
CHAPTER 5

Kinetostatic Modelling of Micro-motion Stages

A more accurate modelling method compared to the PRBM method is presented
in this chapter. This is a kinetostatic model which is capable of predicting both
the kinematics and statics of compliant mechanisms. In other words, kinetostatic
models allow the fulfillment of both the kinematics and the statics design crite-
ria (Krovi et al., 2002) of compliant micro-motion stages. The kinetostatic models
of the two compliant stages, which were the four-bar compliant mechanism and
the 3-RRR compliant stage were derived. The kinetostatic models were derived
to have closed-form equations. Material and link parameters are variables in the
models. Flexure hinge compliances are also one of the variables in these models.
Therefore, the most suitable flexure hinge compliance equation can be selected
based on the scheme developed in Chapter 3 to calculate the kinetostatics of com-
pliant micro-motion stages accurately. Two cases of the four-bar mechanism and
the 3-RRR micro-motion stage respectively were studied to a) investigate the effect
of inaccurate modelling of flexure hinge compliances on the accuracy of the kine-
tostatic models, and b) to demonstrate the advantages of the derived closed-form
kinetostatic models with flexure hinge compliances as one of the variables. Ana-
lytical matrices of the kinetostatic models of Case 1 were calculated by deliberately
choosing the flexure hinge equations which have large differences when compared
to FEA results (refer to Figures 3.12-3.14). Meanwhile, analytical matrices of Case
2 were obtained by choosing the flexure hinge equations with small differences
(refer to Figures 3.12-3.14 and Table 3.9).
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76 Chapter 5. Kinetostatic Modelling of Micro-motion Stages

Nomenclature

Note: Matrices are shown in boldface.

Subscripts

1, 2, 3, o′, o Point 1, 2, 3, o’, o

x, y, z reference axes

h1, h2, h3 Hinge 1, 2, 3

L1, L2, L3 Link 1, 2, 3

Superscript

1, 2, 3 reference axes of flexure hinges

Symbols

x, y reference axes

∆x, ∆y translational displacements along the x- and y-axis, also

named as ∆x-displacement and ∆y-displacement

∆α rotational displacement motion about the z-axis, also

named as ∆α-displacement

C compliance matrix

F , M force, moment

∂∆x/∂F , ∂∆x/∂M the change of ∆x-displacement due to forces/moment

∂∆y/∂F , ∂∆y/∂M the change of ∆y-displacement due to forces/moment

∂∆α/∂F , ∂∆α/∂M the change of ∆α-displacement due to forces/moment

[∆αz/Mz]j ,[∆y/Fy]j ,

[∆x/Fx]j ,

compliances of flexure hinge j, where j =1, 2, 3

tj smallest thickness of flexure hinge j, where j = 1, 2, 3

Rj radius of flexure hinge j, where j = 1, 2, 3

D displacement matrix
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5.1 Kinetostatic model of four-bar compliant

mechanisms

The kinetostatic model of a four-bar compliant mechanism is shown below. Uo

Uin

 =

 Co,Fo Co,Fin

Cin,Fo Cin,Fin


 Fo

Fin

 (5.1)

where Uo =

[
∆xo ∆yo ∆αo

]T

is a 3x1 matrix representing the output displace-

ments of the compliant mechanism,
Uin is a constant representing the input displacements of the compliant mecha-
nism,

Fo =

[
Fox Foy Moz

]T

is a 3x1 matrix representing the output forces/moment

acting at Point o,
Fin is a constant representing the input forces,
Co,Fo is a 3x3 compliance matrix relating the output displacements to the output
forces/moment,
Co,Fin

is a 3x1 compliance matrix relating the output displacements to the input
forces,
Cin,Fo is a 1x3 compliance matrix relating the input displacements to the output
forces/moment,
Cin,Fin

is a constant relating the input displacements to the input forces.

