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ADAPTIVE TESTING IN
CONTINUOUS-TIME
DIFFUSION MODELS

Jim Gao
The University of Western Australia

MAXWELL KING
Monash University

We propose an optimal test procedure for testing the marginal density functions
of a class of nonlinear diffusion process&he proposed test is not only an opti-
mal one but also avoids undersmoothiAg adaptive test is constructeand its
asymptotic properties are investigat&d show the asymptotic propertjege estab-

lish some general results for moment inequalities and asymptotic distributions for
strictly stationary processes under thenixing condition These results are appli-
cable to some other estimation and testing of strictly stationary processes with
the @-mixing condition An example of implementation is given to demonstrate
that the proposed model specification procedure is applicable to economic and
financial model specification and can be implemented in praclioeensure the
applicability and implementationwe propose a computer-intensive simulation
scheme for the choice of a suitable bandwidth involved in the kernel estimation
and also a simulated critical value for the proposed adaptive@estfinite sam-

ple studies support both the proposed theory and the simulation procedure

1. INTRODUCTION AND MOTIVATION

Continuous-time diffusion processes arise in many applications in economet-
rics, but perhaps nowhere do they play as large a role as in findut®wing

the pathbreaking work of Black and Scholé973, the use of continuous-time
diffusion processes has become a common feature of many applicaspes
cially asset pricing modeldhis is probably due to the following two reasons
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The first one is that continuous-time diffusion processes are able to mimic some
important macroeconomic and financial phenomesege SundaresaR001). The
second reason is that various parametric diffusion processes have already been
used nicely to model financial dathn both theory and practicdhowever one
needs to specify whether a parametric diffusion process is appropriate for a
given set of financial datdn other wordsone needs to determine whether it is
appropriate to use a diffusion process with both the drift and the volatility
assumed to be parametric for a given set of financial .deagustify whether

the use of parametric diffusion processes is appropriate or not for a given set of
financial dataempirical researchers have recently shown a preference for non-
parametric alternativedit-Sahalia(1996a 1996hH was among the first to pio-
neer the nonparametric approa€hher related studies include Jiang and Knight
(1997, Stanton(1997), Chapman and Pearsd2000, Gao and King(2002),

Hong and Li(2004), and Fan and Zhan@003. Ait-Sahalia(1996a considers
testing the marginal density functions of a class of diffusion processes under
the B-mixing condition Pritsker(1998 conducts a finite sample simulation of

a nonparametric kernel test proposed in Ait-Sah@dl@®64. The principal result

of Pritsker(1998 is that the test rejects true models much too often when asymp-
totic critical values are used his suggests that the use of an asymptotic criti-
cal value may not be suitable in the finite sample analysis of a test pdnver
addition the use of an estimation-based bandwidth in the nonparametric kernel
test may also contribute to the poor performance of the test in finite sample
studies because an estimation-based optimal bandwidth may not necessarily
imply that the corresponding test is optiméfe have been motivated by these
two aspects to establish a simulation procedure for the choice of both an appro-
priate critical value and a test optimum bandwidth to improve the test proposed
in Ait-Sahalia(1996h.

Recently Horowitz and Spokoiny2001) have developed a new test of a para-
metric model of a conditional mean function against a nonparametric alterna-
tive. The test adapts to the unknown smoothness of the alternative model and is
uniformly consistent against alternatives whose distance from the parametric
model converges to zero at the fastest possible fidies rate is slower than
T2 whereT is the number of observation$o the best of our knowledge
the problem of extending the approach of Horowitz and Spokd2901) to
construct an adaptive and optimal test for marginal density functions has not
been considered his paper then proposes an adaptive test for testing marginal
density functionsThe proposed test has an optimal-rate propdrtytheory
the proposed test is consistent against some local alternatives with an optimal
rate as stated in Section & practice we demonstrate how to apply the test in
Section 4 through using a simulated exam@air studies show that the pro-
posed test has some advantages over the test proposed in Ait-S4Baka.

The rest of the paper is organized as folloBgction 2 discusses the testing
of the marginal densityAn adaptive test procedure is proposed in Section 3
Section 4 provides an example of implementati®eaction 5 concludes the paper
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with some remarks on extensiorgathematical assumptions and proofs are
relegated to Appendixes A=C

2. TESTING MARGINAL DENSITY FUNCTIONS
Consider a continuous-time diffusion process of the form
drt =,u(l’t,0) dt+0—(rt’0) da’ (21)

where u(-) ando () > 0 are respectivelythe univariate drift and volatility
functions of the process indexed ByandB; is standard Brownian motion

Let{r,} satisfy modek2.1) andf(-,#) be a parametric form of the marginal
density function ofir,}. Within the diffusion process (-, 6) is completely deter-
mined by the corresponding drifi(-,0) and the diffusiono(-,0) (see Ait-
Sahalia 19963 expressior(6)) given by

0 X2 , 0
f(x,0) = of((x)e) exp{f % du], (2.2)

where{r,} is distributed orD = (Xmin, Xmax) With —00 = Xiin < Xmax = o0, both
the lower boundk, andé&(6) can be chosen to ensure tliax, #) is a probabil-
ity density andé is an unknown parameter vectdret ® denote a parameter
space inRY andfd, € © denote the true value @f

Let f(x) be a nonparametric form of the density functidime null and alter-
native hypotheses are

Ho: f(x) = f(x,0,) versusH,: f(x) =f(x,0,) + Cr A+ (x), 0, € 0,
(2.3)

where 0= C; =1, lim1_,,,Cy = 0, andA{(X) is a continuous function satisfy-
ing [A+(x)dx = 0 andf(x) = 0 underH,. Theoretically this requires that
underH,, the alternative function is still a probability densitp practice the
form of At(x) needs to be constructetihe simple and natural choice af(x)
is At(x) = f1(x,6,) — f(x,0,), wheref,(x,0) is another specified density func-
tion and#; € @. For examplef(x, ) is the marginal density dfr} satisfying
the CIR model proposed in Cpingersoll and Ros$1985, andf,(x, 6) is the
marginal density ofr.} satisfying the AG model proposed in Ahn and Gao
(1999.

For this casgthe hypothesis structur@.3) can be written as

Ho: f(X) = f(X,6p) versusH;,: f(x) =f(x,0,) + Cy (fi(x,60,) — F(X,6,)).
This is equivalent to

Ho: F(X) = f(X,6p) versusH;: f(x)=(1— Cy)f(x,6,) + C;fi(X,6,).
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This basically requires us to test whetHey} is sampled fronf(x,6,) or
from f(x,60,) with probability 1— C; and fromf.(x, 6;) with probability Cy.
Obviously such a structure of the null hypothesis versus a sequence of local
alternatives naturally extends the usual structure of the null hypothesis against
a global alternative of the form

Hiy: F(x) = f(x,6,) versusH,: f(x) =f(x,6,), 6, € 0.

For the diffusion processve observe the process at dafes|t = 0,1,...,},
whereA > 0 is generally small but fixed_et X; = r—y), for t =1 throughout
this section Let k(-) be a kernel functionk,(-) = h~k(-/h), and f(x) =
(1/T)ZtT:1kh(x — X;) be the standard kernel density estimatorf f). Intu-
itively, it is natural to comparé(x) andf(x, 0) directly.

In a seminal papeAit-Sahalia(1996a uses a test statistic of the form

.
25 (f(X) — (X, 0u))% = hiS(f(xt — (X, 0u))3

N Th
My (h) = T

wherefy = arg mineo (1/T) SL(F(X) — F(X,,0))2
It then follows from(13) of Ait-Sahalia(19964 that asT — oo

My (h) — A+(h)
Vha(h)

under theB-mixing and some other conditionwhere

Lor(h) = N(0,1) (2.4)

I I

L 10
ﬂT(h)=R(k)-<? Zlf(xt)) and frrz(h)=2k(4)(0)-( Z 3(Xt)

in which R(k) = [k?(u) du < oo andk1’(0) denotes thg-times convolution
product ofk(-) given by

k®(0) = foo L2(x)dx with L(x) = foo k(y)k(x +y) dy. (2.5)

The preceding test statistic i§ based fix) - f(x,6y), which measures
directly the difference betweefh(x) and f(x,6y). It can be shown that
underH,,

E[ f(x) — f(x,0y)]? = O(h*).

This implies that it has the same order as the mean square erfox)af h
is chosen to b& (T ~¥/5). Thus to obtain an asymptotically normal distribu-
tion with zero meanh has to satisfy lim_,., Th*> = 0 as required in Assump-
tion A5 of Ait-Sahalia(19964. This implies undersmoothing



848 JITI GAO AND MAXWELL KING

To reduce the bias and avoid undersmoothimng propose a nonparametric
estimatoy f(x, 8), of f(x,6) of the form

f(x.0) = 2 w(x)f(X,0), (2.6)
t=1

whered is a consistent estimator &f w,(x) = w(x,h) = (1/T)kn(x — X;) X

[(s(%) — s1:(0(x — X))/(S(X)8(x) — s2(x)], and s(x) = (I/T)ZL,
kn(x — Xg)(x — Xg)" forr = 0,1,2.
We also define

.
f(x) = 2 w () f(X).
t=1
If 6 is a\T-consistent estimator @f, then we have

A 1
E{f(x,0) — f(x,0)}*> = O(;)

It follows from Fan and Gijbel$1996 that

N 1
E[f(x) —f(x] = > h202f@(x) + ¢ f @ (£,)h®
and

- 1
E[f(x) —f(x)] = > h20? £ @(x) + de f @ (&,)h3,
provided that the first three derivativesfdix) exist where&, andé, lie between
x andh andx, ¢, andd, are constants depending on functionalsk6f), and

0 = [x%k(x) dx.
This implies that a§ — oo

EL (0 — (0] = (6 f @ (&) — def @ (£2))h° (2.7)

As can be seen frorf2.7), the use of the differenci(x) — f(x,d) can avoid
undersmoothingln other wordswe can still assume lim sgp.. Th® < co.

