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PERMEABILITY HYSTERESIS IN GRAVITY COUNTERFLOW
SEGREGATION∗
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Abstract. Hysteresis effects in two-phase flow in porous media are important in applications
such as waterflooding or gas storage in sand aquifers. In this paper, we develop a numerical scheme
for such a flow where the permeability hysteresis is modeled by a family of reversible scanning
curves enclosed by irreversible imbibition and drainage permeability curves. The scheme is based
on associated local Riemann solutions and can be viewed as a modification of the classical Godunov
method. The Riemann solutions necessary for the scheme are presented, as well as the criteria that
guarantee the well-posedness of the Riemann problem with respect to perturbations of left and right
states. The numerical and analytical results show strong influence of the permeability hysteresis on
the flow. In addition, the numerical scheme accurately reproduces the available experimental data
once hysteresis is taken into account in the model.
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1. Introduction. Capillary hysteresis strongly affects two-phase flow in porous
media during sequential increase and decrease of wetting phase saturation (i.e., during
the so-called imbibition and drainage, respectively) [6, 8]. The alternation of imbibi-
tion and drainage occurs in several oil recovery processes. It occurs in waterflooding
with displacement direction change due to redistribution of injection and production
rates in a system of wells, WAG (water-alternate-gas) injection of sequences of water
and gas slugs, and sequential injection and production in the same well [4]. Annual
injection and production of natural gas in aquifers or in depleted petroleum reservoirs
for storage purposes also result in significant hysteretic phenomena. A similar flow
regime change phenomenon, from imbibition to drainage and vice versa, occurs in sec-
ondary migration of hydrocarbons during the formation of petroleum accumulations
[1], in irrigation, and in soil contamination by gasoline.

Capillary hysteresis at a macroscopic scale is caused by several pore scale phe-
nomena. The contact angle on menisci between wetting and nonwetting phases suffers
hysteresis during flow changes in a single pore. Creation of new interfacial surfaces
resulting in energy losses occurs during imbibition; on the contrary, energy is released
during drainage due to oil droplet joining. All these phenomena result in different
scenarios of porous space filling by wetting and nonwetting phases.
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Models for multiphase flow in porous media are based on conservation of mass
and Darcy’s law. The associated equations contain quantities describing the rock and
fluid properties, in particular relative phase permeabilities. The latter describe the
capability of each phase to flow in the porous medium [2, 9]. Relative permeability
of the nonwetting phase exhibits hysteresis or memory effects [10], i.e., according to
the saturation tendency, the relative permeability is different [18].

The model for hysteretic relative permeability of the nonwetting phase [2, 12]
follows experimental observations of drainage, imbibition, and scanning behavior of
relative permeability [6, 7, 8, 13, 19]. Changes in the direction of the flow in drainage
and imbibition are irreversible [6, 18]; flow in the region between drainage and im-
bibition curves is in general almost reversible [8, 19, 17]; however, we will make the
approximation that it is exactly reversible [6, 13].

Observations and explanations of permeability hysteresis in laboratory experi-
ments for horizontal one-dimensional flow were presented in several works [17, 6, 8].
However, mathematical understanding is insufficient, hindering the inclusion of hys-
teresis in numerical simulation of reservoir flow. Formulae for drainage, imbibition,
and scanning relative permeabilities curves were developed in [2, 12], among others.
In [15], only the imbibition and drainage curves were considered. A model that we will
call the scanning hysteresis model (SHM) for the history dependence of the relative
permeabilities was presented in [10] and in [18].

In the current work, we concentrate on hysteretic gravity segregation. This phe-
nomenon occurs after waterflooding or after gas injection in thick oil formations. It
also occurs in in-situ gas storage in thick formations between injection and production
cycles. Estimation of the gravity separation time is necessary for planning of tertiary
recovery from reformed formations.

Our goal is to develop a numerical tool for the gravitational counterflow segrega-
tion problem with a hysteretic relative permeability. Because Riemann solutions with
hysteresis in the relative permeability are not unique, we introduce criteria to obtain
well-posedness with respect to left and right states. In the large scale approximation
formulation, we do not include the capillarity pressure and its hysteresis [4].

The paper is organized as follows: In section 2, we present the model for two-phase
gravity counterflow segregation. In addition, we extend the SHM for the nonwetting
relative permeability [18] to include gravity. This model associates a hysteretic pa-
rameter π in order to “remember” the value of the saturation at the last time when
the saturation tendency was reversed. In the equations used to model the segrega-
tion, the capillary forces and its hysteresis affect both the transport part and the
diffusive part. We concentrate on the hysteresis in relative permeability. In section
3, the Riemann solutions for the hysteretic conservation law are discussed. Criteria
to select a unique well-posed solution are developed. In section 4, we propose a cor-
rected Godunov scheme that updates both the saturation and the hysteretic states.
This scheme conserves mass locally. Finally, in section 5, we show that the numerical
solution of the Riemann problem converges to the exact solution. Comparisons of the
numerical solution (with and without hysteresis) with laboratory data are presented.
They show that hysteresis must be taken into account to obtain correct predictions
of segregation. Additionally, it is demonstrated that the proposed numerical method
captures adequately the experimental profiles, and the main hysteresis effects can be
modeled through the relative permeability curves.