5.1.1 Derivation of the output compliance matrix, Co,Fo

The four-bar compliant structure is divided into two links in order to calculate the
Co,Fo matrix. Each link consists of two flexure hinges. The flexure hinge compli-
ances are [∆αz/Mz]j , [∆y/Fy]j and [∆x/Fx]j where j =1,2. Link 1 of the four-bar
compliant structure is shown in Figure 5.1b together with its dimensions, displace-
ments, local coordinates of flexure hinges and the applied forces/moment. The
compliances at Point o′ contributed by each flexure hinge in the structure are firstly
calculated. These compliance matrices are named Ch1 and Ch2. The two flexure
hinges of Link 1 are arranged in series; therefore the compliance matrix of the four-
bar structure at Point o′ can be obtained by summing Ch1 and Ch2. The compliance
matrices of the two links are referred to as CL1o,Fo and CL2o,Fo respectively. The
two links of the four-bar structure are arranged in parallel; therefore the Co,Fo ma-
trix in Equation 5.1 is calculated by summing CL1o,Fo and CL2o,Fo using the rule
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(a) Four-bar compliant mechanism (b) Link 1 of the four-bar mechanism

Figure 5.1: Four-bar compliant mechanism

Figure 5.2: Parallel spring model of the four-bar compliant mechanism

of parallel connection of springs (see Figure 5.2). Throughout the derivation of the
kinetostatic model in this thesis, it is assumed that a) the structural deformations
only occur at flexure hinges and no deformations occur at rigid linkages, and b)
the translational and rotational displacements are small enough to be linearised.

5.1.1.1 Compliances of the four-bar mechanism due to Hinge 1

The compliance matrix of the four-bar compliant structure due to Hinge 1 is ex-
pressed as,
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Figure 5.3: Compliances due to Hinge 1

Ch1 =


∂∆x1

o′/∂Fo′x ∂∆x1
o′/∂Fo′y ∂∆x1

o′/∂Mo′z

∂∆y1
o′/∂Fo′x ∂∆y1

o′/∂Fo′y ∂∆y1
o′/∂Mo′z

∂∆α1
o′/∂Fo′x ∂∆α1

o′/∂Fo′y ∂∆α1
o′/∂Mo′z

 (5.2)

where the partial derivative terms in Equation 5.2 are derived as follows:

From Figure 5.3, forces/moment acting at Point o′ and Point 1in
∗ can be re-

solved into forces/moment acting at Point 1 as follows,

F1x = Fo′y

F1y = −Fo′x − Fin

M1z = −Fo′x (l2 + l3 + 2R2)− Finl1 + Mo′z (5.3)

Derivation of ∂∆α1
o′/∂Fo′x, ∂∆α1

o′/∂Fo′y and ∂∆α1
o′/∂Mo′z

The rotational displacements about the z-axis, ∆α1
1-displacement at Point 1 can be

calculated as shown below,

∗Input forces acting at this point are going to be used to calculate compliance matrices Co,Fin
,

CFin,o and Cin,Fin
later in this section.
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∆α1
1 =

[
∆αz

Mz

]
1

M1z +

[
∆αz

Mz

]
1

F1yR1

=

[
∆αz

Mz

]
1

{−Fo′x (l2 + l3 + 2R2)− Finl1 + Mo′z}+

[
∆αz

Mz

]
1

(−Fo′x − Fin) R1

=

[
∆αz

Mz

]
1

{−Fo′x (l2 + l3 + 2R2 + R1)− Fin (l1 + R1) + Mo′z} (5.4)

The ∆α1
1-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆α1
1 with respect to the forces/moment acting at

Point o′,

∂∆α1
1

∂Fo′x
= − (l2 + l3 + 2R2 + R1)

[
∆αz

Mz

]
1

(5.5)

∂∆α1
1

∂Fo′y
= 0 (5.6)

∂∆α1
1

∂Mo′z
=

[
∆αz

Mz

]
1

(5.7)

The results of the partial derivatives of ∆α1
1 in Equations 5.5 to 5.7 describe the

relationship between the ∆α1
1-displacement and the forces/moment. The partial

derivatives of the ∆x- and ∆y-displacements with respect to forces/moment also
describe this similar relationship.

