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PPRREEFFAACCEE

This thesis is the culmination of three and a half years work between July 2002 and Janu-

ary 2006.  To the author’s knowledge, all information and material obtained from other 

sources has been credited through citations and references.  The following sections contain

material for which the author claims originality.

In Chapter 3:

- Development and implementation of a method to investigate the risk and reli-

ability of foundation designs based on the results from a site investigation. 

In Chapter 4:

- Identification of a worst case scale of fluctuation (SOF) which is a function of 

the size of the averaging domain;

- Using a field translation technique to reduce aliasing or griding when generating 

three-dimensional random fields based on a lognormal distribution; and 

- Use of a depth constraint to reduce the contribution of small strains on settle-

ment estimates.

In Chapter 5:

- Measurement of the conservatism inherent in settlement prediction techniques 

for the analysis and design of a foundation on a soil with a spatially random

elastic modulus; and 

- Identification of an influence region within which an averaged elastic modulus

value yields settlement estimates that accommodate soil variability.
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In Chapter 6:

- Measurement of the effect of site investigations on the selection of design pa-

rameters;

- Analysis of the effect of site investigations on foundation design.

In Chapter 7:

- Reliability analysis of foundation designs based on the results from a site inves-

tigation in comparison with an optimal foundation design achieved using the 

complete knowledge of the soil; 

- Use of an average design error to measure degree of under- and over-design of a

foundation design based on the results from a site investigation; 

- Recommendation of a single sampling location in a foundation system consist-

ing of multiple footings; and 

- Evaluation of the effect of measurement errors on the design of a foundation.

In Chapter 8:

- Risk assessment of a foundation designed on the basis of results from a site in-

vestigation;

- Identification of an optimal site investigation expenditure that yields a founda-

tion design with lowest financial risk; 

- Evaluation of the benefits of increased site investigation expenditure or sam-

pling on the financial risk of a design; 

- Identification of the most cost-effective types of site investigation tests. 

In Chapter 9:

- Evaluation of the optimal site investigation strategy at three soil sites, where

sufficient soil data has been made available for accurate characterisation of the 

soil variability.
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AABBSSTTRRAACCTT

The site investigation phase plays a vital role in any foundation design where inadequate

characterisation of the subsurface conditions may lead to either a significantly over de-

signed foundation that is not cost-effective, or an under-designed foundation, which may

result in foundation failure.  As such, the scope of an investigation should be dependent on 

the conditions at the site and the importance of the structure.  However, it is common for

the expense dedicated to the site investigation to be a fraction of the total cost of the pro-

ject, and is typically determined by budget and time constraints, and the experience and 

judgement of the geotechnical engineer. However, additional site investigation expendi-

ture or sampling is expected to reduce the financial risk of the design by reducing the un-

certainties in the geotechnical system and protecting against possible foundation failures.

This research has quantified the relative benefits of undertaking site investigations of in-

creased and differing scope. This has been achieved by simulating the design process to 

yield a foundation design based on the results of a site investigation.  Such a design has 

been compared to an optimal design that utilises the complete knowledge of the soil, which 

has only been possible due to the use of simulated soils.  Comparisons between these two 

design types indicate the performance of the site investigation to accurately or adequately

characterise the site conditions.  Furthermore, the design based on the results of the site 

investigation have been analysed using the complete knowledge of the soil.  This yields a 

probability of failure and, therefore, has been included in a risk analysis where the costs

associated with the site investigation have been measured against the financial risk of the 

design.  As such, potential savings in financial risk for increased site investigation expendi-

ture have been subsequently identified. 

A Monte Carlo analysis has been used in this research to incorporate the uncertainties in

the foundation design process.  Uncertainties have been included due to soil variability;

sampling errors; measurement and transformation model errors; and errors related to the 

use of a simplified foundation response prediction method. The Monte Carlo analysis has
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also provided the means to obtain results in a probabilistic framework to enable reliability

and risk analyses.  Computer code has been specifically developed with an aim to: generate 

a simulated soil that conforms to the variability of soil properties; simulate a site investiga-

tion to estimate data for a foundation design; simulate the design of a foundation and con-

duct a reliability and risk analysis of such a design.

