Chapter 4
A New Bayesian Framework for
ANNSs

4.1 INTRODUCTION AND MOTIVATION

The primary motivation for developing a Bayesian framework applicable to ANNs in the
field of water resources modelling is that Bayesian methods allow the uncertainty in in-
ferences made from data to be explicitly quantifi€glmnan et al.2004). As discussed

in Section 2.3.3, there are two levels of Bayesian inference that can be performed in ANN
modelling: inference of the network weights under the assumption that the selected ANN
architecture is correct (Bayesian training and prediction); and inference of the appropriate
model architecture given the estimated weight distributions (Bayesian model selection).
It is considered that the adoption of a Bayesian framework may lead to the wider accep-
tance of ANNs in the field of water resources modelling, as these two levels of inference
work hand in hand to help address the three most significant issues facing ANN mod-
ellers in this field; namely generalisability, interpretability and uncertainty, as discussed
in Section 2.2.5.

Firstly, the generalisability of an ANN may be improved through Bayesian training,
as a range of plausible weight vectors (in the form of the posterior weight distribution)
is considered when making predictions, rather than allowing a single, possibly incorrect,
weight vector to completely dominate. This, together with the incorporation of ‘regulari-
sation’ type priors, helps to overcome some of the difficulties associated with training an
ANN due to the existence of local minima on the error surface and the potential of being
overtrained. As it was seen in the previous chapter (and summarised in Appendix A), the
“optimal” weight vector obtained during training, and hence the predictions generated,
can be sensitive to the initial weights, the size of the network and the training method
used. However, since the weights do not have any physical interpretation, it is generally
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impossible to determine which set of weights results in the best representation of the data-
generating relationship. Simply finding the weight vector that provides the best fit to the
training data does not necessarily result in a correct model of the system, because, due
to the stochastic nature of hydrological systems, each different set of training data would
most likely yield a different set of weights. Bayesian training overcomes the need to de-
fine an “optimal” weight vector by accounting for all sets of weights that provide a good
fit to the training data; hence improving the likelihood of correctly describing the un-
derlying system. Additionally, Bayesian model selection, which automatically penalises
complexity, may help to improve the generalisability of an ANN by enabling the selec-
tion of the smallest network architecture suitable for modelling the data; thus, reducing
the potential of overfitting.

Secondly, the interpretability of an ANN may be improved under the Bayesian mod-
elling paradigm, as smaller, simpler models, chosen through Bayesian model selection,
are more transparent, or interpretable, than large complex models with many weights.
Furthermore, as it was shown in Section 3.4, input importance measures used to describe
the relationship modelled by an ANN can be sensitive to the weights obtained during
training. If a single incorrect weight vector is used in the assessment of a trained ANN,
misleading information about the underlying system may be extracted from the optimised
weights. Therefore, ANN interpretability can also be improved through Bayesian train-
ing, as the posterior weight distribution may be used to express the input importance
measures as probability distributions which quantify the uncertainty in these estimates.

Finally, Bayesian training allows uncertainty in the weight estimates to be explicitly
accounted for, which can significantly enhance the usability of the resulting predictions.
Relying on a single optimal weight vector overestimates the confidence of the model pre-
dictions, as the uncertainty associated with the weight estimates is not incorporated. Sub-
sequently, this can lead to inappropriate design and management decisions being made if
the predictions are taken as being 100% reliable. On the other hand, by accounting for
the full range of plausible weights, probabilistic predictions can be generated, enabling
prediction intervals to be assigned that quantify the level of confidence in the model pre-
dictions and allow decisions to be made based on a known level of reliability. Bayesian
model selection also helps to address the uncertainty issue by increasing the identifiability
of weights. The weights of larger models, and therefore, the resulting predictions of large
ANNSs, have a higher degree of associated uncertainty than those of smaller models, since
the information contained in the training data is more sparse in relation to the number of
weights as the size of the network increases. Therefore, if the smallest model capable
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of fitting the training data can be selected, the information in the data can be used more
efficiently to estimate the values of the weights; thus, minimising the uncertainty in the
ANN weight estimates and the associated predictions.

In this chapter, a new Bayesian framework for ANNSs, incorporating a “Bayesian train-
ing and prediction” component and a “Bayesian model selection” component, is proposed
and the methods comprising the framework are described. A review of some of the sta-
tistical methods commonly used in Bayesian analysis is also presented to aid the under-
standing of the methods proposed in this chapter and explain how the proposed methods
were arrived at. Based on this review, the methods adopted in the proposed framework
were selected for their ability to produce accurate results, while maintaining simplicity
and ease of implementation and coding. The simplicity of the framework is particularly
important for its adoption by practitioners in the field of water resources modelling, as
it is likely that the difficulties associated with coding the more complex Bayesian train-
ing methods proposed primarily in the statistical and computer sciences literature (see
Section 4.2.2) have hindered their use in this field, with practitioners opting to disregard
prediction uncertainty and relying on deterministic predictions, rather than apply such
methods. The finer details of the proposed methods are determined through investigation
and application of the methods on the three synthetic data sets used in the previous chap-
ter (see Section 3.4.1). Fine-tuning of these details was necessary to ensure the successful
implementation of the overall Bayesian approach.

4.2 BAYESIAN TRAINING AND PREDICTION

As discussed in Section 2.3.4, training an ANN and making predictions using Bayesian
methodology involves solving equations (2.14), (2.16) and (2.17). Possibly the most
straightforward way of doing this involves the use of Gaussian approximations, where the
posterior weight distribution is approximated by a Gaussian distribution centred on the
mode found (i.e. the optimal weight vector found using deterministic training methods)
with a variance that can be calculated from the Hessian. However, the hyperparameters
and the multimodal nature of ANN weights present a problem for such an approxima-
tion, as the resulting posterior is by no means Gaus$igal( 1993). Therefore, in this
research, only more sophisticated methods based on Markov chain Monte Carlo methods
will be considered.
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4.2.1 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) methods provide a means for generating a sequence
of samplest, 0, ..., 0, from virtually any continuous distribution, darget density
p(f]y). This target density need only be known to within a multiplicative constant, as
follows:

ply) =p*(0ly)/Z (4.1)

wherep*(f|y) is the unnormalised density, which must be calculable for a given vector
0, and Z is the (possibly unknown) normalising constamhyer, 2001). Such methods

are generally used when it is impossible (or computationally infeasible) to sample from
p(fly) directly and, although there are other methods available for generating samples
from p(f]y) (e.g. uniform sampling, rejection sampling), when applied carefully, MCMC
methods are the easiest way to obtain reliable res@k#fan et al.2004). When MCMC
methods are applied to simulate a Bayesian posterior distributiofly) = p(y|0)p(0)

and Z is the normalising constanty). The fact that MCMC methods do not require
knowledge of7 is a major advantage, since the calculatiop(@f) may be complicated.

To generate samples frop{d|y) using MCMC methods, the process is started at
an arbitrary point), and samples are drawn sequentially, using a transition distribution
T(60,|6,-1) to represent the probability of moving from poifjt ; to pointé,. Since the
transition distribution depends only on the previous state, the generated sequence
forms aMarkov chain After a large number of iterations, the samples generated from the
simulation converge to a stationary distribution corresponding to the target de@s$ity.
However, in order for this to be true, the following two conditions must be satisfied:

1. The generated sequence musebgodic which means that the Markov chain must
converge to a stationary distribution. This will be the case if the Markov chain is
irreducible and aperiodic, which means that there must be a positive probability of
eventually reaching any state from any other state and that the number of moves
required to move from one state to another is not required to be a multiple of some
integer Chib and Greenbergl995).

2. The target distributiop(6|y) must be amnvariant distributionof the Markov chain
constructed under the transition distributi®(-). It has been shown bghib and
Greenberg1995) that this will be the caseTf(-) satisfies theletailed balancgor
reversibility, condition:

T(0a]0s)p(0]y) = T(06]0a)p(0uly) (4.2)
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A variety of Markov chains may be constructed to meet these requirements. The three
simplest and most commonly used MCMC algorithms, namely the Metropolis-Hastings
algorithm, the Metropolis algorithm and the Gibbs sampler, are described in this sec-
tion, as well as a variation of the standard Metropolis algorithm known as the adaptive
Metropolis (AM) algorithm.

4.2.1.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithniHastings 1970) is the most general of the MCMC
algorithms described in this section. The transition fiym to 6, is determined, firstly,

by employing goroposal density), conditional ord;_;, to generate a candidate stéte
where@ may be any fixed density from which samples can be dravacKay, 2003).
However, the use af)(6*|0;_,) alone will most likely not satisfy the reversibility condi-
tion necessary for the Markov chain to converge to the target distribution. Therefore, an
acceptance probability is introduced to determine whether or not to accept the candidate
state, which corrects this condition and enables the Markov chain to continually adapt to
the target distribution@hib and Greenbergl995). Thus, transitions frof)_; to 0, are

made according to:

T(6:]6-1) = Q(07[0r—1)e(67(6;—1) (4.3)

It is shown inChib and Greenberl995) that, in order to satisfy reversibility, the accep-
tance probability must be set to:

(0" |y)Q(0%10; 1)
P (01 ly)Q(0:-1]6%)

Thus, the algorithm proceeds as follows (as adapted B@man et al(2004)):

a(0*10;,_1) = min

1 (4.4)
1. Initialise the algorithm with an arbitrary starting pothtfor which p*(6]y) > 0.
2. Fort=1,2,...

(a) Sample a candidate from the proposal distributio®(6*(6;_1).

(b) Evaluate the ratios* (6*[y) /p* (6.—1ly) andQ(6"(6;:1)/Q(6:-1y)-
(c) Generate: from U(0,1) and if:

u < af7]6,1) (4.5)
setd, = 6* (i.e. accept*), otherwise set, = 6, , (i.e. reject*).

3. Return the sampled), 6,,...,0,}.
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The samples are only regarded as draws from the target distribution after the algorithm
has converged to a stationary distribution and once the effects of the initial starting value
6, are small enough to be ignored.

The Metropolis-Hastings algorithm is specified by its proposal dergity|6; 1),
which, as mentioned, can be any fixed density from which samples can be drawn. How-
ever, the rate of convergence to the stationary distribyti@fy) can crucially depend
on the form of the proposal distribution adopted. Some general families from which
may be selected are discusseimb and Greenber995). Typically,Q is chosen such
that it can be easily sampled and evaluated and so that only few tuning parameters (e.g.
location and scale parameters) require specification.

4.2.1.2 The Metropolis Algorithm
The Metropolis algorithmNletropolis et al, 1953) is a special case of the Metropolis-
Hastings algorithm, or rather, the latter is a generalisation of the former, since the Metropo-
lis algorithm was developed first. The Metropolis algorithm requires that the proposal
distributionQ(0*|0,_) is symmetric, satisfying the conditia@(6*(0;_1) = Q(6;,_1|0%).
Therefore, the acceptance probability reduces to:
; | P ("]y)

a(0*|0,_1) = min lm, 1} (4.6)
Thus, if a jump from¥,_; to * goes “uphill”, it is always accepted, whereas if the jump
goes “downhill”, it is only accepted with probability* (6*|y)/p*(0:-1|y). This is illus-
trated in Figure 4.1, where a jump frofig to ¢; would occur with certainty; however, a
jump from6; to 6, would occur with probabilityy* (65 ]y ) /p* (61 ]y ).

p*(&ily)

p*(&ly)
p*(&aly)

& 6 &,

Figure 4.1 The probability of a jump using the Metropolis Algorithm
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A special case of the Metropolis algorithm can be defined by the relation
Q(6*16,-1) = Q(0,_1— 0*). Here, the candidates are drawn according to:

0 = 0,1 +v (4.7)

wherew is called the increment random variable and follows the distributio(Chib

and Greenbergl1995). As the candidates are equal to the previous value plus noise, the
sequence of samples generated fornmraralom walkchain. The proposal distribution
employed by this very popular algorithm has a form that is indexed by a scale parameter
(Roberts 1996). A simple Gaussian distribution centred on the current 8tatewith

fixed covariancé: is a common choice fof)(6*|6;_,) since the Gaussian distribution is
symmetric and is one of few high-dimensional densities from which it is easy to draw
samples MacKay, 2003). The scale parameter chosen@ohas important implications

on the convergence properties and efficiency of the algorithm, particularly in the case of
complex models with correlated parameters. Shown in Figure 4.2 is an example of a bi-
variate target density together with two example proposal distributignand@,. Using

the larger proposal distributiof;, denoted by the dashed line, it can be seen that a jump
made from the state,_; in almost any direction will result in a decreasepitif|y), and

as such, a large proportion of jumps will be rejected leading to slow convergence of the
chain. On the other hand, if the smaller proposal distribufpens selected, the accep-
tance rate will increase; however, the algorithm will take longer to trayéfgéy ), which

will again lead to slow convergencélfyer et al, 2002). This problem is exacerbated in
problems where parameters in the target distribution are highly correlated, since the scale

p(Ely)

Q1(d16.1)
616

S

Figure 4.2 The effect of the scale of the proposal distribution used by the Metropolis al-
gorithm. @, and Q. represent two proposal distributions having larger and smaller scale
parameters, respectively. Ellipses denote contours @fy ).
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of the proposal must be made very small to ensure sufficient acceptance of states. Many
iterations will therefore be required to move between effectively independent states.

4.2.1.3 The Gibbs Sampler

The Gibbs sampleiGeman and Gemari984) is the simplest form of MCMC algorithm
and is also a special case of the Metropolis-Hastings algor@eingan et al.2004). The
Gibbs sampler is defined in terms of subvectorg ahd the transition distributions are the
conditional distributions of the joint distributigst (A|y). If 6 is divided intol subvectors

6= {0W,0@, . .. 60}, the transition distribution for thgth subvector is:

T(0107)) = p* (0110, y) (4.8)
where

09 = {9? L, 09D gty .,9§Q1} (4.9)

The acceptance probability(6,|6; 1) is always equal to one due to theoduct of kernels
principle, which states that if the transition distributions are conditional distributions of
p*(0]y), then the product of the transition distributions pa&|y) as its invariant dis-
tribution (Chib and Greenbergl995). A single iteration of the Gibbs sampler involves

[ steps, where each subvector is drawn in turn conditional on the other subvectors, as
follows:

1 1) l
915 ) ~ (015 "gt 17"'79£217Y)
2 2 3 l
915 ) ~ ( ( )’0 6)15—)17”-7015—)17}’)
l
0153) ~ P ( t ’915 ) 152)7 91§4—)17 T 015—)17 Y)a etc. (410)

A requirement of the Gibbs sampler is that it is possible to generate samples directly
from the conditional distributions. For many problems, this will not be possible since
the conditional distributions may be complex with non-standard forms. However, for
problems where the conditional distributions have standard forms for which sampling
methods have been developed, the Gibbs sampler is attractive due to its simplicity in both
implementation and coding and is often the first choice of MCMC method. Additionally,
unlike most MCMC methods, the Gibbs sampler has no adjustable parameters, whichis an
advantage in that it minimises the amount of tuning required to obtain good performance
of the algorithm. A disadvantage of the Gibbs sampler, however, is that it can be quite
inefficient if the subvectors daf are correlated, since many iterations are needed to move
from one state to another that is largely independent of the first. Moreover, like the random
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walk Metropolis algorithm, the Gibbs sampler explores the search space by a random
walk, which further slows the rate at which independent states are visltal (1993).

For problems where some conditional distributions in a model can be sampled from
directly and some cannot, a combination of the Gibbs sampler and Metropolis algorithm
may be used, with the Gibbs sampler used where possible and the Metropolis algorithm
used otherwise.