2. The two-phase model for gravity counterflow segregation. We con-
sider a sand-packed vertical tube with a given initial saturation profile of two incom-
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pressible immiscible fluids. Redistribution of the fluids with different densities occurs
due to gravitational forces. The total flow along the tube is zero as the tube is closed
at the top and bottom. Neglecting diffusive terms due to capillarity relative to gravi-
tational forces, the two-phase flow model equation expressing mass conservation and
Darcy’s law in dimensionless variables (z, t), {0 ≤ z ≤ 1, t ≥ 0} is [4]

∂ts + ∂zF (s, π) = 0,(2.1)

where the flow function F (s, π) is

F (s, π) :=
krwkro

kro + (μo/μw)krw
.(2.2)

We use the indices w and o to refer to the wetting and nonwetting phases, respectively.
The quantities krw (kro) and μw (μo) are the relative permeability and the viscosity
of the wetting phase w (nonwetting o), respectively. In the absence of hysteresis, krw
(kro) are functions of the effective wetting phase saturation s defined as

s :=
sw − swi

sro − swi
,(2.3)

where swi is the irreducible wetting saturation and sro is the residual nonwetting
saturation.

2.1. The SHM: Mathematical description. To model the hysteresis phe-
nomenon observed experimentally in the relative permeabilities [6], we extend the
SHM presented in [10, 18] to include gravity. For simplicity, the nonwetting phase
exhibits hysteresis, while the wetting phase does not. In order to describe the be-
havior due to hysteresis, a parameter π is introduced. Concretely, we generalize the
permeability functions presented in [18] and use the following special permeability
functions of the effective saturation s [3].

The wetting relative permeability is defined as (Figure 2.1(a))

krw(s) := γsβ , β > 1,(2.4)

where γ is a parameter to adjust the curve (2.4) to the relative permeability curve
obtained experimentally, so that krw(1) = γ, as the nonwetting permeability is nor-
malized as 1 for s = 0.

The nonwetting drainage and imbibition relative permeabilities functions (ex-
pressed by kdro and kiro) are defined as (Figure 2.1(a)) [3]

kdro(s) = (1 − s)η for 0 ≤ s ≤ 1 and when
∂s

∂t
< 0,

kiro(s) = (1 − s)θ for 0 ≤ s ≤ 1 and when
∂s

∂t
> 0,

(2.5)

where 1 < θ < η. In this paper, we use β = 2, η = 3, and θ = 2; therefore kdro ≤ kiro.
The scanning region corresponds to the region between the nonwetting drain-

age and imbibition relative permeabilities curves. In such a region the nonwetting
permeability kro is chosen as

kro(s, π) :=
(1 − π)ξ

(1 − απ)ζ
(1 − αs)ζ ,(2.6)
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Fig. 2.1. (a) Nonwetting imbibition and drainage permeabilities functions, and wetting perme-
ability, and (b) scanning curves (as a function of the saturation of the wetting phase sw and the
hysteresis parameter π); inspired by Braun and Holland [6].

where the parameter π (0 ≤ π ≤ 1) discriminates each scanning curve. We use ξ = 2
and ζ = 1; therefore, kro defined above is linear in s for each fixed π; see Figure 2.1(b).
Notice that the dashed lines meet at the point (1/α, 0), where α is another parameter
used to adjust the slopes of the scanning curves to the experimental ones. We use
α = 0.5. In the SHM, the scanning curve associated to π is defined in the saturation
range si(π) < s < sd(π). The functions si(π) and sd(π) are defined implicitly by

kdro(s
d(π)) = kro(s

d(π), π) and kiro(s
i(π)) = kro(s

i(π), π).(2.7)

On the drainage and imbibition permeability curves, expressions for the param-
eter π as a function of the saturation s, and vice versa, can be obtained. Thus we
define from (2.7) the functions πd(s) and πi(s). Plots of these functions are shown in
Figure 2.2(a).

The flux (2.2) depends on the history (expressed by the parameter π) and the
type of the flow (expressed through the sign of ∂ts). Using the relative permeabilities
kro in (2.6) and (2.5), and using krw in (2.4), the flux function (2.2) takes the form

F (s, π) in the scanning region, where ∂tπ = 0,(2.8)

F d(s) := F (s, πd(s)) on the drainage curve, where ∂ts < 0,(2.9)

F i(s) := F (s, πi(s)) on the imbibition curve, where ∂ts > 0.(2.10)

The fluxes F (s, π), F d(s), and F i(s) (given by (2.2), (2.9), and (2.10), respectively)
are shown in Figure 2.2(b). Notice that the drainage and imbibition curves F d(s)
and F i(s) bound the admissible scanning region Ω on the plane (s, F ), defined as
Ω = {(s, F ) ∈ �2 : F d(s) ≤ F ≤ F i(s)}. We define the drainage and imbibition
curves as dr := {(s, F ) ∈ �2 : F = F d(s)} and im := {(s, F ) ∈ �2 : F = F i(s)},
respectively. The permeability functions (2.4) and (2.5) lead to the following necessary
properties of the fractional flow function in the scanning, drainage, and imbibition
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Fig. 2.2. (a) State space. (b) Fractional flow curves (imbibition, drainage, and scanning).

flows in the SHM:

F d(0) = 0, F d(1) = 0, F i(0) = 0, F i(1) = 0,(2.11)

∂sF
d(s) ≤ ∂sF (s, πd(s)), ∂sF

i(s) ≤ ∂sF (s, πi(s));(2.12)

of course other permeability functions satisfying (2.11) and (2.12) can be chosen.
These properties ensure that the intersection of the scanning curves with the drainage
(or imbibition) curve varies smoothly with π. In addition, as we will see in the next
section, property (2.12) guarantees the existence of solution at the intersections of the
scanning with the drainage and imbibition curves.