Results indicate that there are significant benefits to be derived from increasing the scope 

of a site investigation in terms of the risk and reliability of the foundation design.  How-

ever, it also appears that an optimal site investigation scope or expenditure exists where 

additional expenditure leads to a design with a higher financial risk due to the increased 

cost of the site investigation.  The expected savings in terms of financial risk are significant 

when compared to the increased investigation cost.  These results will assist geotechnical 

engineers in planning a site investigation in a more rational manner with knowledge of the

associated risks. 
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Dv Averaging domain
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dt Total thickness of footing 

E Elastic modulus
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Eave Averaged elastic modulus value 
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Ef Elastic modulus value taken directly from random field 

EPMT Elastic modulus from PMT 

Er Resultant elastic modulus value after effects of system uncertainty

ESOF Scale of Fluctuation of elastic modulus field (isotropic) 
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f c Yield strength of concrete 

fcv Shear capacity of concrete 

fi Proportion of number of samples in relation to number of elements

fs Sleeve friction from CPT 

G Shear strain modulus

GA Geometric average

H Depth of stress change 

HA Harmonic average

Hb Height of structure of building 

h Difference between corner and middle settlements of a flexible footing 

I1; I2; IF Shape factors 

I2 Inverse distance squared weighted 

ID Inversed distance weighted 

Ip Influence factor 
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Ipx; Ipy Size of the site investigation in x- and y-directions

Iz Strain influence factor 

Jan Janbu settlement prediction technique 
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k Bulk modulus

ks Modulus of subgrade reaction 

L Shape factor for settlement estimate

LAS Local average subdivision

LI Liquid index 

l Length or largest plan dimension of the footing 

M Shape factor for settlement estimate

MA Moving average method

MN Minimum value selection 

MOS Margin of safety

MPI Message passing interface (parallel processing) 

m Random variable representing measurement error 

mb Random variable representing bias component of measurement error 

mF Mean of random variable representing load 

mR Mean of random variable representing capacity

mr Random variable representing random component of measurement
error

N SPT blow count 

N Bearing capacity factor

N0 Shape factor for settlement estimate

Nc Bearing capacity factor

New Newmark settlement prediction technique 

Nq Bearing capacity factor 

n Number of samples to reduce 

nf Number of footings in foundation system

nl Number of discretised layers

nr Number of realisations 

nt Total population size 

OCR Over-consolidation ratio

P Applied footing load 

Per Perloff settlement prediction technique 
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PI Plastic index 

PMT Pressuremeter test

pf Probability of failure 

pL Pressuremeter limit stress 

pod Probability of over design 

pop Probability of attaining an optimal design 

pud Probability of under design 

Qsu Side resistance 

Qtu Tip resistance 

Qu Available capacity

Qud Design uplift capacity

q Applied footing pressure 

qa Allowable bearing capacity

qanet
Net allowable bearing capacity

qav Averaging pressure over the footing contact area 

qc Cone tip resistance from CPT 

qu Unconfined compression strength 

qult Ultimate bearing capacity

qz Stress at depth z

qz Stress in soil at depth z

q Change in stress 

R Random variability representing capacity

RFEM Random finite element method

RG Regular grid sampling pattern 

RN Simple random arrangement of sample locations 

ri Internal radius of annulus 

ro External radius of annulus 

S Estimated footing settlement

SA Standard arithmetic average 

Sch2B Schmertmann settlement prediction technique based on 2B-0.6 strain 
distribution

SchM Schmertmann settlement prediction technique based on Modified strain 
distribution

SE Settlement error 

SFEM Stochastic finite element method

SGS Sequential Gaussian simulation
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SI Site investigation knowledge of the soil (based on sampling)