Let us now establish our test statistitle first have a look at the following
distance function

D(f,0) = f(f(x) —1(x,0))%f(x) dx.
This naturally suggests estimatiiy f,6) by

D(f,0) = f(f(x) — f(x,0))2f(x) dx.



ADAPTIVE TESTING IN CONTINUOUS-TIME DIFFUSION MODELS 849

We then propose using a test statistic of the form
Ny = Ny (h) = Th f( f(x) — f(x,0))2f(x) dx. (2.8)

We now state the main results of this sectidheir proofs are relegated to
Appendix A

THEOREM 21. (i) Suppose that Assumptions A.1-A.5 in Appendix A hold.
Then underH, in (2.3) we have

NT(h) — Mo
\/ﬁo'o

wherewo = R(K) [ f2(x) dx andod = 2k (0) [ 4(x) dx.

(i) Assume that the conditions of (i) hold. In addition, assume that there is a
random data-driverh such that(h/h) — 1 —p 0as T— co. Then underH, in
(2.3) we have

 Ny(h) -
L. (h) = %’ 5o N(0,1) as T o.
J9

L+(h) = —p N(0,1) as T— oo,

THEOREM 22. (i) Suppose that Assumptions A.1-A.5 in Appendix A hold.
Then undefH, in (2.3) we have
Ny (h) = fir(h)

Vha+(h)
where it (h) and 6+ (h) are as defined in (2.4).

(i) Assume that the conditions of (i) hold. In addition, assume that there is a

random data-driverh such thath/h) — 1 —, 0 as T— co. Then undefH, in
(2.3) we have

N (h) — A (h)
Vhé+(h)
Remark 21. (i) Similar to Loy of (2.4), one may replac& (h) by

L+(h) = -5 N(0,1) as T— oo,

L+(h) = -5 N(0,1) asT— co.

_ Th Y . - ~ LI . ~
Nr(h) = T > (F(X) = (X, 0)% =h X (f(X) — f(X,0)>
t=1 t=1

(ii) As can be seen from Theoren28), we need to estimate both the asymp-
totic mean and variance & (h) involved in practicelt is possible to avoid
estimating this kind of unknown quantity by introducing a weight function into
Nt (h). In both theory and practicdowever the asymptotic power of the test
may depend on the choice of such a weight functife therefore follow a
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suggestion made by two of the referees and use the naturalNeth) to con-
struct an adaptive test in Section 3

(iif) Theorem 22(i) establishes an asymptotic normality test statisttoeo-
rem 22(ii) shows that the asymptotic normality remains unchanged whisn
replaced with the random data-drivBpwhich is known as the plug-in method
Fan and Gijbelg1996 pp. 152-154 have shown that the plug-in method has
some advantages in applicatioMhether the proposed test statistig(h) is
optimal has not been discussédmodified form of the test statistic is shown
to be optimal and the detailed discussion is given in Section 3

3. AN ADAPTIVE TEST PROCEDURE

Section 2 establishes the asymptotic normality of the test statistic for testing
the marginal densitiesThe test statistic has nontrivial power onlyGf con-
verges more slowly thal ~%2. To improve the asymptotic power properties of
the testwe consider extending the approach of Horowitz and Spok0p1)

for testing nonparametric regression functiohisis assumed that a marginal
density functiong belongs to a class aftimes (s = 2) differentiable density
functions onR?, such as a HoéldeiSoboley or Besov classg, which is sepa-
rated from the null hypothesis by some distai@ethat converges to zero as
T — oo. The objective of this section is to find the fastest rate at wi@¢ltan
approach zero while permitting consistent testing uniformly @uerhis rate is
called the optimal rate of testing test is consistent uniformly oveJ if

lim inf P(H,is rejected againg) = 1. (3.1

T—o geEG

Thus the optimal rate of testing is the fastest rate at whishcan approach
zero while maintaining3.1).

3.1. Asymptotic Behavior of the Test Statistic
under the Null Hypothesis

As can be seen in Section the proposed test statistic depends on the band-
width. This section then suggests using

L* = maxC(h) = max T~ Ar(h) (3.2)

heEH hedr  \Vha+(h)
whereH; = {h = hya@<:h = hyin, K= 0,12, ...}, in which 0 < hpin < himax
and 0< a < 1. Let J; denote the number of elementstéf. In this caseJr =
1091/a(hmax/hmin)- Detailed conditions oy, andhp,a Will be given in Assump-
tion B.3 in Appendix B
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Simulation Scheme.We discuss how to obtain a critical value fof. The
exacta-level critical value |} (0 < a < 1), is the 1— « quantile of the exact
finite sample distribution oL*. Because&), is unknown | cannot be evaluated
in practice We therefore suggest choosing a simulatetbvel critical value
l., by using the following simulation procedure

1. For the simulationwe either use resamples of the sampled d&tar
generate the datd, from the marginal densitf/(x, 6,) or the correspond-
ing transition density with an initial value @, underH,.

2. The true valud, is estimated based on the simulatéq}, and the result-
ing estimate is denoted b

3. We chooseHy as specified following3.2) with h,i, and h,., satisfying
Assumption B3 in Appendix B and then compulg’ of (3.2) using the
simulated{X,} andé.

4. Repeat the preceding stelglstimes and produc# versions ofL*, L}, for
m=1,2...,M. The simulated critical valug, is then the(1 — «)% per-
centile of theM values L, form=1,2...,M, of L*.

We now state the following resuland its proof is relegated to Appendix B

THEOREM 31. Assume that Assumptions A.1, A.3, and A.4 in Appendix A
and B.1-B.3 listed in Appendix B hold. Then untgy

lim P(L* > 1) = a.

T—oo

The main result on the behavior of the test statiktiaunderH, is thatl, is
an asymptotically correat-level critical value under any model iH,.

3.2. Consistency against a Fixed Alternative

We now show that* is consistent against a fixed alternative modelsume
that model(1.1) holds Let the parameter s& be an open subset &°. Let
F={f(-,0):0 € 0} satisfy Assumption B in Appendix B For convenience
let

F(0) = (f(Xg,0),....T(X7,0))" and f=(f(Xy),..., T(X7))".
Measure the distance betwekand F by the normalized, distance
1 1/2
p(f,F) = [inf <— If— F(G)Izﬂ ;
oco\ T
where||- | denotes the euclidean norih H, is false thenp( f, F) = C, for all

sufficiently largeT and someC, > 0. A consistent test will reject a falsi,
with probability approaching one 85— oo.
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The following theorem establishes a consistency reanid its proof is rel-
egated to Appendix B

THEOREM 32. Assume that the conditions of Theorem 3.1 hold. In addi-
tion, if there is a G > 0 such thatim_,,P(p(f, 7) = C,) = 1 holds then

lim P(L*> 1) =1

T—oo

3.3. Consistency against a Sequence of Local Alternatives

In this sectionwe consider the consistency lof under local alternatives of the
form

fr(x) = f(x,01) + Cr Ar(X) (3.3)

with C; = C, T ¥24/loglogT for some constant, > 0 andé, € 0.
Let

fr=(f:(Xp),.... 7 (X)™ and A7 = (Ar(Xy),..., A7 (Xp))"

We now have that

=R

1.¢ 2 Cf < 2 : 2
TR FO)IP = T2 = T S 1ac(x) 2 (3.4)
t=1

To ensure that the rate of convergencéato the parametric modé#l (6,) is
the same as the rate of convergence€efio zerq in view of (3.4), we need to
assume thaA+(x) is a continuous function that is normalized so that

| 17 -
TIggP(;tElmT(xt)F_&) =1 (3.5)

for somed > 0. When A+ (-) does not depend of, condition (3.5) can be
replaced byE[A?(X;)] > 0, which holds automatically when(-) # 0.

We now state the following consistency resand its proof is relegated to
Appendix B

THEOREM 33. Assume that Assumptions A.1, A.3, and A.4 in Appendix A
and B.1-B.3 with fl.x= Cmax(10g 10gT)~* for some constant,g, > 0 in Appen-
dix B hold. Letd be a /T -consistent estimator af. Let f satisfy (3.3) with
Cr = CT ¥24loglogT for some constant G 0. In addition, let condition
(3.5) hold. Then

lim P(L*>1,)=1.

T—ooo
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The result shows that the power of the adaptia¢e-optimal test approaches
one asT — oo for any functionA+(-) and sequencéCy} that satisfy the con-
ditions of Theorem 3.