4.2.1.4 The Adaptive Metropolis (AM) algorithm

The adaptive Metropolis (AM) algorithm, developedigario et al.(2001), is a variation

of the random walk Metropolis algorithm that was designed to overcome the problems
associated with selecting an appropriate scale parameter for the proposal distribution.
This algorithm employs an adaptation strategy that forces the proposal distribution to
approach an appropriately scaled Gaussian approximation of the target density, which
increases the efficiency of the algorithm and improves the rate of convergence to the
stationary distribution.

The proposal distribution used in the AM algorithm is a multivariate Gaussian distri-
bution centred on the current state; with a covariance calculated based on all of the
previously sampled staté$ = >,(o,...,6;,_1). This ensures that information gained
about the target distribution throughout the simulation is used to adapt the proposal to-
wards this distribution, allowing the algorithm to overcome the random walk properties
of the standard Metropolis algorithm. Apart from this, the definition of the algorithm is
the same as the general Metropolis process described in Section 4.2.1.2. However, since
Q(6*|6o, .. .,0,_1) depends on all of the previous states, it is no longer symmetric, nor is
the process generated Markovian. Nevertheless, it was provdadmyo et al.(2001) that
the AM process still has the correct ergodicity properties, which enable it to converge to
a stationary distribution, under the assumptions that the target distribution has a compact
support and is bounded from above. These assumptions correspond reasonably well to
practical situations.

To initialise the algorithm, an arbitrary, positive definite covariance matkti, is
selected. For an initial periag > 0, the covariance of the proposal is fixed at the initial
covariance, after which time the adaptation strategy begins, as follows:

>0 t <ty
Y = - 4.11
! { CQCOV(eo, 91, R ,Qt_l) + 0261d t >t ( )

wherec is an adaptive scaling parameter used to maintain an appropriate acceptance rate,
e is a small constant used to ensure thatwill not become singular, andi; is the d-
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dimensional identity matrix, witll being the dimension df. It is worth mentioning that
the actual value of is not important for the performance of the algorithm. For ¢,
calculation of¥; satisfies the following recursion formula:

t—1
t

2 - — [
Sl = %+ % [t 0,107 | — (t +1) 0,07 + 0,07 + eI (4.12)

whered, = 1/(t+1) 3_!_, 6;. Therefore, the covariance may be updated at each iteration
with little additional computational cost. The choice of the initial fixed petipghould
reflect the confidence in the initial covariaricg The longer this period, the more slowly

the adaptation is felt and the greater the effect of the initial covariance on the simulated
draws. Therefore, if the initial fixed period is short, even a poor initial choiéa chould

only have a minor impact on the overall convergence of the algorithm.

The AM algorithm has been found to have a number of advantages over other vari-
ants of the Metropolis-Hastings algorithm in terms of efficiency, both computational and
statistical, and ease of uskldrshall et al, 2004). Unlike the conventional Metropolis
and Metropolis-Hastings algorithms, great care is not required in selecting an appropri-
ate proposal distribution and, in fact, the only requirement is that the initial covariance
Yo be strictly positive definite and scaled such that the algorithm moves at least a little
during the initial period,. Furthermore, by using the covariance matrix of the weights
to determine jumps to candidate states, interactions between the weights are automati-
cally accounted for, allowing the chain to move more efficiently through weight space.
However, although the AM algorithm has been successfully tested on problems with up
to 200 parameterdaario et al, 2001), it has been noted Ibyaario et al. (2005), who
proposed a variation of the algorithm for high dimensional problems, that the AM algo-
rithm becomes less robust when applied to problems with greater than 50 parameters. As
the variation of the AM algorithm proposed biaario et al.(2005) is based on updating
a single parameter at a time, this algorithm will not be considered in this research, since
the target function would need to be evaluated separately for each parameter, increasing
complexity and computational cost.

4.2.2 MCMC Methods Previously Applied to ANNs

When the MCMC methods discussed in Section 4.2.1 are applied to ANN training, the
generic parametéris substituted with the network weighisand/or the hyperparameters

{02, 03}. While the Gibbs sampler may be a convenient and simple way to sample the
hyperparameters, there appears to be no reasonable way of applying Gibbs sampling to
w, since the use of this method depends on the ability to easily sample from the full
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conditional distribution of one parameter, given the values of all other parameters and the
data, which is extremely messy and multimodal for ANN weigiNed] 1996a). The
Metropolis algorithm, on the other hand, may be used to sampl&owever, owing

to its random walk nature, many authors warn against the use of the simple Metropolis
algorithm for ANN training, as the generally high dimensionwofand the interactions
between the individual weights make this algorithm prohibitively sibfa¢Kay, 1995b;

Neal 1996a;Rasmusseri996). A number of MCMC methods have been proposed for
training ANNSs, of which the approach developed¥yal(1992, 1993, 1996a) is the most
widely advocated. In this approach, the hyperparameters are sampled using the Gibbs
sampler and the weights are sampled using the hybrid Monte Carlo (HMC) algorithm
of Duane et al.(1987), as mentioned in Section 2.3.4. In this algorithm, the stationary
distribution is defined by(wl|y) « exp{—E(w)}, where E(w) is referred to as the
potential energy function of the “position vecto#’ and is defined by (2.13). Each weight

is assigned a momentum variable, which collectively form the vact@othw andv are
updated together in a Metropolis step ushigmiltonian dynamicswhere a jump towv*

is determined largely by the momentumwhich is updated according to the gradient of
E(w). Therefore, successive jumps tend to be in the same direction, which overcomes the
random walk nature of simple Metropolis. The acceptance probability is employed to stop
movement when regions of low probability are reached, at which point the momentum is
altered until jumping can continue. The HMC method of Neal has been adopted in a
number of studies, including those BRsmusse(i1996), Vivarelli and Williams(1997,
2001),Husmeier et al(1999),Vehtari et al.(2000) and_ampinen and Vehta(2001).

Muller and Rios Insug1998) andRios Insua and Nller (1998) proposed a MCMC
method for training ANNs based on the reversible jump metha@reen(1995). Using
this method, the model architecture is also treated as a variable parameter, which helps to
overcome inefficiencies due to multiple modes. At mdsthidden nodes are considered
and indicatorsd; are associated with each noge= 1,...,J* to determine whether
the nodes are included or not. If a noglés included,d; = 1; otherwise,d; = 0.
A prior distribution is included on the indicators, which enables any number of hidden
nodes)J < J* and favours parsimony. Additionally, the algorithm used to update the
weights treats the input-hidden weightsand the hidden-output weights$ separately
(i.e. w = {~v,3}). This enables linearization of the model in termssadind the matrix
of hidden node output®, asy = (Z + [y, which in turn allows marginalisation over
£ to compute a marginal likelihoog(y|v). It also enables; to be sampled using the
Gibbs sampler and allows to be updated using the Metropolis algorithm, based only
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on the values of the hyperparameters. Combined with a variable model architecture, it is
claimed byMuller and Rios Insu#1998), that this algorithm allows for “fast and efficient
mixing over various local modes in the posterior distribution”.

de Freitas et al(2000) proposed yet another sequential MCMC method to train ANNS.
This method is based on extended Kalman filter (EKF) weight updates, which incorporate
gradient information, and importance sampling, which is a precursor to the Metropolis
algorithm Gelman et al.2004). For each iteration of this algorithm, a sample oandi-
date weight vectors/* is selected using an EKF step. These candidates are then assigned
corresponding importance ratios, calculated using the importance sampling method, and
each candidate is accepted based on the normalised importance ratios of the sample. If
a candidatew; is not acceptedw, ; is selected by resampling a weight vector from the
setwj,...,w; based on its normalised importance ratio, such that vectors with larger
importance ratios end up with a greater number of copies in the sample. ., w;,. It
is claimed that this algorithm is an improvement over simple MCMC methods in terms of
computational time and accuraaye(Freitas et al.2000).

Lee(2003) advocates the use of a simpler MCMC algorithm to those discussed above
and proposed a method similar, yet less complex, to that propodedilbsr and Rios In-
sua(1998). While this algorithm is also based on the linearization of the model in the
form of y = (Z + [y, which enables’ to be sampled using the Gibbs sampler, it as-
sumes a non-variable architecture. A noninformative prior distribution in the form of
p(v,8,02) o« 1/0; onrestricted weight space is also assumed, which significantly simpli-
fies the Metropolis step used to sampldt was shown that this method was comparable
to the more complex MCMC algorithms applied to ANNs in terms of accuracy; however,

a noted disadvantage of the method is that weight regularisation is not incorporated and
overfitting may occur.

Recently,Liang (2005) proposed an evolutionary Monte Carlo (EMC) algorithm for
simultaneously training and selecting the complexity of an ANN by sampling from the
joint posterior of the weights and the network structure. Each connection in the network
Is given an indicator function, which determines how effective the connection is. Collec-
tively, the indicator functions then determine the model structure; however, this requires
that a maximum number of hidden nodes be specified. The EMC algorithm involves using
genetic mutation and crossover operators to generate a new population of samples, which
are then accepted or rejected based on the Metropolis-Hastings rule. A disadvantage of
this algorithm is that it involves a number of user-defined parameters that may affect the
performance of the algorithm.
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4.2.3 Proposed Bayesian Training Approach

In this section, details of the Bayesian training approach proposed in this research are
presented, together with issues that require further investigation. The methods and de-
tails presented were selected based on a review of the available MCMC methods and
the approaches previously applied for ANN training, while keeping in mind that a major
objective of the proposed approach is simplicity.

4.2.3.1 Proposed Likelihood Function

Ideally, for a model to correctly describe a system, the model residuals should be inde-
pendently and identically distributed (i.i.d.) with zero mean and constant variance (i.e.
white noise) and should be independent of the model inputs. The likelihood function pro-
posed in this research is that given by (2.11), which makes the assumption that the model
residuals: correspond to additive, uncorrelated Gaussian noise in the observed response
data. This is a common choice fbfw), since its easy evaluation and few parameters (the
distribution is controlled by a single variance hyperparamejgresults in a simple anal-

ysis. However, apart from simplicity, there are other good reasons to assume a Gaussian
error model. Firstly, when the errors in the data are the sum of a large number of small
independent component errors, gentral limit theorenstates that the distribution of the
errors should be approximately GaussiBrsfiop 1995). Therefore, deviations from nor-
mality tend to indicate systematic errors which have been unaccounted for. Secondly, it
is often the case that data are roughly normally distributed, either in their original form or
in some simple transformation such as the logaritBmx(and Tiag 1973); hence, if the
functional form of the model is appropriate, the residuals should also be roughly normally
distributed.

In many practical problems, the Gaussian residual model with fixed variance may be
inappropriate. As well as being subject to random disturbances in the response data, the
modelled outputs are affected by measurement and sampling errors in the input variables
and the lack of a correctly specified model. This may result in non-Gaussian residuals
and dependence between the residual variance and the inputs. Therefore, a more robust
choice forL(w) might be Student’s-distribution with unknown degrees of freedom, as
suggested byampinen and Vehtarf2001), which has longer tails than the Gaussian
density, allowing it to accommodate occasional unusual observations. However, for sim-
plicity and consistency with standard Bayesian regression methods and the deterministic
error model used in this research (minimising the SSE is equivalent to maximising the
likelihood under the assumption of Gaussian residuals), the Gaussian likelihood function
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will be adopted. Transformations to approximate normality will be applied to the data if
necessary to help meet the assumptions of this error model (i.e. to decrease the effects of
outliers in the data - see Section 3.2.3.2).

4.2.3.2 Proposed Prior Distributions

In this research, three different formsgfw) will be investigated to determine the most
suitable prior distribution fow to use in the proposed Bayesian training approach. These
priors were selected by taking into account their simplicity, their effect on generalisability,
their provision of insight into the model, and how realistically they represent actual prior
knowledge of the weights. The different priors considered are described as follows:

Noninformative uniform prior: As ANN weights have no physical interpretation, little
can be known about the values of these parameters before observing the data. In
such cases, it is often recommended to chooseranformativeprior distribution
that plays a minimal role in the posterior distributidreg¢ 1989). Such a prior
Is said to ‘let the data speak for themselves’ as it does not restrict the estimation
of the posterior Gelman et al.2004). The use of a wide uniform prior distribu-
tion U(—a, a) specifies an equal likelihood of positive and negative values, but an
otherwise lack of prior knowledge about the values of the weights. The value of
a is fixed and is selected to incorporate a wide range of weight values for which
the likelihood may be appreciable. Therefore, this prior involves no variable hy-
perparameters, which results in the simplest MCMC training procedure. However,
a disadvantage of this prior is that, since the weights are effectively unrestricted,
no form of regularisation is incorporated into the training approach and overfitting
may occur. Nevertheless, as simplicity was of major importance in developing the
Bayesian training approach proposed in this research, this prior was considered re-
gardless of the fact that it does not incorporate weight regularisation.

Hierarchical prior: As an alternative to the use of a noninformative prior to define the
lack of prior knowledge about the weights, a hierarchical prior distribution, gov-
erned by unknown hyperparameters, may be used. The hyperparameters are then
given rather noninformative hyperprior distributions which allows their values, and
hence the prior distribution, to be determined from the data, as discussed in Sec-
tion 2.3.4.1. To reiterate, a suitable form of hierarchical priorvors given by
(2.15), which is the product @¥ independent normal distributions, defined by zero
means and different variance hyperparametgys. . ., o5, ., whereG is the num-

b wG!

ber of weight groups considered. This type of prior is consistent with regularisation
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theory, allowing unnecessary connections to have smaller weights. It is also con-
sistent with the fact that the values of the weights have an equal likelihood of being

positive or negative and have a finite variance. Four weight groups were consid-

ered, corresponding to the input-hidden layer weights, the hidden layer biases, the
hidden-output layer weights and the output biases, as this is generally the minimum
requirement for suitable regularisatidbatle 2002).

ARD prior: Using the automatic relevance determination (ARD) methodlatKay
(1995a) andNeal(1996a), the hierarchical prior discussed above is employed; how-
ever, the input-hidden layer weights are further divided into groups associated with
each input variable, such that the weights on connections exiting an input have a
prior distribution controlled by a hyperparameter associated with that input. Thus,
the number of weight groups and, hence, the number of hyperparameters consid-
ered isk' + 3, whereK is equal to the number of inputs. Since the hyperparameters
determine how closely the weights are distributed about the zero mean, the use of
this form of prior enables the relevance of each input to be determined automati-
cally from the data as the values of the hyperparameters are adbjet@id1(996a).

In terms of realistically describing prior knowledge of the weights, the ARD prior
can be considered correct, given the knowledge that some inputs may be less rel-
evant than others. However, of the prior distributions investigated in this research,
this prior results in the most complex MCMC training method, as it involves the
greatest number of hyperparameters, for which hyperprior distributions must also
be specified.

Neal (1996a) applied the following three levels of ARD prior to a number of test
cases to demonstrate that ARD was indeed able to suppress the values of weights
associated with irrelevant inputs:

e No ARD - corresponding to the hierarchical prior described above.
e 1-level ARD - all hyperparameters were independently given rather vague hy-
perpriors.

e 2-level ARD - an additional level of hierarchy was used, whet@palevelhy-
perparameter, common to all inputs, was used to control the lower level input-
hidden weight hyperparameters. The top-level hyperparameter was given a
very vague hyperprior, while lower level hyperpriors were less vague.

It was also shown that, in some cases, the use of ARD could lead to an improvement
in predictive performanceHusmeier et al(1999) extended this investigation by
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applying the three levels of ARD priors to five different benchmark data sets in
order to compare the resulting predictive performances of the models developed and
evaluate the efficiency of the ARD scheme. However, the study was inconclusive,
since each level of ARD prior resulted in at least one best and one worst solution
for the different benchmark data sets, and no prior ever obviously resulted in better
performance than the others. However, it was confirmed that the use of either 1-
level or 2-level ARD resulted in the suppression of irrelevant input-hidden weights.