SIopt Optimal site investigation cost, based on yielding the lowest total cost 

SI*
opt Optimal site investigation cost for the worst case SOF 

SIS Sequential indicator simulation

SOF Scale of fluctuation (measure of correlation distance) 

SOSM Second-order second-moment reliability method

SPT Standard penetration test 

SR Stratified random sampling pattern 

Stx; Sty Size of the site in x- and y-directions

s Bearing capacity correction factor for unit weight 

sc Bearing capacity correction factor for cohesion 

si Distance separating the ith sample location and the footing 

sF Standard deviation of random variable representing load 

sR Standard deviation of random variable representing capacity

stot Total distance separating all sample locations and the footing 

su Undrained shear strength 

sv Random variable representing uncertainty due to spatial variability

T Transformation model

T&G Timoshenko and Goodier settlement prediction technique 

TBM Turning bands method

TBM Turning bands method

TT Triaxial test

t(z) Trend value at depth z

tm random variable representing transformation model error 

V Shape factor for settlement estimate

V* Applied shear load on footing 

V1 Shape factor for settlement estimate

V1
*; V2

* Components of the applied shear load, V*

VST Vane shear test 

Var[.] Variance operator

Vu0 Punching shear capacity

Vuc Beam shear capacity

W Weight of shaft 

Wb Width of structure or building 

Wst Westergaard settlement prediction technique 
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w(z) Fluctuating residual value at depth z 

wL Water content at liquid limit

wn Natural water content 

wp Water content at plastic limit

X Random variable 

Xln Lognormal random variable 

x Individual property that conforms to X

xc X coordinate 

xd Distance to parabolic centroid 

Y Random variable 

yc Y coordinate 

Z Centre-to-centre spacing of two adjacent footings 

z Depth in soil layer

z Soil layer thickness 

Shape factor for settlement estimate

Reliability index 

1 Shape factor for beam shear capacity

Covariance at lag 

Footing settlement

1|2 Settlement of Footing 1 due to Footing 2 

ann Settlement of rigid annulus 

c Corner settlement of flexible footing 

m Centre settlement of flexible footing 

r Rigid footing settlement

Strain

Unit weight of soil 

Effective unit weight of soil 

d Dry unit weight of soil 

(D) Variance reduction based on an averaging domain of D

h Semivariogram value at distance h

0 Footing embedment correction factor 

1 Layer depth correction factor 

a; b Fitted constants for the Janbu settlement relationship 

Deterministic coefficient representing settlement prediction technique 
coefficients and design criteria limits
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Differential settlement ratio | - |/Z1 2

Sample mean of the logarithm of xlnx

Sample mean of xx

Poisson’s ratio 

Isotropic scale of fluctuation, SOF 

h Vertical scale of fluctuation, SOF 

v Vertical scale of fluctuation, SOF 

Worst case scale of fluctuation, SOF wc

Percentage of steel reinforcing min

Correlation at lag 

e
2 Variance due to equipment effects 

Sample standard deviation of the logarithm of xlnx

2 Sample variance of the logarithm of xlnx

m Variance due to measurement error 

n

2

Overburden pressure 

p/o
2 Variance due to procedural and operator effects 

sv
2 Variance due to spatial variability

T
2 Variance due to all forms of uncertainty

tm
2 Variance due to transformation model error 

r
2 Variance due to random test effects 

x Sample standard deviation of x

x
2 Sample variance of x

Angle of internal friction 

red Concrete strength reduction factor 

Lag or separation distance vector = { x, y, z}

x Lag or separation distance in the x-direction 

y Lag or separation distance in the y-direction

z Lag or separation distance in the z-direction 

Angle representing the rate of stress decrease 

Angle in degrees used to proportion footing area in relation to annulus 

c Angle in radians used to proportion footing area in relation to annulus 

d Design parameter

m Measured soil property

(z) In situ soil property at depth z
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