3. The Riemann problem. For imbibition and drainage flows the pair (s, π)
lies on the imbibition and drainage curves; therefore the value of π is given by π =
πi(s) and π = πd(s). In these cases, scalar conservation laws are satisfied:

∂ts + ∂zF
j(s) = 0, j := i, d.(3.1)

For scanning flow the conservation law (3.1) is extended to include the independent
variable π. Hence the conservation law becomes

∂ts + ∂zF (s, π) = 0,(3.2)

∂tπ = 0,(3.3)

and can be written in quasi-linear form ∂tu + As∂zu = 0 with Jacobian

As =

[
∂sF (s, π) ∂πF (s, π)

0 0

]
and u := [s, π]T .

For scanning flow, the eigenvalues of As (or characteristics speeds) are zero and
∂sF (s, π), with corresponding eigenvectors [∂πF (s, π), −∂sF (s, π)]T and [1, 0]T .
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Fig. 3.1. Flow direction in drainage and imbibition curves. dr: drainage, im: imbibition; sU :
saturation associated to the state U =

(
sU , F i(sU )

)
.

3.1. Wave families. For each flow we describe the solution of the Riemann
problem:

(s, π)|t=0 =

{
(sL, πL) for z < zo,
(sR, πR) for z > zo.

(3.4)

Hereafter, we will use the following notation. A state L is defined as L := (s, F ) ∈ Ω,
where sL and FL are the saturation and the flux associated to the state L. Addi-
tionally, πL is the associated parameter π to the state L. In the scanning region,
FL = F (sL, πL), and on the curve dr (im) FL = F d(sL) (FL = F i(sL)).

3.1.1. Imbibition or drainage flow. Since in imbibition (drainage) flow the
saturation increases (decreases) in time, i.e., ∂ts > 0 (∂ts < 0), a rarefaction wave is
characterized by a continuous and monotonically increasing speed λ = ∂sF

j(s) from
sL to sR. Additionally, a shock wave with speed σ satisfies the Rankine–Hugoniot
(RH) condition:

σ =
F j(sR) − F j(sL)

sR − sL
, j = i, d;(3.5)

furthermore, the shock is required to satisfy the Oleinik entropy condition for scalar
equations. Therefore, admissible sequences of shock and rarefaction waves can be con-
structed graphically using the concave and convex hull of the fractional flow curves,
following [16]. We still have to impose the imbibition and drainage flow orienta-
tion. Let sU be the saturation that maximizes F i(s) (U := {(sU , F i(sU ) : FU =
max(F i(s)) for 0 ≤ s ≤ 1}). To select the imbibition (drainage) flow orientation the
conditions sU ≤ sL ≤ sR or sR ≤ sL ≤ sU (sU ≤ sR ≤ sL or sL ≤ sR ≤ sU )
must hold. For instance, a shock satisfying these conditions is shown in Figure 3.1(a),
and we see that ∂ts > 0 in Figure 3.1(b). For other cases, such as sU ≤ sR ≤ sL,
sL ≤ sR ≤ sU (sU ≤ sL ≤ sR, sR ≤ sL ≤ sU for drainage), sL ≤ sU ≤ sR, and
sR ≤ sU ≤ sL, the Riemann solution must contain scanning waves; otherwise ∂ts
would be negative and therefore the solution could not be on the imbibition curve.
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3.1.2. Scanning flow. The RH condition is

F (sR, πR) − F (sL, πL) = σ(sR − sL),(3.6)

0 − 0 = σ(πR − πL).(3.7)

Equations (3.6) and (3.7) are satisfied by two kinds of discontinuities; see Figure 3.2.
The first one is a shock with speed σ:

F (sR, π) − F (sL, π) = σ (sR − sL) ,(3.8)

where π is constant, i.e., π = πL = πR. This corresponds to the Riemann solution
of the single scalar conservation law (3.2) (see Figure 3.2). The second kind of dis-
continuities satisfying the RH condition (3.6)–(3.7) are stationary discontinuities with
speed σ = 0 and constant fractional flow function; generically they satisfy πR �= πL

and sL �= sR.
Summarizing, the scanning curve and the horizontal line through state L divide

the scanning region in R-regions where the solution consists of a combination of a
stationary wave and scanning waves that are either rarefaction or shocks. Some simple
cases are presented in Figure 3.2. A more complex Riemann solution exists when
scanning curves have a maximum in Ω and there is no interaction with the imbibition
and drainage curves. This RP presents multiplicity of solutions; therefore, we have to
make choices to have appropriate solutions. To classify the chosen Riemann solutions,
we analyze the abcd region in Figure 3.2. This region is sketched in Figures 3.3(a) and
(b). The curve QdQi is the set of states Q = (s, F (s, π)) in Ω where the saturation s
maximizes F (s, π) for each π (see Figure 3.2).