3.4. Consistency against a Sequence of Smooth Alternatives

This section establishes thht is consistent uniformly over alternatives in a
Hoélder smoothness class whose distance from the parametric model approaches
zero at the fastest possible ratiecan be shown that we can extend the results
to Sobolev and Besov classes under more technical conditions

Before specifying our smoothness classes introduce the following nota-
tion. Define the Holder norm

dif (x)
dx!

[flns=sup X

XES 1=j=s

, (3.6)

whereS = {x € R?: f(x) > 0}.

The smoothness classes that we consider consist of functienS(H, s) =
{f:]f[ns= cy} for some(unknown s = 2 andcy < co.

For somes = 2 and all sufficiently largeC; < oo, define

Byt = {f € S(H,9): lim P(p(f,7)= C (T 1WloglogT )29 = 1},

(3.7)

wherep(f, F) is as defined in Section.3
We now state the following consistency resahd its proof is relegated to
Appendix B

THEOREM 34. Assume that Assumptions A.1, A.3, and A.4 in Appendix A
and B.1-B.3 in Appendix B hold. Then for< o < 1 and B, 1 as defined in
(3.7

lim inf P(L*>1,)=1
T—oo fEBy 1

Remark 31. Theorems 3-34 show that we have established some consis-
tency results for the proposed test given(32). Such consistency results cor-
respond to Theorems 1-4 of Horowitz and Spokdi2§01 for a fixed design
regression casén our casewe deal with the case where the observations are
stationary andw-mixing time seriesIn addition the optimum versiorL* is
asymptotically consistent as established in TheorgmTdiis is one of the advan-
tages of our test over existing onasich as the natural competitor proposed in
Ait-Sahalia(19964. In Section 4 we show that our test also outperforms the
natural competitor in the finite sample case
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4. EXAMPLE OF IMPLEMENTATION AND APPLICATION
IN DIFFUSION MODELS

This section illustrates the proposed adaptive test by the following exaAwple

the bootstrap simulation procedure for selecting both the bandwidth and simu-
lated critical values is extremely computationally demangasgpecially for large
numbers of datave only consider using the CIR model proposed by Cox et al
(1985 and show how to implement the adaptive test statiktioof (3.2) in
practice through using a simulated examglke main reason for choosing the
model is not only because both the marginal and transition density functions
have closed forms but also because the model has been studied extensively in
the literature Seg for example Ait-Sahalia(1999 and Hong and L{2004.

Example 4.1

We consider using the CIR model given by
dr, = k(B —r,) dt+ o4r, dB, 4.1)

wherexk > 0, B8 > 0, ando > 0 are unknown parameters aBgdis standard
Brownian motion It can be shown thafr,} is distributed onR™ = (0,c0) if
2kB/o? = 1. Furthermoreit follows from Lemma 31 of Masry and Tjgstheim
(1995 that the proces§,} satisfies Assumption A(i). Alternatively, one may
apply Assumption A3’ of Ait-Sahalia(1996k p. 552) to verify that{r,} is strictly
stationary andv-mixing.

As a result of(2.2), the marginal density function dfr;} satisfying model
(4.1 is

(2K)y+1

0 = e

2k
-x”-exp(——2 x), X € R* = (0,00), (4.2)
ag
wheref = (B,k,0), v = 2k/c? — 1, andI'(-) is the usual gamma function
Let 6, be the true value of.
To construct a sequence of local alternatiwes also consider using a mar-
ginal density of the form

f1(x,0) = (r B2 ex= ) exp(—v fx71),  xERY,  (4.3)

r2+wv,)

wherev, = 2x/a?. It is known thatf,(x,6) is the marginal density ofr,}
satisfying the AG model proposed in Ahn and G4899

dr, = k(B —r)r,dt+ or°dB, t=12,..., (4.4)

with parameter values > 0, 8 > 0, ando > 0. The necessary and sufficient
conditions for stationarity and unattainability of O andn finite expected time
are the pairsc > 0 andB > 0 (see Ahn and Gadl999. To show thaf{r,} is
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strictly stationary andv-mixing, as explained in Appendix A of Ahn and Gao
(1999 pp. 755756, one needs only to verify Assumption® of Ait-Sahalia
(1996h p. 552. It is easy to see that such an assumption holds for the marginal
density drift, and diffusion functions given if4.3) and(4.4).

The corresponding structure of the test probl@m®) for this example can be
constructed as

Ho: f(x) = f(x,0p) versusH,: f(x) =f(x,0;) + C; Ar(x), (4.5)
where
Cr = (T~ *loglogT)”® and A;(x) =fy(x,6;) — f(x,60,), (4.6)

in which 6, € ©. The reason for choosing sudi(-) as the local shift function
is to ensure that the models undgi fluctuate closely around those undeg.
The choice 0f(4.5) and(4.6) ensures that3.7) holds withs = 2. This implies
that the adaptive test is consistent against the sequence with an optimal rate
Note that Assumptions .B and B2 hold

In the following simulationwe consider using a class of alternatives of the
form

f,(X,0,) = F(x,0,) + - (f1(X,0,) = F(X,00) = (1 — )T (X,0,) + ¢fi(X,0,),
4.7)

wheref; € ©® and 0< ¢ < 1 is defined as the truncation parameter to be
chosen

To compute the nonparametric estimators invojwed choose the normal
kernel function given by

k(x) = % e (x72) (4.8)

o

throughout the simulationObserve that Assumptions.’-A.4 hold For the
CIR and AG modelswe simulate the data from their marginal density and tran-
sitional functionswhich all have closed forms

In the detailed simulatigrwe simulate the data froif4.2) for the CIR model
(4.3) for the AG model and then(4.7) underH,. Using the simulated datave
compute

. Ny (h) — a+(h
L* = maxL;(h) = sup —T( )~ Ar()

: 4.9
heHr her,  Vhér(h) (49)

in which R(k) = 1/27 andk®(0) = 1/2\ 27 are used after the choice of
(4.8) and Hy is as defined following(3.2) with hy, = T @Y% h_ . =
2(loglogT) %, anda = £. Note that Assumption B holds
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To compare.* with Lor(h) in (2.4), we construct a test statistic of the form

Jhor(h)

whereh, is chosen by using the following procedure

Lo = Lor(h,) = (4.10)

* We simulateX; with probability 1— ¢ from the CIR model and with prob-
ability s from the AG model with an initial value of; underH;.

e Use the simulated datX;:t=1,2,...,T} to estimated,.

« Compute the resulting function ¢f given by

M+ (h) — fir(h)
Vhé(h)

* Repeat the preceding stef@s= 1,000 times and produc® versions of
Lor(h) denoted byl o1 m(h) for m=1,2,...,Q. Use theQ functions ofh,
EOT’m(h) form=12,...,Q, to construct their empirical bootstrap distribu-
tion function that is

Lor(h) =

18 .
Fa(u) = = > 1(Lor,m(h) = u),
Q m=1

wherel (U = u) is the usual indicator function

» For a given asymptotic critical value ecat the levela (e.g., €CVpgos =
1.645 at the 5% leve) we then calculate the following power function

Y (h) = 1— F,(ecvy,).

e Find approximately at whicth value the power functior(h) is maxi-
mized Denote the maximizer bi.,.

We then consider using the same choice of the parameter value$1as of
Pritsker(1998. This means that the baseline model is mo@el) with « =
0.89218 B = 0.090495 ando = 1/0.032742 In this examplethe same param-
eter values were also used@sn computing the power of the tesit$ andLj.
The truncation parameter was chosenyas 0 underH,, whereas the trunca-
tion parameter was chosen@s= 3 under,. Three different sizes of sample
T =1,000 2,755 or 5500 were then considerg@ihe corresponding simulated
critical values|, andlg,, of L* andLj at thea level are then found by using
the simulation scheme proposed in Sectioh Bhe sizes of the tests were then
computed based on the data simulated urfdgrand the power values of the
tests were calculated based on the data generated &hdén implementing
the simulation procedureve usedM = 1,000 involved in the simulation
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scheme proposed in Sectiori3The number of simulations in producing Table 1
was also 1000. Both the size and the power &f andLj are given in Table 1

Remark 41. (i) As can be seen from Table the power values of both*
andL} look reasonable whefi = &, or about 3% This may show that both*
andLj are practically applicable to the medium sample chseause the dif-
ference between the null hypothesis and its alternative was made deliberately
close We also computed the power of the tests for the case wheress, or
5%. Our small sample results showed that the powek ofvas already 100%
even wherl = 1,000 In generalit is true that the power increasesyascreases
for each caseObserve that.* is slightly more powerful thaiy, althoughh.
involved in L = Lor(h,) has been chosen based on the assessment of its
power We observe that the sizes of the two tests are also close to either 5% in
the first half of Table 1 or 1% in the second half of Table 1

(ii) We also examined the dependence of the power on the choice of the ini-
tial parameter value©ur experience suggests that the power of the tests mainly
depends on the choice of the truncation paramgtérhis is both understand-
able and expectedbecause the test statistics finally depend only on the estima-
tion and reestimation procedure of the vector of the initial parameters rather
than the initial parameter values themselvékis is probably why artificial
values or parameter values estimated from a set of real data are used as initial
values for starting a simulation procedufer example Hong and Li(2004)
use the parameter values estimated from th®. Uhterest rate series for their
simulation procedure

