Reframing the Dynamics: A Case Study of the Interaction between Architectural Computing and Relationship-Based Procurement at the National Museum of Australia.

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

John Paul Swift

School of Architecture, Landscape Architecture and Urban Design University of Adelaide, South Australia.

Table of Contents

L	IST OF	FIGURES	III
L	IST OF	TABLES	V
Α	BSTRA	ACT	VII
D	ECLAF	RATION	IX
		WLEDGEMENTS	
		TIONS	
		E	
1		RODUCTION	
2	COI	NTEXTUALISING THE NATIONAL MUSEUM OF AUSTRALIA	11
	2.1	POLITICAL CONTEXT	11
	2.2	INSPIRATIONS AND DESIGN	34
	2.3	THE GUGGENHEIM MUSEUM BILBAO	51
3	LITI	ERATURE REVIEW	65
	3.1	PROJECT SPECIFIC LITERATURE	68
	3.1.		
	3.1.		
	3.2	COMPUTER TECHNOLOGIES	
	3.2.		
	3.2.	,	
	3.2.	3 Building Information Models	100
	3.2.	4 Form Generation	105
	3.2.	5 Hybrid Use	111
	3.3	NON-TRADITIONAL PROCUREMENT METHODS	113
	3.4	THE ROLE OF THE ARCHITECT	123
4	ME	THODOLOGY	133
	4.1	THEORY	133
	4.2	INSTRUMENTAL	143
	4.3	Conclusions	160
5	SYN	NERGY AT THE NATIONAL MUSEUM OF AUSTRALIA	161
	5.1	COMPUTER TECHNOLOGIES	161
	5.1.	1 History and Attitude to Computer Technologies	163
	5.1.	2 Transfer of Ideas to Data	170
	5.1.	3 Dialogue between Architect and Computer	173
	5.1.	4 Technology Transfer	180
	5.1.	5 Research & Development in Architecture	181
	5.2	THE ACTON PENINSULA ALLIANCE	184
	52	1 The Alliance Process	188

	5.2.2	Architectural Design under an Alliance	
	5.2.3	Transfer of Design intent to others	
	5.2.4	Format / Reworking of data	
	5.2.5	Cultural Resistance to Change in the AEC Sector	215
	5.2.6	Insight into the work of others	220
	5.2.7	Interpersonal Dynamics	222
	5.2.8	Complementary Knowledge	225
	5.2.9	Factors Affected by Personnel	229
	5.2.10	Documentation	233
	5.2.11	The Constraints and Opportunities of working with others	236
	5.3 PRC	JECT CONSTRAINTS	238
	5.3.1	Potential Difficulties	238
	5.3.2	Uncertainty of Costings	240
	5.3.3	The Cost/Time Control Matrix	244
	5.3.4	Perception from Government	249
	5.3.5	Perceived Potential Legal Complications	252
	5.4 THE	CHANGING ROLE OF THE ARCHITECT	254
6	CONCLU	JSIONS	261
6		JSIONS ure Research	
6	6.1 FUT	URE RESEARCH	269
	6.1 FUT 6.2 EPIL	URE RESEARCH	269 270
R	6.1 FUT 6.2 EPIL EFERENCE	URE RESEARCHOGUE	269 270
R	6.1 FUT 6.2 EPIL EFERENCE	URE RESEARCH	269 270
R B	6.1 FUT 6.2 EPIL EFERENCE IOGRAPHIE	URE RESEARCHOGUE	269 270 273
R B	6.1 FUT 6.2 EPIL EFERENCE IOGRAPHIE	URE RESEARCHOGUE	269270273287
R B L	6.1 FUT 6.2 EPIL EFERENCE IOGRAPHIE IST OF ABB	URE RESEARCH	269270273287299
R B L	6.1 FUT 6.2 EPIL EFERENCE IOGRAPHIE IST OF ABB PPENDIX A PPENDIX B	URE RESEARCH OGUE LIST SREVIATIONS E EIA9 PAPER, ISTANBUL 2003	269273287299301
R B L A A	6.1 FUT 6.2 EPIL EFERENCE IOGRAPHIE IST OF ABB PPENDIX A PPENDIX B PPENDIX C	URE RESEARCH OGUE LIST EREVIATIONS EREVIATIONS EREVIATIONS ENERGY PAPER, ISTANBUL 2003 ENERGY ANZASCA PAPER, SYDNEY 2003	269273287299301307
R B L A A	6.1 FUT 6.2 EPIL EFERENCE IOGRAPHIE IST OF ABB PPENDIX A PPENDIX B PPENDIX C PPENDIX D	URE RESEARCH OGUE LIST ES REVIATIONS E EIA9 PAPER, ISTANBUL 2003 E ANZASCA PAPER, SYDNEY 2003 E CODE OF ETHICS E FOLLOW UP LETTER	269273287299301307319
R B L A A A A	6.1 FUT 6.2 EPIL EFERENCE IOGRAPHIE IST OF ABB PPENDIX A PPENDIX B PPENDIX C PPENDIX D	URE RESEARCH OGUE LIST	269273287299301307319321
RBLAAAAA	6.1 FUT 6.2 EPIL EFERENCE IOGRAPHIE IST OF ABB PPENDIX A PPENDIX C PPENDIX D PPENDIX E PPENDIX F	URE RESEARCH OGUE LIST ES REVIATIONS E EIA9 PAPER, ISTANBUL 2003 E ANZASCA PAPER, SYDNEY 2003 E CODE OF ETHICS E FOLLOW UP LETTER	269273287299301307319321323

