STRUCTURAL AND METAMORPHIC RELATIONS
BETWEEN LOW, MEDIUM AND HIGH GRADE
ROCKS, MT FRANKS - MUNDI MUNDI AREA,
BROKEN HILL, N.S.W.

Ъу

Richard Arthur Glen, B.Sc. (Hons.) (Sydney)

PART I

of two parts plus Appendices

Department of Geology and Mineralogy
University of Adelaide
April, 1978.

TABLE OF CONTENTS

	AOTOWE I	Page
LIST OF A	BBREVIATIONS	i
LIST OF TA	ABLES	iii
LIST OF AE	PPENDICES	iv
SUMMARY		ν
STATEMENT	OF ORIGINALITY	vii
ACKNOWLEDO	FEMENTS	viii
CHAPTER 1	PART I INTRODUCTION	1
1.1	PURPOSE OF STUDY	ı
1.2	LOCATION OF AREA and GEOGRAPHIC BACKGROUND	2
1.2.1	The Willyama Complex	2
1.2.2	The Northwestern Part of the Willyama Complex	2
1.3	PREVIOUS GEOLOGICAL STUDIES	5
1.3.1	Lithology	6
1.3.1.1	Regional Studies	6
1.3.1.2	Northwestern Part of the Willyama Complex	6
1.3.2	Structural Relations	7
1.3.2.1	Regional Studies	7
1.3.2.2	Northwestern Part of the Willyama Complex	11
1.3.3	Metamorphic Relations	14
1.3.3.1	Regional Studies	14
1.3.3.2	Northwestern Part of the Willyama Complex	16
1.3.4	Geochronology	18
1.3.5	Tectonics of the Willyama Complex	18
1.4	ORGANISATION OF STUDY	19
1.5	LAYOUT OF THESIS	20
CHAPTER 2	LITHOLOGY, BEDDING AND	
	SEDIMENTARY STRUCTURES	21
2.1	INTRODUCTION	21

			Page
	2.2	DISTRIBUTION OF LITHOLOGICAL UNITS, MAJOR STRUCTURES	
		AND METAMORPHIC ZONES	21
	2.3	METASEDIMENTS	25
	2.3.1	Lithology and Compositional Layering	25
	2.3.1.1	Apollyon Beds east of the Mt Franks Retrograde Schist	
		Zone - Low Grade Rocks	25
	2.3.1.2	Apollyon Beds west of the Mt Franks Retrograde Schist	
		Zone - Medium Grade Rocks	28
	2.3.1.3	Robe Beds - Medium to High Grade Rocks	30
	2.3.1.4	Parnell Beds - High Grade Rocks	34
	2.3.1.5	Summary	35
	2.3.2	Continuity of Bedding	35
	2.3.3	Description of Sedimentary Structures	37
	2.3.3.1	Cross Bedding .	37
	2.3.3.2	Ripple Marks	38
	2.3.3.3	Flame Structures	38
	2.3.3.4	Graded Bedding	39
	2.3.4	Summary	40
	2.4	OTHER ROCKS	41
	2.4.1	Amphibolites and Associated Gneisses	41
	2.4.2	Granitoid Rocks	41
	CHAPTER 3	MESOSCOPIC STRUCTURES	45
	3.1	INTRODUCTION	45
	3.2	STRUCTURAL NOMENCLATURE, and CORRELATION OF STRUCTURES	47
	3	BETWEEN LITHOLOGICAL UNITS	46
	3.3	FIRST GENERATION STRUCTURES	48
	3.3.1	Apollyon Beds	48
	3.3.1.1	F ₁	48
:	3.3.1.2	S_{γ} and L_{γ}	48
	J. J. 111		. •

· .