In Figures 3.3(a) and (b), we show the regions and their associated Riemann
solutions for left states L1 and L2 lying on opposite sides of the curve QdQi. A
summary of the solutions is given in Table 3.1; the waves are ordered from lower to
higher speeds. For example, the solution L1I1R1 consists of a stationary shock L1I1
connecting states L1 and I1 (denoted by L1

st−→ I1), and a positive speed shock I1R1

connecting states I1 and R1 (denoted by I1
sh+−−→ R1).

3.1.3. Intermediate flow. Denoting by I the intersection state between the πL-
scanning and the drainage (imbibition) curves, the solution between a scanning state
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Fig. 3.3. Regions in the scanning region abcd of Figure 3.2.

Table 3.1

Riemann solutions for a region where the scanning curves have a maximum in Ω where waves
are ordered from negative to positive. Negative speed rarefaction: ra−, negative speed shock: sh−,
stationary shock: st, positive speed rarefaction: ra+, and positive speed shock: sh+.

Riemann solutions for L1, Figure 3.3(a)
waves

L1
st−→ I1

sh+−−−→ R1

L1
sh−−−−→ I2

st−→ R2

L1
sh−−−−→ I2

st−→ Q1
ra+−−−→ R3

L1
st−→ I1

ra+−−−→ R4

Riemann solutions for L2, Figure 3.3(b)
waves

L2
sh−−−−→ I3

st−→ R5

L2
ra−−−−→ Q2

st−→ R6

L2
ra−−−−→ Q2

st−→ I4
sh+−−−→ R7

L2
ra−−−−→ Q2

st−→ I4
ra+−−−→ R8

L2
sh−−−−→ I3

st−→ Q3
ra+−−−→ R9

L and a drainage (imbibition) state R is constructed using a concave (convex) hull
curve on the effective flux function LIR (see Figure 3.4). Therefore, the interaction
of the two waves LI and IR yields a shock LR with speed

σ =
F d(sR) − F (sL, πL)

sR − sL
,(3.9)

since the shock IR has a smaller speed than the rarefaction LI, i.e., (F d(sR) −
F d(sd(πL)))/(sR − sd(πL)) ≤ ∂sF (sd(πL), πL), and at I the drainage and scanning
curves satisfy inequalities (2.12).

3.2. Riemann solutions. The construction of the Riemann solutions is simpli-
fied by describing state space in terms of (s, F ) instead of (s, π). We subdivide Ω into
four subregions (L-regions) defined as follows (see Figure 3.5):

A = {(s, F ) ∈ Ω : sQd
≤ s ≤ 1 and F ≤ F (s, πQd

)},
B = {(s, F ) ∈ Ω : sM ≤ s ≤ sP and F (s, πQd

) ≤ F ≤ F d(sM )},
C = {(s, F ) ∈ Ω : 0 ≤ s ≤ 1 and F d(sM ) ≤ F},
D = {(s, F ) ∈ Ω : 0 ≤ s ≤ sM and F ≤ F d(sM )},
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where the imbibition state P is defined as the intersection point of the imbibition
curve with the scanning curve through the states Qd, while M is the state where sM
maximizes F d(sM ). Next we construct the solutions for L in each of the L-regions.

Case A: L1 = (sL, F (sL, πL)) ∈ A. In this case, there are the following six
R-regions (see Figure 3.6(a)):

�I
A = {(s, F ) ∈ Ω : sE ≤ s and F ≤ F (s, πL)},

�II
A = {(s, F ) ∈ region enclosed by EKV Qd},

�III
A = {(s, F ) ∈ region enclosed by QdV GT},

�IV
A = {(s, F ) ∈ Ω : sM ≤ s ≤ sG and F (s, πT ) ≤ F ≤ F (s, πM )},
�V

A = {(s, F ) ∈ Ω : sH ≤ s ≤ sN and F (s, πM ) ≤ F and F d(sM ) ≤ F},
�V I

A = {(s, F ) ∈ Ω : s ≤ sM and F ≤ F d(sM )},
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Fig. 3.6. Figure (a) (Case A): R-regions for L1 in L-region A. Figure (b) (Case A): solutions
for L1 in L-region A and R in R-regions: R1 ∈ �I

A, R2 ∈ �II
A , R3 ∈ �III

A , R4 ∈ �IV
A , R5 ∈ �V

A ,

and R6 ∈ �V I
A .

where the states E and K are the intersection of drainage and imbibition curves with
the scanning curve through L1. We define the state V ∈ im and the curve QdV
by QdV := {W = (sW , FW ) ∈ Ω : (sW , FW ) = (sI + 2(sQ − sI), FI) ∀I ∈ dr}.
States N and H are the intersections of the imbibition curve with the scanning and
the horizontal line through M , respectively. We define the drainage state T through
∂sF

d(sT ) = (F d(sT ) − FL)/(sT − sL), and the state G as the intersection of the
imbibition curve with the scanning curve though T . Notice that T and G depend on
L1. Assuming that ∂ssF (s, π) < 0, the Riemann solution associated to each R-region
as shown in Figure 3.6(a) is presented in Figure 3.6(b) and described below:

A.1. For R1 ∈ �I
A, the solution is L1

sh−−−→ I1
st−→ R1.