Since the 2-level ARD prior results in an increase in complexity, yet, provided no
obvious advantages in the comparisons, only 1-level ARD will be considered in this
research.

4.2.3.3 Proposed Hyperprior Distributions

For the likelihood and prior distributions considered in this research, the hyperparameters
(e.9.02 andoy, = {0},,... 0%, }) are all Gaussian variances. A suitable prior for the
Gaussian variance is the scaled inverse chi-squared distribytign®, S°), wherev” and

SY are degrees of freedom and scale parameters, respectively, chosen to express the level
of prior knowledge ILee 1989). This is a naturalonjugate priorto the Gaussian likeli-

hood, which means that, for this likelihood, the posterior distribution will have the same
parametric form as the prior. Recall that the full conditional distributions;ptind o,

are given by (2.19) and (2.20), respectively. Generating samples from these distributions
is relatively easy if conjugate priors are chosen, since it is then knowrp@h,%ntvv, y)

andp(o2, |w,) are also scaled inverse chi-squared distributions, given by:

SO0 + S, N
p(o2lw,y) ~ X2 (V; — Q4 NS = %) (4.13)
Y
SO Ve + Sw,d
p(ofvg]wg) ~x 2 (Vjvg = ngg +dg, Sy, = gyog —d J (4.14)
Wy 9

respectively, whers, is equal toy "~ (y; — f(x;, w))?/N, Sy, is equal toy 52, w?/d,,
N is the number of training samples arglis the dimension of thgth weight group.
Draws from these distributions may be easily obtained by samplifigpm the y2. dis-
tribution and lettingr? = v*S*/ X .

To enable;3 andagvg to be determined from the data, it is necessary that the respec-
tive hyperpriorg(c?) andp(afvg) are rather noninformative. In general, the smaleis
relative to/N andd,, the less informative is the scaled inverse chi-squared prior distribu-

tion (Gelman et al.2004). This can be seen in Figure 4.3, which shows$Ratffects the
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Figure 4.3 Effect of (a) scales® and (b) degrees of freedom? on the scaled inverse chi-
squared distributiory —2(2?, S°).

location of the scaled inverse chi-squared distribution, wifllaffects the scale. Details

of the hyperpriors are typically uncritical unless extreme or unrealistic values are chosen
for their modesKlusmeier et al.1999); however, botheal (1996a) andHusmeier et al.
(1999) caution that the use of very vague priors may slow convergence of the MCMC
sampling procedure, which may lead to poor predictive performance if the posterior has
not been adequately sampled.

4.2.3.4 Proposed MCMC Sampling and Prediction Approach

Given the advantages of the AM algorithm over the more straightforward MCMC sam-

pling procedures (e.g.

the random walk Metropolis algorithm), and its simplicity in

comparison to some of the more complex methods discussed in Section 4.2.2, the AM
algorithm will be employed to sample the weight vectors in the proposed MCMC sam-
pling approach. Furthermore, since the use of conjugate hyperprior distributions enables
straightforward sampling from the full conditional distributions of the variance hyperpa-
rameters, the Gibbs sampler will be employed to sample the hyperparameters. Therefore,
the proposed MCMC Bayesian training approach follows a two-step iterative procedure,
where, in the first step, the hyperparamet{er%, o2} are held constant while the weight
vectorw is sampled fromp(w|o?,, 07, y) using the AM algorithm, while, in the second
step,w is held constant while§ andcs? are sampled their respective full conditional dis-
tributions (given by (4.13) and (4.14), respectively) using the Gibbs sampler. This is con-
sistent with the MCMC approach used Ngal(1996a) and discussed in Section 2.3.4.2,

Page 153



Chapter 4 — A New Bayesian Framework for ANNs

except that the complicated HMC algorithm has been substituted with the much simpler
AM algorithm. Due to the simplicity of both the AM algorithm and the Gibbs sampler,
programming errors are less likely in the implementation of this algorithm than if a more
complex approach was used.

To initialise the training procedure, arbitrary valueswaf, o7, o3,  andy, are re-
quired. Appropriate values of, ; ando?, , areS, andS,,, respectively, which define the
location of the prior distributions for these hyperparametdesario et al.(2001) suggest
using maximum likelihood estimates @f, which give a rough estimate of the location of
the posterior distribution, to avoid the AM algorithm starting slowly. Not only does this
increase convergence speed, but these values provide a useful check of the accuracy of the
Bayesian training algorithm. Therefore, in this reseasehwas set equal to the deter-
ministic estimatev obtained by minimising the SSE (see ChaptetBario et al.(2001)
also suggest that ¥, is chosen to approximate the covariance of the target distribution,
the AM algorithm will be more efficient during the initial stages of the simulation. An ap-
proximation of the posterior covariance is describedviacKay(1995a), which involves
evaluating the Hessian matrix of the regularised error function, given by (2.13). However,
as discussed in Section 2.2.5.3, this Hessian matrix is often ill-conditioned, resulting in a
(nearly) singular covariance matrix. This, in turn, can cause instability of the AM algo-
rithm, as use of the recursion formula (4.12) means that the covariance is updated based
on an initial ill-conditioned matrix. Nevertheless, for the AM algorithm, the only actual
requirements for the choice &f; are that it is positive definite and allows the algorithm
to move at least a little in the initial fixed covariance stage. Therefore, in the proposed
implementationy, is defined by:

012”170 0 0
0 o2 0
S = @ X | wf’o L (4.15)
0 0 0120470

Gelman et al(2004) give a number of recommendations for achieving optimal efficiency
using a multinormal proposal distribution centred on the current weight state with the
same shape as the target distribution, such as that used by the AM algorithm. One of
these is that the optimal jumping rule has an acceptance rate of approxiritel§or
dimensiond > 5), with the most efficient scaling parameter being 2.4/v/d. Gelman

et al. (2004) also recommend that this scaling parameter should be tuned up or down if
the acceptance rate is too high or low, respectively. However, since the AM algorithm
already incorporates an adaptation strategy, in this reseaxitl, only be tuned in the
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initial part of the simulation, which is particularly important to ensure that sufficient states
are accepted whexj, is fixed.

The algorithm is run for sufficient iterationsy, firstly, to achieve convergence to
the stationary distribution and secondly, to sample enough weight states following con-
vergence to provide an adequate representation of the posterior distribution. However,
weight states simulated prior to when convergence is reachee-af, << tp will still
be influenced by the initial distribution, rather than the posterior distribution; therefore,
these simulations are discarded. The practice of discarding early iterations is commonly
referred to avurn-in. A conservative choice for the burn-in period is half of the total it-
erations (i.etr/2) (Gelman et al.2004). The remainder of the simulations (or a smaller
representative subset) are used as the basis for making Monte Carlo estimates from the
predictive distribution of a data set. In this research, the predictive distribution will be
summarised by 95% prediction limits, which are useful for the visualisation of prediction
uncertainty, and the mean predictions, which enable a direct comparison of predictive per-
formance with that of a deterministic ANN (i.e. an ANN based on single valued weight
estimates).

Given the above considerations, the full Bayesian training procedure used in this study
was carried out as follows:

1. Setw, = W; 07 , = Sy, 02, = Sy, and evaluate
log pj(woly) = [log L(wo|o2 4) + log p(wolo, )] Initialise X, according to (4.15)

2. Fort=1,2,...,tp

(@) If t <t,,
let >, = >
(b) Sample a candidate™* from Q(w*|w;_1) = N(w;_1, %)
(c) Evaluate
log p; (w*|y) = [log L(w*|o},,_,) +log p(w*|o, ,_1)],
and calculate
a(w*|w,_1) = min {exp [log p; (W*|y) — log p;_, (w;—1]y)] , 1}
(d) Generate:, fromU(0,1), and ifu < a(w*|w;_y),
setw; = w¥,
otherwise,
setw; = w;_;
(e) Samples?, from p(o2 ,|wy,y) = x 2 (15, S;) ando, , from
P05 lwe) = x72 (V4. Si)
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() If t = to,
calculateX,.; = c’cov (wo, Wi, ..., Wy,) + c’ely, where
cov (Wo, Wi, -, Wiy) = it (3212 wiw) — (to + 1)Wi, Wi, ),
resetc = 2.4/Vd
else ift > t,

calculateX:; ,; according to (4.12), substituting for 6

3. Discard initial samplegwo, 07 ,05.0),-- -, (W, 05 ,,,0%,) t0 diminish the ef-
e ) )
fects of the initial distribution. Use samplésv;, 1,02, 11,024 41} +-- -
{wi,,0%, 0%, }foranalysis.

4. Fori = 1, 2, ey Ntestset

(a) calculate the network predictions, 1, ..., v+, based onw;, . 1,..., w;
and input vectok;.

F

(b) Rank predictiong; 4,1, - - ., ¥i+,, in @ascending order and determi®&, sim-
ulation limits.

(c) Calculate mean prediction
yi=1/(tr —t) Ziitb+1 Yt-

4.2.3.5 Diagnosing and Improving Convergence

The most critical issue associated with MCMC simulations is determining when conver-
gence to the posterior distribution has been achieved. Due to the generally high dimension
of w and the correlations between individual weights, convergence to the posterior weight
distribution is usually relatively slow, as mentioned in Section 4.2.2. Multiple chains can
be used to more widely explore the weight space and help to speed convergence to the
posterior distribution. Furthermore, multiple chains can be used to reveal problems with
convergence that cannot be seen by looking at a single cKass(et al. 1998). There-

fore, in this research, a number of parallel chains are simulated simultaneously using the
MCMC approach discussed above.

Gelman et al(2004) recommend that the multiple chains should be initialised with
starting points drawn from a distribution believed to be overdispersed with respect to
the posterior distribution. However, to verify, or feel confident, that the points are in
fact overdispersed requires knowledge of the posterior distribution. Approximating the
posterior would generally involve evaluation of the Hessian matrix at the posterior mode,
which, as discussed, may be near singular for an ANN. Therefore, it is proposed that

Page 156



Bayesian Training and Prediction — Section 4.2

the multiple chains are each initialised at the maximum likelihood estimatés the
posterior distribution of ANN weights is often multimodal, it is acknowledged that this
initialisation may bias the resulting posterior distribution if the algorithm becomes trapped
in the vicinity of the local mode. However, it is hypothesised that the bias that may be
caused by this initialisation may be decreased if, for an initial pefr(j(r)i),dgg ando? are

fixed in such a way that would allow the simulated chains to move more freely about
the weight space during this period. For example;ﬁifwas to quickly adapt to some
value close tcfrf,, Where&§ results in the (locally) maximum likelihood value, given

only small jumps arounav would be accepted, making it difficult to move away from
the initial location. However, by fixing@ > (33 such that the magnitude of the initial
likelihood is somewhat reduced, but the scale is increased, the acceptance rate of weight
vectors further fromy would be increased. To ensure that the weights are not restricted
during this period, it would also be important to fiX = 1. The effects that fixingrz
ando? have on the ability of the MCMC training algorithm to escape a local minimum
will be investigated in this research.

Muller and Rios Insug1998) andNeal (1993, 1996b) discuss the multimodality of
ANN posterior distributions at length, as well as methods for efficiently sampling from
such distributions. While many of these “mode hunting” schemes are relatively compli-
cated, a rather straightforward simulated annealing method is discus$¢elab{1992,
1993). Using simulated annealing, the Metropolis acceptance probability is modified as
follows:

(4.16)

. | exp [log pj (w*[y) — log pj_y (Wi-1y)]
a(w*|w;_1) = min T 1

whereT' is referred to as theemperature Therefore, the sampled weight vectors asymp-
totically represent the distributigit (w|y)/T" (Bishop 1995). The idea is that faf >>

1, the MCMC sampling procedure may explore the weight space much more freely, allow-
ing it to converge to its stationary distribution more quickly and to escape local minima.
The process is started at a high initial temperafyrerhich is gradually cooled (reduced)
throughout the simulation until it reach@s= 1, wherep*(w|y)/T represents the desired
target distribution. It is hoped that, as the temperature is reduced, the algorithm will settle
into a region of high posterior probability. This process is illustrated in Figure 4.4, which
shows a multimodal distributiop*(w|y) /T that may be sampled from relatively freely,
given thatT is large, but is represented by two disjointed modes whena 1. The suc-

cess of simulated annealing, however, depends on whether or not the distribution at higher
temperatures is a good guide to the distribution at lower temperatures; therefore, good re-
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p*(wly)/T

D __T>>

Figure 4.4 The effect of different temperaturé&son the distributionp* (w|y)/T" using sim-
ulated annealing.

sults cannot be guaranteed in all cagdésdl 1993). The effect of simulated annealing on
convergence will also be investigated in this research.

There are numerous diagnostic tools available to help determine whether or not an
MCMC sampling procedure has converged, many of which are reviewé&bbyes and
Carlin (1996) andBrooks and Robert§l998). However, caution is needed when using
any of these tools because, in general, although the diagnostics may often succeed at de-
tecting convergence failure, they may also fail at doing tBiswles and Carlin1996).
The most commonly used diagnostics of convergence are trace plots of sample MCMC
values versus iteratiork@ss et al. 1998). Traces of various important quantities, such as
log posterior probability, log likelihood, log prior probability, and important hyperparam-
eters, can be visually inspected to determine when or whether approximate convergence
has been reached. For example, as staté&ss et al(1998), if the log posterior proba-
bility is increasing, the main mode has yet to be reached, whereas if it is decreasing, the
algorithm was initialised near a tall, narrow mode and is moving towards a more repre-
sentative part of the distribution. Therefore, it can be assumed that convergence has been
reached when this plot flattens out. By overlaying traces obtained by different chains on a
common graph, it is generally easier to detect convergence or failure thereof. However, a
limitation of MCMC posterior simulation, particularly when applied to multimodal prob-
lems like ANNSs, is that it can never be guaranteed that convergence to the true posterior
has been obtained, as there may still be modes that have been undiscovered.
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4.3 BAYESIAN MODEL SELECTION

As discussed in Section 2.3.5, Bayesian model selection (BMS) involves the comparison
of a set of H competing model§H;;i = 1,..., H} based on the posterior probability
that each modeHl; is the “true” model of the system, given the observed data, which

is calculated by (2.21). When the prior probabilities assigned to the different models
are approximately equal, as is generally the case, this simplifies to (2.22), which states
that the relative probabilities of the competing models can be compared based on their
evidencep(y|H). The evidence of a model can be evaluated by the integral given by
(2.6); however, except for the simplest of models, this integral is analytically intractable.
Therefore, alternative methods are needed to estipigté?). A number of methods have
been proposed for thi$selfand and Deyl1994;Kass and Rafteryl995); however, given

that MCMC posterior simulation is used for the proposed Bayesian training approach,
only methods for estimating(y|H) based on sampled draws from the posterior will be
considered in this research.

4.3.1 Computation of Evidence via Posterior Simulation

While this section by no means provides an exhaustive discussion of methods available
for approximating the evidence based on sampled draws from the posterior distribution
(DiCiccio et al. (1997) gives a review of such methods), several methods with general
applicability, which use samples from the posterior directly, are described. These meth-
ods include the Newton-Raftery estimatdlefvton and Raftery1994), the Gelfand-Dey
estimator Gelfand and Dey1994) and the Chib-Jeliazkov estimat@hfb and Jeliazkav
2001).