		Page
3.3.2	Robe Beds	50
3.3.2.1	F ₁	50
3.3.2.2	${f S}_1$ and ${f L}_1$	51
3.3.3	Parnell Beds	52
3.3.4	D _l Migmatites	52
3.4	SECOND GENERATION STRUCTURES	53
3.5	THIRD GENERATION STRUCTURES	54
3.5.1	Apollyon Beds	54
3.5.1.1	F ₃	54
3.5.1.2	S3, L3 and S3'	54
3.5.2	Robe Beds	55
3.5.2.1	D ₃ Effects in S ₀ //S ₁ Rocks	55
3.5.2.2	D ₃ Effects in S _{1N} Rocks	56
	Type I Herringbone Structures	56
	Type II Herringbone Structures	57
	Type III Herringbone Structures - Formation of long limb	
	schistosity S3'	59
3.5.2.3	$^{\mathrm{D}}_{\mathrm{3}}$ Effects in Areas Transitional between $^{\mathrm{S}}_{\mathrm{1P}}$ and $^{\mathrm{S}}_{\mathrm{1N}}$	61
3.6	STRUCTURES RELATED TO F3	біъ
3.7	FOURTH GENERATION STRUCTURES	62
3.8	OTHER STRUCTURES	62
3.9	STRUCTURES WITHIN RETROGRADE SCHIST ZONES	62
CHAPTER	MICROFABRIC DEVELOPMENT IN PELITIC	
	AND PSAMMITIC METASEDIMENTS	64
4.1	INTRODUCTION	64
4.1.1	Previous Microfabric Work in the Northwestern Part of the	
	Willyama Complex	65
4.2	PRE-S MICROFABRICS	66
4.2.1	Apollyon Carbonaceous Schist and Quartz-Mica Schist -	
	S Rocks - Low Grade	66

		Page
4.2.2	Apollyon Chiastolite and Andalusite Schist - S _{lN} Rocks -	
	Medium Grade	67
4.2.3	Robe Andalusite Schist - S _{1P} Rocks - Medium Grade	69
4.2.4	Robe Sillimanite Schist - S _{1P} Rocks - High Grade	69
4.2.5	Mundi Mundi Facies - SlP Rocks - Medium to High Grade	71
4.2.6	Parnell Beds - S _{1P} Rocks - High Grade	71
4.2.7	Discussion	71
4.2.7.1	Time Relations between Pre-S _l Mineral Growth and S _l	71
4.2.7.2	Geometrical Significance of Early Mineral Preferred	
	Orientation -	73
4.3	MORPHOLOGY AND DEVELOPMENT OF S	73
4.3.1	S _l in Low Grade Rocks - S _{lN} Domain	74
4.3.1.1	Apollyon Quartz Mica Schist	74
4.3.1.2	Apollyon Carbonaceous Schist	75
4.3.2	Sl in Medium Grade Rocks - Sl Domain	7 5
4.3.2.1	Apollyon Chiastolite Schist	75
4.3.2.2	Apollyon Andalusite Schist	77
4.3.2.3	Robe Andalusite Schist	77
4.3.3	S _l in Medium Grade Rocks - S _{lP} Domain	79
4.3.3.1	Apollyon Chiastolite Schist	79
4.3.3.2	Robe Andalusite Schist	79
4.3.4	S ₁ in High Grade Rocks - S _{1P} Domain	81
4.3.5	Summary of Critical Data	83
4.3.6	Equivalence of S _{lN} and S _{lP} , and S _l Relations Transitional	
	Between S _{IN} and S _{IP}	84
4.3.7	Deformation and Schistosity Forming Mechanisms	85
4.3.7.1	Deformation Effects in Early Biotites	85
	CHEMICAL	85
	DEFORMATIONAL	85
4.3.7.2	Deformation Mechanisms Involved in Biotite Re-orientation	88