(iii) Compared with existing resul{see Pritsker1998, both the size and
power ofLg have been significantly improvedhis is probably becaude) the
choice ofh involved inLr(h) is based on the assessment of the powér,pth)
rather than using an estimation-based optimal value(Bntb avoid using the

TaBLE 1. Rejection rates for the marginal density tests

Observation Null hypothesis is true Null hypothesis is false
T L* LG L* Ly

The 5% level

1,000 Q044 Q039 Q721 0618
2,755 Q055 Q058 0874 Q712
5,500 Q052 Q042 Q992 0887
The 1% level

1,000 Q007 Q017 0526 Q497
2,755 Q014 Q019 0673 0532

5,500 Q009 Q006 Q0869 Q795
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asymptotic distribution of 4 (h) and then an asymptotic critical value ab45

at the 5% or B3 at the 1% levelwe have used the bootstrap-based simulated
critical value |, at the levela. We also computed both the power and size
values for the case whelewas chosen by using a cross-validation criteyion
and the resulting sizes and power values were similar to those obtained by
Pritsker (1998, althoughL* always performed better thal. This further
demonstrates that the asymptotic distribution of eithgih) or Lo (h) can only
provide some kind of idea about the asymptotic behaliqoractice we strongly
suggest using the proposed bootstrap simulation procedure for choosing a sim-
ulated critical value rather than an asymptotic critical value

5. CONCLUSION

In this paperwe have considered testing the general continuous-time diffusion
model(1.1) under thex-mixing condition The results for continuous-time mod-
els under thex-mixing condition complement some existing results under the
B-mixing condition See for examplgAit-Sahalia(1996a. Moreover an adap-
tive and optimal test procedure has been establisfbis extension corre-
sponds to Horowitz and Spokoin2001) for the fixed design nonparametric
regression and then to Chddaq and Li (2001 for a nonparametric time series
regression modelTo deal with thea-mixing condition we have established
some novel results for moment inequalitisge Lemma @) and limit theo-
rems(see Lemma Al) for degeneratéJ-statistics of strongly dependent pro-
cessesBoth Lemmas Al and C2 are applicable to some other estimation and
testing of diffusion processes with themixing condition(for more about var-
ious mixing conditions see Doukhan1995. In addition we have demon-
strated how to implement the proposed test procedure in practice through using
a simulated example

The results given in this paper can be extended in a number of directions
First, it is possible to consider testing for both the marginal and transition den-
sity functions simultaneouslecause the transition density can capture the full
dynamics of a diffusion process arid particular can distinguish the diffusion
processes that have the same marginal density but different transition densities
Secongthe results of this paper for the short-range dependent continuous-time
case can be extended to the long-range dependent continuous-tim&ltage
one probably can relax the strict stationarity and the mixing conditisrthe
recent work by Ait-Sahali1999 and Karlsen and Tjgsthei(2002) indicates
that it is possible to do such work without the stationarity and the mixing con-
dition. This part is particularly important for two reasons) for the long-
range dependent case one needs to avoid assuming both the long-range
dependence and the mixing conditjas they contradict each otheand (ii)
some important models are nonstationdiyese are some issues left for future
research
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APPENDIX A

This Appendix lists the necessary assumptions for the establishment and the proof of
the main results given in Section 2

A.1. Assumptions. Let the parameter s€t be an open subset 8. Let 7= {f(-,0):
0 € O}. Definev,f(x,0) = df(x,0)/00, V2 f(x,0) = 02f(x,0)/0000", andV; f(x,0) =
0% (x,0)/0006'90" whenever these derivatives exiffor any q X q matrix D,
define

_ D]
D, = sup ,
verd o]
where|v|? = ZL v? for v = (vy,...,v9)".

Assumption A.1. (i) Assume that the proce$s} is strictly stationary and-mixing
with the mixing coefficienta (t) = C,a' defined by

a(t) = sup{|P(AN B) — P(AP(B)|:A € 03,B € Q2. }

for all s;t = 1, where 0< C, < o0 and 0< « < 1 are constants anﬂij denotes the
o-field generated byr,:i =t =j}.

(i) Assume that the univariate kernel functidg-) is nonnegative symmetric
and four-times differentiable oR' = (—oo,00). In addition [”_x?k(x)dx < co and
T2 k3(X) dx < oo.

Assumption A.2. (i) The parameter spa& C RY is compactin a neighborhood of
the true parametefiy, f(x,0) is twice continuously differentiable if; E[(0f(x,0)/
d0)(9f (x,0)/00)7] is of full rank. In addition assume thaG(x) is a positive and inte-
grable function withE[G(X;)] < oo uniformly int = 1 such that supe| f(X;,0)|? =
G(X¢) and supce [V f(X,0)]% = G(X,) for j = 1,2,3, where forB = {bj}1=i j=qs
“BHZ = Eiqzlzjq:l bijz'

(i) Assume that is a \/T -consistent estimator d,.

Assumption A.3. For everyd € 0:

(i) The drift and the diffusion functions are three times continuously differentiable in
X € R" = (0,00), ando > 0 onR".

(i) The integral of @(v,0) = [1/a2(v,0)]exp(— [ 2[ 1(x,0)/a?(x,6)]dx) con-
verges at both boundaries Bf wheret is fixed in D.

(iii) The integral ofs(v, ) = exp(ff 2[ u(x,8)/02(x,6)] dx) diverges at both bound-
aries ofD.

Assumption A.4. (i) Assume that the first three derivatives fdfx) are continuous
on D and thatf (x) > ¢; > 0 on the interior oD for somec; > 0. In addition bothf (x)
andf 2(x) are integrable oml.

(ii) The initial random variableg is distributed ag (x).

(iii ) The true drift and diffusion functions satisfy AssumptiotBA
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Assumption A.5. The bandwidth parametérsatisfies that

lim h=0, lim Th? = co, and lim supTh® < co.

T—oo T—oo T—oo

Remark A.1. Assumptions Al—A.4 are quite natural in this kind of probledssump-
tions A2—A.4 correspond to Assumptions A81, and A3 of Ait-Sahalid19963. Assump-
tion A.1 is the exceptionAssumption Al(i) assumes the-mixing condition which is
weaker than thg-mixing condition Assumption Al(ii) is quite generalallowing the
use of the standard normal kernAksumption A5 ensures that the theoretically opti-
mum value ofhgpimar = CT~Y/® can be includedThis is importantbecause there may
be cases in whichgpima is also optimal for testing purposes

A.2. Technical Lemmas. The following lemmas are necessary for the proof of the
main results stated in Section 2

LEMMA A 1. Let & be an r-dimensional strictly stationary and strong mixing
(a-mixing) stochastic process. Léi(-,-) be a symmetric Borel function defined on
R" X R". Assume that for any fixed& R", E[¢(£1,X)] = 0and E[¢(§i,§j)|n('{1] =0
for any i < j, where Q! denotes ther-field generated by{és:i = s =< j}. Let ¢ =
d(&s,&), 02 =var(¢s), ando? = X o= 02. For some small constat < § < 1,
let

1=i<j<k=T

M, =  max maX{E|¢ik¢jk|1+3»f|¢ik¢jk|l+5 dp(fi)dp(fj,fk)},

1=i<j<k=T

Mz =  max maX{E|¢ik¢jk|2(l+§)’j¢ik¢jk2(l+5)dp(§i)dp(§j,§k)},
1=i<j<k=T

Mz, =  max max{f|d’ik¢jk2(l+5) dP(¢;, &) dP(&y),

f|¢ik¢jk|2(l+5) dP(&;) dP(¢;) dP(fk)},

M
T3 aigj<k=T 1<i,j, k=2T
i, ], k different

max E|¢ik¢jk|2’ M:,= max {maxf%i ¢jk‘2(1+5) dP},
P

where the maximization over P in the equation for/Ms taken over the four

probability measures &1,¢&,§j,ék), P(ED)P(&, &, &), P(EDP(&)P(&,.&,), and
P(£1)P(&)P(&;)P(éx), where(iy, io, i3) is the permutation ofi, j, k) in ascending order;

2(l+5)}

2(1+5)

1=i<j<k=T

Mys; =  max maX{E‘f¢ik¢jk¢ik¢jkdp(§i)

1=i<j<k=T

Mrs, =  max maX{J ‘f¢ik¢jk¢ik¢jkdp(§i) dp(fj)dp(fk)},

2

Mre= max E

1=i<j<k=T

Pik Pix dpP(¢))
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Assume that all the s are finite. Let
My = max{T?Myy ™", T2Meg? ™, T2MgZ 2 T2Mrg?),

_ 1/[2(1+5)] 1/[2(1+5)] 12 1/[2(1+5)]
Ny = max{T¥?Mr21 ,T¥?Mr2; S TY2MT3, TY? My |

If lim+_,..(max{M¢,N¢}/o2) = 0, then

1
- 2 ¢ (és,é) >p N(0,1) as T— co.

