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Verification of System-on-Chip
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Abstract—The verification of system-on-chip is challenging due
to its high level of integration. Multiple components in a system
can behave concurrently and compete for resources. Hence, for
simulation-based verification, we need a methodology that allows
one to automatically generate test cases for testing concurrent and
resource-competing behaviors. We introduce the use of a transfer-
resource graph (TRG) as the model for test generation. From a
high abstraction level, TRG is able to model the parallelism be-
tween heterogeneous interaction forms in a system. We show how
TRG is used in generating test cases of resource competitions and
how these test cases are structured in event-driven test programs.
For coverage, TRG can be converted to a Petri net, allowing one to
measure the completeness of concurrency in simulation.

Index Terms—Concurrency, coverage, event-driven, resource-
contention, simulation, system-on-chip, test-generation,
verification.

I. INTRODUCTION

THE SYSTEM-ON-CHIP (SoC) solution has become a
popular very large-scale integration (VLSI) design par-

adigm. In addition to many advantages, including lower pro-
duction cost and higher performance, this design paradigm has
practically reduced the design process of a complex system
into integrating some predesigned and reusable components.
However, very thorough verification must be done to check
the correctness of the SoC design. Multiple sources claim
that verification complexity is growing exponentially [1], with
about 50%–70% of the design time and efforts spent on design
verification.

The soaring verification complexity stems from the large
scale of hardware (HW) integration. HW components verified
to be compliant with register-transfer-level (RTL) specification
do not guarantee that they will work together as expected. To
deal with this problem, an SoC must be hierarchically verified.
That is, each component needs to be individually verified.
Then, each subsystem made up of closely related components is
verified. Finally, the whole system is verified. Each verification
stage has its own emphasis and goal. At subsystem and system
levels, component-to-component interactions (instead of the
components themselves) should be the verification emphasis.
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The target bugs at this stage are those that are deeply buried in
interactions between components and not the bugs that are local
to one component.

Besides the HW components, software (SW) also contributes
to the full SoC functionality. Therefore, checking HW–SW
interactions becomes an important part of the SoC verification
process.

Separately checking the HW-to-HW and HW-to-SW interac-
tions is still insufficient to fully verify a whole system because
a system that concurrently runs heterogeneous forms of interac-
tions is subject to various unforeseeable implementation bugs.

Listed in [2], unique bugs at the system level include:

1) interactions between blocks that are assumed verified;
2) conflicts in accessing shared resources;
3) arbitration problems and dead locks;
4) priority conflicts in exception handling;
5) unexpected HW/SW sequences.

All these bugs are related to interactions, particularly to
concurrent ones with resource competitions. Concurrency is
the central characteristic of a system; therefore, concurrency is
the key to system-level verification. Hence, a simulation-based
verification methodology should provide the following: 1) a
method to generate test cases of concurrency and 2) a method to
quantify the concurrency completeness in terms of the temporal
relations between concurrent interactions.

This paper proposes to use a model called transfer-resource
graph (TRG) to deal with the aforementioned two issues. Test
cases of concurrency can be generated from TRG. Furthermore,
TRG can be transformed into a Petri net to allow one to quantify
the temporal relations of concurrency.

We adopt the SW approach [3] of generating test cases in
the form of SW [test programs (TPs)] to be executed by the
SoC processor. The relations among an SoC, its test bench, and
the SW are conceptually shown in Fig. 1. The SW bears the
responsibilities of stimulating the SoC and maintaining a high
level of concurrency; thus, the role of the test bench is reduced
to observing (including error detection and event logging)
the SoC design (the test bench still provides physical-level
stimulation to the design but under the control of the SW).
Therefore, by the SW approach, a considerable amount of time
and effort could be saved in the test-bench development.

Although these practices (using the same model for the test-
generation and coverage measures and using the SW to test the
HW) are not new, the novelty of our approach is to generalize
HW and SW behaviors and their cooperations at an elevated
abstraction level so as to systematically organize the parallelism
between heterogeneous interactions in TPs.

0278-0070/$25.00 © 2008 IEEE

Authorized licensed use limited to: Adelaide University. Downloaded on October 16, 2008 at 01:53 from IEEE Xplore.  Restrictions apply.



1316 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

Fig. 1. Relations among an SoC, its test bench, and the test SW.

The rest of this paper is organized as follows. Section II intro-
duces some related works, focusing on the relations between the
test-generation and coverage measures. Section III focuses on
our interaction model transfer. Section IV formally introduces
TRG and its use for test generation. Section V discusses the TP
structures supported by TRG. Section VI discusses how TRG is
transformed to a Petri net as the postsimulation stage coverage
model. The experimental results in Section VII illustrate some
quantitative aspects of the TRG method. Section VIII concludes
this paper.

II. RELATED WORKS AND BACKGROUND

Test-generation and coverage measures are the two most
important aspects of simulation-based verification. They can be
regarded as two relatively independent tasks.

Tests can be generated without an apparent model of a
SoC. Using randomization is the conventional way to produce
stimulation to a design. This method has intrinsic problems in
test quality, whereas complex designs, such as SoC, need a
number of high-quality tests to check their functionalities and
performances. Hence, tests generated without a system model
cannot meet the SoC verification requirements. The main issue
is that those tests do not take the fundamental characteristic of
a system, namely, the concurrency, into account.

Model-based generation is more likely to produce high-
quality tests of concurrency. XGEN [4], [5], which is the
test generator used at IBM for system verification, models
interactions as the building blocks for test-SW generation.
An interaction is a series of communication stages known as
“acts”; each act is performed by some HW components. With
the user’s interventions, XGEN is able to produce high-quality
tests by arranging concurrent behaviors. The modeling stage of
XGEN may need considerable efforts. In addition to modeling
interactions, the HW components, with their functionalities,
also need to be modeled in detail, which requires in-depth HW
knowledge.

Coverage measures indicate verification completeness. At
the system level, conventional RTL statement-based coverage
measures give little information about concurrency. The com-
pleteness of concurrency can be quantified in terms of the
temporal relations between events. Kwon et al. [6] propose
that users first establish a hierarchical–temporal–event–relation
graph to represent the interactions between communicating
HW components; then, an algorithm based on the graph can
calculate coverage space, which will be much smaller but more
meaningful than a simple cross-product coverage model. This
method can generate an accurate coverage space. To build such

Fig. 2. System under demonstration—the Nios SoC.

a graph, the users (verification engineers) must have an accurate
view of signal-level timing dependences between components.