4.3.1.1 Newton-Raftery Estimator

The Newton-Raftery estimator fe(y|H;) is based on sampled draws from the posterior
distribution and importance sampling. Importance sampling is a useful method for com-
puting the expectation of a function using samples generated from a dériskgown as
theimportance sampling functiofGeweke 1989;Newton and Rafteryl994). In terms

of a model’s evidence, it can be used to provide an estimate of the integral in (2.6) in the
form of:

Yo aip(ylts, H)
2?281 q;

wherens is the number of samples generated frQrandg; = p(6;)/Q*(6;).

p(y|H) =

(4.17)

Page 159



Chapter 4 — A New Bayesian Framework for ANNs

When the samples are drawn from the posterior distributiah thfe importance sam-
pling function isQ* = p(y|0, H)p(8|H)/p(y|H), which, when substituted into (4.17),
gives the estimator:

p(ylH) = {%Zp(y\@ﬁ)‘l} (4.18)

which is the harmonic mean of the likelihood values.m&s— oo, this estimate converges

to the correct value. However, although (4.18) is very easy to calculate, it is unstable, with
occasional values of small likelihood having a large effect on the final relNelivion

and Raftery1994). ThereforelNewton and Rafter{1994) proposed that the importance
sampling function be a mixture of the prior and posterior densiies= dp(6;|H;) +

(1 —9)p(6;|ly, H;), where0 < & < 0.5 such that the estimator is based mostly on high
likelihood values off. This estimator overcomes the instability of that given by (4.18)
and, asns — oo, also converges to the correct value. However, this method has the
disadvantage that the prior must be sampled from, as well as the posterior.

4.3.1.2 Gelfand-Dey Estimator

Gelfand and Dey1994) also proposed a modification of the harmonic mean estimator
given by (4.18). The Gelfand-Dey estimator is given by:

1 7(6) -
Bly(H) = {Ezpwwmp(em)} (419

=1

where7(0) is any proper density, which is sometimes calletiaing function(Chib,

1995) and plays the role of the importance sampling function. This is an unbiased and
consistent estimator @f(y|H), which is stable, provided the tails off) are sufficiently

thin to prevent occasional small likelihood values from significantly influencing the fi-
nal estimate. Furthermore, fgty|H) to have a small variance#) must be similar to
p*(0ly, H) = p(y|0, H)p(0|H) (DiCiccio et al, 1997). A natural choice for(¢) would
therefore be a multivariate normal with mean and covariance computed from the sampled
draws from the posterior distributiof#,, . .., 0,.} (Gelfand and Dey1994). In a com-
parison of the Gelfand-Dey and Newton-Raftery estimators for selecting an appropriate
annual rainfall modelfFrost (2004) found the Gelfand-Dey estimator to be more accurate
and consistent between simulations than the Newton-Raftery estimator.
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4.3.1.3 Chib-Jeliazkov Estimator
By rearranging the general Bayes’ theorem expression given by (2.5) and taking the log-
arithm at some fixed poirtt, the following expression fdog p(y|H) is obtained:

logp(y[H) = logp(yld,H) + log p(4H)
—logp(fly, H) (4.20)

Thus, if 4 is a sampled draw from the posterior, the only unknown in this equation is
logp(é|y,H). The estimator proposed @hib and Jeliazkoy2001) is based on es-
timating the posterior density at a single pod?n!sampled from the posterior using the
Metropolis-Hastings algorithm (see Section 4.2.1.1), in order to solve (4.20). This is
done using the following equation:

nsy ' 300 l614,)Q(616:)
nsy ' Y00 a(6;]6)

whered, are sampled draws from the posterior distributi@nare sampled draws from

the proposal distribution)(6;]6) used by the Metropolis-Hastings algorithm and) is

given by (4.4).Chib and Jeliazkoy2001) note that while the choice 8fis arbitrary, for

estimation efficiency it is appropriate to choose a point that has high posterior density.

Furthermore, they state that althougk, andns, may be different, in practice they are

set to be equal (i.exs = ns; = nsy). In a study conducted bylarshall et al.(2005), the

Chib-Jeliazkov estimator was used for selecting the appropriate level of complexity for

a conceptual rainfall-runoff model, given MCMC samples from the posterior parameter

distributions of various competing models. Using synthetically generated data, it was

shown that this estimator was able to successfully identify the model by which the data

were generated as having the highest evidence.

p(fly, H) = 4.21)

4.3.2 Bayes Factors

The evidence ratio of a pair of competing models is known a$BBtnees’ factor(BF),
defined by:

p(y[H;)

p(y|Hk)’
which is interpreted as the evidence of mo#iglin favour of modefH,. Regardless of
the value of the prior odds (i.e. the prior probabilityXf in favour of H;), the Bayes
factor is the ratio of the posterior odds’&f; to its prior odds, given by:

B, - 2Ly p0) 23)

p(Hily) ' p(Hx)

BFj), =

(4.22)
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Thus, when assuming equal prior probabilities, the Bayes factor is equal to the posterior
odds in favour of H;. BMS therefore involves estimating the evidence of each competing
model, performing pairwise comparisons between the models and ranking them according

to their Bayes factors.

4.3.2.1 Interpreting Bayes Factors

It may be useful to interpret the Bayes factor in terms of its logarithm, as the log Bayes
factor is the difference in predictive scores between two models, or the relative success
of H; and H;, at predicting the data (Kass and Raftery, 1995). In order to interpret the
strength of evidence in favour of model H; over Hy, provided by BFj ;, Kass and Raftery
(1995) gave an interpretive scale based on twice the natural logarithm of the Bayes factor,
which is on the same scale as the more familiar likelihood ratio test. This scale is repro-
duced in Table 4.1; however, it is given in terms of log, BF} rather than 2log, BF,

since the predictive score interpretation is preferred in this research.

Table 4.1 Interpretive scale for Bayes factors (Source: adapted from Kass and Raftery
(1995)).

NOTE: This table is included on page 162 of the print copy of the
thesis held in the University of Adelaide Library.

4.3.2.2 Sensitivity to Prior Distributions

In general, when using Bayes factors for model comparison, care needs to be taken in
choosing an appropriate prior for 4. In order to estimate # using Bayesian methods, the
prior distribution is often chosen for convenience, since it is known that if the data sample
is fairly large, the influence of the prior will be small. However, the prior distribution has
a more significant influence on the evidence of a model than it does on the posterior, as
shown by Kass (1993). There has been some criticism regarding the use of Bayes factors
when applied to models where there is little a priori knowledge, as the use of improper
(i.e. does not integrate to 1) noninformative priors can be problematic (Kass and Raftery,
1995). Therefore, the prior distributions must be proper and not have too big a scale.
Raftery (1996) argues that subjective priors that are relatively flat in the region where the
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likelihood is large should only have a small impact on Bayes factors. An advantage of
using hierarchical priors is that a subjective choice of prior distribution is not required, as
it is determined by the data.

4.3.3 BMS Previously Applied to ANNs

Although not in relation to ANNsBerger and Rios Insuél998) stated that the Bayesian
approach to model selection is less widely used than the Bayesian approach to parameter
estimation in hydrological applications. Thisis also true in the case of ANNs, where, apart
from the evidence approachfacKay(1992a, 1995a) and the automatic model selection
methods proposed byluller and Rios Insug1998) andLiang (2005), there have been
very few applications of BMS, particularly using methods relying on sampled draws from
the posterior weight distributiomMeal (1993) discusses a number of methods for estimat-
ing the Bayes factor based on posterior simulation in terms of “free energy estimation”,
as proposed in the statistical physics literature. All of these methods, however, require
analytical effort to tailor them to a particular applicatidtaés and Rafteryl1995). Later,

Neal (1994, 1996a) advocated the use of ANN models with unrestricted complexity and
suitably chosen hierarchical prior distributions to prevent overfitting, thereby ignoring the
problem of model selection.

Lee (2001) proposed a BMS approach using the Metropolis-Hastings algorithm to
sample from the model space (where the free parameters included inputs and hidden
nodes) in order to find models with high posterior probability. To do this, minus half
the BIC, given by (3.8), was used to approximaigp(y|H;) for each of the models
visited by the Metropolis-Hastings algorithm, as it has been shown$caiarz1978):

p(y|H) = exp (—%BIC) +0p(1) (4.24)

While this may not seem to be a great approximation (since the éx6t) does not
decrease for a large sample si¥¢, the BIC has been shown to be asymptotically con-
sistent for model selection and has been found to work well in practiee 001).

The acceptance probability used for the Metropolis-Hastings algorithm was, therefore,
a(H*|H—1) = min{1,exp(—1/2BIC* + 1/2BIC,;_;)}. However, while MCMC was

used to sample from the model space, this method did not use samples from the posterior
weight distribution. Instead, a standard algorithm was used to train each of the sampled
models and MCMC was only used at the end of the process to estimate the posterior
weight distribution for the best selected model. Howeleg (2002) then compared a
number of methods for approximatingy|#) based on sampled draws from the poste-
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rior distribution, together with the BIC approximation. The methods were applied to two
data sets: one real and one simulated. Overall, all of the methods had difficulty in ap-
proximatingp(y|H), particularly on the real data, where the methods did not agree at all.

It was found that the sample-based methods (i.e. all methods except the BIC) were very
sensitive to the MCMC sample, showing highly variable results for a given model size,
based on different MCMC samples. It was concluded that the BIC, which was able to
correctly indicate the best model structure for each data set, was reasonably stable and
reliable and was apparently a more useful approximation for standard data set sizes than
methods based on MCMC samples.

Vehtari and Lampinef2002) proposed a framework for using the “expected utilities”
of two models for model comparison. If the utility of a model is the posterior predictive
distribution ofy given inputx;, in other words the utility of a model is a measure of how
good its predictions ar&/ehtari and Lampinei2002) suggested that the expected utility
can then be used to assess how good the model is. Importance sampling was employed to
estimate the leave-one-out predictive densities for a given model, which were then used
to calculate the expected utility of the model and the expected utility distribution. The
difference between the expected utilities of two modé)sand’;, can be used for model
selection, where the expected utility distributions of the models are used to determine the
probability that the expected utility 6%; is greater than that of;,.

4.3.4 Proposed BMS Framework

4.3.4.1 Evaluating the Evidence

In this research, three methods will be investigated for their ability to estipigté?).

These include the Gelfand-Dey (G-D) and Chib-Jeliazkov (C-J) estimators described in
Sections 4.3.1.2 and 4.3.1.3, respectively, since these estimators have been used success-
fully for hydrological model selectionMarshall et al, 2005;Frost, 2004), as well as a

BIC approximation, sincéee (2002) found the BIC to be a more stable approximation

than sample-based methods. The G-D, C-J and BIC estimators are easy to program and
only require a relatively simple step after training with MCMC. The Newton-Raftery es-
timator, on the other hand, is more difficult to apply, since sampled draws from the prior
distribution are required, as well as sampled draws from the posterior. Therefore, this
method is not considered further in this research.

Each of the estimators investigated has relative merits over the others. The G-D esti-
mator uses sampled draws directly and requires no further samples to be generated from
any other distribution. It has also been shown to be very accurate, provided that the tun-
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ing functionr is chosen appropriatel\)Késs and Rafteryl995). However, this method

may also produce very poor results given a bad choice dflevertheless, this estima-

tor seems well suited for application in conjunction with AM training. For good results
with the G-D estimatory should be chosen so that it approximates the posterior distri-
bution and, since the proposal distribution is adapted towards the posterior throughout
the AM simulation, a good choice for is determined automatically. Therefore, in this
researchr(w;, 02, 03,) = Q(w;|w) = N(Ww, ¥y), wherew is the median of the posterior
distribution and® is the value covariance of the proposal (estimated by (4.12)) at the
final iteration of the AM algorithm. If values of(y|w;, o, H)p(w;|os,, H) are recorded
throughout the AM simulation, only(w;) requires evaluation for= 1, ..., ns in order

to calculatey(y|H).

The C-J estimator has an advantage over the G-D method in that a tuning function is
not required. However, samples are required from the proposal distribution, as well as
from the posterior. This step is simple, since sampling from the proposal is carried out
throughout the AM simulation; however, it increases the computational cost of the overall
algorithm. Furthermore, evaluation ofw|w;), Q(w|w;) anda(w;|w) are required for
i,7 = 1,...,ns in order to calculatg(y|H). In this researchyw was set equal to the
median of the posterior distributiof.

For the proposed BIC estimator,1 /2BIC values are evaluated for sampled weight
vectorswy, . .., W, resulting in a distribution of-1/2BIC values, which roughly ap-
proximates a distribution gf(y|H) values. This is different to the BIC approximation
used byLee(2002), where only a single1/2BIC value was evaluated for each network.
Although it was shown in Chapter 3 that the in-sample BIC was a promising model se-
lection tool, it was also concluded that, when applied deterministically, its value could be
sensitive to the weights obtained; thus, affecting the results. By evaluatingltfgB31C
distribution, this variability is accounted for. Thel /2BIC is given by:

1
— §BIC = log p(y|wi, 032,, H) — glogN (4.25)

whered is the dimension ofv and V is the size of the training data set. If the likeli-
hood valueg(y|w;, o7, H) are recorded throughout the AM simulation, subtraction of
the constang log N from each log likelihood value is all that is required to evaluate the
distribution forp(y|H). This distribution can then be used to evaluate a m#ggifiH)

value for use in Bayes factor calculations. This is much simpler than either the G-D or
the C-J estimators; however, it is not expected to be as accurate due to the error in (4.24).
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4.3.4.2 Checking Bayes Factors with Posterior Weight Distributions

As discussed iDiCiccio et al.(1997) and_ee(2002), it can be difficult to obtain accurate
estimates of(y|H) based on posterior simulations, particularly in the case of ANNSs.
Therefore, in this framework, it is proposed that the Bayes factors calculated using the
approximated evidence values be used as a guide for model selection, but a final check of
the model rankings be carried out using the posterior weight distributions. If the marginal
posterior distribution of a hidden-output layer weight includes the value zero within the
95% highest density region, this suggests that the associated hidden node may be pruned
from the network, with a 95% level of confidence that model performance will not be
affected. If there are more than one hidden-output layer weights with marginal posterior
distributions that include zero within the 95% highest density region, scatter plots of pairs
of these weights should be inspected to determine whether the joint distribution of the
weights passes through the origin (0,0), which would indicate that both weights in the
pair, and the corresponding hidden nodes, may be pruned from the network. Otherwise,
if the joint distribution does not pass through (0,0), only one of the hidden nodes may
be pruned. This is illustrated in Figure 4.5, which shows two different examples of a
pair of hidden-output layer weights for which the marginal posterior distributions include
zero within the 95% highest density regions. In the example shown in Figure 4.5 (a), the
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Figure 4.5 Examples of a pair of hidden-output layer weights with marginal posterior dis-
tributions that include zero within the 95% highest density regions, where (a) the joint distri-
bution passes through (0,0) and (b) where it does not.
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scatter plot of hidden-output weight 1 versus hidden-output weight 2 passes though (0,0),
indicating that both hidden nodes are unnecessary in the model. However, in the example
illustrated in Figure 4.5 (b), the scatter plot does not pass through the origin, indicating
that at least one of the hidden nodes in the pair is necessary. In this research, histograms
of the hidden-output weight probability density functions were constructed, from which
the 95% highest density regions were estimated.

4.4 FINE-TUNING AND ASSESSMENT OF BAYESIAN TECHNIQUES
WITH SYNTHETIC DATA

4.4.1 Bayesian Training and Prediction

Fine-tuning of the proposed Bayesian training and prediction method involved selection
of the user-defined parameters for the AM/Gibbs sampler algorithm, determination of the
most appropriate form of prior distribution and investigation and recommendation of the
best way to improve convergence of the algorithm. Investigations were carried out on
synthetic data sets I, I, and Ill, described in Section 3.4.1.