The rotational displacements about the z-axis, ∆α1
o′-displacement at Point o′ is

the same as ∆α1
1-displacement. Therefore, their results of the partial derivatives

are the same as Equations 5.5, 5.6 and 5.7.

∂∆α1
o′

∂Fo′x
= − (l2 + l3 + 2R2 + R1)

[
∆αz

Mz

]
1

(5.8)

∂∆α1
o′

∂Fo′y
= 0 (5.9)
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∂∆α1
o′

∂Mo′z
=

[
∆αz

Mz

]
1

(5.10)

Derivation of ∂∆y1
o′/∂Fo′x, ∂∆y1

o′/∂Fo′y and ∂∆y1
o′/∂Mo′z

The translational displacement along the y-axis, ∆y1
1-displacement at Point 1 can

be calculated as shown below,

∆y1
1 =

[
∆y

Fy

]
1

F1y +

[
∆αz

Mz

]
1

M1zR1

= −
[
∆y

Fy

]
1

(Fo′x + Fin)

+

[
∆αz

Mz

]
1

{−Fo′x (l2 + l3 + 2R2)− Finl1 + Mo′z}R1 (5.11)

The ∆y1
1-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆y1
1 with respect to the forces/moment acting at

Point o′,

∂∆y1
1

∂Fo′x
= −

[
∆y

Fy

]
1

− (l2 + l3 + 2R2) R1

[
∆αz

Mz

]
1

(5.12)

∂∆y1
1

∂Fo′y
= 0 (5.13)

∂∆y1
1

∂Mo′z
= R1

[
∆αz

Mz

]
1

(5.14)

Due to the amplification of the link with distance l2 + l3 + 2R2, the trans-
lational displacements, ∆y1

o′-displacement at Point o′ is the summation of ∆y1
1-

displacement at Point 1 and the amplified displacements caused by the rotational
motions of the link (see Figure 5.4). Therefore, the ∆y1

o′-displacement is,

∆y1
o′ = ∆y1

1 + ∆α1
o′ (l2 + l3 + 2R2) (5.15)

The ∆y1
o′-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by
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Figure 5.4: ∆y1
o′-displacement caused by the amplification of link with distance

l2 + l3 + 2R2. Dashed lines represent initial position of the four-bar compliant
structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as
a block

taking the partial derivatives of ∆y1
o′ with respect to all the forces/moment acting

at Point o′,

∂∆y1
o′

∂Fo′x
=

∂∆y1
1

∂Fo′x
+

∂∆α1
o′

∂Fo′x
(l2 + l3 + 2R2)

= −
[
∆y

Fy

]
1

− (l2 + l3 + 2R2) R1

[
∆αz

Mz

]
1

+

{
− (l2 + l3 + 2R2) (l2 + l3 + 2R2 + R1)

[
∆αz

Mz

]
1

}
= −

[
∆y

Fy

]
1

− {(l2 + l3 + 2R2) R1

+ (l2 + l3 + 2R2) (l2 + l3 + 2R2 + R1)}
[
∆αz

Mz

]
1

(5.16)

∂∆y1
o′

∂Fo′y
=

∂∆y1
1

∂Fo′y
+

∂∆α1
o′

∂Fo′y
(l2 + l3 + 2R2)

= 0 (5.17)
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∂∆y1
o′

∂Mo′z
=

∂∆y1
1

∂Mo′z
+

∂∆α1
o′

∂Mo′z
(l2 + l3 + 2R2)

= R1

[
∆αz

Mz

]
1

+ (l2 + l3 + 2R2)

[
∆αz

Mz

]
1

= (l2 + l3 + R1 + 2R2)

[
∆αz

Mz

]
1

(5.18)

Derivation of ∂∆x1
o′/∂Fo′x, ∂∆x1

o′/∂Fo′y and ∂∆x1
o′/∂Mo′z

The translational displacements along the x-axis, ∆x1
1-displacement at Point 1 can

be calculated as shown below,

∆x1
1 =

[
∆x

Fx

]
1

F1x

=

[
∆x

Fx

]
1

Fo′y (5.19)