		Page
4.3.7.3	Relationship between M Domains in S_{1N} Rocks and the XY	
	plane of the finite Strain Ellipsoid	93
4.3.7.4	Development of S ₁	96
4.3.8	Summary of Pre-S ₁ and S ₁ Microfabrics	100
4.4	MORPHOLOGY AND DEVELOPMENT OF S2	101
4.5	MORPHOLOGY AND DEVELOPMENT OF S3.	102
4.5.1	Adjustment of High Grade Minerals and Growth of New Minerals	103
4.5.1.1	Quartz	104
4.5.1.2	Sillimanite	107
4.5.1.3	Andalusite (including chiastolite), its inclusions and its	
	alteration products	107
4.5.1.4	Chloritoid	108
4.5.1.5	Biotite	108
4.5.1.6	M _l Garnet	109
4.5.1.7	Feldspar	109
4.5.1.8	Muscovite and Sericite	109
4.5.1.9	Staurolite and Garnet	110
4.5.2	Crenulation and Schistosity Formation	110
4.5.2.1	Microfolding and the Development of Axial Plane Schistosity	
	in Pelitic Schists	110
	DESCRIPTION OF MICROFOLDS	111
	a) Low Strain Effects	111
	b) Intermediate Strain Effects	112
	c) High Strain Effects	114
	DEVELOPMENT OF MICROFOLDS	114
	DESCRIPTION OF S3	115
	Type 1: S3 defined by iron stained discontinuities	115
	Type 2: S3 defined by zones of re-oriented muscovite	116
	Type 3: Differentiated S ₃	116
	Type 3: A Detailed Study of Segregated Schistosity in	
	Pelites	119

.

		Page
	Discussion	122
	Strain History	124
	Deformation Mechanisms	125
4.5.2.2	Microfolding and the Development of Axial Plane Schistosity	
	in Quartz Rich Schists	127
4.5.2.3	Microfolding of Biotite Laminations and Development of a	
	Shape Orientation of Biotites Parallel to S ₃	129
	DISRUPTION OF BIOTITE LAMINATIONS	129
	Low to Intermediate Strains	129
	High Strains	129
	DEFORMATION OF BIOTITE GRAINS	129
	Deformation Mechanisms	130
4.5.2.4	Microfolding and the Development of a Long Limb Schistosity	131
	Mechanism of Formation of S3'	135
CHAPTER 5	METAMORPHIC RELATIONS	137
5.1	INTRODUCTION	137
5.2	METAMORPHISM M ₁	137
5.2.1	Metamorphic Boundaries - Reflections of the M ₁ Event	138
5.2.2	Mineral Assemblages	140
5.2.3	Possible Mineral Reactions, Growth and Stability	141
5.2.3.1	Biotite	141
5.2.3.2	Muscovite	142
5.2.3.3	Aggregates - Low Grade Rocks	142
5.2.3.4	Andalusite (including Chiastolite)	143
5.2.3.5	Garnet	144
5.2.3.6	Mineral Aggregates - Medium Grade Rocks - Andalusite and	
	Chiastolite Breakdown Products	145
5.2.3.7	Formation of Sillimanite - I. From Andalusite	145
5.2.3.8	Formation of Sillimanite - II. Sillimanite Associated	
	with Biotite	1.52

		Page
5.2.3.9	Formation of Sillimanite - III. Sillimanite in Quartz	155
5.2.3.10	Formation of Sillimanite - IV. Sillimanite in Muscovite	155
5.2.3.11	Stability of Sillimanite	156
5.2.3.12	Stability of Fibrolitic Sillimanite	158
5.2.3.13	Sillimanite + K feldspar	159
5.2.4	Partial Melting in M	160
5.2.5	Conditions of Metamorphism during M	161
5.2.5.1	The Presence of a Fluid Phase and the Role of Graphite	
	in Influencing its Composition	161
5.2.5.2	Progressive Metamorphism and a Geothermal Gradient	164
5.3	METAMORPHISM M ₂	166
5.3.1	Mineral Assemblage	166
5.3.2	Possible Mineral Reactions, Growth and Stability	166
5.3.3	P-T-X Conditions	166
5.4	METAMORPHISM M ₃	167
5.4.1	Mineral Assemblages	167
5.4.2	Possible Mineral Reactions, Growth and Stability	167
5.4.2.1	Quartz	167
5.4.2.2	Muscovite and Sericite	167
5.4.2.3	Biotite	169
5.4.2.4	Iron Oxides and Graphite	169
5.4.2.5	Chlorite	169
5.4.2.6	Chloritoid	169
5.4.2.7	Staurolite and Garnet	170
5.4.2.8	Tremolite, Epidote, Clinozoisite and Carbonate	170
5.4.3	P-T-X Conditions during M3	171
	VOLUME II	
	PART II	
CHAPTER 6	MACROSCOPIC STRUCTURE	173
6.1	INTRODUCTION	173