List of Figures

Figure 1 N	MA, Central Courtyard (Garden of Australian Dreams)	2
Figure 2 N	MA, Main Hall	2
Figure 3 G	MB, View from the bridge.	4
•	MB, Atrium.	
Figure 5 O	Priginal Griffin Concept Plan, ACT	12
Figure 6 H	igh Court Building, Canberra, ACT	14
Figure 7 P	arliament House, Canberra, ACT	14
Figure 8 N	MA, Annotated Site Plan	18
Figure 9 N	MA, Graphical Representation of the Layout	18
Figure 10	NMA, Acton Peninsula, Artist Impression, Planning Report	19
Figure 11	Bibliothéque Nationale, Paris, France	29
Figure 12	Millennium Dome, Greenwich, London	29
Figure 13	Federation Square, Atrium, Melbourne	31
Figure 14	Federation Square, Façade, Melbourne	31
Figure 15	Sydney Opera House, Bennelong Point, Sydney	32
Figure 16	East Circular Quay, Sydney	33
_	NMA, Early Sketch (the Wandering Line)	
Figure 18	NMA, Planning Sketches	35
Figure 19	NMA, Wandering Line Sketches, path on Cutting Plane	36
Figure 20 I	NMA, Early 3D Cutting Plane Sketch	36
Figure 21	Super Ellipse (ARM's Federation Square Competition Entry)	38
Figure 22	Boolean Knot, NMA	38
Figure 23	Canberra's Lost Axis (Plan)	40
Figure 24	NMA, the end of The Lost Axis	40
Figure 25	Boolean Sequence (ARM's Federation Square Competition Entry)	42
Figure 26	NMA, Solid Modelling Study (Main Hall)	42
Figure 27	No.1 Poultry Place, London	43
Figure 28	NMA, Parapet, Main Hall	43
Figure 29	NMA, Hall Plan	45
-	NMA, Unfolded Façades	
Figure 31	Diagrammatic Plan of the Jewish Museum, Berlin	46
Figure 32	NMA Superimposed Calligraphy Panel, unfolded and folded	47
Figure 33	NMA, Final Solid Modelling Form Study	48
Figure 34	NMA, Final Solid Modelling Form Study	48
Figure 35	NMA, Skylight, Main Hall	49
Figure 36	NMA, Glazing Detail	50
Figure 37	Sydney Opera House, Glazing Detail	50
Figure 38	GMB Layout	54
Figure 39	GMB, CATIA Wire Frame	55
Figure 40	Solomon R Guggenheim Museum, New York	56
Figure 41	American Centre, Paris.	57
Figure 42	CMR Site Context	5Ω