We realize that in verifying a complex design such as SoC,
the requirement of in-depth knowledge about HW implementa-
tion is usually the bottleneck for building a consistent system
model, which is crucial for improving the test quality or for
accurately computing the coverage space. Our proposed TRG
model (first introduced in [7]) addresses this issue at a higher
level of abstraction. Compared with the “interaction” model in
XGEN, our model, which is called “transfer,” is more concise
and atomic. Furthermore, no HW details need to be modeled
in TRG. Instead, the TRG model naturally represents a pro-
grammer’s view of a system. The test quality is maximized by
fully exploiting the concurrency [8]. However, TRG has not
been formally defined, and its application for coverage is not
yet explored. This paper formally defines TRG and introduces
its usage in defining coverage spaces.

We demonstrate our methodology on a Nios SoC [9], as
shown in Fig. 2. This SoC is simple (∼25 000 lines of
Verilog code) but contains adequate features of a typical
system, which are multiple components (including the CPU)
interconnected by on-chip bus. The Nios CPU is a pipelined
reduced instruction set computer. The direct memory access
(DMA) can perform data transfer between any slaves on the
Avalon bus. The full-duplex-capable universal asynchronous
receiver/transmitter (UART) is the communication interface of
the system. ROM and static RAM (SRAM) store instructions
and data, respectively. RAM and Flash are the additional mem-
ory modules. A number of interrupt sources exist and will be
serviced by the CPU. The test bench accepts the SW’s control
via an interface implemented in the RAM.

III. TRANSFER MODEL

A. Overview

For system-level verification, it is critical to have a system
model at a suitable abstraction level.

We should focus on modeling the interactions between com-
ponents rather than on the components themselves. Further-
more, the interaction being modeled should be more abstract
than signal-level transactions. This is because we are to imple-
ment tests in an SW known as TP, which has little controllabil-
ity and observability of signal-level events (e.g., Bus_Request,
Bus_Acknowledge, etc). However, the abstraction level should
not be too high because TP is supposed to closely stress the
SoC HW. It is inappropriate for a TP to view devices as services
provided through application program interfaces.
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To trade off the aforementioned considerations, the model
should be readily comprehended by a device-level programmer
who understands the HW functionalities and performances, but
who may have little knowledge about HW implementation.
We use the term “transfer” to represent the interaction at this
specific abstraction level.

B. Definition of Transfer

Interactions become the focus of system-level verification.
There is a challenging issue associated with modeling them,
that is, interactions come in various forms, requiring different
techniques to stimulate and observe them. Some interaction
examples in the Nios SoC are the following.

1) A Flash-to-RAM DMA transfer. It is a series of read/write
(R/W) operation driven by the dedicated HW—the DMA
engine.

2) The execution of a sort subroutine. It can be viewed as a
pattern of memory access performed by the CPU, which
is driven by the execution of SW.

3) An incoming byte stream via the UART receiver. The
stream finally reaches a memory buffer. This process is
mostly driven by the interrupt mechanism.

Note that these three examples are data flows driven by
heterogeneous mechanisms, which are, respectively, the DMA
engine, sort subroutine, and interrupt subsystem/interrupt han-
dler. While checking each of them is commonsense, checking
their parallel execution will greatly improve the test quality,
considering that we are able to observe not only interactions
but also the interference between interactions. If the aforemen-
tioned three interaction examples take place in parallel, we will
observe how the DMA engine and the CPU compete with each
other for the bus access, how the UART will interfere with their
competition by frequently interrupting the sort subroutine, and
how the UART interrupt will be nested in the DMA interrupt.

The key to effectively constructing such parallelism is to
generalize heterogeneous interaction forms into a common
model. We call this model transfer type.
Definition 1: Transfer type is a set of programmer-controlled

and data-intensive interaction patterns among SoC components.
Its programmer-controlled feature means that a transfer type
has the following properties.

1) Configuration: Transfer types have their own parameters,
which can be configured by some instructions (an impor-
tant part of a transfer type’s configuration is the resources
to be used).

2) Invocation: Transfers can be invoked by some instruc-
tions. Invocation instructions are allowed to have side
effects of configuration.

3) Notification: Events of transfer completion can be noti-
fied to SW in some way (e.g., via interrupt), so that some
SW flags can indicate these events.

Definition 2: Transfer instance (or simply transfer) is a
specific configuration of a transfer type.

Note that configuration, invocation, and notification are the
overhead of a transfer and that the main body of a transfer is
the data flow. Fig. 3 shows the life cycle of a transfer, which
includes a data and a control phase. Transfers embody the

Fig. 3. Transfer life cycle.

interactions that the design allows and the application requires;
therefore, transfers are simple test cases in their own right.

C. Expression Power of Transfer

In the early stage of an SoC design/verification cycle, the
level of abstraction should be high enough to hide the dif-
ferences between HW and SW behaviors [10]. Our transfer-
type model meets this requirement. The three examples of
interaction in Section III-B can be expressed as transfer types.

1) Transfer type “Flash-to-RAM DMA”
a) Configuration: initial-source-address, initial-destination-

address, width (8, 16, or 32-bit), and length;
b) Invocation: set DMA engine control register go bit;
c) Notification: DMA finish interrupt.

2) Transfer type “Sorting”
a) Configuration: address, data type (signed/unsigned in-

teger, etc), length, sort-algorithm, and reverse;
b) Invocation: call subroutine sort(address, type,

length, algorithm, reverse);
c) Notification: the return of the subroutine.

3) Transfer type “UART-Rx-by-Interrupt”
a) Configuration: end-of-packet character, max length,

finish mode (by max length and/or end-of-packet char-
acter), and error-detection mode (parity, frame);

b) Invocation: A STORE instruction to a special address—
the test-bench/TP interface; when this address is
written, the test bench starts to feed the SoC with a bit
stream;

c) Notification: The UART interrupt handler detects the
finish conditions of the UART receiver.

More generally, the transfer-type model can describe three
categories of data-intensive interactions, which are as follows.

1) HW behaviors (hard transfers): The R/W operations on
the bus are driven by master devices, whose behaviors are
mostly hardwired. Therefore, they are categorized as hard
transfers.

2) SW behaviors (soft transfers): A processor in SoC is a
valid master device, whose behaviors are programmable
rather than hardwired. Therefore, its behaviors are called
soft transfers.

