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ABSTRACT 

 

Two problems hampering efforts to produce salt-tolerant plants through 

constitutive expression of transgenes include:  

1. Spatial control. Particular cell-types must respond specifically to salt stress to 

minimise the amount of Na+ delivered to the shoot; and,  

2. Temporal control. Transgenes are typically expressed in plants at similar levels 

through time, irrespective of the stress encountered by the plant, which may 

exacerbate pleiotropic effects and means that, particularly in low-stress 

conditions, costly and/or detrimental metabolic processes may be active, thus 

reducing yield.   

To address these issues, Gateway
®
 destination vector constructs were developed 

combining the GAL4 UAS (upstream activating sequence) with the ethanol-inducible 

gene expression system to drive inducible cell-specific expression of Na
+
 transporter 

transgenes (or to silence salt transporter transgenes inducibly and cell-specifically). 

Rice (Oryza sativa L. cv. Nipponbare) GAL4-GFP enhancer trap lines (Johnson et al., 

2005: Plant J. 41, 779-789) that express GAL4 and GFP specifically in either the root 

epidermis or xylem parenchyma (and therefore ‘trap’ cell-type specific enhancer 

elements) were transformed with this GAL4 UAS – ethanol switch construct, thereby 

allowing both spatial and temporal control of transgenes.  In preliminary experiments, 

the expression system successfully limited the expression of RFP to specific cell-types 

after induction with ethanol.  Other genes expressed using this system include 

PpENA1, a Na
+
-extruding ATPase from the moss, Physcomitrella patens, and 

AtHKT1;1, a Na
+
 transporter from Arabidopsis thaliana.   

The two enhancer trap rice lines were also transformed with the GAL4 UAS 

driving stable expression of AtHKT1;1 and PpENA1 specifically in root epidermal or 

xylem parenchyma cells. Expression of AtHKT1;1 in root epidermal cells reduced Na
+
 

accumulation in the shoots, while expression in the root xylem parenchyma appeared to 

have little effect on shoot Na
+
 accumulation.  Using cryo-scanning electron microscopy 

(SEM) X-ray microanalysis, the outer cells of the roots of the line expressing 

AtHKT1;1 in the epidermal cells were found to accumulate higher levels of Na
+
 than 

the parental enhancer trap line.  Additionally, this line had decreased unidirectional 
22Na+ influx.  Similar results were observed for plants expressing AtHKT1;1 driven by 

the CaMV 35S promoter, but these plants were stunted, presumably from expressing 

AtHKT1;1 at increased levels. 
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