4.41.1 User-Defined Parameters

The user-defined parameters required for the basic AM/Gibbs sampler algorithm (exclud-
ing additional parameters required for improving convergence) include the hyperprior
parameterssy,, vy, Sy, andv,; the number of chains simulated; the adaptive scaling
parametek; the total number of iterationg-; the number of burn-in iterationg; and

the initial fixed periodt,. Values of these parameters were selected primarily based on
recommendations or typical values used in the Bayesian ANN literature and then were ad-
justed, if necessary, to suit the application of the proposed Bayesian training framework
on the synthetic data sets. Although the number of iterations required for convergence
is highly problem dependent, the number of iterations necessary to achieve approximate
convergence was investigated when the proposed MCMC algorithm, using the hierarchi-
cal prior distribution (since it results in intermediate complexity), was used to train the
2-, 6- and 10-hidden node networks applied to data set Il (since this was considered to
have intermediate nonlinearity and noise properties of the data sets considered), in order
to provide a rough guide for the other data sets and network sizes.

The hyperprior parameters were selected based on those udéebb{1996a). For
the input-hidden layer weights and the hidden layer biaSgs= 0.01 andv,, = 0.1.
For the hidden-output layer weightS,, = (le)z, whereJ is the number of hidden
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layer nodes, and,, = 0.1. A fixed Gaussian prior witkr2, = 1 was used for the output

bias. For the noninformative uniform prior distribution, the lower and upper bounds of
the distribution were set to -100 and 100, as it was considered that this range would easily
incorporate all of the possible weight values (although it does not account for cases where
the weights can take any real value due to correlations between the weights). It was de-
cided to simulate four parallel chains based on the number of chains generally used by
Cowles and Carlin(1996), which is between 3-5. The maximum number of iterations
used byHaario et al.(2001) andviarshall et al.(2004) for the AM algorithm was 80,000

and 100,000, respectively. However, in each of these studies, only fairly low dimensional
problems were considered (no greater than a dimension of 8). For the higher dimensional
problems considered in this research, it was expected that the AM algorithm would take
longer to converge; thereforg; was initially set to 400,000. Traces of the log prior den-

sity (log p(w|oy,)), the log likelihood [og L(w|o?)) and the log unnormalised posterior
density *(wly) = log L(w]|o?) + log p(w|o?,)) were then inspected to determine when

or whether convergence had been reached for the 2-, 6- and 10-hidden node ANNs ap-
plied to data set Il. The number of burn-in iteratiapsvas then determined from these
plots based on the point when the traces became approximately flat. The adaptive scaling
parameter: was initially set equal t@.4/+/d, as recommended b§elman et al(2004),

and was scaled up or down during the initial fixed peripdo ensure that the chains
moved away from the initial position during this time. The initial perigdvas selected

so that it was short relative to the total number of iteratignget long enough to allow

to be appropriately scaled such that a sufficient number of candidate states were accepted
within this period. The value af, was therefore set equal to 1000.

4.4.1.2 Escaping Local Modes

It is considered that the prior distribution adopted may not only influence the potential
of the MCMC algorithm to overfit the data, but also the ability of the simulated chains
to escape local modes in the posterior distribution. It is expected that the ability to es-
cape local modes could be increased using the hierarchical and ARD priors described in
Section 4.2.3.2, since the simulated chains are encouraged to move to different regions
of the posterior not only based on the likelihood value, as is the case for the noninforma-
tive uniform prior. Therefore, if the weight vector was initialised at a locally maximum
likelihood value, there would be a greater chance of moving away from this mode, as can-
didate states with lower likelihood values would more easily be accepted if they have a
higher prior density. However, both the hierarchical and ARD priors result in an increase
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in complexity of the MCMC algorithm than when the uniform prior distribution is used.
Therefore, the ability of the MCMC algorithm to move away from a poor initialisation of
w, was investigated to determine whether the increase in complexity is warranted, given
the advantages gained by using either a hierarchical or ARD prior.

This investigation has been carried out using data sets Il and Ill, as examples of poor
local mode solutions were evident when ANNs were developed to model these data sets
in Chapter 3. In contrast, no poor local mode solutions were obtained when ANNs were
developed to model data set I, making it unsuitable for this investigation. For data set I,
the most obvious example of a poor local mode was found using a 3 hidden node ANN,
where each of the deterministic training algorithms obtained a MSE value that was at
least 20% worse than the best MSE value obtained (see Tables A.4-A.6 in Appendix A).
For data set Ill, the most obvious example of a poor local mode was found when a 4
hidden node ANN was used to model this data set. In this case, each of the deterministic
training algorithms obtained a MSE value that was at least 60% worse than the best MSE
value obtained (see Tables A.7-A.9 in Appendix A). These examples are illustrated in
Figures 4.6 and 4.7, which show trace plots of the training and test set SSE values when
the SCE-UA algorithm, initialised with different sets of random weights, was used to
train the 3 hidden node ANN applied to data set Il and the 4 hidden node ANN applied
to data set lll, respectively. In each of these figures, it can be seen that both the training
and test set errors obtained in plot (a) are significantly greater than those obtained in plot
(b), indicating that the algorithm became trapped in a local minimum when starting from
the weight initialisations shown in (a). In this investigation, the MCMC algorithm was
initialised with the weights obtained when the SCE-UA algorithm became trapped in these
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Figure 4.6 Training and test set SSE traces obtained when (a) local minimum and (b) global
minimum solutions were converged to when a 3 hidden node ANN was developed to model
data set Il, using different weight initialisations.
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Figure 4.7 Training and test set SSE traces obtained when (a) local minimum and (b) global
minimum solutions were converged to when a 4 hidden node ANN was developed to model
data set I, using different weight initialisations.

local minimum solutions, in order to investigate the ability of the MCMC algorithm to
escape poor local modes, under the assumptions of noninformative uniform, hierarchical
and ARD prior distributions.

Simulated annealing and the effect of fixing) > 57 ando?, = 1 for a periodt,,; were
also investigated using these weight initialisations. For data set Il, the residual varfance
calculated at the local maximum likelihood (based on scaled input and output data) was
approximately equal to 0.45, corresponding to a log likelihood value of approximately
-727.5. For data set II&§ was approximately equal to 0.18 when calculated at the locally
maximum log likelihood value of -680.6. Values of 0.5, 1.0, 2.0 and 3.0 were therefore
considered for? , as these values all produce flatter, wider likelihood functions in each
case. An additional value of. ;, = 0.3 was considered for data set Ill, since the value
of 63 obtained was somewhat smaller than that obtained for data set Il. To prevent the
covariance of the AM proposal distribution, calculated at iteration 1, from becoming
overly large as a result of the altered posterior distribution, it was considered,that
should be less thay. However,t,: also needs to be long enough such that the chains
have a chance to move away from. Thereforef,: was set equal to half, (i.e. 500).
The results obtained by fixing the hyperparameters were compared to the results obtained
when the hyperparameters were updated immediately after the first weight updates, rather
than being fixed for any period of time. In this case, the valueg gfandoy, , were set
equal to the hyperprior parametefs and.S,,, respectively. However, these values have
little consequence, since they are updated straight away.

The success of simulated annealing is vitally dependent upon the schedule of temper-
atures used. A commonly used and simple schedule is the geometric annealing schedule
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given byT;., = (1 — ¢)T;, where the initial temperaturg, is set high enough so that

the initial rejection rate is very low and is chosen such that the temperature is reduced
slightly after each iteratiorNeal, 1993). In this research, appropriate valuesd@ndTj,

were found by trial-and-error using the valuesof= 5.0 x 10~° and7, = 15 adopted

by Neal(1992) to guide the range of values considered, which incldged 5, 15, 30, 50

andy = 1.0 x 1073,1.0 x 107%,5.0 x 10~°. By reducingy by a factor of 10, the number

of iterations required for the temperature to cool to one is increased by a factor of 10,
whereas a reduction ipn by a factor of 2, means that the number of iterations required is
approximately doubled. Values ¢fless tharb.0 x 10~° were not considered, as the num-

ber of iterations required for the temperature to cool to one was too great-(84), 000

for T, = 50, ¢ = 1.0 x 107°). To maintain an approximately constant acceptance rate,
Neal (1993) recommends scaling the width of the proposal distributioﬂ}‘dfl; how-

ever, this recommendation is based on the use of a constant proposal distribution, unlike
the adaptive proposal used by the AM algorithm. At high temperatures, the width of
the adaptive proposal will automatically become wider due to the acceptance of a wider
range of weight vectors. Therefore, in this research, the proposal distribution was scaled
by (T,/Ty)"/?, in order to maintain adequate acceptance rates as the temperature cooled.
Neal (1993) also suggests that the prior should be exempt from the effect of temperature,
as the prior beliefs should guide the search for the weight values even in the initial stages
of the MCMC algorithm and should not be scaled down. This was achieved by modifying
(4.16) as follows:

a(wWiwi_y) = min{ exp [log L(w*) — log L(w;_1)] /T

+exp [log p(w*) — log p(Wi—1)] 1} (4.26)

4.4.1.3 Prevention of Overfitting

The primary advantage of the hierarchical and ARD priors over the noninformative uni-
form prior described in Section 4.2.3.2 is the automatic incorporation of weight regulari-
sation and the prevention of overfitting. As the ARD prior was proposed as a method for
automatically determining the relevance of ANN inputs, it was originally considered that
the ARD prior had this additional advantage over the other forms of prior distribution con-
sidered in this research. However, it was showriLagnpinen and Vehta(001) that the
nonlinearity of an input has the largest effect on the relevance score of the ARD and that
inputs with a large, but linear, effect on the output are given a low relevance measure. This
is because when an ANN models a linear relationship, the input-hidden layer weights are
small, such that they lie on the linear part of the hidden layer sigmoidal activations, and
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the strength of the relation is determined by scaling the hidden-output weights. Therefore,
the input-hidden weights do not measure a linear input-output relationship regardless of
its importance. This means that ARD is not appropriate for selecting, removing or rank-
ing ANN inputs according to the ARD relevance measures. Nevertheless, the ARD prior
is the most correct form of prior of those considered, as it does not assume that the input
weight groups all have the same variance, which was showlcabypinen and Vehtari
(2001) to correspond to nonlinearity.

As the hierarchical prior distribution results in a more complex MCMC training algo-
rithm than when the uniform prior is assumed, and as the ARD prior results in a further
increase in complexity above that, the different forms of prior were assessed to determine
whether or not the additional complexity is warranted given their ability to prevent overfit-
ting. To do this, the MCMC algorithm was initialised with the optimised weights obtained
from networks identified as overtrained in the investigations carried out in Chapter 3.
Similar to the local modes case discussed in Section 4.4.1.2 above, obvious examples of
overtraining were only observed for two of the three synthetic data sets. It was found
that overtraining did not occur when ANNs were trained to model data set Ill, which is
likely due to the fact that this data set had the greatest signal-to-noise ratio and was also
the longest of the three data sets considered (see Section 3.4.1). For data sets | and I, the
most obvious examples of overfitting were observed when 10 hidden node ANNs were
trained to fit these data sets. This can be seen in Figures 4.8 and 4.9, respectively, which
show trace plots of the training and test set SSE values obtained when data sets | and
Il were modelled with (a) the corresponding optimal ANN structures and (b) 10 hidden
node ANNs. As can be seen, the final training set SSE values obtained using the 10
hidden node ANNs were somewhat lower than those obtained using the optimal network
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Figure 4.8 Training and test set SSE traces obtained when (a) a 1 hidden node ANN (opti-
mal structure) and (b) a 10 hidden node ANN (overfitted) were trained to fit data set I.
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Figure 4.9 Training and test set SSE traces obtained when (a) a 3 hidden node ANN (opti-
mal structure) and (b) a 10 hidden node ANN (overfitted) were trained to fit data set Il.

sizes (i.e. a 1 hidden node ANN for data set | and a 3 hidden node ANN for data set
I1); however, the corresponding test set SSE values were significantly higher than those
obtained using the optimal network sizes. In this investigation, the MCMC algorithm was
initialised with two different sets of weights obtained when 10 hidden node ANNs were
trained to fit data sets | and Il: (1) the weights obtained when training was stopped early
before overfitting of the data had begun; and (2) the weights obtained when the training
algorithm was allowed to run to convergence. The first set of weights was used to assess
the abilities of the prior distributions to prevent overfitting, given a set of weights where
overfitting could, but has not yet, occurred, while the second set of weights was used to
assess the ability of the MCMC algorithm to find a more generalised fit to the data, given
a set of weights that result in an overfitted model, under the assumptions of the different
prior distributions.

To determine whether the 10 hidden node models trained using the MCMC algorithm
were overfitting the data or not, the likelihood values were compared to those obtained
for the optimal network sizes, trained with the MCMC algorithm using a uniform prior
distribution (since overtraining was not expected for these networks). If the likelihood
values for the 10 hidden node models were less than those for the optimal ANN structures,
it was considered that overfitting was occurring to some extent.

4.4.2 Bayesian Model Selection

The MCMC algorithm was used to train 10 networks containing between 1 and 10 hidden
nodes, applied to data sets I, Il and Ill, given the optimal configuration of the algorithm
determined by the investigations described in Section 4.4.1. For each network size, the
MCMC algorithm was initialised with the optimised weights obtained when the SCE-UA
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algorithm was used for training and early stopping was employed to prevent overfitting.
Each of the evidence estimators discussed in Section 4.3.4 was used to evaluate the evi-
dence of each model, from which Bayes factors were then calculated and used to rank the
models in order of posterior probability. The models’ rankings were then compared to the
knowledge that a 1 hidden node network is best for data set I, a 3 hidden node network
IS most suitable for data set Il and a 5-6 hidden node network is optimal for modelling
data set Ill (see Section 3.4.5.2), in order to determine which estimator, if any, is most
appropriate for BMS within the proposed framework. Inspection of marginal posterior
distributions was carried out, as described in Section 4.3.4.2, to check or confirm the
results of the Bayes factor comparisons.

4.4.3 Results
4.4.3.1 Fine-Tuning of Bayesian Training Algorithm

Detecting convergence

The trace plots in Figure 4.10 show the mean values ofohe*(w|y), thelog L(w)
and thelog p(w) densities, calculated by taking the average of the four parallel chains,
over the 400,000 iterations of the MCMC simulation for (a) the 2 hidden node ANN,
(b) the 6 hidden node ANN and (c) the 10 hidden node ANN applied to data set Il. As
can be seen, these traces all become approximately flat roughly within 100,000 iterations.
However, while it may appear as though the algorithm has converged, it is difficult to trust
a single trace (even if it is the average of a number of chains) for each of these MCMC
quantities. In Figure 4.11, traces of the p*(w|y) values for the individual chains are
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Figure 4.10 Meanlogp*(wly), log L(w) andlog p(w) traces for the2, 6, ..., 10 hidden
node ANNSs applied to data set Il
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Figure 4.11 Log p*(w|y) traces obtained from the 4 parallel MCMC chains for the
2,6,...,10 hidden node ANNs applied to data set II.

shown over the final 200,000 iterations of the MCMC algorithm. It can be seen that
these plots give a better picture of whether or not the chains are sampling from the same
distribution. For the 2 hidden node network, it is evident that the chains were mixing well,
indicating that the algorithm had converged (at least to a stationary distribution, if not to
the true posterior) within the first 200,000 iterations of the simulation. I6ge*(w|y)
traces for the 6 and 10 hidden node ANNSs, on the other hand, are a little more spread
out. For the 6 hidden node ANN, it appears as though one of the chains is still increasing,
indicating that the algorithm had not properly converged within 400,000 iterations, while
it is apparent that the chains simulated for the 10 hidden node ANN were not mixing
properly until around 300,000 iterations. However, as the chains were not obviously
different from one another, nor were they obviously increasing or decreasing for any of the
2-, 6- or 10 hidden node ANNSs, it was considered that 400,000 iterations is a good rough
guide for the synthetic test cases considered in this research as to the number of iterations
required, firstly, to achieve convergence and, secondly, to sample an appropriate number
of draws from the stationary distribution. Therefore, 400,000 iterations were used for
the remainder of the investigations presented in this section, as these investigations were
exploratory of the performance of the MCMC algorithm, but the results did not depend
on convergence. However, for the BMS investigations, of which the results are presented
in Section 4.4.3.2, more care was taken to achieve convergence, as these results were
dependent on convergence of the MCMC algorithm.