A.2. For R2 ∈ �II
A , the solution is L1

sh−−−→ I2
st−→ R2.

A.3. For R3 ∈ �III
A , the solution is L1

sh−−−→ I3
sh+−−→ R3, where state I3 is de-

termined by the intersection of the drainage curve with the scanning curve
through R3.

A.4. For R4 ∈ �IV
A , the solution is L1

sh−−−→ T
ra−−−→ I4

sh+−−→ R4, where I4 is
determined by the intersection of the drainage curve with the scanning curve
through R4.

A.5. For R5 ∈ �V
A , the solution is L1

sh−−−→ T
ra−−−→ M

st−→ I5
sh+−−→ R5, where state

I5 is the intersection of the horizontal line through M and the scanning curve
through R5.

A.6. For R6 ∈ �V I
A , the solution is L1

sh−−−→ T
ra−−−→ M

st−→ I5
ra+−−→ R6. When I5 is

on the imbibition curve, the solution will be shown in Case C, Figure 3.9(a)
Case B: L2 = (sL, F (sL, πL)) ∈ B. The R-regions are shown in Figure 3.7(a).

The Riemann solutions for the R-regions �V
B , �V I

B , and �V II
B are analogous to those

of solutions for the R-regions �IV
A , �V

A , and �V I
A , respectively. The solutions for

R-regions �I
B , �II

B , �III
B , and �IV

B are shown in Figure 3.7(b) and described below:

B.1. For R1 ∈ �I
B , the solution is L2

sh−−−→ I1
st−→ R1.

B.2. For R2 ∈ �II
B , the solutions is L2

sh−−−→ I2
st−→ Q

ra+−−→ R2.
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Fig. 3.8. Figure (a) (Case C): R-regions for L3 in L-region C. Figure (b) (Case C): solutions
for L3 in L-region C and R in R-regions: R1 ∈ �I

C , R2 ∈ �II
C , and R3 ∈ �III

C .

B.3. For R3 ∈ �III
B , the solution is L2

sh−−−→ I3
st−→ R3.

B.4. For R4 ∈ �IV
B , the solution is L2

sh−−−→ I4
sh+−−→ R4.

Case C: L3 = (sL, F (sL, πL)) ∈ C. The R-regions are shown in Figure 3.8(a).
The Riemann solution belongs to one of the following cases:

C.1. For R1 ∈ �I
C (Figure 3.8(b)), the solution is L3

sh−−−→ I1
st−→ R1.

C.2. For R2 ∈ �II
C , the solution is analogous to that of Case B (subcase B.2).

In the solution shown, I2 cannot be connected to R2 only by a stationary
shock because the stationary shock intersects the scanning curve with πR.

Therefore, the solution is L3
sh−−−→ I2

st−→ Q
ra+−−→ R2.

C.3. For R3 ∈ �III
C , the solution is L3

sh−−−→ I3
ra+−−→ R3.
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Fig. 3.9. Figure (a) (Case C): solutions for L3 ∈ C and R in R-regions: R5 ∈ �V
C and

R6 ∈ �V I
C . Figure (b) (Case D): R-regions for L4 ∈ D.

C.4. For R4 ∈ �IV
C (Figure 3.9(a)), the solution is L3

st−→ I5
sh+−−→ R4.

C.4. For R5 ∈ �V
C , the solution is L3

st−→ I5
ra+−−→ R5.

C.5. For R6 ∈ �V I
C , L3 cannot be connected to the scanning curve through R6

only by a stationary shock, because the latter intersects the imbibition curve

(state E). For L3 and R6 the solution is L3
st−→ E

ra+−−→ I6
ra+−−→ R6.

Case D: L4 = (sL, F (sL, πL)) ∈ D. The R-regions are shown in Figure 3.9(b).
The Riemann solutions belong to one of the following cases:

D.1. For R1 ∈ �I
D (Figure 3.10(a)), the solution is L4

st−→ K
sh−−−→ I2

st−→ R1.

D.2. For R2 ∈ �II
D , the solution is L4

st−→ K
sh−−−→ I1

st−→ Q
ra−→ R2.

D.3. For R3 ∈ �III
D , the solution is L4

st−→ K
sh+−−→ I3

ra+−−→ R3. Notice that
segment KI3 is tangent to the dr curve at I3 to the scanning curve through
R3.

D.4. For R4 ∈ �IV
D , the solution is L4

st−→ K
sh+−−→ I4

sh+−−→ R4.

D.5. For R5 ∈ �IV
D (Figure 3.10(b)), the solution is L4

st−→ K
sh+−−→ I5

sh+−−→ R5.

D.6. For R6 ∈ �V I
D , the solution is L4

st−→ I6
sh+−−→ R6.

D.7. For R7 ∈ �V II
D , the solution is L4

st−→ I7
ra+−−→ R7. If the stationary shock

intersects the im curve, the solution is analogous to that of Case C (subcase
C.5).

3.3. Uniqueness criteria. Without appropriate restrictions for given L and R
states, the Riemann problem might have multiple solutions. We are interested in solu-
tions satisfying (1) the Oleinik condition in Ω and (2) the orientation of the drainage
and imbibition curves. However, these conditions are insufficient to guarantee unique-
ness of solution. A solution can be obtained if we further require that (3) the solution
must be Lloc

1 continuous with respect to changes in L and R. A Riemann solution
is well posed if it satisfies conditions (1), (2), and (3) mentioned above. The choices
presented in section 3.2 give rise to well-posed global solutions; however, some of them
are not evident; so we discuss these cases here.
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Fig. 3.11. Figure (a) (Case A): R6 ∈ �V I
A . Figure (b) (Case B): L1

2 ∈ B and R1 ∈ �I
B.