The ∆x1
1-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆x1
1 with respect to the forces/moment acting at

Point o′,

∂∆x1
1

∂Fo′x
= 0 (5.20)

∂∆x1
1

∂Fo′y
=

[
∆x

Fx

]
1

(5.21)

∂∆x1
1

∂Mo′z
= 0 (5.22)

Due to the amplification of the link with distance l2 + l3 + 2R2, the trans-
lational displacements, ∆x1

o′-displacement at Point o′ is the summation of ∆x1
1-

displacement at Point 1 and the amplified displacements caused by the rotational
motions of the link (see Figure 5.5). Therefore, the ∆x1

o′-displacement is,

∆x1
o′ = ∆x1

1 +
{
(l2 + l3 + 2R2)− (l2 + l3 + 2R2) cos

(
∆α1

o′

)}
(5.23)

However, the term {(l2 + l3 + 2R2)− (l2 + l3 + 2R2) cos (∆α1
o′)} in Equation 5.23 is

very small. Thus, Equation 5.23 is reduced to,
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Figure 5.5: ∆x1
o′-displacement caused by the amplification of link with distance

l2 + l3 + 2R2. Dashed lines represent initial position of the four-bar compliant
structure. The flexure hinge is drawn as a solid line and the rigid link is drawn as
a block

∆x1
o′ = ∆x1

1 (5.24)

Therefore, the ∆x1
o′-compliances are the same as the ∆x1

1-compliances.

∂∆x1
o′

∂Fo′x
= 0 (5.25)

∂∆x1
o′

∂Fo′y
=

[
∆x

Fx

]
1

(5.26)

∂∆x1
o′

∂Mo′z
= 0 (5.27)

By substituting Equations 5.8-5.10, 5.16-5.18 and 5.25-5.27 into Equation 5.2, the
compliance matrix of the four-bar compliant structure due to Hinge 1 can be ob-
tained.

5.1.1.2 Compliances of the four-bar mechanism due to Hinge 2

The compliance matrix of the four-bar compliant structure due to Hinge 2 is ex-
pressed as,
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Figure 5.6: Compliances due to Hinge 2

Ch2 =


∂∆x2

o′/∂Fo′x ∂∆x2
o′/∂Fo′y ∂∆x2

o′/∂Mo′z

∂∆y2
o′/∂Fo′x ∂∆y2

o′/∂Fo′y ∂∆y2
o′/∂Mo′z

∂∆α2
o′/∂Fo′x ∂∆α2

o′/∂Fo′y ∂∆α2
o′/∂Mo′z

 (5.28)

where the partial derivative terms in Equation 5.28 are derived as follows:

From Figure 5.6, forces/moment acting at Point o′ can be resolved into forces/moment
acting at Point 2 as follows,

F2x = Fo′y

F2y = −Fo′x

M2z = −Fo′xl3 + Mo′z (5.29)

Derivation of ∂∆α2
o′/∂Fo′x, ∂∆α2

o′/∂Fo′y and ∂∆α2
o′/∂Mo′z

The rotational displacements about the z-axis, ∆α2
2-displacement at Point 2 can be

calculated as shown below,
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∆α2
2 =

[
∆αz

Mz

]
2

M2z +

[
∆αz

Mz

]
2

F2yR2

=

[
∆αz

Mz

]
2

(−Fo′xl3 + Mo′z) +

[
∆αz

Mz

]
2

(−Fo′xR2)

=

[
∆αz

Mz

]
2

(−Fo′x (l3 + R2) + Mo′z) (5.30)

The ∆α2
2-compliances of Hinge 2 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆α2
2 with respect to the forces/moment acting at

Point o′,

∂∆α2
2

∂Fo′x
= − (l3 + R2)

[
∆αz

Mz

]
2

(5.31)

∂∆α2
2

∂Fo′y
= 0 (5.32)

∂∆α2
2

∂Mo′z
=

[
∆αz

Mz

]
2

(5.33)

The rotational displacements, ∆α2
o′-displacement at Point o′ is the same as ∆α2

2-
displacement. Therefore, their results of the partial derivatives are the same as
Equations 5.31, 5.32 and 5.33.