As well as being useful for detecting convergence, or failure thereof, the plots shown
in Figures 4.10 and 4.11 also provide interesting information about the models. It can
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be seen that the log prior probability of the weights of the 2 hidden node ANN is sig-
nificantly higher than the corresponding log prior densities for the 6 and 10 hidden node
ANNSs. This is due to the use of the hierarchical prior distribution, which incorporates
weight regularisation and favours fewer weights. It can also be seen that the log likeli-
hood values for the 2 hidden node ANN are significantly lower than those of the 6 and 10
hidden node ANNSs, which have approximately equal log likelihood values. This indicates
that the 2 hidden node network provides a significantly worse fit to the data than either
the 6 or 10 hidden node models. Overall, the weights of the 10 hidden node ANN, with
high likelihood, but low prior, have approximately the same log unnormalised posterior
density as the 2 hidden node ANN weights, which have a high prior probability but low
likelihood. The weights of the 6 hidden node ANN have the highest overall unnormalised
posterior density, which provides useful information about the level of complexity re-
quired for modelling data set I, since the evidence of a model is also proportional to the
unnormalised posterior density.

Escaping local modes

Shown in Figures 4.12 and 4.13 are the méayy*(wly), log L(w) andlog p(w)
traces resulting from each form of prior distribution investigated when the MCMC algo-
rithm was applied to train the 3 and 4 hidden node ANNs used for modelling data sets Il
and lll, respectively, with poor (local minimum) weight initialisations, and when the hy-
perparameters were updated immediately (i.e. were not held constant for any period). For
the uniform prior, théog p*(w|y) values correspond to theg L(w) values, as the value

(@) Uniform Prior (b) Hierarchical Prior (c) ARD Prior
-680 ‘ J» 0
E -700 I -20
> 720 - N ..M‘ 40 _
S 0 i b ot —~——— o 60 S
= 7601 oo + 80 2
£ - o et - weoraptrrop] 50 =
;C-; 7801 T T -100
o — log p*(wly) | 1
_8) 800 . Iog L(W) -120
-820 Iog p(W) T T -140
-840 T T T } T T T T T T T -160
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Iteration (x1000) Iteration (x1000) Iteration (x1000)

Figure 4.12 Meanlog p*(wly), log L(w) andlog p(w) traces resulting from the (a) uni-
form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm with un-
fixed hyperparameters was used to train the poorly initialised data set Il model.
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Figure 4.13 Meanlogp*(wly), log L(w) andlog p(w) traces resulting from the (a) uni-
form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm with un-
fixed hyperparameters was used to train the poorly initialised data set 11l model.

of the prior was disregarded since it was constant across the range of weights considered.
It can be seen in these figures that the uniform prior resulted in the higlestw|y)

values in each case, primarily because it does not account for a negative log prior proba-
bility as the othetog p*(w|y) values do. However, for the data set Il model, the uniform
prior was the only form of prior which enabled the likelihood value to obviously increase
above its initial value, indicating that at least one of the simulated chains was able to move
away from the initial weights. On the other hand, the log likelihood traces resulting from
the hierarchical and ARD priors were flat throughout the simulation, indicating that the
chains were unable to escape the local mode.ldge*(w|y) traces for these models did
increase throughout the simulation, but as a result of the increasing log prior densities,
rather than increasing likelihood values (see Figure 4.12). It is possible that these forms
of priors may have constrained the weights too much in the initial stages of the simula-
tion, making it difficult for the chains to move very freely throughout the weight space.
For the data set Il model, it can be seen in Figure 4.13 that none of the prior distributions
assumed resulted in increasing log likelihood traces, indicating that the MCMC algorithm
was unable to escape the local mode regardless of the prior distribution. Traces of the
log p*(w|y) values of the individual chains are shown in Figures 4.14 and 4.15 for the
models applied to data sets Il and lll, respectively. It can be seen in Figure 4.14 (a) that
only one chain was able to escape the local mode when the uniform prior was assumed
for the data set Il model, whereas, for the data set Il modeldhg* (w|y) traces of the
individual chains remained flat throughout the simulation, as shown in Figure 4.13.
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Figure 4.14 Individual log p*(w|y) traces resulting from the (a) uniform, (b) hierarchical
and (c) ARD prior distributions when the MCMC algorithm with unfixed hyperparameters
was used to train the poorly initialised data set Il model.

(a) . . )y . . (© .
Uniform Prior Hierarchical Prior ARD Prior
-650
-660
-670
:E; -680
\Ei -690
X
Q. 700
(@]
O -710 .
- | — Chainl
720 — Chain 2
730 Chain 3
7401 —=Chan4
-750 T T T T T T T T T
200 250 300 350 400 200 250 300 350 400200 250 300 350 400

Iteration (x1000) Iteration (x1000) Iteration (x1000)

Figure 4.15 Individual log p*(w|y) traces resulting from the (a) uniform, (b) hierarchical
and (c) ARD prior distributions when the MCMC algorithm with unfixed hyperparameters
was used to train the poorly initialised data set 11l model.
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For the data set Il model, the log likelihood valuesatvas reduced te-732.1 (0.6%),
—817.2 (11%), —984.9 (26%) and—1103.3 (34%) by fixing of, equal to 0.5, 1.0, 2.0
and 3.0, respectively. Overall, it was found that the best results were obtained by fixing
Jf, = 1.0, indicating that the log likelihood need not be reduced by a large amount for
the chains to move more freely in the vicinity of the local mode. Traces of the resulting
meanlog p*(wly), log L(w) andlogp(w) values whem§ was fixed equal to 1.0 for
ty2 = 500 are shown in Figure 4.16. As can be seen,lthe (w) traces resulting from
the assumption of hierarchical and ARD priors significantly increased above the initial
value, whereas this trace remained relatively flat for the uniform prior. These results
show that, by fixing the hyperparameters of a regularisation type prior (i.e. hierarchical or
ARD) for a short initial period, the chains are better able to move more freely around the
search space, giving them a better ability to escape poor weight initialisations and discover
new modes. Shown in Figure 4.17 are thgp*(w|y) traces of the individual chains,
where it can be seen that the MCMC simulations using uniform and hierarchical priors
had both converged to a stationary distribution (although about different modes), whereas
the chains were still moving between modes at the end of the simulation when the ARD
prior was used. These plots highlight that the stepped nature of the mean traces shown
in Figure 4.16 was due to different chains finding new modes at different times. Overall,
it can be seen that when the hierarchical prior was used, the chains were most successful
at exploring the weight space, obtaining a méanl(w) value of approximately -695.0
and converging to a stationary distribution within 200,000 iterations.
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Figure 4.16 Meanlogp*(wly), log L(w) andlog p(w) traces resulting from the (a) uni-
form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm with ini-
tially fixed hyperparameters was used to train the poorly initialised data set Il model.
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Figure 4.17 Individual log p*(w|y) traces resulting from the (a) uniform, (b) hierarchical
and (c) ARD prior distributions when the MCMC algorithm with initially fixed hyperparam-
eters was used to train the poorly initialised data set || model.

By fixing 0)2, equal to 0.3, 0.5, 1.0, 2.0 and 3.0, the log likelihood valuevdbor
poorly initialised data set Il model was reduced+848.6 (9%), —903.5 (25%),—1225.6
(44%),—1592.1 (57%) and—1820.3 (63%), respectively. It was found that the best results
were obtained When§ was fixed equal to 0.3, which resulted in a similar reduction in
the log likelihood value as the best results obtained for data set Il (approximately 10%).
Traces of the resulting medng p*(w|y), log L(w) andlog p(w) values are shown in
Figure 4.18, while théog p*(w|y) resulting from the individual MCMC chains are shown
in Figure 4.19. As can be seen in Figure 4.18, the hierarchical prior distribution resulted
in the greatest increase log L.(w) value above the initial value, indicating that, again,
the MCMC algorithm was best able to escape the poor local mode when this form of prior
was assumed. However, it can also be seen in Figure 4.19 that only one of the chains was
able to move away from the initial weights and discover a better mode and that, by the
end of the simulation, one of the chains resulting from the assumption of a uniform prior
was also able to do this. Therefore, the MCMC simulation was run for another 400,000
iterations to determine whether the MCMC algorithm did, in fact, have the greatest ability
to escape the poor local mode when a hierarchical prior was assumed. The mean MCMC
output traces resulting from the longer simulation are shown in Figure 4.20, where it can
be seen that this was indeed the case. The stepped nature of the mean traces shown in
this Figure 4.16 was again found to be the result of different chains finding new modes at
different times throughout the simulation.
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Figure 4.18 Meanlogp*(wly), log L(w) andlog p(w) traces resulting from the (a) uni-
form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm with ini-
tially fixed hyperparameters was used to train the poorly initialised data set 11l model.
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Figure 4.19 Individual log p*(w|y) traces resulting from the (a) uniform, (b) hierarchical
and (c) ARD prior distributions when the MCMC algorithm with initially fixed hyperparam-
eters was used to train the poorly initialised data set Ill model.
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Figure 4.20 Meanlog p*(wly), log L(w) andlog p(w) traces obtained for the data set Ill
model with a longer simulation.

For both the data set Il and data set Ill models, it was found that the standard de-
viations of the weights, calculated immediately after the initial petjgdor which the
hyperparameters of the hierarchical prior had been fixed, were greater than those calcu-
lated when they were unfixed, confirming that the chains were able to move more freely
around the weight space when the hyperparameters were fixed for a short time. However,
although the MCMC algorithm, given the combination of a hierarchical prior and fixed
hyperparameters, had some success in finding new modes, it was unable to find the max-
imum likelihood values obtained with the deterministic training algorithms. The MCMC
algorithm was also initialised with the best weights obtained for the 3 hidden node ANN
applied to data set Il and the 4 hidden node ANN applied to data set Il using the SCE-
UA algorithm. Traces of the resulting me&sg p*(wly), log L(w) andlog p(w) values
are shown in comparison to the best results obtained for the poor weight initialisation in
Figures 4.21 and 4.22, respectively.

In the attempt to improve the results obtained with a hierarchical prior and initially
fixed hyperparameters, simulated annealing was also employed. Several general observa-
tions were made regarding the simulated annealing parameters for the models developed
for data sets Il and Ill. Overall, it was found that the best combination of simulated an-
nealing parameters was= 5.0 x 10~> andT; = 15, which were also the values used
by Neal (1992). For initial temperatures @, = 5 and7; = 30, the best results were
obtained wherp = 5.0 x 1079, indicating that simulated annealing was most successful
when the temperature was cooled slowly. However, simulated annealing was found to
be least successful whéfy = 50, regardless of the value ¢f. For7, = 5, the best
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Figure 4.21 Meanlog p*(w|y), log L(w) andlog p(w) traces obtained for the data set Il
model with (a) a poor weight initialisation and (b) a good weight initialisation.
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Figure 4.22 Meanlog p*(w|y), log L(w) andlog p(w) traces obtained for the data set Ill
model with (a) a poor weight initialisation and (b) a good weight initialisation.

results obtained witlp = 5.0 x 10~° were similar, although slightly worse than when no
annealing was applied. It was found that the steps in the rlogari(w|y) trace became
smoother for the data set Il model, whereas, for the data set Ill model, the transition be-
tween modes became less smooth than when no annealing was applied. The simulated
annealing algorithm was somewhat successful Witk- 30 when applied to the data set

Il model, although it did not give as good results as wlign= 15, as the simulation

had yet to converge within 400,000 iterations. On the other hand, the results obtained
whenT, = 30 for the data set IIl model were significantly worse than when no anneal-
ing was applied. Traces of the melag p*(w|y), log L(w) andlog p(w) values obtained

with the best combination of simulated annealing parametersi(i.e. 5.0 x 10~° and

Ty = 15) are shown in Figure 4.23 for (a) the data set Il model and (b) the data set IlI
model. In comparison to Figure 4.16 (b), it can be seen that simulated annealing resulted
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in a smoother transition between different modes when applied to the data set Il model,
whereas, for the data set Il model, slightly faster location of new modes was achieved, as
seen in comparison to Figures 4.18 (b) and 4.20 (b). However, overall, the best results ob-
tained with simulated annealing were approximately the same as when annealing was not
employed. The MCMC algorithm was still unable unable to find the maximum likelihood
values obtained with the deterministic training algorithms, as shown in Figures 4.21 (b)
and 4.22 (b).
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Figure 4.23 Meanlog p*(wly), log L(w) andlog p(w) traces obtained using simulated
annealing withp = 5.0 x 10~° andT; = 15 for (a) the data set Il model and (b) the data set
[l model.

Prevention of overfitting

Shown in Figures 4.24 and 4.25 are the méasp*(wly), log L(w) andlog p(w)
traces resulting from each form of prior distribution when the MCMC algorithm, ini-
tialised with weights obtained when the SCE-UA training algorithm was stopped early,
was applied to the 10 hidden node ANNs used for modelling data sets | and I, respec-
tively. Also shown for comparison in these figures are the meah(w) traces obtained
using the optimal ANN structures (i.e. 1 hidden node ANN for data set | and 3 hidden
node ANN for data set Il). Given the results presented in the previous section, the hyper-
parameters were fixed a§ = 1.0, 0% = 1.0 for ty2 = 500. It can be seen by comparing
thelog L(w) traces with those obtained using the optimal ANN structures that, although
the 10 hidden node models had the potential of becoming overtrained, overfitting did not
begin during any time in the MCMC simulation using any of the prior distributions, in-
cluding the noninformative uniform prior, which does not incorporate weight regularisa-
tion. It can also be seen that, for both the data set | and data set Il modéts; théw |y )

Page 184



Assessment of Bayesian Techniques with Synthetic Data — Section 4.4

(8?60 Uniform Prior (b) Hierarchical Prior © ARD Prior .
- 5
— . — logL(w) — 1 hidden node LO
470
2 o
-~ -480 + +30
(@)
8 o0 YO W =
S -500 110
;;/ -510 o -0
o 520 — log p*(wly) || 110
(@] —
— 530 logL(w) Lo
log p(w)
540+ " i i i " " -30
100 20C 300 40C 0 10C 200 300 400 100 20C 30C 400

Iteration (x1000)

Iteration (x1000)

Iteration (x1000)

(m)d Boj

Figure 4.24 Meanlogp*(wly), log L(w) andlog p(w) traces resulting from the (a) uni-
form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm was used
to train the 10 hidden node data set | model, initialised with weights obtained when overfitting

was prevented.
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Figure 4.25 Meanlogp*(wly), log L(w) andlog p(w) traces resulting from the (a) uni-
form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm was used
to train the 10 hidden node data set Il model, initialised with weights obtained when overfit-

ting was prevented.
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traces were continually increasing throughout the simulations when hierarchical and ARD
priors were assumed, as a result of this regularisation.