There is a subtle but crucial difference between the
code in a soft transfer and the code in configuring a
transfer. The former should be regarded as the payload
code and is subject to verification, and the latter is treated
as the overhead for verification. A consequence is that
the former is application oriented and usually requires
manual development. In contrast, the latter should be
automatically organized in TP.
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TABLE I
IMPLEMENT DIFFERENT CATEGORIES OF TRANSFERS

One guideline to build soft transfers is to compose
R/W intensive subroutines to stimulate the interactions
between CPU and slaves. However, soft transfers do not
have to literally transfer data; they can be computation-
intensive operations to apply stress to different types of
physical resources.

3) HW/SW cooperation (virtual transfers): In the Nios
SoC, the incoming UART byte stream is formed by the
cooperation between the UART, the interrupt subsystem,
and the UART-receiver-ready interrupt service routine
(ISR). Although the byte stream is physically performed
by the CPU, from a higher level of abstraction, it is
functionally equivalent to perceive that a virtual master
(also see Section IV-B) is conducting the stream between
the receiver and a memory buffer. This virtual master
is independent from the CPU which may be involved
in another task (at a reduced performance). Transfers
conducted by virtual masters are called virtual transfers.
Unlike a soft transfer, which explicitly requires a real
CPU as its resource, a virtual transfer just requires a
virtual master; therefore, we can arrange multiple virtual
transfers (and one soft transfer) to “concurrently” work
on a single CPU. This concurrency is actually the parallel
behavior of CPU and peripherals.

In a virtual transfer, the primary forms of interactions
are interrupt request and response, whereas the R/W
traffic on the bus is secondary.

Table I lists the three transfer categories and summarizes how
to implement their configuration, invocation, and notification.

D. Transfer Complexity

To identify the transfer types of a given system, we need to
discuss the complexity of the transfer type.

One transfer type’s complexity is caused by its configuration.
We use T to denote the set of transfer types in a system, and
denote Ti as each transfer-type member. For Ti, each parameter
has a set of values to select from. Parameters could be either
totally independent of or coupled with each other in various
ways. Therefore, Ti’s parameter space is very application ori-
ented. Hence, Ti requires an operation P (·) to perform its
parameterization. Considering that each Ti has its own specific
parameter space, its P (·) should be more accurately denoted
as PTi

(·) or, from the object-oriented programming point of
view, as Ti.P (·). The complexity of Ti.P (·) can represent
the complexity of Ti. To let Ti.P (·) deterministically traverse
the whole parameter-space seems neither necessary nor prac-

tical. We implement Ti.P (·) using weighted and constrained
randomization.

Our transfer model is flexible in the sense that defining a
transfer type allows the tradeoff between the number of transfer
types in a system and the complexity of their P (·). To one
extreme, we could model only a single transfer type to represent
all possible interaction patterns in a system but its P (·) needs
to deal with a huge but also artificially constrained, parameter
space. To the other extreme, we could create a transfer type for
each possible interaction pattern of concrete parameters. In this
case, we would have a huge number of transfer types, where
their P (·)’s all have trivial complexities.

In practice, it is natural to adopt this strategy, which is gen-
eralizing interaction patterns with a similar parameterization
style (including resource allocation style) as one transfer type.
Taking the example of the Nios SoC, we initially planned to
model 12 transfer types to represent the DMA transactions
among four source memory modules (ROM, RAM, Flash, and
SRAM) and three destination memory modules (RAM, Flash,
and SRAM). Later on, however, we have decided to merge
them into one transfer type called “memory-to-memory DMA,”
with a single but stronger P (·) capable of assigning source
and destination among all memory modules. Nevertheless, we
consider it more appropriate to model UART-Rx-by-DMA and
UART-Tx-by-DMA as separate transfer types, which have very
different parameters.

E. Transfer Temporal Granularity

To further characterize transfers, we give an estimation of
their life expectancy.

First of all, we discuss the necessity of comparable life
expectancies of all transfers. The transfer model enables us
to generalize data flows driven by various mechanisms, which
could operate in a wide spectrum of data rates. The question
is how to “match” concurrent transfers in order to achieve
the desired verification quality, i.e., the parallelism and re-
source contention? For example, does it make sense to cre-
ate a test case in which a 1000-B-long transfer T1 at the
speed of 10 MB/s runs alongside another 1000-B-long transfer
T2 at 10 KB/s? It appears to be a poor match, considering
that the life of T1 is only 1000th that of T2, which means that
the parallelism exists only in 0.1% of the simulation so that
the competition on the shared resource (the bus) is very little.
Therefore, it makes sense to configure all transfers to have
comparable life expectancies, for example, within one order of
magnitude of difference in length.
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We now consider how to estimate the optimal life expectancy.
Common sense tells us that the life expectancy should not
be too long. This is because the simulation is a very time-
consuming process. In the shortest time possible, we not only
need to cover most configurations for each given transfer type
but also to try its concurrent running with other transfers.
On the other hand, neither can life expectancy be too short.
We regard the data phase of a transfer as its main body,
in which parallelism and resource competition are supposed
to happen, whereas the transfer’s control phase, namely, its
configuration, invocation, and notification, is the overhead.
Thus, it is natural to require the data phase to be at least one
order of magnitude longer than the control phase; otherwise, a
considerable portion of the simulation time will be spent on the
overhead. Fortunately, the length of the control phase is pre-
dictable because all transfer types’ configuration, invocation,
and notification are made up of instruction sequences of similar
length. Hence, we assume that the following quantities are
available:

1) the average execution time of transfer configuration C;
2) the average execution time of transfer invocation I;
3) the average execution time of transfer notification N .

Then, we can reasonably conclude that the optimal transfer life
expectancy is simply in the range of (10∼100)×(C+I+N),
which makes the overhead well under 10%.

In the Nios SoC example, (C + I) requires 25 assembly
instructions or 100 SoC clocks. Transfer notification is typ-
ically by interrupt, which includes the time spent in context
switching and ISR execution; thus, the average N is about 350
SoC clocks. Therefore, the optimal transfer life expectancy is
in the range of (10 ∼ 100) × (C + I + N) or 4500∼45 000
SoC clocks. This estimation guides us on how to model the
transfer types and, particularly, on how to bias their P (·)
behaviors.

From the earlier discussion, we can quantitatively sense the
time granularity of “transfers.” This is also the granularity of
our proposed “system-level” tests. This granularity is coarser
than that of signal-level transactions, which typically ranges
from several to dozens of clock cycles. The granularity helps
us understand the features and limitations of the system-level
tests. For instance, it appears impractical and also unnecessary
for a test generator to consider the temporal relations at clock-
level accuracy.