∂∆α2
o′

∂Fo′x
= − (l3 + R2)

[
∆αz

Mz

]
2

(5.34)

∂∆α2
o′

∂Fo′y
= 0 (5.35)

∂∆α2
o′

∂Mo′z
=

[
∆αz

Mz

]
2

(5.36)
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Derivation of ∂∆y2
o′/∂Fo′x, ∂∆y2

o′/∂Fo′y and ∂∆y2
o′/∂Mo′z

The translational displacements along the y-axis, ∆y2
2-displacement at Point 2 can

be calculated as shown below,

∆y2
2 =

[
∆y

Fy

]
2

F2y +

[
∆αz

Mz

]
2

M2zR2

= −
[
∆y

Fy

]
2

Fo′x +

[
∆αz

Mz

]
2

(Mo′z − Fo′xl3) R2 (5.37)

The ∆y2
2-compliances of Hinge 2 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆y2
2 with respect to the forces/moment acting at

Point o′,

∂∆y2
2

∂Fo′x
= −

[
∆y

Fy

]
2

− l3R2

[
∆αz

Mz

]
2

(5.38)

∂∆y2
2

∂Fo′y
= 0 (5.39)

∂∆y2
2

∂Mo′z
= R2

[
∆αz

Mz

]
2

(5.40)

Due to the amplification of the link with distance l3, the translational displace-
ments, ∆y2

o′-displacement at Point o′ is the summation of ∆y2
2-displacement at

Point 2 and the amplified displacements caused by the rotational motions of the
link (see Figure 5.7). Therefore, the ∆y2

o′-displacement is,

∆y2
o′ = ∆y2

2 + ∆α2
o′l3 (5.41)

The ∆y2
o′-compliances of Hinge 2 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆y2
o′ with respect to all the forces/moment acting

at Point o′,
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Figure 5.7: ∆y2
o′-displacement caused by the amplification of link with distance

l3. Dashed lines represent initial position of the four-bar compliant structure. The
flexure hinge is drawn as a solid line and the rigid link is drawn as a block

∂∆y2
o′

∂Fo′x
=

∂∆y2
2

∂Fo′x
+

∂∆α2
o′

∂Fo′x
l3

= −
[
∆y

Fy

]
2

− l3R2

[
∆αz

Mz

]
2

+

{
−l3 (l3 + R2)

[
∆αz

Mz

]
2

}

= −
[
∆y

Fy

]
2

− l3 (l3 + 2R2)

[
∆αz

Mz

]
2

(5.42)

∂∆y2
o′

∂Fo′y
=

∂∆y2
2

∂Fo′y
+

∂∆α2
o′

∂Fo′y
l3

= 0 (5.43)

∂∆y2
o′

∂Mo′z
=

∂∆y2
2

∂Mo′z
+

∂∆α2
o′

∂Mo′z
l3

= R2

[
∆αz

Mz

]
2

+ l3

[
∆αz

Mz

]
2

= (l3 + R2)

[
∆αz

Mz

]
2

(5.44)

Derivation of ∂∆x2
o′/∂Fo′x, ∂∆x2

o′/∂Fo′y and ∂∆x2
o′/∂Mo′z

The translational displacement along the x-axis, ∆x2
2-displacement at Point 2 can

be calculated as shown below,
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∆x2
2 =

[
∆x

Fx

]
2

F2x

=

[
∆x

Fx

]
2

Fo′y (5.45)

The ∆x2
2-compliances of Hinge 2 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆x2
2 with respect to the forces/moment acting at

Point o′,

∂∆x2
2

∂Fo′x
= 0 (5.46)

∂∆x2
2

∂Fo′y
=

[
∆x

Fx

]
2

(5.47)

∂∆x2
2

∂Mo′z
= 0 (5.48)