Case A: L1 ∈ A and R6 ∈ �V I
A . As mentioned in section 3.2, the solution for

this case is represented by the segment L1TMI5R6 as shown in Figure 3.6(b). We
show that other tentative solutions are impossible. In Figure 3.11(a) we analyze the
connection between states M and R6. Consider the curve MT2R6: the rarefaction
MT2 and shock T2R6. This solution is inadmissible because the rarefaction MT2

violates the physical orientation of the drainage curve. Another tentative solution such
as MEKR6 is also inadmissible because the interaction of the waves EK and KR6

yields the shock ER6, which violates the scanning region RH condition (3.6), (3.7).
Therefore, between states M and R6, the sequence LTMIR6 is the only admissible
solution that we were able to find.

Case B: L1
2 ∈ B and R1 ∈ �I

B (see Figure 3.7(b)). We choose the Riemann solu-
tion L1

2I1R1. We can also consider L1
2I3R1 as another solution (see Figure 3.11(b)).



HYSTERESIS IN COUNTERFLOW SEGREGATION 1525

0.15 0.4 0.6

0.065

0.09

0.12
L

3
 

R
6
 

I

I
5

I
6

E
F

s
0.25 0.35 0.45

0.075

0.087

0.1

R
5

I

K

I
5

L
4

s

F

(a) (b)

Fig. 3.12. Figure (a) (Case C): L3 ∈ C and R6 ∈ �V I
C . Figure (b) (Case D): L4 ∈ D and

R5 ∈ �V
D.

In principle L1
2I1R1 and L1

2I3R1 seem possible. However, only the solution L1
2I1R1

depends continuously on changes of the left and right states. To analyze these solu-
tions we change the state L1

2. In this case the solution L1
2I3R1 generates a sequence

of solutions

L1
2I3R1 → L2

2I3R1 → L3
2I3R1,(3.10)

which converges to the wrong solution L3
2I3R1. Notice that when L1

2 = L3
2 the correct

solution is a shock L3
2R1. Additionally, the solution L1

2I1R1 generates a sequence of
solutions

L1
2I1R1 → L2

2I2R1 → L3
2R1(3.11)

converging to the correct solution L3
2R1 without producing Lloc

1 discontinuities in
the Riemann solution. Therefore, solutions other than L1

2I1R1 do not ensure the
continuity of the solution when the states L and R are perturbed.

Case C: L3 ∈ C and R6 ∈ �V I
C . In this case the orientation of the drainage

and imbibition curves ensures the uniqueness and Lloc
1 continuity of the Riemann

solution. For example, in Figure 3.12(a), the solution for left and right states L3 and
R6 is L3EIR6; notice that another tentative solution such as L3I5I6R6 is inadmissible
because the rarefaction I5I6 violates the drainage curve orientation.

Case D: L4 ∈ D and R5 ∈ �V
D. From Figure 3.12(b), the solution chosen is

L4KI5R5. A tentative solution such as L4IR5 is not possible because its yields a
shock L4R5 which violates the scanning region Oleinik condition.

4. The corrected Godunov method. We discretize the z-t plane by choosing
a mesh width h := Δz = 1/Nz and a time step k = Δt, and we define the discrete
grid points (zj , tn) by

zj = jh + h/2, zj±1/2 = zj ± h/2, j = 0, 1, 2, . . . , Nz − 1,(4.1)

tn = nk, n = 0, 1, 2, . . . .(4.2)
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Fig. 4.1. Numerical fluxes using local Riemann solution.

Each time step of the numerical method consists of two stages. In the first stage
(predictor) equations (3.1) and (3.2) are solved numerically by the Godunov method
[11]. The second stage (corrector) is the correction of the parameter π, which is
necessary when the predicted state lies outside the admissible region Ω. In such a
case, the corrected state is obtained from the predicted state by a projection (with
fixed s) on ∂Ω of the predictor state. The saturation is maintained constant in order
to preserve conservation of mass, which is guaranteed in the prediction step because
it uses Godunov method.

Predictor. Denoting the cell state at (zj , tn) by (snj , π
n
j ), we then have that the

conservative Godunov method on a cell [zj−1/2, zj+1/2] × [tn, tn+1] for the saturation
value is expressed as

sn+1
j = snj − k

h
[F#((snj , π

n
j ), (snj+1, π

n
j+1)) − F#((snj−1, π

n
j−1), (s

n
j , π

n
j ))],(4.3)

where F#((snj , π
n
j ), (snj+1, π

n
j+1)) and F#((snj−1, π

n
j−1), (s

n
j , π

n
j )) are the numerical flux-

es at the right and left boundaries of the cell [zj−1/2, zj+1/2]× [tn, tn+1], respectively.
We impose zero numerical flux boundary conditions at z = 0 and z = 1; see Figure 4.1.