IV. RESOURCE AND TRG

A. Resource Contentions and Resource Conflicts

The focus of system-level verification is parallelism. The
main purpose of constructing parallelism is to observe interest-
ing resource competitions. Resource competitions could hap-
pen in various domains, including the on-chip interconnection
subsystem, interrupt mechanism, CPU time, and memory lo-
cations. An even more intriguing situation is that competitions
in various domains can interfere with each other, which is as
discussed in Section III-B.

The strength of the transfer model is that it allows these
phenomena to be built naturally—we simply arrange multiple

transfers to run concurrently. By managing transfer instances’
configuration, invocation, and notification, a TP has consider-
able freedom in arranging parallelism. However, there should
exist some principles to prevent the freedom from being re-
duced to unchecked randomness.

Our principle is to distinguish between resource contentions
and conflicts. Resource contentions represent the physical-
level competitions that are supposed to be resolved by HW
mechanisms (e.g., bus protocol and interrupt handling scheme).
These competitions are not just legal but also desirable. Re-
source contentions are then defined as physical-level resource
competitions which a programmer has no direct controllability/
observability. In contrast, resource conflicts are competitions
at the logical level and require a programmer’s discretion in
order to avoid. For example, we should allow the DMA engine
to compete with the CPU for a physical memory module;
however, we require that the DMA transfer should never access
the memory addresses that are currently involved in a sort
subroutine because, otherwise, the results of both processes will
not be predictable from their configurations.
Definition 3: Given a set t of transfers t1, t2, . . . , tn,

which are, respectively, instantiated from transfer types t1.T,
t2.T, . . . , tn.T , we assume that each ti.T is associated with
a pass/failBoolean function ti.T.Check(ti.configuration,
MemRegSpace), which, according to the configuration of ti,
checks if ti has caused the expected changes (between when
ti is invoked and when ti is finished) in the memory/register
space. If, for all i, ti.T.Check() is constant regardless of the
temporal relations of ti (sequential, overlapping, etc) with all
other transfers in t, we state that t is free of resource conflicts;
otherwise, t has resource conflicts.

This definition forces some “determinism”—the result of
each ti should be deterministically predicted; however, the
determinism is also accompanied by “indeterminism”—the
temporal relations between conflict-free transfers are allowed
to happen in any way. If there are n conflict-free transfers, with
each having a start and an end event, then we shall allow for
(2n)!/2n possible event sequences, all of which shall yield the
same results in the memory/register space.

Avoiding resource conflict is reasonable—if each transfer’s
result can be predicted by its configuration (and the contents
in memory/register space), high-level functional checkers, i.e.,
T.Check(·), can be easily implemented in the test bench. Not
enforcing this restriction on resource conflicts is still an option;
in that case, the test generator simply has more freedom, but
it loses the capability to predict correct results. Therefore, the
burden of predicting correct test results is left to the users.

Once the test generator is able to avoid resource conflicts,
no other restrictions are preventing it from constructing paral-
lelism. In this way, resource contentions at the physical level
are implicitly constructed.

B. Logical Resources

Considering that resource conflict is a logical concept, we
only need to model the logical resources in the system. There-
fore, there is no need to model HW’s specific functionalities.
With this simplification, we only model three categories of
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resources: masters, registers, and memory ranges. We will see
that this modeling is not as ad hoc as it may seem.

1) Master: Master is defined as anything that can conduct
a transfer type. Examples of master in our Nios SoC
include the read and the write masters of the DMA engine
and the data master of the Nios CPU. Once modeled, a
master is a trivial resource—the test generator only needs
a single bit to indicate its status: available or unavailable.
However, the concept of virtual master requires a little
more insight into how to interpret system behaviors.

A virtual master is an ISR that cooperates with
the HW to perform data-intensive operations, e.g.,
the UART receiver-ready ISR is a virtual master
performing transfer-type “UART-Rx-by-Interrupt” (see
Section III-C). A virtual master is usually capable of
only one transfer type; however, we can model as many
virtual masters as necessary for a SoC. The number
of virtual masters is independent from the number of
physical CPUs. Once modeled, the test generator does not
distinguish between virtual and real masters. This way,
the resource contention on CPU time can be implicitly
constructed.

2) Register: Registers are also simple resources. We only
need to model data-intensive registers visible to program-
mers. Examples are the UART rxdata and txdata registers.

Considering that control/status registers across a SoC
are not suitable to be treated as data, they are not modeled
as register resources. However, in fact, many control/
status bits are already implicitly abstracted as masters.

3) Memory range: Memory ranges are flexible resources
that are dynamically maintained by the test generator.
A memory range is an object with properties of base
address, size, subword granularity, and R/W mode. From
within one free memory range, a test generator can dy-
namically allocate ranges of suitable size/location to the
transfers; meanwhile, the unused fragments become free
memory ranges. Allocated memory ranges can reside in
the same physical memory module and can even overlap
if they are all read-only. In this way, the test generator
is able to construct resource contentions on physical
memory modules.

In our current implementation on the Nios SoC, mem-
ory ranges do not cross physical memory boundaries.
However, this restriction can be lifted if we view the
whole memory space as a single free memory range and
allocate subranges to transfers. In that case, the corner
cases, in which a transfer crosses physical boundaries,
can be naturally built. However, this implementation
needs to take into account miscellaneous constraints
such as the following: ROM cannot be written, memory-
mapped registers should be excluded from the address
space, and different memory modules may accept differ-
ent granularities.

Just as transfer types are the generalization of similar transfer
instances, the previously discussed logical resource types are
the generalization of the bit resources, namely, all bits in
memory and registers that are accessible by a programmer. Bit
(regardless of data, control, or status bit) is the finest resource

object to a programmer; the master, register, and memory
range are simply different aggregations of bits. For instance,
a physical master device’s behavior is controlled/observed by
the bits in its control/status registers; it is actually those bits
that are abstracted as one logical “master” resource. Therefore,
the granularity of a master resource is a few control/status bits.
Similarly, a register’s granularity is several data bits, and a
memory range’s granularity consists of numerous (continuous)
data bits.

C. Formal Definition of TRG and Scenario

Transfers and resources can be interlinked to form TRG.
TRG can be formally defined in terms of transfer instance and
bit resource.
Definition 4: A flat TRG is a triple G = (t, r, u), where the

following are defined.