Figures 4.26 and 4.27 display the mdagp*(wly), log L(w) andlog p(w) traces
resulting from each form of prior distribution when the MCMC algorithm was initialised
with weights obtained when the SCE-UA training algorithm was run until convergence
and applied to the data set | and data set Il models, respectively. It can be seen that the
log L(w) traces obtained using the 10 hidden node models started off significantly higher
than those obtained using the optimal ANNs, but came back towards the optimal models’
traces during the simulations. For the data set | model (Figure 4.26), this happened quickly
within 9,000 and 32,000 iterations, using the hierarchical and ARD priors, respectively.
For the data set || model (Figure 4.27), convergence to the optirgdl(w) traces was
somewhat slower; however, in each case the results indicate that hierarchical and ARD
priors are able to prevent overfitting, even when initialised with weights where overfitting
had already occurred. On the other hand, althoughoihé(w) traces obtained using the
uniform prior distribution also decreased slightly throughout the simulations, this process
was slow, such that by the end of the simulation, the model was still overfitting the data,
indicating that the uniform prior is not appropriate for preventing overfitting.
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Figure 4.26 Meanlog p*(wly), log L(w) andlog p(w) traces resulting from the (a) uni-
form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm was used
to train the 10 hidden node data set | model, initialised with weights obtained when the model
had been overtrained.
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Figure 4.27 Meanlogp*(wly), log L(w) andlog p(w) traces resulting from the (a) uni-
form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm was used
to train the 10 hidden node data set Il model, initialised with weights obtained when the model
had been overtrained.

The effect of each form of prior distribution on the magnitude of the weights was
also investigated by inspecting plots of the average magnitudes of different weight groups
throughout the MCMC simulations. These plots are shown in Figures 4.28 and 4.29,
for the models applied to data sets | and Il, respectively, and were obtained over the
last 200,000 iterations of the MCMC simulations initialised with weights obtained when
the SCE-UA algorithm was run until convergence. As expected, it was found that the
magnitudes of the weights were not suppressed at all using the noninformative uniform
prior, whereas the weights became significantly smaller when the hierarchical and ARD
prior distributions were used. For the data set | model, the input-hidden layer weights had
average magnitudes close to zero when hierarchical and ARD prior distributions were
assumed. This is appropriate, since these inputs are all linear and, therefore, their input-
hidden weights need to be small in order to lie on the linear part of the tanh hidden layer
activation functions. However, it is important to note that, although the weights associated
with these inputs lie close to zero with little variance, the inputs are not irrelevant to the
model; thus, highlighting the shortcomings of ARD as an input selection or importance
measure when the problem involves linear inputs. For the data set | model, the variance
hyperparameters associated with the input weight groups had mean values of 0.925, 0.375
and 0.271 for inputg;_1, y;_4 andy,;_o, respectively, while, for the data set Il model, the
mean variance hyperparameters associated with inputsy; 4, ;o andz; were 6.603,
53.155, 2.357 and 31.622, respectively. These results confirmed the shortcomings of
ARD, as the more important the input, the greater the value aghould be. For data set
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Figure 4.28 Average magnitude of the (a)-(c) input-hidden, (d) hidden layer bias and (e)
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hidden-output weights for the data set | model, given each form of prior.
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Figure 4.29 Average magnitudes of the (a)-(d) input-hidden, (e) hidden layer bias and (f)
hidden-output weights for the data set Il model, given each form of prior.
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[, input y,_; has the lowest importance, as does inputor data set Il, which contradict
the findings of the ARD.

Finally, using the mean predictions generated by each of the models developed with
the MCMC algorithm, the SSE values were estimated for both the “measured” and “true”
training data. The SSE values for the “true” data were used to determine the extent of
overfitting, since if no overfitting had occurred, these values should be close to zero.
The SSE values are given in Table 4.2, in comparison to the SSE values obtained with
the optimised deterministic weights for the optimal ANN structures, the 10 hidden node
ANNs when the training algorithm was stopped before overfitting had begun and when
the algorithm was allowed to run until convergence. The SSE values for the optimal

Table 4.2 SSE values obtained for each model developed in the overfitting investigation.

ANN Model “Measured” SSE  “True” SSE
DATA SET |
Deterministic weights
1 hidden node 250.254 1.075
10 hidden nodes - early stopped 249.647 1.960
10 hidden nodes - converged 215.657 37.184
Bayesian weights - 10 hidden nodes, early stopped initialisation

Uniform prior 248.442 1.624
Hierarchical prior 250.377 1.585
ARD prior 250.237 1.636

Bayesian weights - 10 hidden nodes, converged initialisation
Uniform prior 225.239 11.322
Hierarchical prior 250.325 1.838
ARD prior 250.720 2.570
DATA SET Il

Deterministic weights
3 hidden nodes 343.447 12.794
10 hidden nodes - early stopped 319.786 35.298
10 hidden nodes - converged 319.210 34.817
Bayesian weights - 10 hidden nodes, early stopped initialisation

Uniform prior 334.838 17.251
Hierarchical prior 343.488 15.438
ARD prior 346.975 13.578

Bayesian weights - 10 hidden nodes, converged initialisation
Uniform prior 301.615 42.545
Hierarchical prior 322.080 24.748
ARD prior 325.377 23.503

Page 189



Chapter 4 — A New Bayesian Framework for ANNs

ANN structures are shown in italics, as these are approximately the values expected if
the models were not overtrained. The best “true” SSE values obtained using the Bayesian
ANNSs are highlighted by bold font and, as can be seen, the hierarchical prior was the most
successful at preventing overfitting when applied to the data set | models, whether or not
it had already occurred, whereas, the ARD prior was the most successful at achieving this
when applied to the data set || models. However, as seen in Table 4.2, the SSE values
obtained for the models trained with the MCMC algorithm under the assumptions of
hierarchical and ARD prior distributions were very similar, indicating that the additional
complexity of the ARD prior, over the hierarchical prior, is not warranted, given its ability

to prevent overfitting.

4.4.3.2 Assessment of Evidence Estimators

Given the results of Section 4.4.3.1, the models considered in this investigation were
trained with the MCMC algorithm using the hierarchical prior distribution, as this prior
gave the best results in terms of prevention of overfitting, escaping local modes and min-
imising the complexity of the algorithm. To ensure convergence of the algorithm, the
simulations were run for a total of 800,000 iterations & 800, 000), where the first
600,000 were discarded,(= 600, 000) and the final 200,000 iterations were assumed to
be sampled draws from the posterior and were used in the evidence calculations.

The model evidence results for data set I, calculated using the G-D, C-J and -1/2BIC
estimators, are given in Table 4.3 for the 10 different network sizes considered. It should
be noted that these values were estimated based on the scaled model outputs and target
data; therefore, there is a discrepancy between the mean -1/2BIC values presented here
and the BIC values presented in Table 3.12, which were calculated based on unscaled
data. The maximum evidence values estimated using each method are highlighted by bold
italics and, as it can be seen, each of the methods correctly estimated that the 1 hidden
node model had the greatest evidence. It can also be seen that each of the estimators gave
similar evidence values for all of the 10 different network sizes, particularly the G-D and
C-J estimators, as better seen in Figure 4.30. However, while the G-D and C-J estimates
are very similar, they appear to be incorrect for some of the network sizes. It would be
expected that any additional complexity over that required (in this case, 1 hidden node)
would result in a reduction in the evidence. As it can be seen in Figure 4.30, this was not
the case for the 6, 7 and 8 hidden node networks, which were all estimated to be more
probable than the 5 hidden node model, with the 8 hidden node ANN having the greatest
evidence of the three. It is apparent that the evidence of the 5 hidden node model was
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Table 4.3 Evidence estimates for data set | ANN models.

Hidden G-D C-J Mean

Nodes Estimator Estimator -1/2BIC
1 -528.328 -524.105 -530.787
2 -529.071 -527.261 -547.129
3 -543.961 -544.036 -562.981
4 -559.238 -559.601 -577.994
5 -612.856 -609.773 -594.086
6 -592.344  -592.258 -610.465
7 -605.279 -601.050 -625.885
8 -580.660 -581.054 -641.425
9 -624.230 -618.985 -657.127

=
o

-687.408 -688.531 -674.091

underestimated, whereas the evidence of the 8 hidden node network was overestimated,
resulting in an incorrect ordering of the models. The mean -1/2BIC estimates, on the
other hand, indicate a more logical ordering of the models considered.

The Bayes factors calculated based on the -1/2BIC evidence estimates for the highest
ranked model (Rank 1) against each other model considere®(’g....1;) are presented
in Table 4.4. 1t can be seen in this table, by comparison with Table 4.1, that the evidence
in favour of a 1 hidden node ANN is very strong. While it is known that this result is
correct, since the data are synthetic, in a real world study this would not be the case. Due
to the difficulties associated with estimating the evidence, it is worthwhile to check the
Bayes factor results against the marginal posterior weight distributions for the hidden-

Data Set |
-450
G-D Estimator
—= C-JEstimator
-500 - Mean-1/2BIC
E 550
o)
o -600
(o))
o

-650 7

-700 7

-750 T T T T T T T
1 2 3 4 5 6 7 8 9 10
Number of Hidden Nodes

Figure 4.30 Evidence estimates for the. . ., 10 hidden node ANNSs applied to data set I.
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Table 4.4 Log Bayes Factors in favour of the highest ranked model for data set I.

Rank Hidden log, BF' in Favour
Nodes  of Rank 1 Model

[EEY

16.342
32.194
47.206
63.299
79.678
95.098
110.638
126.340
143.304

O© oo ~NOOLhA, WN P
©O© 00 ~NO UL WDN

[ERN
o
IR
o

output weights, which can be used to determine whether all hidden nodes in the model
are necessary, as discussed in Section 4.3.4.2. The marginal posterior distribution for the
hidden-output weight of the 1 hidden node model is displayed in Figure 4.31. As this
distribution does not include the value zero, it is indicated that this node is necessary
to model data set I. On the other hand, the 95% highest density regions of the marginal
posterior distributions shown in Figure 4.32 (a) and (b), which are the hidden-output
weights of a 2 hidden node network, do include zero, indicating that at least one of the
nodes is not necessary. The scatter plot in Figure 4.32 (c) does not pass through the
origin; therefore, it can be determined that only one of the hidden nodes may be removed
from the network. This leaves a 1 hidden node network, which means that the Bayes
factor results were correct. However, it was known that a network with no hidden nodes
was, in fact, optimal for this data set; yet, this was not determined by inspecting the
marginal hidden-output distributions. When there is only one hidden node in an ANN,

Probability Density
o o 9 o
B & 8 B

o
=}
a

o

Q

=]
N

4 6 8 10 12 14
Hidden-Output Weight 1

Figure 4.31 Marginal posterior hidden-output weight distribution for the 1 hidden node
ANN.
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Figure 4.32 Marginal posterior distributions for (a) hidden-output weight 1 and (b) hidden-
output weight 2, together with (c) the scatter plot of the joint hidden-output weight distribu-
tion.

the marginal posterior hidden-output weight distribution will never include zero unless
there is no relationship between the model inputs and outputs, since the inputs would then
be disconnected from the output. Similarly, when there are only two hidden nodes in the
network, the joint distribution of the hidden-output weights will never pass through the
origin for the same reason. While it is possible to build a network with no hidden layer,
with the inputs connected directly to the output, this would result in a linear model and,
as mentioned in Section 3.4.2.4, only nonlinear models were considered in this research.

Table 4.5 gives the model evidence results for data set Il. Again, the values calculated
using the different methods correctly estimated the 3 hidden node ANN to have the great-
est evidence (highlighted in bold italics). The evidence values are plotted in Figure 4.33,

Table 4.5 Evidence estimates for data set || ANN models.

Hidden G-D C-J Mean

Nodes Estimator Estimator -1/2BIC
1 -760.390 -757.601 -764.402
2 -766.520 -766.606 -783.648
3 -723.427 -717.256 -705.040
4 -745.980 -745.118 -725.317
5 -771.298 -759.791 -745.451
6 -853.902 -844.695 -763.963
7 -803.790 -798.116 -783.247
8 -842.126  -839.281 -802.007
9 -896.673 -895.476 -822.855

[E=Y
o

-981.232  -982.163 -843.845
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Figure 4.33 Evidence estimates for tHe. . ., 10 hidden node ANNSs applied to data set II.

where it appears that some of the evidence values calculated using the G-D and C-J esti-
mators are erroneous, as there is no logical reason why the 6 hidden node network should
be less probable than the 7 and 8 hidden node ANNs. As is the case for data set I, the
mean -1/2BIC evidence estimates appear to be the most consistent and rational.

The BFra.i1,; results, calculated based on the -1/2BIC evidence estimates, are pre-
sented in Table 4.6. The evidence in favour of the 3 hidden node ANN is very strong
according to the Bayes factors, which was verified by inspection of Figures 4.34 and
4.35, which display the marginal posterior distributions of the hidden-output weights of
the 3 and 4 hidden nodes networks, respectively. In Figure 4.34, it can be seen that none
of the distributions include zero, indicating that all of the nodes are necessary for mod-

Table 4.6 Log Bayes Factors in favour of the highest ranked model for data set II.

Rank Hidden log, BF in Favour
Nodes  of Rank 1 Model

w

20.278
40.412
58.923
59.362
78.208
78.608
96.967
117.816
138.805
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elling data set I, whereas the 95% highest density region of the distribution shown in
Figure 4.35 (b) does include zero, which indicates that this node may be removed from
the network without loss of predictive performance.
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Figure 4.34 Marginal posterior hidden-output weight distributions for the 3 hidden node
ANN applied to data set Il.
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Figure 4.35 Marginal posterior hidden-output weight distributions for the 4 hidden node
ANN applied to data set Il.
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Table 4.7 Evidence estimates for data set [l ANN models.

Hidden G-D C-J Mean
Nodes Estimator Estimator  -1/2BIC
1 -1181.973 -1178.764 -1187.835
2 -979.765 -974.182  -969.696
3 -807.071  -806.271  -785.296
4 -241.059  -235.593 -177.878
5 -193.011  -193.503 -133.750
6 -235.465  -236.286  -154.014
7 -303.281  -299.990 -181.012
8 -408.727  -408.916  -211.591
9 -404.002  -404.919 -243.774
10 -457.596  -455.242  -257.550

The evidence results obtained for data set Il are presented in Table 4.7 and Fig-
ure 4.36. The highest evidence values estimated using each method (highlighted in bold
italics in Table 4.7) correctly indicate that the 5 hidden node model provides the optimal
complexity. Similar to the results obtained for data sets | and I, some of the G-D and
C-J estimates seem erroneous. For example, the 8 hidden node ANN was estimated to
be less probable than the 9 hidden node network by both methods and the 4 hidden node
network was estimated as being more probable than the 6 hidden node ANN, which con-
tradicts the results obtained in Chapter 3 and the evidence values estimated using the G-D
and -1/2BIC methods. Again, the BIC estimator is the most consistent of the methods

investigated.
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Figure 4.36 Evidence estimates for tHe. . . , 10 hidden node ANNS applied to data set III.
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Table 4.8 Log Bayes Factors in favour of the highest ranked model for data set lIl.