Notice that the left and right numerical fluxes of each cell are constant along the
left and right boundaries, respectively. This is so because these boundaries coincide
with zero speed characteristics at zj−1/2 and zj+1/2, respectively. Consequently, for
each pair of states (s, π), the numerical fluxes can be determined directly from the
Riemann solution presented in section 3.2.

For example, consider the left state L = (sL, FL) and right state R = (sR, FR)
at time tn (see Figure 4.1), with the Riemann solution represented in Figure 5.1(b).
Then the numerical flux F#((snL, π

n
L), (snR, π

n
R)) is exactly the flux F d

M specified by the
state M or I; notice that either choice produces the same numerical flux as shown in
Figure 5.1(b). As another example, consider the left state L and right state R, and
suppose that the Riemann solution consists of a positive speed shock represented in
Figure 3.10(b) by L4KI5R5. Consequently, the numerical flux F#((snL, π

n
L), (snR, π

n
R))

is F (sL, πL) at state L4. In this way, the numerical flux for each pair of left and right
states is chosen by using the solutions presented in section 3.2.

Corrector. Once (4.3) for the saturation is satisfied, we update πn
j . We de-
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fine the external imbibition and drainage regions as Ωi := {(s, F ) ∈ �2 : 0 ≤ s ≤
1 and F i(s) ≤ F} and Ωd := {(s, F ) ∈ �2 : 0 ≤ s ≤ 1 and F ≤ F d(s)}, respectively.
To obtain πn+1

j , we choose πn+1
j = πn

j if (sn+1
j , πn

j ) lies in the scanning region Ω, and

πn+1
j = πi(sn+1

j ) or πn+1
j = πd(sn+1

j ) if (sn+1
j , F (sn+1

j , πn
j )) lies on the external imbi-

bition or drainage region, respectively. This strategy for updating π was proposed in
[18] and guarantees mass conservation of each phase. For the computational results
presented in section 5, we adopt the global CFL condition as | khvmax| ≤ 1, where

vmax = max
(
max(s,π)∈Ω | ∂sF (s, π) |,max(s,F )∈j | ∂sF

j(s) |
)
, j = i, d.(4.4)

We note, however, that a sharper time-dependent CFL condition can be derived as
the maximum velocity of all local Riemann solutions in each time step.

5. Computational results.

Example 1: Comparison between the numerical and the analytical so-
lutions. The aim of this comparison is to demonstrate that the numerical method
can capture accurately all the features of the analytical solution. We consider the
numerical and analytical dimensionless solutions associated to the Riemann prob-
lem with initial discontinuity at z = 0.50 separating states (sl, πl) = (0.7, 0.8) and
(sr, πr) = (0.3, 0.4). Both states lie inside the scanning region. The following param-
eters were used in the simulations μw = 1 cp, μo = 0.9 cp, and for this case the global
CFL condition is 0.3849. The dimensionless simulated time was t = 2.4 103. The ana-
lytical solution (represented in Figure 5.1(b)) is shown as a solid line in Figure 5.1(a),
and the numerical solution obtained with the proposed scheme using Nz = 100 as a
dashed line in the same figure.

The numerical and analytical profiles at dimensionless time are presented in Fig-
ure 5.1. The saturation profile consists from left to right of a scanning to drainage
shock wave LT , followed by a rarefaction wave TM , a stationary wave MI, and a
rarefaction wave IR. The small discrepancy around the shock LT in Figure 5.1(a) is
due to the correction scheme for π. However, the discrepancy potentially occurs at
only one mesh point.
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Fig. 5.1. Comparison between the analytical and the numerical method. Dashed line corre-
sponds to the numerical solution, and solid corresponds to analytical solution.
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Fig. 5.2. The solid curve corresponds to the analytical solution, the dashed curve to the corrected
Godunov method with Nz = 50, and the dotted curve to the corrected Lax–Friedrichs scheme with
Nz = 4000. (a) Saturation values and (b) π values.

Example 2: Comparison between corrected Godunov and corrected
Lax–Friedrichs schemes. We consider the Riemann problem with initial disconti-
nuity at z = 0.50 separating states (sl, πl) = (0.57, 0.69) and (sr, πr) = (0.57, 0.71).
Figure 5.2(a) and (b) show a comparison among the proposed corrected Godunov
scheme with Nz = 40, the corrected Lax–Friedrichs with Nz = 4000, and the an-
alytical solution. The global CFL restriction is followed. To obtain an accurate
approximation for the analytical solution, the corrected Godunov scheme requires a
mesh size Nz = 40, while the corrected Lax–Friedrichs requires Nz = 4000. Hence,
to satisfy the global CFL condition (4.4), the corrected Godunov scheme requires
substantially fewer time steps than the corrected Lax–Friedrichs, so that the sim-
ulation using the Godunov scheme takes 500 times less CPU time than using the
Lax–Friedrichs scheme.

The classical Godunov and Lax–Friedrichs schemes do not work without the cor-
rector step. We note also that the design of numerical schemes for the problems
considered here is not trivial. Because of hysteresis, there are stationary waves, the
orientation of the curves (imbibition and drainage) has to be taken into account, and
the restriction on the admissibility scanning region Ω must be followed.

Example 3: Comparison between solutions with and without hystere-
sis. The strong influence of the hysteresis effect in the saturation profiles can be
seen by comparing the profiles obtained numerically with and without hysteretic rel-
ative permeabilities. We choose the drainage curve opposite the imbibition curve as
the nonhysteretic relative permeability curve since the corresponding nonhysteretic
solution agrees most with the hysteretic solution.