OT 1=s<t=T

Remark A.2. Lemma Al establishes central limit theorems for degeneltastatistics
of strongly dependent processéisshould be pointed out that the conclusion of Lemma
A.1 remains true when the martingale assumption E[a;b(fi,fj)mg’l] = 0 for any
i < jis removedSuch a martingale assumption is used only for a direct application of
an existing central limit theoreCLT) for martingalesWithout such a conditignone
needs only to decompose

b(£.) = p(&,6) —E[o(&, )00 T+ E[S(&,6)105 ¢
=d(&,6) +E[o(&,6)00]

and then apply the martingale CLT #(¢, &). Using the condition thaE [ (&1, X)] = 0
for each giverx, one can show that the terms invoIviEg¢(§i,§j)|Q(’)_1] are negligi-
ble (see Roussas and loannid#&887 Theorem %b). Thus as assumed in Lemma23of
Hjellvik, Yao, and Tjgstheim(1996 and Theorem 2 of Fan and Li(1998, the condi-
tion thatE[ ¢ (&1, x)] = O for each giverx is the key assumption

Proof. Let
t—1
Ur= X ¢Eé) V=2 d(éé),
1=s<t=T s=1
T T
var(Ur) = Z var(V,) = Z E[V?]= E o&+2 2 E[¢ik¢jk]-
t=2 t=2 1=s<t=T 1=i<j<k=T

To prove Lemma AL, it suffices to show that a§ — o

.
o2 VE o, 1 (A.1)
t=2
and
.
or* 2 E[V] >0 (A.2)
t=2

By Lemma C1 (with 91 = ik, 12 = dj, | = 2, pp = 2(1 + 8), andQ = 1/(1 + §)),

E|¢ik¢jk| = 10M_|3!-:/L(1+8)a8/(1+8)(j —i).
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Therefore
T i
> Elddil = 10T 2MEHE+) D (1— —>a5/(1+’5)(i) = CT2MHE+9),
1=i<j<k=T i=1 T

becaus&” , a® (i) < co.
Observe that

T 2
EL_ZZV?— ‘TTZ} = E{ E [¢32t_ 0's21] +2 E ¢ik¢jk

2
1=s<t=T 1=i<j<k=T

szE{ > [¢§t—a§]}2+8E{ > ¢ik¢jk}2. (A3)

l=s<t=T 1=i<j<k=T

Let nix = 5(dikdix + bij dxj + bji di) andmy = 5[ ik dP(£x).
Then by Lemma Q(i) in Appendix G

E{ E ¢'ik¢jk}2:E{ E nijk}z

1=i<j<k=T 1=i<j<k=T

= ZE{ 2 [’flijk —Mij — Mik — ”Ijk]}z

1=i<j<k=T

+8T2E{ D nst}z

1=s<t=T
= C{T3MHL™® + T2MEED + T3My, + TOMEED
+ TAMEETD + T4Myg) = 0(0of). (A.4)

Let Cy = [¢pZ¢3,dP(&,) dP(£,) dP(£3) dP(£,), where P(£) denotes the probability
measure of.
Using Lemma Cl repeatedlywe have that for different j, k, |

E[¢262] — Cy| = 10{a(A(i, ],k 1)}1 A2z
= LOME D {a (A, ],k 1)}2/22), (A5)

whereA(i, j, k1) is the minimum increment in the sequence that is the permutation of
i,j,k 1 in ascending order
Similar to (A.5), one can have for all differentj, k, |

o203 — C,yl = 10MEE D {a (A(i, ], k 1)}/,

Therefore
2
E{ > <¢5—aif>} - > |E(308) — o7 od] + O(T M)
1=i<j=T i<j,k<l,i,j, k| different
52{ S+ 4 Y }
i<j<k<l i<k<I<j i<k<j<l

X [|E[$Z ] — Cyl + |07 a3 — Cyll+ O(T>My5)
= C,T3ME™? + O(T*My3) = o(o7). (A-6)
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It now follows from (A.3)—(A.5) that for anye > 0

Al

Thus (A.1) holds
Note that for 2= k= T,

Z W2 -

U'Tkz

1 T
=——E| X VE-0of|—>0.
o- k=2

TE

k—1 2
E[Vk4] {E ¢|k +2 E ¢Ik¢]k}

1=i<j<k

= E{E ¢Ik+6 E ¢|k¢]k+4z 2 ¢Ik¢|k¢]k}

1=i<j<k =1 1l=i<j<k

+ 4E{ ¢ik¢jk¢sk¢tk}

1=si<j<kl=s<t<k(i,j)#(st)

k—1
=4 E Z E[¢|%<¢ik¢jk] +4 2 E[¢ik¢jk¢sk¢tk]

=1 1=i<j<k 1=si<j<kl=s<t<k(i,j)#(st)
+ O(T2Mys). (A7)

It is easy to see that

1/2
J‘¢ik¢jk¢sk¢tk‘l+é dpP = {f|¢ik¢jk|2(1+8) dpf|¢sk¢tk|2(l+a) dP} = Mq,.

Similar to (A.5), one can have for angi,j) # (s, t),
|E[di ik perbud| = LOMHBEE{a (A, ], 5, 1))}/,

whereA(-) is as defined inA.5).
Consequentlythe first two terms on the right-hand side 04.7) are of order

O(T M%) because . ; k?{a(k)}¥/3®) < oo,
Thus (A.2) follows from

Z = O(T3M{ ) = o(a). (A.8)

This finishes the proof
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Before stating the following lemmasve define the following notatian

€ (X) = k((x = X;)/h) — E[k((x = X;)/h)],
bt = (Th)flfes(x)e[(x)f(x) dx,

$(X) — 5 (X) (X — X,)
S(X)5(X) — sZ(x)

1
W00 = T k(X = X,)

.
S(X) == X Ke(Xx—=X)(X= X)),  r=012,
s=1

=l

A(0) = A(X,, 0) = F(X) = F(X,, 0) = £(X,, 60) — F(X,0),

A(0) = (A4(0),...,A1(0))7,

ay = Thfws(x)wt(x)f(x)dx, by = fes(x)wt(x)f(X) dx,

T T
Not = Nor(h) = E E s>

Ny (h) = Ny (h,6) = (Th)f{f(x) — f(x,0)}2f (x) dx

= Nor(h) + Q7 (6) + I11(8) + Py1 + Por + Ry (6),

using
f(x) = f(x,0) = f(x) — E[ f(x)] + E[ f(x)] - E[ f(x)]
+ E[ f(x)] - f(x) + f(x) — f(x,0),

where

Qr(0) = A0)TAN(0) = 2 D) agAs(0)A(6),

T T
HT(G) = lele[A[(e)’
Pur = [ (€100 - Fo200

Par = [ (f00 ~ ELFO0D2F 00 0

in which A'is theT X T matrix with {as} as its(s,t) element

865
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We assume without loss of generality throughout the rest of this paper that

Jk(x)dx: sz(x)dx: R(k)=1.

LEMMA A .2. Under the conditions of Theorem 2.1, we have as Fo
E[Nor(h)] = ffz(x)dx and var[Nyr(h)] = 2h k(“>(0)ff4(x)dx(1+ o(1)). (A.9)
Proof. We now prove(A.9). It follows from Assumptions A2 and A3 that asT — oo

Eld] = (Th)* [ EL2(01 100 o

() <5 o

%(1+ o(l))sz(u)du-ffz(x)dx.

This completes the proof of the first part @.9). For the proof of the second part of
(A.9), let

UsztzE[¢szt] and of=2 2 a-szt'

1=st=T

Then

We first look at the main component of2. We now have

1 X=X y—Xg X — X¢ y— X

oia= [] e (TR T reorcnon
Using Assumptions A—A.4, we have asl — oo

o X_Xs y_Xs X_Xt y_xt
S e RS

:ffk(xgu>k<y;u>k<X;U>k<y;U>f(u,v)dudv

B X—y y-—u y—u X—v X—v X-y

‘ﬂk< h >k< h )"( h )"( h o h )”“’”)d”d’

X—y y— X

_ h2L<T>L<T> F(x,y)(1+ o(L),

whereL(x) = [k(x + y)k(y) dy is as defined if2.5).
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ThereforeasT — o

2 E[¢1zst] =

T 3 [ 10tmaseey axay
1=st=T 1=st=T

= hk®(0) (ff“(x)dx)(lJr o(1)), (A.10)

wherek®(-) is as defined in2.5).
Similarly, one can show that a6 — oo

> E[¢i— ¢id=o(h). (A.11)

1=st=T

We now deal with the remainder term of yakr(h)]. By Lemma C1 (with n, =
diks M2 = Pk, | = 2, p = 2(1+ 6), andQ = 1/(1 + §)),

El il = LOMFF2 @A (j — i),

whereMy; is as defined in Lemma A.
Therefore using the fact thab;~ ; a¥ @9 (i) < oo,

T | )
S Bl 10T (1o 1 a0 = ST ~ ol
=i<j<k= i=

(A.12)

whose proof is similar to that dfA.17), which follows
Equations(A.10)—(A.12) imply

var[L0T<h>]=2[ S varg) +2 D E(¢ik¢,»k>]

1=st=T 1=i<j<k=T
= 2hk®@(0) <ff“(x) dx>(1+ o(1)).