Rank Hidden log, BF' in Favour
Nodes  of Rank 1 Model

1 5 -

2 6 20.263

3 4 44.128

4 7 47.261

5 8 77.840

6 9 110.023

7 10 123.799

8 3 651.546

9 2 835.945

10 1 1054.084

The B Frania,i results presented in Table 4.8 indicate that there is very strong evidence
in favour of the 5 hidden node ANN over the 6 hidden node network. However, inspection
of the marginal posterior distributions of the hidden-output weights of the 5 and 6 hidden
node ANNSs, shown in Figures 4.37 and 4.38, respectively, indicates that this is not the
case, as none of these distributions for either of the models include zero. There may be a

@ (b) (©
0.35 0.25 0.25
> 030 iy
5 0.20 I 0.20
$ 025
a)
> 020 0.15 0.15
3 o015
g 0.10 0.10
2 010
e 0.05 0.05
0.05
0.00 =TT 0.00 ‘ 0.00 =LA
9 1 13 15 17 19 18 -16 -14 -12 -10 -8 -6 7 9 11 13 15 17 19
(d) Hidden-Output Weight 1 (e) Hidden-Output Weight 2 Hidden-Output Weight 3
0.18 0.35
0.16 n n - 0.30
2 014 M
B 0.25
$ 012
o 0.20
> 010
% 0.08 0.15
0.06
-§ oo 0.10
g o
002 0.05
0.00 ‘ 0.00
21 -19 -17 -15 -13 -1 9 12 11 -0 9 8 7 -6 -5
Hidden-Output Weight 4 Hidden-Output Weight 5

Figure 4.37 Marginal posterior hidden-output weight distributions for the 5 hidden node
ANN applied to data set Ill.
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Figure 4.38 Marginal posterior hidden-output weight distributions for the 6 hidden node
ANN applied to data set Ill.

number of reasons why the Bayes factor results suggest strong evidence in favour of the 5
hidden node ANN, when it is, in fact, difficult to choose between the 5 and 6 hidden node
ANN models. For example, the interpretive scale given in Table 4.1 may not be appro-
priate for ANNs, where the addition of each hidden node increases the complexity of the
model by several dimensions; the evidence approximation given by the -1/2BIC may be
poor; or the MCMC algorithm may not have converged properly (although inspection of
output MCMC traces indicated that it had). By inspection of the marginal posterior distri-
butions for the hidden-output weights of the 7 hidden node model, shown in Figure 4.39,
it was seen that only 6 hidden nodes were necessary, as the marginal posterior distribution
displayed in subplot (e) included zero and was therefore considered redundant. It was
concluded from these plots that the 6 hidden node ANN may be more appropriate for
modelling data set Ill than the 5 hidden node ANN, as it is apparent that there may be
some increase in model performance by including the additional hidden node.
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Figure 4.39 Marginal posterior hidden-output weight distributions for the 7 hidden node
ANN applied to data set Ill.

4.4.4 Evaluation of Best Models

As with the deterministic ANNs developed in Chapter 3, the best models developed using
the Bayesian framework were evaluated by assessing their performance against the “mea-
sured” and “true” training, testing and validation data subsets for synthetic data sets |, Il
and 1l1. It should be noted that the testing data subset was unnecessary for the Bayesian
training approach, as cross validation is not required in the Bayesian context; therefore,
it could have been combined with the training data. However, in order to provide a fair
comparison with the results obtained using the deterministic models, this was not done.
Shown in Figure 4.40 are scatter plots of the mean model predictions and 95% prediction
limits of the 1 hidden node ANN found most suitable for modelling data set | versus the
“measured” and “true” training, testing and validation data. It can be seen in this figure
that the mean predictions provide a very good fit to the “true” data and that the majority of
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Figure 4.40 Scatter plots of the 1 hidden node ANN model mean predictions and 95%
prediction limits versus “measured” and “true” (a) training, (b) testing and (c) validation data
for data set |.

the “measured data” are contained within the 95% prediction limits. In fact, these limits
contain 100% of the “true” data points and 94.8% of the “measured” data.

Atime series plot of the mean model predictions and 95% prediction limits is shown in
Figure 4.41 against the “measured” and “true” recombined training, testing and validation
data. The first 100 points of this plot are shown in Figure 4.42 to better illustrate the model
fit to the data. It can be seen that the mean predictions provide a near perfect fit to the
“true” data and that the prediction limits, while relatively narrow, account for almost all
of the “measured” data.

Shown in Figure 4.43 are thBI distributions for each input of the 1 hidden node
ANN used for modelling data set I. These were calculated by evaluating thealues
for each of the weight vectors sampled from the posterior distribution using the modified
Connection Weight Approach. The minimum, mean and maximum values of these dis-
tributions are summarised in Table 4.9 in comparison to the PMI-bAgegstimates. It
can be seen here that there is reasonable agreement between the Invadures and the
PMI-based estimates and that these estimates are each incorporated within the bounds of
the estimatedr/ distributions, indicating that the model developed had approximated the
underlying relationship well.
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95% Prediction Limits — Predictions ° "Measured" Data * "True" Data
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Figure 4.42 Plot of the first 100 mean model predictions and 95% prediction limits against
the combined training/testing/validation “measured” and “true” data for data set .
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Figure 4.43 EstimatedR/ distributions for the inputs of data set I.

Table 4.9 Minimum, mean and maximurRI values (%) for the inputs of the 1 hidden node
ANN developed for modelling data set I.

RI Estimation Method Ye—1 Yi—4 Yi—9

Minimum 13.81 34.88 29.64
Mean 21.00 41.67 37.33
Maximum 27.04 48.20 44.90
PMI-based 22.33 45.07 32.60
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Figure 4.44 Scatter plots of the 3 hidden node ANN model mean predictions and 95%
prediction limits versus “measured” and “true” (a) training, (b) testing and (c) validation data
for data set Il.

A 3 hidden node ANN was found to be best for modelling data set Il and the scatter
plots of the resulting mean model predictions and 95% prediction limits versus the “mea-
sured” and “true” training, testing and validation data are shown in Figure 4.44. In this
case, the 95% prediction limits incorporate 100% of the “true” data points and 96.3% of
the “measured” data.

Figures 4.45 and 4.46 show time series plots of the mean model predictions and 95%
prediction limits against the “measured” and “true” data for the first 100 points of the
recombined training, testing and validation data set and for the entire data set, respectively.
It can be seen in Figure 4.45 that although the mean predictions do not accurately predict
all of the “true” data points, all of these data are contained well within the 95% prediction
limits.

95% Prediction Limits — Predictions ¢ "Measured" Data ¢ "True" Data

0 20 40 60 80 100

Figure 4.45 Plot of the first 100 mean model predictions and 95% prediction limits against
the combined training/testing/validation “measured” and “true” data for data set Il.
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Figure 4.46 Plot of mean model predictions and 95% prediction limits against the combined training/testing/validation “measured” and

“true” data for data set II.
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Figure 4.47 EstimatedR/[ distributions for the inputs of data set Il.

The RI distributions for each input of data set Il, estimated with the modified Con-
nection Weight Approach, are shown in Figure 4.47, while the minimum, mean and max-
imum R/ values are summarised in Table 4.10. For inputs, y;_4 andy;_o, there is
good agreement between the mdah values and the PMI-basefd/ estimates, which
are also given in Table 4.10. While the meah value is significantly less than the PMI-
basedRI estimate for inputr;, the maximum of theR[ distribution is approximately
equal to the PMI-base® estimate; thus, it was considered that the model obtained a

Table 4.10 Mean RI values (%) for the inputs of the 3 hidden node ANN developed for

modelling data set Il.

RI Estimate Ye—1 Yt—4a Yt—9 Tt
Minimum 16.93 29.39 16.15 0.00
Mean 2573 37.71 3314 342
Maximum 38.66 50.82 43.09 11.12
PMI-based 21.62 36.13 30.82 11.44
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good approximation of the data-generating function.

Similar to the deterministic case, it was inconclusive using Bayesian model selection
whether a 5 hidden node ANN or a 6 hidden node ANN was better for modelling data set
[ll. Scatter plots of the 5 hidden node ANN model mean predictions and 95% prediction
limits versus the “measured” and “true” data are shown in Figure 4.48, while Figure 4.49
shows the same plots for the 6 hidden node ANN model. The 95% prediction limits of
both the 5 and 6 hidden node models include 100% of the “true” data and include 95.0%
and 95.4% of the “measured” data, respectively.
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Figure 4.48 Scatter plots of the 5 hidden node ANN model mean predictions and 95%
prediction limits versus “measured” and “true” (a) training, (b) testing and (c) validation data
for data set II.
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Figure 4.49 Scatter plots of the 6 hidden node ANN model mean predictions and 95%
prediction limits versus “measured” and “true” (a) training, (b) testing and (c) validation data
for data set Il
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Shown in Figures 4.50 and 4.51 are output plots of the 5 hidden node ANN model
mean predictions and 95% prediction limits against the “measured” and “true” data for
the entire recombined training, testing and validation data set and for the first 100 points
of this data set, respectively. The prediction limits are relatively narrow about the mean
predictions, yet the “true” data are still well contained within the bounds, indicating that
the model predictions have little associated uncertainty. This is a result of the high signal-
to-noise ratio of the data, which enabled the model to extract relatively noise free infor-
mation from the data to estimate the underlying relationship. The output plots for the 6
hidden node ANN model are not shown, as they are almost identical to those presented in
Figures 4.50 and 4.51.

35
30 - 95% Prediction Limits ~ — Predictions ° "Messured' Data  + "True' Data
25 1 5 o
20 - AN ;
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10 #s¥ ¢
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0 T T T T
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Figure 4.51 Plot of the first 100 mean predictions and 95% prediction limits against the
combined training/testing/validation “measured” and “true” data for the 5 hidden node ANN
applied to data set Ill.

The RI distributions for each input of data set I, estimated with the modified Con-
nection Weight Approach using the weights of the 5 and 6 hidden node ANN weights,
are shown in Figures 4.52 and 4.53, respectively. The minimum, mean and maximum
RI values of these models are summarised in Table 4.11 together with the PMI#bAsed
estimates. It can be seen in this table that there is better agreement betwBérdtbii-
butions estimated for the 6 hidden node ANN and the PMI-badeedstimates, indicating
that this model obtained a better approximation of the data-generating function than the 5
hidden node ANN.
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Figure 4.52 RI distributions for the inputs of data set 1l estimated using the 5 hidden node
ANN weights.

Table 4.11 Minimum, mean and maximuni®/ values (%) for the inputs of the 5 and 6
hidden node ANN developed for modelling data set Ill.

RI Estimation Method T1 To T3 T4 Ts

5 hidden nodes - minimum 0.06 3.80 1655 26.22 13.33
5 hidden nodes - mean 9.39 1091 2943 32.83 17.42
5 hidden nodes - maximum 16.60 16.35 41.14 4191 22.02
6 hidden nodes - minimum 1342 27.71 0.00 2197 11.46
6 hidden nodes - mean 19.80 34.19 3.31 27.47 15.23
6 hidden nodes - maximum 26.02 40.40 15.09 3358 19.92
PMI-based 20.07 22.65 10.65 30.80 15.83
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Figure 4.53 RI distributions for the inputs of data set Ill estimated using the 6 hidden node
ANN weights.

Performance criteria are given in Table 4.12 to summarise the mean performance (i.e.
calculated based on the mean predictions) of the ANN models developed when applied
to the “measured” and “true” validation data for all three synthetic data sets. The results
obtained using the deterministic development approach, as well as the@cami MAE
values (shown in italics), are given for comparison. As can be seen, the mean performance
of all of the ANN models developed using Bayesian methods was slightly better than the
performance of the corresponding deterministic ANN models on the “true” validation
data. This indicates that each of the data-generating functions was slightly better ap-
proximated using the Bayesian approach. Performance of the Bayesian and deterministic
models on the “measured” validation data was similar; however, in general, the Bayesian
models also performed slightly better on this data.
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Table 4.12 Mean performance of the ANNs developed using Bayesian methods in compari-

son to the performance of the corresponding deterministic ANNs when applied to “measured”
and “true” validation data.

Performance Deterministic Bayesian
Measure “Measured” “True” “Measured” “True”
DATA SET |
&3 1.020 0.010 1.104 0.008
MAE 0.814 0.075 0.817 0.070
RMSE 1.010 0.098 1.012 0.091
CE 0.703 0.996 0.702 0.997
Actual frf, 1.035 0.000 1.035 0.000
Actual MAE 0.816 0.000 0.816 0.000
DATA SET lI
&3 0.922 0.059 0.917 0.055
MAE 0.766 0.190 0.760 0.182
RMSE 0.960 0.243 0.958 0.234
CE 0.682 0.974 0.684 0.976
Actual [752, 0.852 0.000 0.852 0.000
Actual MAE 0.733 0.000 0.733 0.000
DATA SET Il - 5 hidden node ANN
&3 0.924 0.068 0.922 0.055
MAE 0.768 0.201 0.768 0.181
RMSE 0.961 0.262 0.960 0.234
CE 0.947 0.996 0.948 0.997
Actual &f, 0.869 0.000 0.869 0.000
Actual MAE 0.752 0.000 0.752 0.000
DATA SET Ill - 6 hidden node ANN

frf, 0.909 0.059 0.905 0.050
MAE 0.769 0.185 0.766 0.173
RMSE 0.953 0.242 0.951 0.224
CE 0.948 0.997 0.949 0.997
Actual &f, 0.869 0.000 0.869 0.000
Actual MAE 0.752 0.000 0.752 0.000
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4.45 Conclusions

4.4.5.1 Bayesian Training and Prediction

It was seen that the best training results in terms of the estimated posterior weight dis-
tribution, given overfitted and poor initial conditions, were obtained when a hierarchical
prior distribution was used. The use of an ARD type prior, although possibly more repre-
sentative of actual prior knowledge, did not provide any significant additional benefits to
the simulation and only served to increase the complexity of the algorithm, whereas the
noninformative uniform prior, whilst retaining the simplicity of the algorithm, was unable

to prevent overfitting or enable the chains to efficiently explore the search space. The
hierarchical prior distribution enabled both the prevention and correction of overfitting
when the MCMC algorithm was used to train overparameterised models. Furthermore,
when the hyperparameters of the hierarchical prior were fixed for a short initial period,
the results of the MCMC simulation, given poor initialisation of the weights, were sub-
stantially improved, with the chains being better able to explore the search space and
discover new modes. On the other hand, simulated annealing was unable to achieve any
significant improvement in the results of the MCMC simulation, as no further modes of
higher posterior probability were discovered than when simulated annealing was not ap-
plied. Itis possible that, with a greater number of iterations and more optimal valyes of
andTy,, simulated annealing could have been more successful; however, it is considered
that the increase in complexity of the MCMC algorithm as a result of the additional tun-
ing parameters is not warranted. Therefore, simulated annealing will not be considered
further in this research. Overall, it was concluded that, although helpful in “forgetting”
initial conditions, the use of a hierarchical prior with initially fixed hyperparameters is no
substitute for a good weight initialisation. It is therefore recommended that extra care be
taken in finding appropriate weights to initialise the MCMC algorithm. Thus, if the
algorithm does become stuck in the vicinity of a local mode, there will at least be some
confidence that it is a “good” mode (i.e. the best estimate of the maximum likelihood
value given by a rigorous search algorithm that tries to thoroughly search the space). The
use of a hierarchical prior with initially fixed hyperparameters will help to lessen the bias
that may be caused by this initialisation.

4.4.5.2 Bayesian Model Selection

The -1/2BIC estimator of the ANN models’ evidence values was found to be the most
consistent and logical of the estimators investigated. For each of the three synthetic case
studies considered, the -1/2BIC values followed a similar pattern to the theoretically more
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correct G-D and C-J estimators, yet did not suffer from the same instabilities due to the
prior distribution assumed or the proposal distribution used to sample draws from the pos-
terior distribution. Furthermore, a distribution of -1/2BIC values is obtained, which may
be better to estimate the strength of the evidence for or against a given model (by assess-
ing overlap, if any, of -1/2BIC distributions and the difference between maximum and
minimum values). Inspection of marginal posterior hidden-output weight distributions
was shown to be useful for checking the results obtained from the -1/2BIC Bayes factors,
as these distributions indicate whether or not similar results could be obtained if one or
more of these connections was set equal to zero; thus, removing it from the network.

4.45.3 Overall

The models developed using the Bayesian training and model selection framework per-
formed slightly better than those developed using the deterministic approach presented in
Chapter 3. The 95% prediction limits generated successfully accounted for approximately
95% of the “measured” data and 100% of the “true” data for each of the synthetic data
sets, while the probabilistiB! values provided a better approximation of the true relative
contributions of the models’ inputs than the deterministic estimates did.
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