1) t is a set of concrete transfer-instances in a system.
2) r is a set of bits accessible to a programmer.
3) Function u : (t × r) → {n, s, e}, where n, s, and e, re-

spectively, represent no use, shared use, and exclusive
use. Notation “u(t, r) = n/s/e” means, respectively, that
transfer t will not use, share, or exclusively use bit r.

Then, a scenario can be formally defined.
Definition 5: Given a flat TRG G = (t, r, u), a scenario

is a subset s of t satisfying the following: 1) |s| = 1, or
2) |s| ≥ 2 and for any two distinct ti, tj ∈ s, for all r ∈ r,
(u(ti, r), u(tj , r)) /∈ {(s, e), (e, s), (e, e)}.

However, implementing a flat TRG is impractical due to
the huge number of concrete transfers and bit resources in a
system. In order to visualize a TRG and to practically generate
scenarios, we use a different TRG definition based on transfer
types and master, register, and memory-range resource models.
Definition 6: A TRG is G = (T,R, U), where the following

are defined.

1) T is a set of transfer types in a system; each transfer type
is a set of transfer instances.

2) R is a set of logical resources; each resource is a set
of bits.

3) Function U : (T × R) → {n, s, e}. For each pair
(T,R) ∈ (T × R), if all instances of T exclusively use
all bits in R, then U(T,R) = e; if all instances of T
do not use any bits in R, then U(T,R) = n; otherwise,
U(T,R) = s.

Fig. 4 shows an abridged TRG for the Nios SoC. Arrows
represent the transfer types, the blocks represent the resources,
and the letter e and s represent the access mode. Note that some
ISRs are treated as master resources.

D. Implement TRG for Test Generation

We implement TRG as a couple (T,R), where members in
T and R are all intelligent objects that are aware of resource us-
age. A transfer type T has a resource-allocation operation. This
allocation is an important part of the parameterization operation
T.P (·) of T , and it is denoted as T.P.A(·). The allocated
exclusive and total resource usages are denoted, respectively,
as T.Ue and T.Ut, where T.Ue ⊆ T.Ut ⊆ R.
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Fig. 4. Simplified TRG of the Nios SoC. The shaded transfers form a scenario.

Before we give a scenario generation algorithm, we need to
introduce another internal operation of transfer type T . Once
T.P (·) has decided on the concrete parameter values, the test
generator needs to interpret them into actual configuration/
invocation instructions. This interpretation operation is de-
noted as T.I(·). Its input comes from the output of T.P (·),
and its output is SoC instructions that implement the
configuration/invocation.

Given a TRG G = (T,R), let RS and RE represent, respec-
tively, the current resources available for shared and exclusive
accesses. The following algorithm constructs a scenario and
maximizes the number of transfers.

1) RS = R; RE = R.
2) Randomly select a transfer type Tx from T.
3) Issue Tx.P (·), which, in turn, issues Tx.P.A(·) to

parameterize/allocate resources to Tx so that
a) Tx.Ue ⊆ RE.
b) (Tx.Ut \ Tx.Ue) ⊆ RS.

4) Issue Tx.I(·) to interpret the configuration and output the
configuration/invocation instructions.

5) RS = RS \ Tx.Ue; RE = RE \ Tx.Ut.
6) In T, drop any transfer type that cannot obtain sufficient

resources from the reduced RE or RS.
7) If T is empty, one scenario with maximal transfers has

been generated; otherwise, repeat from step 2).

The four shaded transfers in Fig. 4 form a legal test scenario.
Although they appear to be loosely distributed in the TRG, the
test quality is high because all HW components are supposed
to concurrently behave in simulation, where the CPU is sorting
data in RAM, the DMA is transferring data from a buffer to the
UART, the Timer is counting, and the UART is working in full
duplex mode (besides all these transfers, the instruction flow is
also active. The instruction flow is not as manageable as data
flows; thus, we treat it as “noise”). Therefore, a high degree
of resource contentions will be achieved on various physical
resources such as the bus, the slave interfaces, the interrupt
mechanisms, and CPU time.

In our implementation, users can also intervene with the
test generation by specifying a bias file, which biases most
randomization operations in the test generator, including:

1) the behavior of transfer-type selection, i.e., step 2) in the
aforementioned algorithm;

2) the behavior of transfer-type parameterization, i.e.,
T.P (·);

3) other control variables called environment parameters,
which globally affect concurrent transfers (e.g., the
UART Baud rate and the data/instruction cache mode).

The bias file will also be used in the test generation with feed-
back information from postsimulation analysis. Section VII-D
provides further information.

E. Features and Limitations

As a model at high abstraction level, TRG has the following
features/limitations.

1) TRG decouples two levels of complexity for test
generation—the complexity of each transfer type and
the complexity of generating parallelism. The former is
system-specific, whereas the latter is relatively indepen-
dent from an actual SoC, which makes TRG applicable to
a wide range of designs.

2) Most effort is required in modeling each transfer type
[e.g., manually composing T.P (·)]; the task of generating
a legal scenario is left to the test generator.

3) TRG is a method that is independent from the simulation/
emulation platform. HW components are allowed to be
modeled at different abstraction levels. It is even possible
to apply TRG to generating manufacturing tests.

4) The target bugs are not the bugs inside each HW com-
ponent, but hard-to-detect bugs caused by close resource
competitions. Therefore, HW components are preferably
free of obvious internal bugs.

5) Result checking is by means of checking the contents
in memory and registers, which can be implemented as
high-level functional checkers in test benches. However, a
failed transfer gives limited indication of the physical lo-
cation of the bug. Therefore, other error-detection mech-
anisms (e.g., assertions) should also be implemented in
test benches.

Owing to TRG’s high level of abstraction, SoC designers
are allowed to plan test cases of parallelism and resource
contentions long before a system is actually integrated.
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V. TP STRUCTURE

A. Overview

We identify three roles that SW plays at system-level
verification.

1) Role 1: Some SW components, i.e., ISRs, should coop-
erate with raw HW devices to fulfill their expected func-
tionalities. This role extends a system from a collection
of raw HW to a collection of usable functionalities.

2) Role 2: Some SW components should stimulate HW to
check if HW works as expected. For example, a subrou-
tine with intensive memory access could stress memory
modules; a subroutine with intensive ALU operations
could stress the ALU in the processor itself.

3) Role 3: Some SW should manage system-level concur-
rency by efficiently scheduling HW and SW behaviors.