Figure 43	GMB, Site Context.	58
Figure 44	GMB Site Context, View to West	59
Figure 45	GMB, Site Context.	62
Figure 46	GMB, Gehry's Annotated Map of Bilbao.	63
Figure 47	GMB, View of Opposite River Bank	63
Figure 48	Metro Station Entry, Bilbao.	64
Figure 49	Vitra Design Museum, Weil am Rhein, Germany	64
Figure 50	Storey Hall, Swanston St Façade.	69
Figure 51	Storey Hall, Artefact Imprints (Swanston St Façade)	69
Figure 52	DZ Bank Headquarters courtyard, Berlin	81
Figure 53	DZ Bank Headquarters, Berlin.	81
Figure 54	Der Neue Zollhoff, Dusseldorf	97
Figure 55	Laminated Object Manufacture Model, Der Neue Zollhoff	97
Figure 56	RFP, Flow Diagram (after Tombesi).	121
Figure 57	Amcor Lounge, Resin Panel Wall, Victorian Art Centre, Melbourne	166
Figure 58	Amcor Lounge, Resin Panel Wall, Victorian Art Centre, Melbourne	166
Figure 59	NMA, Alternate Solid Modelling Form Study	172
Figure 60	NMA, Alternate Solid Modelling Form Study	172
Figure 61	NMA, Dimpled Pre-Cast Panels	176
-	NMA, Dimpled Panel File	
Figure 63	GMB, Early Sketch	178
Figure 64	Acton Peninsula Alliance Cost Implications (Peters et al. 2002)	187
Figure 65	Cost Implications (traditional)	189
Figure 66	GMB, Cladding Detail	250
Figure 67	Graphical Representation of Project Workflow	265

List of Tables

Table 1	Budget allocations for the NMA Project	23
Table 2	Traditions in Qualitative Methodology (Patton 2002 p.132)	136
Table 3	List of Interviewees.	146
Table 4	List of Interview Dates and Follow-Up Dates	151
Table 5	List of Secondary Codes used in Data Analysis	159
Table 6	Acton Peninsula Alliance Teams and their members	186
Table 7	Design Integrity Panel Members (Peters et al. 2002 p.51)	188
Table 8	Independent Quality Panel Members (Peters et al. 2002 p.53)	190
Table 9	Acton Peninsula Alliance Leadership Team Members	193
Table 10) Acton Peninsula Project Management Team	194

Abstract

The National Museum of Australia (NMA) (1997-2001) by architects Ashton Raggatt McDougall (ARM) in association with Robert Peck von Hartel Trethowan was commissioned by the Australian Commonwealth Government for the Centenary of Federation in 2001. It was conceived as a gift to the people of Australia and now stands on Acton Peninsula in Canberra, the nation's Capital. It is a visually complex manifestation of the design architects' (ARM) dialogue with the ambiguities of Australian history and national identity. The architectural realisation of these complexities was facilitated through advances in computer technologies and a complementary non-traditional procurement method, both at the leading edge of Australian architectural practice of the time.

Completed three years earlier was probably the most debated work of architecture of the 1990s, the Guggenheim Museum (GMB) (1991-98) in Bilbao, Spain, by Frank O. Gehry and Associates (FOG&A). This satellite museum of the Guggenheim Foundation of New York was heralded as the quintessential example of a kind of architecture only possible because of advances in computer technologies. Both visually complex museums were conceived as flagship projects and consequently share many political, functional, and cultural expectations. Both were procured outside the usual adversarial designer/builder paradigm of western architecture and featured the innovative use of three-dimensional (CAD) software for design, documentation and analysis.