This finishes the proof of the second part(éf.9). u

LEMMA A .3. Under the conditions of Theorem 2.1, we have as Fo
E[f(x) —f(x)] = % h202f @(x) + ¢, f @ (x)h3(1 + o(1)),
E[f(x) —f(x)] = % h202f @ (x) + df @ (x)h3(1 + 0(D)), (A.13)
and
var[ f(x)] = E(f(x) — E[ f(x)]))2=C, :—; (1+0(1)), (A.14)

where G is a constant and(x), f(x), ¢, and d are as defined in Section 2.
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Proof. We now give only the proof ofA.14) in some detajlas the proofs ofA.13)
and (A.14) are similar and quite standard and the details follow similarly from some
existing resultsSee for example Fan and Gijbel$1996.

In view of the definition ofw;(x) and the second equation @.13), to prove(A.14),
it suffices to show that a§ — oo

Th<

1 T 2
{—E < >(SZ(X) Sl(X)(X_X[))[f(X)_f(X[)]}

T —
= Th? fk2<x h u)(Sz(X) =5, (x—w)?[ f(x) — f(W]*f(u)du

Th
=T sz(U)(sz(X) = 51 (x) (vh)?[ f(x) = F(x = vh)]?f (x — vh) dv

h2
=C T (1+0(2)

using a Taylor expansion tqx) — f(x — vh). This finishes the proof ofA.14). u

A.3. Proof of Theorem 2.1.

Proof of Theorem 2.1(i). To prove Theorem.2(i), in view of Remark A2 and Lemma
A.3, it suffices to show that

NOT(h) — Mo
\/T]O'o

To apply Lemma Al let & = X; and ¢ (&g, &) = ¢ defined previouslylet M+ and
Nt be defined as in Lemma.A We now verify only the following condition listed in
Lemma Al:

max{Mr, Ny}

o

— N(0,1) asT — co.

—0 asT—-w (A.15)

fOr MT19 MT215 MT3, MT517 MT525 and MTG? Where oy — h0'02 The OtherS fO||0W
similarly.

For theM+ part one justifies only
TZM%£(1+5)

> — 0 asT — oo.
Oh

The others follow similarly
Let st = (1/Th) Sk((x — Xg)/h)k((x — X;)/h)p(X) dx. We now have

- X% - X y—=X - X
«/fikw,-k:(Th)-zﬂk(x - )k(x - k)k( - ‘)k(y - k)f(x)f(y)dxdy

X =X
=T" fjk(u)k(qu >k(v)k<u+ h k)f(XiJruh)f(XjJruh)dudu

X — Xy X = X
=T—2f(xi)f(xj)|_<T>L< h )(1+0(1)),

whereL(-) is as defined previously
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For any given 1< ¢ < 2 andT sufficiently large we obtain

M 11 E|l//ikl/fjk‘
(U_\N> (Z} _W>
I h

_ T—zgff [f(u)f )¢

N Tiz;hzﬂ [f(z+xh)f(z+yh)[=[L(X)L(y)[*f(z+ xh z+ yh z) dxdydz

¢ ¢
f(u,v,w) ducvdw

=c,T *h? (A.16)

using Assumption AL(ii), wheref(x,y, z) denotes the joint density diX;, X;, Xy) and
C, is a constant
Thus asT — o

T2|v|_|2!.£(f+3) e TZ(T72§h2)1/§

=h@=9/¢ 0. A.17
o2 h - ( )

Hence (A.17) shows that(A.15) holds for the first part oM+;. The proof for the
second part oM+, follows in a similar way Similarly, we have that a3 — oo

o X — X
Mz = Elutl® = (Th)4h4E[fZ(Xi)fz(XJ')I'Z(XI h Xk> LZ( ] h k)]

- T74fﬂf2(x)f2(y)L2<%z> L2< y; Z>f(x, y, 2) dxdydz

= T’4hszff 2(uh+ w)f2(vh + w)L?(u)L?(v) dudvdw = CT~*h?

using Assumption AL(ii).
This implies that a§ — oo
T3/2M-|:!'é2 T3/2T—2h

- =C——(—=CT ¥’ >0 (A.18)
h

Thus (A.18) now shows thatA.15) holds forMrs. It follows from the structure of
{} that(A.15) holds automatically foMrs;, Mts,, andMrg, becauséE [ o] = 0 for
s#t.

We now prove thatA.15) holds forMt,1. Forsome < § <land 1=si <j<k=
T, let My21 = E[ |29, Similar to (A.16) and(A.17), we obtain that a3 — oo

T3/2 M‘%é%_(l+§)
— =0
Oh
using the fact that lim,., Th = co.
This completes the proof diA.15) for Mt54, and thus(A.15) holds for the first part
of {¢s}. Similarly, one can show thd#A.15) holds for the other parts d¢fps}. Thus we
have shown that undét,
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Nor — Ko

Oh

—-N(0,1) asT— oo.

The proof of Theorem (i) is therefore finished |

Proof of Theorem 2.1(ii). Note that asT — o

Ne®) ey oy [ )
o K (ﬁ)— NT(h) T Mo [NT(h) Mo]
(. (h) = T P«o:
! %‘7’0 \/_ﬁ
ﬁ_l O'h+0'h
K (h) —

= —T———"2(1+0,(1)
Oh

using the continuity o (h) in h. This completes the proof of Theorenigi). W

Proof of Theorem 2.2. The proof follows from Theorem.2 and the following stan-
dard result

17 . _ 1 ,
;glf'(xt)=E[f'(Xl)]+Op<ﬁ>+O(h2) fori=1,3 [
APPENDIX B

This Appendix lists the necessary assumptions for the establishment and the proof of
the main results given in Section 3

B.1. Assumptions.

Assumption B.1. The parameter sé@ is an open subset &9 for someq = 1. The
parametric familyF = { f(-,0):6 € ©} satisfies the following conditions

(i) Assumption A2(i) holds

(ii) For eachy € 0, f(x,6) is continuous with respect to& D.
(iii) Assume that there is a finitg, > 0 such that for everg > 0

[ F(Xy,0) = f(Xy,0")]? = C e?

in
0,00 €EO:10—0"|=¢
holds with probability ongalmost surely.

Assumption B.2. (i) Let Hg be true Thendy € ® and
lim P(NT|6— 6] >C.)<e
T—o

for anye > 0 and all sufficiently largeC, .
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(ii) Let Hg be false Then there is @* € © such that
TIim P(NT|d—6*|>C)<e

for anye > 0 and all sufficiently largeC, .

Assumption B.3. (i) Assume that the sét; has the structure d8.2) with ¢y, , T~ =
hmin < Nmax = Cmax(10g 1ogT) ™1, wherey, Cnin, andcmay are some constants satisfying
0 <y <1 and 0< Cuin, Cmax < c°.

(i) Assume thairt(x) is continuous ik € D and satisfieg ™ A+ (x) dx = 0 for all
T=1

Remark B.1. Assumptions BL(i) and B1(ii) are quite standard in this kind of prob-
lem. See Assumptions(l) and(ii) of Horowitz and Spokoiny2001). Assumption BL(iii )
is required to ensure that the marginal density function is identifisfokmilar condi-
tion is used in Assumption(fii ) of Horowitz and Spokoiny2001). It can be shown that
Assumption BL(iii) holds whenf (x,6) belongs to classes of simple linear and certain
nonlinear functions ird. The identifiability assumption is imposed to exclude the case
wheref(x,0) is flat as a function ob over certain range of and some value of,
because such a function may be neither identifiable nor a probability deAsgymp-
tion B.2 is needed to ensure that the true versiof ahder#, or 4 can be estimated
by a\/T-consistent estimatoAssumption B3(i) imposes some conditions on bdthi,
and hpax. The theoretical condition oy, is quite generalln practice we would
suggest usingy = & to include the estimation-based optimal bandwitithima =
Cn~[@st1] pecause the estimation-based optimal value may also be optimal for test-
ing purposes in some caséhe restriction orhya is required only for the proof of
Theorem 33. It should be noted thdi, . iS not necessarily the optimal bandwidth such
that the power of the resulting test is maximiz&g explained at the beginning of Sec-
tion 2, both the existence and reasonableness of Assumptidi Bcan be justified
Unlike the regression setting discussed in Horowitz and Spok@091), we need to
assum :n::XAT(X) dx = 0 to ensure that the alternative is also a probability denagy
the main results in Section 2 are only concerned with the null hypothesigio not
need to assume such a rigorous condition for the main results

This paper considers using only a set of discrete bandwidths for constructing the adap-
tive test It is believed that some corresponding results of Theorefds33l can be estab-
lished for the case whernd+ is an interval of continuous bandwidth valués Hy is
always chosen as a set of discrete bandwidths in prastiegherefore think that such
an extension from a set of discrete bandwidths to an interval of continuous bandwidth
values may just be for theoretical and technical consideradisisuch an extension also
involves much more tedious and technical detaile do not discuss this issue in detail
in this paper

B.2. Technical Lemmas. Before stating the necessary lemmas for the proof of the
results given in Section,3ve introduce the following notation
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LEMMA B.1. Suppose that the conditions of Theorem 2.1 hold.
(i) For everys >0

maxh™! sup Q;(6) = CTs?

heHy |0—60l=5
in probability, where C> 0 is a constant.
(ii) For each# € 6 and sufficiently large T
Q+(0) = Ch-A(6)"A(#) in probability.
Proof. (i) It follows from the definition ofQ7(#) that
Qr(8) = [Al 1A (&2 (B.1)
To prove Lemma BL(i), one first needs to show that
|Al., = Ch (B.2)

in probability for some constar@ > 0.
Using the conditions of Lemma.B we now have

T X— X
[Al. = max 3 ag=C(1+ 0,(1)) max fk< ‘) [S2(X) — sy (¥) (X = X)] dx
1=t=T =1 1=t=T h
= C(1+ 0,(1))h max fk(u)[sz(xl + uh) — s,(X; + uhyuh] du
1=t=T
=C@a+ op(l))h[sz(xt) fk(u) du— sl(Xt)hfuk(u) du] =Ch
in probability
In view of (B.2), to prove Lemma BL(i), it suffices to show that
sup [A()]? = CTs? (B.3)
lo—6ol =5
in probability.