.

		Page
6.1.1	Principles of Mapping	173
6.1.2	Data Presentation	174
6.2	MACROSCOPIC STRUCTURE	174
6.2.1	Macroscopic Structure of the Parnell Beds in the	
	Eastern Block	176
6.2.2	Macroscopic Structure of the Apollyon Beds in the	
	Central Block	177
	Synthesis .	180
6.2.3	Macroscopic Structure of the Robe Beds and of the	
	Apollyon Beds in the Western Block	180
6.2.3.1	Area 1 in the Western Block	181
6.2.3.2	Area 2 in the Western Block	183
6.2.3.3	Area 3 in the Western Block	185
	F ₃ Structures	185
	The Shepherds Hut Fold Pair - an F ₂ Structure	190
	Relations between F_2 and F_3 folds	190
	F ₄ Structures	191
	Summary of Area 3	192
6.2.3.4	Area 4 in the Western Block	192
	MACROSCOPIC FOLDS IN THE MT FRANKS AREA	193
	Macroscopic F ₃ Folds	193
	Macroscopic F ₁ Folds	194
	The Mt Franks Fold Pair	194
	F_1 folds in the dextral limb of the F_3 synform and relation	n
	to the Mt Franks Fold Pair	199
	Discussion of Macroscopic Geometry in the Mt Franks Area	199
	MACROSCOPIC STRUCTURES IN AREA 4 - OTHER AREAS	200
6.2.3.5	Correlation between S_{1N} and S_{1P} - Relationship between	
	Areas 2, 3, and 4 in the Western Block	201
	Siu/Sin Relations in a Transect South of Mt Franks	201

		Page
	S _{1N} /S _{1P} Relations in the Mt Franks Area	202
	Synthesis and Implications of $S_{1N}/S_{1P} = S_1$ Correlation	205
6.2.3.6	Correlation of S_{1N} in the Western Block and S_{1} in the	
	Central Block	206
6.2.3.7	Possibility of Mesoscopic Transposition during D ₁	206
6.2.4	Macroscopic Structure in the Southern Area Spanning	
	the Central and Western Blocks	206
6.3	SYNTHESIS OF MACROSCOPIC STRUCTURES IN THE MT FRANKS -	
	MUNDI MUNDI AREA	209
6.3.1	Variation in the Orientation of the Western Limb of	
	the Regional Syncline	211
6.3.2	Variation in the Orientation of S	212
6.3.3	Shape of the Reconstructed Regional Syncline	214
6.3.4	Relations Between the Regional Syncline and Metamorphic	
	Zones	215
6.3.4.1	Structural Relations between Low and Medium Grade Zones	216
6.3.4.2	Structural Relations between Medium and High Grade Zones	216
6.3.5	Metamorphic Zones and Tectonic Levels	218
6.4	THE RETROGRADE SCHIST ZONES	220
6.4.1	Mt Franks Retrograde Schist Zone	220
6.4.2	The Apollyon Valley Retrograde Schist Zone	223
6.4.3	The Mundi Mundi Fault	224
6.4.4	Age of Retrograde Schist Zones	225
6.4.5	Displacement Across the Retrograde Schist Zones	226
6.5	STRATIGRAPHY	227
CHAPTER 7	STRUCTURAL AND METAMORPHIC SYNTHESIS OF THE	
	NORTHWESTERN PART OF THE WILLYAMA COMPLEX, AND	
	CORRELATION WITH OTHER AREAS	228
7.1	INTRODUCTION	228