These roles contribute differently to system-level verifica-
tion. Role 1) is actually a part of design-under verification
(DUV), Role 2) represents some actual tests to DUV, and
Role 3) manages test cases on DUV. Role 3) serves as the
backbone of the verification SW. It enhances the test quality
by arranging parallelism on DUV and is relatively independent
from an actual SoC. We now specifically regard the SW playing
this role as the TP. TP generation should be automated, imply-
ing that TP should be regularly structured.

Our differentiation between these roles is not ad hoc. The
components of Roles 1), 2), and 3), respectively, resemble the
SW components running on a general-purpose computer, i.e.,
1) HW drivers, which fulfill HW functionalities, 2) user
processes, which carry out the user-defined tasks, and 3) op-
erating system (OS), which schedules user processes. These
two sets of components (ISR/Testcase/TP and driver/user
process/OS) have different purposes and work on different
levels. However, there are also similarities between them.

Computer users always hope that their user processes occupy
most CPU time and the OS kernel consumes just a little
fraction of CPU time as the overhead to maintain interprocess
parallelism. Similarly, from the HW-verification point of view,
TP [Role 3)] is only the control overhead to manage the user-
defined tests; the SoC processor should distribute the most
time executing the payload code—the code of Roles 1) and
2). Therefore, the structure of TP becomes extremely critical,
considering that it directly influences simulation efficiency.
Although all simulation-based verification methods suffer the
same intrinsic shortcoming—simulation consumes a lot of
time—we can alleviate the problem using an efficient TP
structure. This alleviation is orthogonal to other efforts such as
various simulation accelerating technologies. We present three
versions of TP structures based on TRG.

B. Polling-Based TP

Our first structure is the polling-based TP [7]. The test
generator identifies legal scenarios in the TRG, then it outputs
transfers’ configuration and invocation instructions in the TP.
Consecutive scenarios are separated by polling statements to
avoid resource conflicts. In simulation, these statements keep
polling until all transfers in the current scenario have finished,

Fig. 5. Pseudo code of a scenario in a polling-based TP.

Fig. 6. Scheduler and transfers.

and then, the TP can proceed to the next scenario. The
execution of the polling-based TP is shown in Fig. 7(a). Fig. 5
is a TP fragment, which submits one scenario made up of
transfers T1 and T2.

C. Event-Driven TP

The second structure is the event-driven TP also called
scheduler, in which polling statements are canceled [8]. Fig. 6
conceptually shows the relation between some transfers (shown
as the jigsaw pieces) and the scheduler. The scheduler invokes
some transfers and then exits. In turn, transfers can reactivate
the scheduler at their completion events; again, the scheduler
may submit new transfers because some resources must have
been released by the completed transfer.

In this scheme, the test generator does not predetermine the
scenarios in the TP. Instead, the generator generates a collection
of transfers, detects their resource conflicts according to the
TRG, and encodes these conflicts as submission conditions
of each transfer. The transfers’ configuration and invocation
instructions and their submission conditions are stored in an
“action table.” In the simulation, whenever a transfer is finished,
the scheduler is invoked. The scheduler will access the action
table to check (not poll) a waiting transfer’s submission condi-
tions (i.e., whether any resource-conflicting transfer is already
running) before submitting that transfer. The execution of the
TP is shown in Fig. 7(b).
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Fig. 7. Execution of TPs. In each subfigure, the first three rows represent three transfer types that can potentially run concurrently. The shading in the fourth row
indicates the degree of concurrency. (a) Polling-based TP. Scenarios are separated by polling. (b) Event-driven TP. Scheduler attempts to submit new transfers
when an old one finishes. (c) Hybrid-mode TP. Scheduler resubmits transfers in a scenario.

Compared with the polling-based program, the event-driven
TP is more advantageous because it avoids inefficient polling
statements so that the CPU could devote more time to stim-
ulating HW. Meanwhile, the degree of concurrency will be
enhanced, considering that the scheduler may submit new
transfers as soon as an old one finishes. Moreover, the event-
driven TP requires a robust interrupt mechanism. In this sense,
we shall no longer simply view TP as the management over-
head; instead, the TP directly plays a value-added part in HW
verification.

The event-driven scheme does have a shortcoming in some
cases. The simulation-time scenario is not predetermined at the
generation time so that whenever we want to repeat a failure due
to resource contentions among some specific transfers, we have
to rerun the whole simulation from the very beginning, even if
the failure occurs near the end of the simulation. The polling-
based TP does not always have such a problem [compare
Fig. 7(a) and (b)], considering that scenarios are explicitly
written in the polling-based TP—when a failure happens in a
scenario, we can comment out all the irrelevant scenarios in the
TP to directly repeat the failed scenario.

D. Hybrid TP

To overcome the above shortcoming, we mix the two
structures into a hybrid scheme. The test generator still prede-
termines scenarios, and the TP runs each scenario in an event-
driven manner. That is, whenever a transfer in one scenario
has finished, the scheduler is invoked and simply resubmits the
finished transfer. This process is repeated until a certain condi-
tion is met (e.g., each transfer in one scenario has completed at
least once). The TP execution is shown in Fig. 7(c). The polling
mechanism is reserved but only works at the end of a scenario.

Resubmitting a finished transfer is necessary because more
temporal relations among the concurrent transfers can be tra-
versed. At the logical level, temporal relations specify the order
of logical events experienced by the concurrent transfers, such
as which transfer starts first or finishes first. At the physical
level, temporal relations even have finer granularity (up to a
single clock cycle). Rare temporal relations imply high-quality
tests. For example, simultaneous bus accesses and nesting in-
terrupts are relatively rare relations; however, they are excellent
circumstances to verify whether the HW and SW can behave
correctly.
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Another advantage of the hybrid TP is that the scheduler has
less overhead than its counterpart in the event-driven scheme.
This time, the scheduler does not have to check resource
conflicts when it resubmits one transfer because the current
scenario has already been identified as conflict-free in TRG.

VI. TRG FOR COVERAGE

A. Overview

The simulation-based verification of a complex VLSI, such
as SoC, requires multiple coverage models. Each model mea-
sures the simulation effectiveness from a specific perspective.
At the system level, considering that the system’s behaviors can
be described as concurrent interactions, one coverage model
is needed to enumerate all concurrent interactions and the
temporal relations between them. However, the widely used
statement-based coverages (line, toggle, conditional and local
state machine, etc) cannot give such information.

