Yang-Mills theory. While the infichivanishing of the gluon propagator
is not at all necessary for the positivity violations of saarse gluons, one needs to analyse the
convexity in Euclidean time of its one-dimensional Foutiansform to establish this, if the gluon
is infrared finite or even divergent.

Further interesting consequences of the solution (2.1iharexistence of infrared fixed points
in the running couplings of Yang-Mills theory [6, 7].

3. Dyson-Schwinger equationson atorus

There are several caveats in comparing results from thécmmh Dyson-Schwinger approach
to those of lattice calculations. First, the quantitatigpects of the continuum solutions (i.e. the
value ofk and numerical results at intermediate momenta) dependeddtails of the chosen
truncation scheme, whereas the lattice calculationsBrmitio. On the other hand, simulations
are performed on finite lattices and one has to deal with teetsfdue to the finiteness of volume
and lattice spacing.
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To quantify the "plain’ volume effects (i.e. those not coatsel to the gauge fixing procedure)
we formulated the DSEs on a torus [21, 22], employing the dammeation scheme as in the infinite
volume/continuum framework [26]. One would then expectde differences to the continuum
solution for small volumes, which disappear continuoushew the volume is chosen larger and
larger. This expectation is supported by the FRGE infratediss with an explicit infrared cut-off
[10]. In earlier works on DSEs on the torus [21] this issueldawot be resolved but an improved
finite-volume renormalisation procedure indeed led to aatmtransition [22].
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Figure 1: Numerical solutions on tori with different volumes compte the infinite volume limit. The
upper graph shows the gluon propagator, whereas on the graph the ghost dressing function is plotted.

The corresponding numerical results on different volunresshown in Figure 1. The mo-
mentum scale is fixed by comparison with correspondingckttalculations, see [22] for detalils.
We discuss results on seven different volurdes L*; the corresponding box lengthsare given
in the legends of Figure 1. One clearly observes that theit@fiolume solutions of the gluon
propagatoD(p?) and ghost dressing functidd(p?) are more and more approached by the torus
solutions with increasing volume. Qualitatively one cae #ee following behaviour: the gluon
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Figure 2: DSE results for the gluon propagator and ghost dressingiftmon tori with different volumes
compared to recent lattice calculations on similar madgolThe lattice data are taken from Refs. [20, 17].

propagator seems to be divergent at volumeg sf (4 — 8fm)*. For larger volumes the propagator
bends downwards to reach a plateau at rouyhly (9fm)* and atV ~ (10fm)* the propagator
is infrared vanishing and therefore qualitatively similaithe infinite volume limit given in (1.2).
For the ghost we observe that the first two points on each wloemd away from the power law
behaviour of the infinite volume solution. With increasirggume more and more of the remaining
points are in the 'scaling region’, where the infinite volupwver law develops.

We now compare our results from DSEs on a torus to the onesléitice calculations. Nowa-
days, lattice data for the gluon propagator are availablenpmessively large lattices. The authors
of [12] report on arBU(2)-study on a 52-lattice, whereas in [20] results from &u(3) calculation
on a 56-lattice are discussed. Results on even larger lattices heen presented at this conference
[27, 28]. In the upper graph of Figure 2 we display 8ig(3)-results of [20] together with data on
a smaller volume [17] and compare with DSE-results on totiiwimilar volumes.

The qualitative agreement of the solutions at similar vadann the infrared is interestirlg.

IDifferences in the intermediate momentum regime at appraiély 1 GeV are truncation artefacts of the DSE
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Whereas both, the lattice and the DSE result at the smallemeV ~ (4.6fm)* seem to diverge,
one starts to observe an infrared finite one, or perhaps egdighd infrared suppression, at the
larger volumes/ ~ (9.7fm)*. This indicates that the scaling behaviour of the latticlts with
volume may be similar to the ones of the DSE solution. If tRisarrect one should see a turnover
of the gluon propagator at even larger volumes.

The situation is far less clear for the ghost dressing fonctiOur results for three different
volumes,V = (3.9,4.6,9.7fm)4, are compared to the SU(3) lattice results of [20, 17]. Fer th
DSE solutions we observe a characteristic deviation ofwelowest momentum points at each
volume from the infinite volume solution, corresponding fghast mass which goes to zero in the
infinite volume limit [22]. The lattice results do not seemsioow such behaviour as yet. Even
though the lattice volumes herein are roughly between 3 fihdal fm, and thus still rather small,
there appears to be not much sign of a volume dependenceatthls point. However, it has
been observed that effects at intermediate momenta caruistla svay influence the finite-volume
effects in the ghost propagator [29]. As these are truncat&pendent in the DSEs, this may
explain the difference to the results in lattice calculasio

4. Epilogue

In this conference first results have been presented forltioa goropagator on very large lat-
tices (128 [27] and 112 [28]). Both groups do not see a turnover of the gluon progagaten
though the volumes excedd0fm)* by far. Does this mean that the gluon propagator is finite in
the infrared, i.ex = 0.5 ? In principle there is not much to say against this sceriasin the pure
DSE/FRGE-perspective. It could be that the IR-regularsingsof the nonperturbative ghost-gluon
vertex provides the necessary corrections to drive thenidtrelous dimension towards= 0.5.
However, it is an unambiguous and truncation independedigiion of the Dyson-Schwinger and
the functional renormalisation group framework that thesitdressing function should then di-
verge asG(p?) ~ (p?)~%° [8]. Current lattice results in four dimensions do not seersupport
this relation. On the other hand, lattice data in two dimemsi{29] agree well with the correspond-
ing DSE-results [30]. The usual suspects for the remainiagrepancy in four dimensions then
being gauge fixing or renormalisation problems. Gauge figilggrithms are known to be less ef-
ficient at larger lattices where the number of Gribov copiesdases exponentially. Naturally this
effect also depends on the number of dimensions. Furthegnitas also known, that effects from
Gribov copies influence the ghost propagator much stroriger the glue [17, 19]. Finally, very
recent lattice results allowing a wider class of gauge fmngations in the minimisation procedure
[13] tend to result in an additional suppression of the glpoypagator at low momenta, which is
observed already in rather moderate volumeg ef (6.5fm)*.

Also in the continuum one probably needs additional vetificafor Zwanziger's idea that
gauge fixing on the first Gribov region (as done in DSEs and FR@&Eenough to avoid effects
from Gribov copies [4]. This idea underlies all continuuradies of infrared anomalous dimen-
sions so far. Therefore, the final settlement of the infrdvebaviour of ghost and glue awaits
further clarification in both, the continuum and latticedsés.

solutions. One can show analytically that this is the ongjiae where the omitted gluonic two-loop diagrams contrbut
significantly.
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