A Taylor series expansion (X, 6) — f(X,0) and an application of Assumption
B.1(i) imply (B.3). This finishes the proof of Lemma.B(i).

(i) Let Amin(A) andAma(A) denote the smallest and largest eigenvalues, oéspec-
tively. In view of

/\mm(A)||)\(0)H2 = QT(e) = /\max(A) “/\(G)HZa (B4)
to prove Lemma BL(ii), it suffices to show that fon large enough
Amin(A) = Ch(1+ 0,(1)) in probability (B.5)

for someC > 0. Similar to the proof of Lemma & of Gaq Tong and Wolff (2002,
one can easily finish the proof ¢B.5). u
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Without loss of generalitywe consider the case gf= 1 in the following lemmas and
their proofs Define

i d'f (X, 0) .
(X, 0) = 10 (X, 0) = — 7 fori=123

LEMMA B.2. Under the conditions of Theorem 3.1, we have for any gtven ©
andi=12

J-Fl/z maxh~1/?
heH,

= 0,(1). (B.6)

T T
2 2 bath (X, 6)

Proof. It suffices to show that for any large constaly > 0

> CO]

—

.
>, bt (X, 0)

1t=1

M-

P[JT”2 maxh /2
heH

0
[l

T T
PP MACN)

s=1t=1

-5

heH,

1 T T 2
-y b %zz%wmﬂ

heH c:O ‘JT s=1t=1
T

T T
{Z >, Elbgt (X, 0)]% + AiT<a>}, (B.7)

hEH, Cékh |

where

T T 2 T T
Air(6) = E[E > bstam(xt,o)] = 3 3 Elbui (X,0)12

s=1t=1

Similar to the proof of(A.1), one can show that a6 — oo

.
Z [bewtfi (X,,6)]% = C(6)h(1+ o(1)) (B.8)

HM—!

for some functionC(9).
Using Lemmas @ and C2 in Appendix C and the fact th&[e;(x)] = 0 forx € D,
one can show that 86 — o«

Air(0) =o(h) fori=123. (B.9)
Thus equationgB.7)—(B.9) complete the proof u

LEMMA B .3. Under the conditions of Theorem 3.1, we have as Fo

T

> by,

t=1

JrY2 maxh~Y2 max
heHT 1=s=T

= 0,(1). (B.10)
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Proof. Similar to(B.7), we have for large consta, > 0

T

> by

P[J V2 maxh¥? max
t=1

heH 1=s=T

>

T 1 T 2
2 E PlJ 1/2h vz 2 bst > CO = 2 2 h_l E E 2 bst
hEHT s=1 t=1 CoJr heHt s=1 t=1
> h” 2 Z E[bZ] + E 2 Elbg, by, 1. (B.11)
COJT hEH s=1t=1 s=1t,#t,

Similar to (B.8), we can have a¥ — o«

T T
Z 2 E[b2] = Ch(1+ o(1)). (B.12)
Analogous to(B.9), one can show that a6 — oo
.
Z 2 E[bstlbstzftlftz] =o(h). (B.13)
s=1ty#t,
Thus equationgB.11)—(B.13) complete the proof ofB.10). |

LEMMA B .4. Under the conditions of Theorem 3.1, we have for each @,

max sup h™ Y2
h&Ht |g—g,|=T Y2y

T T
> > bst)tt(e)‘ = 0,(J2T12) (B.14)
s=1t=1

underHo.

Proof. We now prove(B.14). Using a Taylor series expansionftoX, #) — f (X, 6o)
and Assumption B, we have ford’ betweernd andé,

T T TT
EEbA@=:EEQMMﬁ%um@ﬂ
s—1t=1 s—1t=1
L TT
= ;lzl bth (Xi,60) |16 — 00|+ g;bst‘l’z(xtaeo)

T T
X |0 _00|2 + = E E bst‘//3(xt70/) “9_ '90‘3
s=1t=1

TT
1

> X bt (X, 60) |16 — 6] + ETW — 6]

s=1t=1

)
> beta(Xe, 6o)
s=1

T

> by

1
+ =T|0 — 6, max
6 1=t=T |

- max |5(Xe, 0')]. (B.15)
1=t=T
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Hence (B.4), (B.10), (B.15), and Assumption BL.(i) imply

= 0, (JY/2T1/2), (B.16)

2 2 bahi(6)

max sup h 1?2
heHt [0—6o \<T /2,

The proof of(B.14) follows from (B.15) and(B.16). |
LEMMA B .5. Suppose that the conditions of Theorem 3.1 hold. Then for every
u > 0, some he Ht, and as T— oo
T T
2 2 bstA(xw)‘ =0,(Qr(6) (B.17)
=1t=1

S

|0—6* \<T v2y

underH;.
Proof. In view of the definition ofQ,(#), to prove(B.17), it suffices to show that as

T—> o
TOT
sup > > by A(X,0) | = oy(ar),
[6—6"| =T Y2u | s=1t=1

wheregr = E[Q1(0%)].

Note that
T T T T
S Shax0|= |33 bstuxt,ew‘
s=1t= s=1t=1
T T
> > bt (X, 0%) |16 — 6|
s=1t=1
1 2
+ 5 TIo 07| Ebsth(xt,m

T

1
+ 5 TI0 =072 max | 3 by - max|ys(X, 0], (B.18)
s=1 =t=

1=t=T

whered’ lies betweerd and6*.
In view of (B.6), (B.10), (B.18), and Assumptions B(i) and B2(ii), to prove(B.17)

it suffices to show that for an§ > 0,

T T
P[ > by A (X, 0%) | > 5TqT} -0 (B.19)
s=1t=1
asT — oo.
Similar to (B.8) and(B.9), one can show that 86 — oo
(B.20)

> stA(Xt,ﬁ*)] = Ch(1+ o(2)).

t=1

7]
lM*

]
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Thus equationgB.19) and(B.20) imply that asT — oo
P[

usinggr = CTh(1 + o(1)) given in the proof of Lemma R(ii), whereC is a constant
independent off. Lemma B5 therefore follows fron(B.21). n

T T 1 T T . 5 Ch
> 3 bed(X07) | > 80r | = 55 E[ 3 S buA(X,07)| =5 -0
s=1t=1 0°0F [s1t-1 o7

(B.21)

Recall the notation introduced ifA.9). We assume without loss of generality that
k®(0) =1 in Lemma A2. Define

Nor(h) — 1o Nr(h) — po
———F—— and Ly(h)y=——7-—-.
\2h () \2h
LEMMA B .6. Suppose that the conditions of Theorem 3.1 hold. Then-asc®

Lo(h) = (B.22)

Lr(h) = Lr(h) + 0y(D) (B.23)

uniformly over he Hr.

Proof. The proof of(B.23) follows from (2.7) and(2.8) immediately u

LEMMA B.7. Suppose that the conditions of Theorem 3.1 hold. Then
MaX,cy, Lo(h) and max,cy, L+(h) have identical asymptotic distributions undi.

Proof. Note thatQt(6p) = 0 underH, and that Lemmas 8 and B1-B.5 imply as
T—> o

I+ (6,) Pir + Pyr Ry (6o)
max —— = 1 max —— =0,(1 max ——— =0,(1). (B.24
hea)T( \2h Op(L), he%): \/2h O(L), he?T( \/2h op(D)- )
Therefore equations(B.21), (B.22), and (B.24) complete the proof of Lemma.B

LEMMA B .8. Suppose that the conditions of Theorem 3.1 hold. Then for aapx
h € Hy, and all sufficiently large T

>(2
P(Lo(h) > x) = exp(—z)

Proof. It follows from the beginning of the proof of Theorem1#) that for any
smallé > 0 there exists a large integ& = 1 such that folT = T,

IP(Lo(h) =x) — ®(x)| <6,

where®(x) = (1/V27)f* e 72 du.
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This implies for anyT = To andx = 0

P(Lo(h) >x) =1 —®(x) +§

= i f e W7D qu+ §= L f e~ U7 a=(u74) 4 §
\/ 27T X V 277' X
[oe] foe]
=e X7 f e WA du+s=e X7 f e WY du+ s
2 X 2 0

— e 78 % fw e VT dy + 5= g e (¥4 4§
Nz Jo

using(1/v27) [ e 72 dv = 1.
The proof follows by letting 0< & = (1 — V2/2)e~*74 for anyx = 0. [ ]

For 0< a < 1, definel, to be the 1~ «a quantile of maxey, Lo(h).