The temporal relations open up an enormous coverage space,
requiring a mathematical model to deal with it. We choose
Petri net [11], [12] as the model because its semantics describe
concurrency which is constrained by resources.

B. TRG and Petri Net

TRG and Petri net share some similarities in describing a
system. Both formally define concurrency and conflict.

The TRG model does allow us to specify the system-level
concurrency. However, TRG lacks the capability to describe
the dynamics of the system. As a high-level test-generation
tool, TRG cannot, and does not need to, deterministically
specify temporal relations between concurrent transfers. The
rich possibilities of the temporal relations can only be realized
during simulation. For example, TRG does not (and cannot)
specify at which moment in the life of transfer T1 that another
running transfer T2 will finish. The timing that T2 finishes is
a complex function of its configuration, its submission timing,
and the contentions on resources between T1 and T2.

A scenario generated from TRG only represents a snapshot
of data flows in a system. In contrast, the execution of a Petri
net captures the temporal aspect of a system’s behavior at the
logical level; the reachability graph derived from a Petri net can
be used to describe the possible execution sequences. There-
fore, a Petri-net model is suitable for postsimulation analysis of
the temporal aspects of a system. A desirable feature of TRG is
that it can be readily converted to a Petri net. Assuming that any
transfer in TRG contributes two transitions in Petri net, which
are start and end, we can construct a Petri net from a TRG by
the following steps.

1) Converting Resources. For each resource R in TRG,
create a place PR to represent the resource.

2) Converting Transfers. For each transfer type T in TRG,
perform the following.
a) Create two transitions Tstart and Tend.
b) Create a state-place Trunning (cf. resource-place PR).
c) Create flows of weight 1 from Tstart to Trunning and

from Trunning to Tend.

3) Connecting Transfers and Resources
a) First, for each transfer-resource pair (T,R) that satis-

fies U(T,R) = s, the following are performed.
i) Add one token into PR.

ii) Create one flow of weight 1 from PR to Tstart.
iii) Create one flow of weight 1 from Tend to PR.

b) Then, for each transfer-resource pair (T,R) that satis-
fies U(T,R) = e, the following are performed.

i) If PR has no token, put one token in it.
ii) Create one flow of weight n(R) from PR to Tstart,

where n(R) is the number of tokens in PR.
iii) Create one flow of weight n(R) from Tend to PR.

Once the Petri net is generated, its reachability graph is
obtainable from a Petri-net tool. Fig. 8 shows a Petri net
constructed from the TRG of the Nios SoC.

It should be noted that both the TRG and the Petri net
converted from TRG are high level abstractions of a SoC (with
its application). Most resource contentions at the physical level
are invisible, which is simply because the physical resources
are not present in the models. Nevertheless, the Petri net can
provide useful temporal information regarding HW–HW and
HW–SW interactions at the granularity level, as discussed in
Section III-E. The Petri net could include even more temporal
information, provided that each transfer contributes more in-
ternal states and events other than simple “start,” “running,” and
“finish.”

C. Use of Petri Net

The derived Petri net can indicate the total number of (unpa-
rameterized) scenarios (see Section IV-C) because each state in
the reachability graph represents a scenario. This number con-
tributes to the total complexity of scenario-generation algorithm
in Section IV-D.

The most practical use of the Petri net is to define the
coverage space. The coverage space is based on the reachability
graph associated with the net. There are several options to
define the space:

1) All states in the graph (i.e., markings);
2) All state-state transitions in the graph;
3) All paths in the graph;
4) All cycles in the graph.

These options represent the different levels of temporal details.
In [12], a number of coverage-space definitions based on the
reachability graph are proposed. For example, the path coverage
space could be just too enormous due to the graph size and
connectivity; however, some modifications can be made, such
as limiting the length of the path.

To check the coverage, we need to collect the transfers’
start/finish event history from the simulation trace. This history
can be easily collected because each transfer has an SW flag
indicating whether it is running. The Petri net reads the event
history to replay the transition firing sequence. Its reachability
graph is traversed in this manner. The traversed states, transi-
tions, and other coverage points (cycles/paths) are counted and
compared with the coverage space size, then the percentages
are reported.
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Fig. 8. Petri net derived from the TRG of the Nios SoC. Square nodes are transitions, round nodes are places, and dots and numbers are tokens.

Fig. 9. Comparison of toggle and conditional coverages.

Besides indicating the completeness of temporal relations,
the coverage information can be further used to guide test
generation. We have implemented test generation with feedback
at state and transition level (see Section VII-D for the details).

VII. EXPERIMENTAL RESULTS

A. Statement Coverages

We have observed that reasonable statement coverages can be
achieved by TPs generated from TRG. Considering that another
SW-based test-generation methodology called SALVEM [13] is
demonstrated on the same Nios SoC, we compare the results of
the SALVEM tests with the test results of TRG. Fig. 9 shows
the comparisons of the statement (toggle and conditional)
coverages.

The TRG method has higher coverages on some components
but is lower (but comparable) on the CPU, which has 11 000
lines of code and is the most complex component in the system.
The lower coverages on CPU using the TRG method may be
attributed to the fact that we have not put too much effort
in manually creating subroutines stressing the processor itself,
which, we believe, need another level of automation beyond the
scope of this paper. We believe that the TRG method imposes
no restrictions on achieving reasonably high statement-based
coverages.

B. State Space Traversing

The statement-based coverage measures give little in-
formation regarding system-level concurrency and resource
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Fig. 10. State changes against simulation cycles.

Fig. 11. New-state emergence rate against the number of known states.

contention. Therefore, we attempt to indicate this information
using “system state space.” We define the state space as the
space made by the concatenation of the major control/status
registers in the SoC components (CPU, DMA, UART, and
Timer). The concatenation is 64-b long; thus, theoretically, the
size of the space is 264, which makes it impractical for any
tests to traverse it exhaustively. However, we can statistically
measure how fast states can change and how fast new (i.e.,
unprecedented) states will emerge. These values are useful,
considering that system states can give information regarding
concurrency. For example, from the traversed states, we can tell
if all peripherals have simultaneously requested interrupt.

We compare the capabilities to traverse the state space be-
tween two sets of TPs. One set contains TPs of scenarios of one
or two transfers, and the other set contains TPs of scenarios of a
maximum number of (i.e., three, four, or five) transfers. Fig. 10
shows the rate of state change. The high-concurrency TPs have
a state-change rate that is roughly two times the rate of the low-
concurrency TPs. A faster state-change rate implies that more
events are happening simultaneously.