The NMA project used a government instigated procurement method which was embraced by a group of design and construction companies who formed a joint venture known as the Acton Peninsula Alliance. This non-traditional or relationship-based procurement method required ARM to reassess their approach to generate and disseminate design data and their traditional relationship with other design and construction professionals. As part of this process, ARM were required to devolve some of their design authority to a project delivery team via a Design Integrity Panel and an Independent Quality Panel; both innovations integral to the Acton Peninsula Alliance.

The NMA project reframed many of the enduring professional relationships of Australian architecture and in so doing extended the skill set and expectations of the architects and others to include a more substantial engagement with 3D CAD and a procurement system which was less subject to many of the common impediments inherent in the more traditional processes.

Through a series of interviews with the architects and other stakeholders, a qualitative methodology was used to investigate the NMA as a case study which uses the GMB as an internationally recognised comparison. This thesis examines how these two projects have been successfully completed within time and budgetary constraints in an environment where flagship projects have had a history of highly publicised difficulties. It reveals that the successful realisation of the NMA was due to the relationships built or reframed as a result of this cooperative approach in conjunction with high levels of engagement with computer technologies. This is in contrast to the seamless flow of data and high levels of prefabrication integral to the success of the GMB.

Declaration

This thesis contains no material that has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made. I give my consent to this copy of my thesis, when deposited in the university library, being made available for loan and copy.

John Paul Swift

Adelaide

18 August 2006

Acknowledgements

To my family for their patience, understanding and support throughout the My thanks to Professor Antony Radford for his invaluable process. experience, and Dr Susan Shannon for her seemingly boundless enthusiasm, who both conducted themselves with the utmost professionalism and remarkable patience. To Ashton Raggatt and McDougall for allowing me access to their resources and willingness to engage with this thesis. To my colleagues amongst the staff and students of the School of Architecture, Landscape Architecture and Urban Design, of the University of Adelaide for the valuable feedback they gave me and for allowing me to participate in their Also to the staff and students of other institutions that helped my understanding. I would also like to thank all the interviewees who gave their time and attention and allowed me an insight into their worlds. Finally to the people of the Commonwealth of Australia whose financial support made this work possible through an Australian Commonwealth postgraduate scholarship award.

Dedications

To Melinda, Laura and James

Preface

Having witnessed the many diverse ways that computers in architecture were being employed in both education and practice, it became increasingly evident to me that there was a discrepancy between their intended use and their application. Hence, my interest in the subject of this thesis was originally stimulated by this divergence. During the very early stages of my research it became apparent that there were many factors outside that of the user's personal preferences or the design of graphical user interface that played a role in how computers for architectural design and production were applied.

The subtle idiosyncratic differences in the approaches of people to the software (as my pre-thesis observations showed) were sometimes due to a lack of understanding or an unwillingness to engage with the software as more than simply an *electronic pencil*. In short, software was used to emulate manual drafting and not to explore the advanced functionalities that were available but were not seen or understood as relevant to architecture. At the same time as my early observations, Computer Aided Design (CAD) in the aviation, automotive, naval and manufacturing industries were having major industry changing effects on form making and the speed and automation of production. It seemed difficult to reconcile the use of CAD in architecture with its use in other design/production professions without a better understanding of what other factors influence this divergence.

My research would show that the pragmatic approach of the Architectural Engineering and Construction (AEC) sector would prove to be a substantial influence on the use of CAD and other computer technologies. As a result, my interest was refocused to the use of architectural computing for more than basic 2D drawings and 3D visualisations; the two most dominant uses in architecture. This new direction meant that the research became increasingly concerned with how people relate through the technical, personal and professional media and how these human and non-human factors complement each other and interact to produce unique, rewarding and successful outcomes.

This thesis which was originally inspired by watching people using computer technologies, evolved through purely technical considerations, and finally returned to questions concerning people's use of computer technology in architecture.