		Page
7.2	STRUCTURAL AND METAMORPHIC RELATIONS IN THE NORTH-	
	WESTERN PART OF THE WILLYAMA COMPLEX	228
7.2.1	Stratigraphy	229
7.2.2	Mesoscopic and Microscopic Relations	231
7.2.2.1	The Mt Robe Area, and Correlations with the	
	Mt Franks - Mundi Mundi Area	231
7.2.2.2	The Kantappa Area, and Correlation with the	
	Mt Franks - Mundi Mundi Area	232
7.2.2.3	The Brewery Well Area, and Correlation with the	
	Kantappa and Mt Robe Areas	234
7.2.3	Macroscopic Synthesis	236
7.2.3.1	The Kantappa - Lakes Nob Syncline	236
7.2.3.2	Relation between Metamorphic Zones and the	
	Kantappa - Lakes Nob Syncline	238
7.2.3.3	Macroscopic F ₃ Folds in the Western Limb of the	
	Kantappa - Lakes Nob Syncline	240
7.2.4	Granitoids in the Northwestern Part of the Willyama	
	<u>Complex</u>	242
7.3	CORRELATION WITH OTHER AREAS OF LOW TO MEDIUM GRADE	
	METAMORPHISM	245
7.3.1	The Bijerkerno Area	245
7.3.1.1	Lithology	245
7.3.1.2	Metamorphism	245
7.3.1.3	Structure	246
7.3.2	Yanco Glen Area	246
7.3.3	Discussion and Correlation	247
7.4	CORRELATION BETWEEN THE MT FRANKS - MUNDI MUNDI AREA	
	AND HIGH GRADE ROCKS BETWEEN THE MINE AREA AND THE	
	PARNELL AREA	247

		Page
7.4.1	Structural History of High Grade Rocks in the	
	Mine - Parnell Area	248
7.4.1.1	D ₁ Effects	248
7.4.1.2	D ₂ Effects	248
7.4.1.3	D ₃ Effects	249
7.4.1.4	$\mathrm{D}_{\mathrm{l}_{\!4}}$ Effects	249
7.4.2	Correlation	249
7.4.2.1	Discussion	254
CHAPTER 8	SUMMARY OF GEOLOGICAL HISTORY OF THE AREA	255
	We descript rate on, any operations and the second	2))
REFERENCES		
APPENDICES	· .	

-LIST OF ABBREVIATIONS USED IN TEXT

```
egin{array}{lll} D_I & 	ext{first deformation} \\ D_2 & 	ext{second deformation} \\ D_3 & 	ext{third deformation} \\ D_4 & 	ext{fourth deformation} \\ M_I & 	ext{first metamorphism} \\ M_2 & 	ext{second metamorphism} \\ \end{array}
```

 M_{z}

third metamorphism

- S bedding first schistosity visible in the field and axial planar to first generation folds in bedding S_{TP} S_{T} parallel to bedding $\boldsymbol{S}_{\boldsymbol{\mathrm{I}}}$ non parallel to bedding $S_{o}//S_{I}$ S_{o} parallel to S_{I} $\mathbf{S}_{\mathbf{I}}\mathbf{P}\mathbf{s} \quad \mathbf{S}_{\mathbf{I}}$ developed in psammite $\mathbf{S}_{\mathbf{I}}^{\; \mathrm{Pe}} \quad \mathbf{S}_{\mathbf{I}}^{\;\;}$ developed in pelite or psammopelite S_2 second generation schistosity Sz third generation schistosity S fourth generation schistosity undifferentiated S_T or S_3 S_{I-3} S_R retrograde schistosity occurring within retrograde schist zones
- $\rm L_{\rm I}$ mineral/aggregate lineation in $\rm S_{\rm I}$ $\rm L_{\rm 3}$ mineral lineation in $\rm S_{\rm 3}$ $\rm L_{\rm M}$ mineral lineation in $\rm S_{\rm R}$