However, a faster state-change rate does not necessarily
mean efficient state-space traversing. This is because states may
recur many times. We further compare how fast unprecedented
states emerge in simulation. Our experiments show that low-
concurrency TPs have traversed about 105 distinct states in
420 million SoC clocks (12 computing hours on a 3-plus-GHz
workstation). In comparison, high-concurrency TPs can tra-
verse 106 distinct states in the same simulation duration. In

Fig. 11, each data point represents one simulation of a TP.
We observe that high-concurrency TPs produce new states at
a much faster speed and that the speed is more insensitive to the
number of known states. This encouraging comparison implies
that concurrency is the key to efficiently exploring the state
space.

C. TP Efficiency

We further compare different TP structures’ performances in
terms of execution time. Regarding the execution of the TPs
as the overhead to build scenarios and the execution of other
handwritten SW components as the payload, we profile the
execution time of the three TP structures by monitoring the
program counter (PC) in the Nios CPU. The profiling requires
two tasks.

1) A monitor module is inserted in the test bench to record
the calling/interrupt/return events by comparing PC with
the addresses in the symbol table generated by the TP
compiler.

2) A postsimulation analyzer is developed to extract various
information from the record, including the average exe-
cution time of each function (with/without callings and
interrupts), interrupt distribution among functions, and
nested interrupts.

Fig. 12 shows the proportion of the TP execution time versus
the TP size in terms of transfer quantity. We can see that the
polling-based TP wastes a high percentage of the simulation
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Fig. 12. TP profiling comparison.

Fig. 13. State coverage and transition coverage with and without feedback.

time executing the polling statements but that the percentage is
independent from the number of transfers in the TPs; the event-
driven TP consumes substantially less time. However, as the
transfer number in TPs grows, there exists more resource de-
pendence between the transfers. As a result, the TP (scheduler)
has to consume more time checking submission conditions.
That explains the increasing execution time. For the hybrid-
mode TP, both event-driven and polling mechanisms are used
so that the percentage is comparable to the pure event-driven
case but is marginally higher. Once again, the percentage is still
independent from the transfer number because no submission
condition is needed. Hence, the hybrid-mode TP is the most
efficient among the three TPs when the transfer number is
large. In addition, because of its advantages for debugging, we
extensively use the hybrid-mode TP in this paper.

D. Test Generation With Feedback

We model a TRG with 12 major transfer types for the Nios
SoC. Our generator can exhaustively (but randomly) produce
139 transfer subsets to be the (unparameterized) scenarios.
This is well predicted by the reachability graph, which has
140 states, with the additional state representing the empty
scenario. The reachability graph also contains 772 transitions.

We have achieved a test generation with feedback at state and
transition levels.

A simulation-trace analyzer is developed. The analyzer is
responsible for the following tasks:

1) count states and transitions in the trace log file;
2) compare the counts with the total states and transitions in

the reachability graph;
3) identify the target (i.e., uncovered or less frequent)

states/transitions;
4) in a bias file (see Section IV-D), adjust the randomization

arguments about transfer selection and parameterization.

The state-level feedback is straightforward because a state in
the reachability graph simply represents a scenario in the TRG.
Once a target scenario is identified in the bias file, we simply
increase the selection weights of the transfer types which make
up the target scenario. Thus, the test generator will be more
likely to generate the target scenario.

The transition-level feedback requires additional considera-
tion. A transition in the reachability graph is a transfer-start Ts

or a transfer-end Te event, which separates two scenarios S1

and S2, i.e., S1
Ts→ S2 or S1

Te→ S2. Thus, the analyzer needs to
manage both the target scenario (S1 or S2) and the target event
(Ts or Te).

First, we identify the target scenario.

1) In case of S1
Ts→ S2, the target scenario is S2.

2) In case of S1
Te→ S2, the target scenario is S1.
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Once the target scenario is identified, we can apply the same
mechanism as that used for state-level feedback in order to
make it more possible for the target scenario to happen.

Second, we need to make the target event happen earlier
in the current scenario (in order to enter or leave the target
scenario, otherwise, the current scenario changes). For each
transfer type, we define one of its parameters as its life ex-
pectancy, which controls how long a transfer will be running.
For example, for a transfer-type “RAM-to-Flash DMA,” the
parameter “DMA length” is the life-expectancy parameter. The
analyzer then adjusts the randomization ranges of the life-
expectancy parameters in the bias file, where it reduces the life
expectancy of T and/or extends the life expectancy of the rest
transfers in the target scenario. Therefore, in simulation, the
target event has more chance to fire earlier in order to enter
or leave the target scenario.

Fig. 13 shows the accumulative state-coverage and
transition-coverage comparisons between two sets of
20 simulation runs, where one is with feedback and the
other is only with randomly generated scenarios (each set
needs approximately 15 computing hours on a 3-plus-GHz
1-G RAM workstation). The figure shows that with feedback,
all states and transitions are covered in the first several runs.
For the 20 runs without feedback, the state-coverage space is
traversed five times slower, and the transition coverage space
cannot be traversed in 20 runs.

It should be noted that the fast traversing on states and
transitions does not mean that the whole verification process is
complete. If more detailed temporal relations (e.g., path/cycle)
and other variations, such as transfer parameterization, are
taken into account, more scenarios are needed. The fast tra-
versing does give us a chance to focus on other coverage areas.
Similar to all feedback techniques, our feedback scheme only
targets at one type of coverage.

VIII. CONCLUDING REMARKS

TRG is a natural view of a system from the perspective
of a device-level programmer, where a system is made up of
programmer-controlled data flows, which are constrained by
programmer-controlled resources. Therefore, TRG puts itself
into a unique position between the SW and HW domains in
verifying a system.

TRG has been successfully demonstrated on the single-
processor Nios SoC. The basic idea of combining data flows
with resource contentions is generic, making it applicable to
a wide range of SoCs. In our future work, we will apply
the model to verifying more sophisticated SoCs with multiple
processors and multiple bus hierarchies. Another research area
is the coverage model of parallelism and resource contention.
Although the current Petri-net model derived from TRG can
represent a certain level of resource-constrained parallelism,
we may need to incorporate the domain knowledge about
a real-world system to capture enough information regard-
ing fine-grained resource competitions. One of the research
directions to be taken is about how much domain knowl-
edge is required to make a coverage model accurate and
scalable.
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