We introduce in the simulation the top and bottom boundaries of the tube. We
perform the simulation with Nz = 50, μw = 1 cp, and μo = 0.9 cp. The density of
the wetting phase is ρw = 1 g/cm3 and the density of the nonwetting phase is taken
as ρo = 0.844 g/cm3. We consider the porous media having a permeability of 11.84
Darcys and porosity of 0.389. The tube length is 86 cm. Additionally, sL = 0.9 and
sR = 0.1.
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Fig. 5.3. Profile s(z) at several times: (a) hysteretic solution, (b) nonhysteretic solution.
Saturations are represented as a solid curve at 5.87 h, as a dashed curve at 14.59 h, and as a dotted
curve at 19.38 h. Compare with Figure 5.4.
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Fig. 5.4. Solutions in (s, F ) space (a) with hysteresis, (b) without hysteresis at imbibition and
drainage curves.

The hysteretic and nonhysteretic simulation results differ significantly; see Fig-
ure 5.3. Observing Figure 5.3(a), three sections are clearly identified. We can see that
in the top zone (around z = 0), wetting phase saturation decreases with time, i.e., a
drainage process. At the bottom zone (around z = 1), the saturation increases with
time, i.e., an imbibition process. The most relevant discrepancy between hysteretic
and nonhysteretic solutions occurs at the middle zone (z ∈ [0.3, 0.7]), where both
drainage and imbibition take place. In this zone the hysteretic profiles have a sharper
decline MI, which is not captured in Figure 5.3(b) without hysteresis.

The discrepancy between the hysteretic and nonhysteretic solutions can be under-
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Fig. 5.5. Comparison between saturation profiles obtained by the numerical simulation and the
laboratory data (marked points) several times ((a) 0 min., (b) 19 min., (c) 60 min., (d) 38.6 hours).
In (a), the dotted line is the initial value of π used for the simulation.

stood by comparing the Riemann solution for hysteretic and nonhysteretic fractional
flow functions. With hysteresis (Figure 5.4(a)), the solution combining imbibition and
drainage necessarily goes through the scanning region. For instance, consider the case
when sL > sR. Due to the imbibition and drainage curve orientation, the solution is
LTMIR, a negative speed shock LT , a drainage rarefaction TM , a stationary shock
wave MI connecting the drainage and the imbibition curves, and a positive speed
imbibition shock IR. On the other hand, without hysteresis (Figure 5.4(b)), the so-
lution is LTNR, a negative speed shock LT , a rarefaction wave TN , and a positive
speed shock NR.

Example 4: Comparison with experimental work data. To validate the
proposed model we compare the numerical gas-water saturation profile with saturation
profiles found in [7] and [20]. Following [7], we consider a sand pack with a perme-
ability of 11.84 Darcys and porosity of 0.389. The tube length is 86 cm. Additionally,
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Fig. 5.6. Comparison between saturation profiles with hysteresis (a) and without hysteresis (b)
obtained by the numerical simulation and the laboratory data (marked points) for 60 min.

we use the following values for the parameters: α = 0.5, γ = 0.5, μw = 0.8550 cp, and
μo = 0.0185 cp. The density of the wetting phase (water) is ρw = 1 g/cm3 and the
density of the nonwetting phase (air) is considered negligible compared to ρw. These
values were taken from [7].

The procedure consists in injecting a measured amount of radioactive water into
the tube containing air in its pores, closing it off at both ends, and allowing the two
phases to reach the equilibrium distribution. This saturation distribution is measured,
providing the initial distribution in the simulation. This distribution is a spatial
transition between air in the presence of residual water to water in the presence of
residual air. This water saturation distribution results from the balance between
pressure gradient and the buoyancy force.

Usage of the correct initial distribution of π is crucial to reproducing the results
presented in [7]. To obtain this initial distribution from the procedure described in
[7], we consider the injection of a certain quantity of water from the top of an air-
saturated tube. Consequently, the lower half of the tube corresponds to an imbibition
process and the upper half corresponds to a drainage process. The values of π are
chosen accordingly. This choice of initial values for π are shown by the dotted line in
Figure 5.5(a).

The tube is then inverted and measurements of water saturation are made during
the segregation process at ten different locations along the tube. Figures 5.5(a)–
(d) confirm the excellent agreement between the laboratory data and the simulated
saturation profiles at different times, while Figures 5.6(a) and (b) show the importance
of including the hysteresis effects in the model. There is agreement in Figure 5.6(a)
with hysteresis and disagreement in Figure 5.6(b) without hysteresis.

6. Concluding remarks. We present Riemann solutions for each left and right
state for a hysteretic counterflow segregation problem as well as criteria to guaran-
tee well-posedness to the solution. Based on the Riemann solutions, we propose a
corrected Godunov scheme that updates both the saturation and the hysteretic pa-
rameter. This scheme conserves mass locally. Numerically, we show that the solution
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obtained by the proposed method agrees with the analytical solution. We also val-
idate the numerical scheme by comparing simulations with laboratory experimental
data. We show numerically that the inclusion of hysteresis effects in the relative
permeability suffices for simulations for accurate simulations.
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