LEMMA B .9. Suppose that the conditions of Theorem 3.1 hold. Then for large
enough T

I, = 24[log(Jr) — log(a).

Proof. The proof is trivial

LEMMA B.10. Suppose that the conditions of Theorem 3.1 hold. Suppose that

(e Y
TIIan<—m _2|ﬂ)_1 (B.25)

for some h& Hy, where

= max(fa,\jz log(Jr) +4/2 |09(JT)>-

Then

lim P(L* >1,)=1.

T—ooo

Proof. To prove Lemma BLO, in view of Lemmas BS and B7, it suffices to show
that

lim P(maxLT(h) > I~a> =1,

T—oo heHt

which holds if

T|im P(Ly(h)y>T,)=1
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for someh € Ht. For anyh € H+, using(B.21) and then(B.17) we have

Qr(67) + Re(6") + Pyr + Pyr

Lr(h) = Lo(h) +

\2h
Qr(07)(1+ 0,(2))
=Lgh)y+ ———. B.26
On the other handcondition(B.25) implies that asT — oo
Qr(0) >
P <2l 0. B.27
( ) <o) (8.27)

Observe that

. o Qe o Qi)
P(LT(h)>Ia)—P<LT(h)>Ia, Nor _2Ia>+P<LT(h)>Ia, Vor <2|a>

=l +lpr.

Thus it follows from (B.26) that asT — oo

2
Qr(6%) + I (6%) + Re(9%) + X Pir
i=1

) e
ls = P | Lo(h) + T >l S = 2
Qo) _ .
XP( NeT 2'“)

2h 2n92

becausel y(h) is asymptotically normal and therefore bounded in probability and
o — 2% > —0asT — co.
Because ofB.27), asT — o

(e
|2T_P< Np <2|a>—>o.

This finishes the proof u

= P(Lo(h) >1, -2l

X))o L <o)

B.3. Proofs of Theorems 3.1-3.4.

Proof of Theorem 3.1. The proof follows from Lemmas B and B7.

Proof of Theorem 3.2. This proof is similar to that of Theorem3 which follows
using Lemma BL(ii). Alternatively one can follow the corresponding proof of Theo-
rem 2 of Horowitz and Spokoin{2001) by using Lemma BL(ii) and the condition that
lim P(p(f,F)=C,) =1
T—ooo

to verify (B.25). u
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Proof of Theorem 3.3. Condition(3.5) ensures that the rate of convergencéd;afo
the parametric moddF(6,) is the same as the rate of convergenceCefto zera In
particulay when (3.5) holds

lim P(;ng(ﬂ i —F))?) = Tac%> =1 (B.28)

In view of Lemma B10, to complete the proof of Theorem33 it suffices to verify
(B.25). This verification follows from Lemma B(ii) and(B.28). |

Proof of Theorem 3.4. For the proof of Theorem.8, one needs to use the condi-
tions of Theorem 3 to finish the proafIn our proof we mainly use Lemma R(ii)
and the condition of Theorem&that

lim P(p(f,F) = C,(T *loglogT )*¥“*" V) =1
Tooo

to verify (B.25). [ ]

APPENDIX C

The following two technical lemmas have already been used in the proofs of Lemma
A.1 and Theorem 2. The two lemmas are of general interest in themselves and can be
used for other nonparametric estimation and testing problems associated witmikimg
condition

LEMMA C.1. Suppose that flare theo-fields generated by a stationary-mixing
processé; with the mixing coefficien&(i). For some positive integers m let € M;i
where g <t; < s, <t, < -.-- <tyand suppose t— s > 7 for all i. Assume further
that

Inillg = Elni|P < oo

for some p> 1 for which

|
=10(I — 1 a(r)@Q E\Im -

‘E|:i]._l__[177i:| - ili[lE[ni]

Proof. See Roussas and loannidd987).

LEMMA C.2. (i) Let ¢(-,-,-) be a symmetric Borel function defined ol R
R" X R". Let the procesg; be defined as in Lemma A.1l. Assume that for any fixed
X,y € R, E[/(£1,%,y)] = 0. Then

E{ > 'p(fiafj,gk)}zsCT3|\/|1/(1+5),

1=i<j<k=T
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where0 < § < 1is a small constant, C> 0 is a constant independent of T and the
functiony, M = max{M, M, M5}, and

My = 1£P<‘"‘}§Tmax{E"“f 808P, [ 1pEs £ 6)17070 dPi dP(fi,fﬂ},
M: 1<ni1<ai)<(TmaX{f|l’/j(§l’§"gj)|2(1+5)dp(gj)dp(fl’gi)},
M; = 1<rPg><<Tmax{f|¢(§l,§i,§j)|z<1+a> dp(gl)dP(fi)dP(gj)}_ (C.1)

(i) Let ¢(-,-) be a symmetric Borel function defined oh R R'". Let the process;
be defined as in Lemma A.1. Assume that for any fixedR', E[¢ (&1, X)] = 0. Then

E{ > ¢(§iy§j)}25CT2M}/(l+8),

1=i<j=T

wheres > 0is a constant, C> 0 is a constant independent of T and the funciigrand

1<i<j=

M, = maXTmaX{Elcb(fl,&)IZ(“‘”,J|¢(§1,§i)|2<”‘”dP(El)dP(Ei)}- (C.2)

Proof. As the proof of(ii) is similar to that of(i), one proves onlyi). Leti,...,ig
be distinct integers and £ i; = T, let 1= k; < --- < kg = T be the permutation of
i1,...,is in ascending ordeand letd; be thecth largest difference amoniy,; — k;
j=1,...,5 Let

H(ky, ..., Ke) = l/](é:il’§i2’§i3)¢(§i45§i55§i6)-

By Lemma C1 (Wlth M= l/’(filvfiz»f@), M2 = ¢(§i4’ gis’ §i5)7 I = 2’ pi = 2(1 + 5) and
Q=1/(1+9)),

1OM M@0 /A0 (g — k) if kg — kg = dy

E[H(Kq,...,k =
‘ [ ( 1 6)]' [10|\/| 1/(1+5)a6/(1+8)(k2_ kl) if kz_ k1: dl-

Thus

E |E[H(k17”'7k6)]|
1sk1<_~k»-§(lj<ﬁsT

T-5 T-3 T

=> > S S {10M YA (, — k)
ki=1 kp=k;+max=afki—K_1} ka=ky+1  Ke=kg+1
T-5 T—-4
=1OMYED S S (K — ky)2a ) (k — k)
Ki=1kp=k;+1

T
<= 10TM1/(1+6) E k4a5/(1+6)(k) <= CTM]'/(1+5). (C3)
k=1



ADAPTIVE TESTING IN CONTINUOUS-TIME DIFFUSION MODELS 881

Similarly,

> |E[H(Ky,...,kg)]| = CTMYAT), (C.4)

1=k <---<kg=T
Ko—ky=dy

Analogously it can be shown in a similar way that

> |E[H(Ky,..., Ke)]| = CTZMYE+2), (C.5)
1=k <---<ke=T
ke—ks=d, or ko—k;=d,

> |E[H(Ky,...,kg)]| = CTMYA+2), (C.6)
1=Kk <---<ke=T
ke—ks=d3 or ky—k;=d3

On the other handf {kg — ks, ko — ki} = {ds,ds}, by using Lemma Q three times
we have the inequality

3
[E[H(Ky,.... ke)]| = 1OM VT 3 @242 (df).

i=1

Hence

2 |E[H(k1”k6)]|

1=k;<---<kg=T
{ke—ks, ko—ki}={ds, ds}

<= E {10M 1/(1+6) [aﬁ/(1+5)(k3 _ kz)
1=k <---<kg=T
max{ke—ks, ko—kq}

Szgi;{k;+rkj} + @A) (K, — Kg) + a¥ 1) (ks — k,)]}

- 30M V249 D @@+ (d,) = 30CT3M V/(1+9), (C.7)
1=Ky<---<kg=T
max{ke—ks, kp—kq}=d3

It follows from (C.3)—(C.7) that

> |E[(&,&,EQP (&, €6, )] = CTEMYAF), (C.8)

1=i,j,kr,st=T
i,j,k r,s tdifferent

Similar to (C.8), one can show that

> |E[W(&. &, &0v(&,é6, )] = CTEMYA+D), (C.9)

1=ij,kr,st=T
i,j,k s tdifferent
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> |E[Y(&, &, &D¢(&,&,6)] = CTMYEA+), (C.10)

1=i,j,kI=T
i.j.k | different

Finally, it is easy to see that

> E[(€.6,60%) = T° maxE[y(61.6,,6)%). (C.11)

1=i<j<k=T

The conclusion of Lemma .2(i) follows immediately from(C.8)—(C.11). u