ABBREVIATIONS (ctd)

- F_{T} first generation fold
- F₂ second generation fold
- F, third generation fold
- F, fourth generation fold
- F_{R} fold with S_{R} axial planar
- \boldsymbol{F}_{R+I} fold in \boldsymbol{S}_R

XYZ maximum, intermediate and minimum axes of the strain ellipsoid

LIST OF TABLES

TABL	E	after	PAGE
3.I	Structural correlation across area		46
4.I	Change in shape of quartz and biotite grains during S_3 formation]	I 20
5.I	M_{I} assemblage	.]	140
5.2	Distribution of $M_{\overline{I}}$ index minerals]	[64
5.3	Mineral growth/deformation relations, $D_{\bar{I}}$ event]	[64
5.4	${\rm M_3}$ assemblage .]	167
7.I	Structural correlation in northwestern part of the Willyama Complex	2	2 3 I

APPENDICES

- APPENDIX I reprint of paper entitled "Tectonic Relations between the Proterozoic Gawler and Willyama Orogenic Domains, Australia" by Glen, R.A., Laing, W.P., Parker, A.J., and Rutland, R.W.R. J. Geol. Soc. Aust., 24 (3), 125-150. 1977.
- APPENDIX II reprint of paper entitled "The significance of sedimentary structures in the Willyama Complex, New South Wales" by Glen, R.A., and Laing, W.P.

 Proc. Australas. Inst. Min. Metall., 256, 15-20. 1975.
- APPENDIX III Geometrical analysis of Mt Franks Mundi Mundi Area in terms of subareas.
- APPENDIX IV reprint of paper entitled "Large scale early folding and tectonic levels in the northwestern part of the Willyama Complex, New South Wales" by Glen, R.A.

 Geol. Surv. N.S.W. Quarterly Note 31, 4-15. 1978.

SUMMARY

Investigations in the northwestern part of the Willyama Complex centred on the Mt Franks - Mundi Mundi area have established a 4 km thick stratigraphic section of conformable metasediments containing thin horizons of basic volcanics in the lower two-thirds of the sequence. Establishment of this sequence was only possible once it was shown that the dominant lithological layering in metasediments is bedding, and that there has been no mesoscopic transposition during deformation. The metasediments represent a sequence of clay sands deposited in a distal shelf-slope or basin type of environment.

A sequence of deformational and metamorphic events established in these rocks is regarded as an expression of the Middle Proterozoic Olarian Orogeny (c. 1695 - 1520 Ma.) and except for some reactivation of shear zones, predate deposition and deformation of the unconformably overlying Adelaidems sediments.

The important D₁ deformation is a complex, progressive event with pre-S₁ static mineral growth (biotite, andalusite, sillimanite, white mica) and early minor micro-folding recognised before syn-S₁ growth and F₁ folding. An even earlier period of pre-S₁ fabric formation mainly defined by white mica, biotite and ilmenite, is not related to any visible folding and may either represent an earlier discrete event or an early phase of the D₁ event. However, as now defined, minerals outlining this pre-S₁ fabric are related to the D₁ event.

The low, medium and high grade metamorphic zones defined in the field by biotite, and alusite and sillimanite respectively are $pre-S_1$ in age and predate F_1 folding. The intensity of metamorphism increases with depth so that there is a broad depth control on metamorphism. Relations at the andalusite/sillimanite isograd conform to a Carmichael (1969) type model and reactions took place via an intermediate sericite phase.

The main effect of F₁ folding is the formation of the variably plunging, variably oriented Kantappā - Lakes Nob Syncline of regional extent. Only the western limb of this fold is now visible over much of its length. This fold deforms existing metamorphic zones and thus controls the relationship of low, medium and high grade rocks in this part of the Willyama Complex. The orientation of this syncline changes from vertical in the low grade rocks to inclined at depth. The western limb becomes overturned at depth so that subsequent folds are downward facing. There is also a change in fold tightness with depth - from open-tight in the low grades to tight-isoclinal in the high grades, and this is accompanied by a change in S_O/S₁ relations (from core to limb area) from non parallel to parallel. These changes are coupled with a rotation of extension direction (mass transfer direction) from subvertical to inclined and may be explained by original formation and subsequent modification of upright F₁ folds. Later modifications are recorded by open folding and overturning of S₁ - this is ascribed to a final phase of the D₁ event.

Mineral growth in D_1 time resulted in the formation of S_1 varying in grade from muscovite + quartz to sillimanite. S_1 varies from homogeneous to layered, and in the latter case, consists of M + QM layers, the spacing of which is controlled by F_1 microfolding. S_1 formation involved rotation, making transfer, and volume decrease in M layers and (re)crystallisation.

The D₂ event in this area was of only minor significance. The D₃ event developed in response to NW-SE shortening and resulted in the formation of variably plunging, vertical northeast trending folds. Where SW plunging, these folds lie subparallel to L₁. The nature of the D₃ event is controlled to a large extent by S₀/S₁ relations and folding of S₁ across unfolded S₂ occurs where S₂ lies parallel to the XY plane of the D₃ event. S₃ formed an a muscovite + quartz schistosity by rotation, recrystallisation, mass transfer and mimetic growth.

During the final stages of the D₃ event, north-east trending retrograde schist zones were formed. These were later reactivated during the folding of the Adelaidean. The final phase of the Olarian Orogeny consists of minor D_{i_1} folding and crenulation.

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, nor does it contain, to the best of my knowledge and belief, any material published or written by any other person except where due reference and acknowledgement is made in the text.

R.A. Glen.

ACKNOWLEDGEMENTS

I gratefully acknowledge the help of Professor R.W.R. Rutland, who not only organised this project, but who also provided guidance, assistance and constructive criticism throughout the study. I would also like to thank my other supervisors - Dr. M.A. Etheridge from 1973 until 1974 when he left for Monash University, and Dr. P.R. James from 1974 onwards.

Discussions both in the field and at University with many people have helped me formulate my ideas and I would especially like to thank W.P. Laing. R.W. Marjoribanks (both fellow workers on the Broken Hill Project) and A.J. Parker. I have also had helpful discussions with J.P. Platt and N.S. Mancktelow (structure and microstructure), G.A. Chinner, A.C. Purvis and D.F. Blight (metamorphism) P.G. Haslett (sedimentary aspects), M. Bridges (computing) and D. Isles (magnetics).

For discussions about other aspects of Willyama Complex geology, I would like to thank W.P. Laing, W.F. D'Arcy, J. Thomson, K.D. Tuckwell and G. Bradley.

Discussions with other people too many to mention are also acknowledged.

Professor Rutland read and criticised the whole thesis while various sections have been read and constructively criticised by M.A. Etheridge,
P.R. James, R.L. Oliver and Sisir Sen.

S. Trichzy and G. Trevellyan helped by making superb thin sections, and R. Barratt carried out photographic work at Adelaide. G. Hicks and O. Müller were responsible for the fine photographic work in Sydney and made the final plates. I would like to thank S. Wells for a magnificent typing effort, and for coping so well with all the problems caused by my move to Sydney. A. Felton and C. Baker both helped with last minute thesis compilation.

For accommodation and company in the field, and assistance in times of crisis, I would like to thank Mr. and Mrs. S.G. Langford and family

of Purnamoota.

This study was supported by a Commonwealth Postgraduate Research Award and by the Broken Hill Mining Managers Association, and was carried out while I was on study leave from the Geological Survey of New South Wales. I would like to thank its director, Dr. N.L. Markham, for general assistance and for making facilities available during final preparation.

Finally, I acknowledge the encouragement of my family throughout this study, and above all the help, understanding and forebearance of Jennifer.