Due to the amplification of the link with distance l3, the translational displace-
ments, ∆x2

o′-displacement at Point o′ is the summation of ∆x2
2-displacement at

Point 2 and the amplified displacements caused by the rotational motions of the
link (see Figure 5.8). Therefore, the ∆x2

o′-displacement is,

∆x2
o′ = ∆x2

2 +
{
l3 − l3cos

(
∆α2

o′

)}
(5.49)

However, the term {l3 − l3cos (∆α2
o′)} in Equation 5.49 is very small. Thus, Equa-

tion 5.49 is reduced to,

∆x2
o′ = ∆x2

2 (5.50)

Therefore, the ∆x2
o′-compliances are the same as the ∆x2

2-compliances,

∂∆x2
o′

∂Fo′x
= 0 (5.51)

∂∆x2
o′

∂Fo′y
=

[
∆x

Fx

]
2

(5.52)

∂∆x2
o′

∂Mo′z
= 0 (5.53)

By substituting Equations 5.34-5.36, 5.42-5.44 and 5.51-5.53 into Equation 5.28,
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Figure 5.8: ∆x2
o′-displacement caused by the amplification of link with distance

l3. Dashed lines represent initial position of the four-bar compliant structure. The
flexure hinge is drawn as a solid line and the rigid link is drawn as a block

the compliance matrix of the four-bar compliant structure due to Hinge 2 can be
obtained.

5.1.1.3 Compliance matrices of Link 1 and 2

Since the two flexure hinges are arranged in series in the four-bar compliant struc-
ture, the overall compliances of the four-bar structure at Point o′ can be calculated
by summing the compliance matrices, Ch1 and Ch2. However, the compliance
matrices Ch1 and Ch2 are defined using the local coordinate of x1y1, and x2y2 re-
spectively. These local coordinates are orientated 90◦ from the coordinate of xo′yo′ .
Therefore, Ch1 and Ch2 need to be rotated by 90◦ before the summation. The ro-
tated Ch1 and Ch2 are referred to as C

′

h1 and C
′

h2 respectively.

C
′

h1 = Tπ/2Ch1 (5.54)

C
′

h2 = Tπ/2Ch2 (5.55)

where,

Tπ/2 =


cos(π/2) −sin(π/2) 0

sin(π/2) cos(π/2) 0

0 0 1

 (5.56)

The compliance matrix at Point o′ of Link 1 is,
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CL1o′,Fo′
= C

′

h1 + C
′

h2 (5.57)

where the subscript “L1” indicates Link 1 of the four-bar compliant structure.

The output displacements at Point o′ of Link 1 is,
∆xo′

∆yo′

∆αo′


L1

= CL1o′,Fo′
Fo′ (5.58)

where Fo′ =

[
Fo′x Fo′y Mo′z

]T

.

When output forces are applied at Point o instead of Point o′ (see Figure 5.1a)
and the displacements at this point are desired, matrix Tf can be used to transfer
the output forces from Point o to Point o′. Once CL1o′,Fo′

is determined using Equa-
tion 5.57, the compliances at Point o can be calculated by transforming CL1o′,Fo′

to
Point o using a matrix, Td. Intuitively, we know that ∆xo = ∆xo′ and ∆αo = ∆αo′ .
However, ∆yo 6= ∆yo′ due to rotational motions (∆αo′) and the amplification of
lever arm, l4. This link amplification effect is taken into consideration by the ma-
trix Td. Displacement ∆yo of the four-bar compliant stage is illustrated in Figure
5.9.

The force transformation matrix is,

Tf =


1 0 0

0 1 0

0 −l4 1

 (5.59)

where,
Fo′ = TfFo (5.60)

and Fo =

[
Fox Foy Moz

]T

.

The displacement transformation matrix is,

Td =


1 0 0

0 1 −l4

0 0 1

 (5.61)
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Figure 5.9: Calculation of compliances at Point o. Dashed lines represent initial
position of the four-bar compliant structure. The flexure hinge is drawn as a solid
line and the rigid link is drawn as a block

The output displacements at Point o of Link 1 is,


∆xo

∆yo

∆αo


L1

= TdCL1o′,Fo′
(TfFo) (5.62)

Therefore, the compliance of Link 1 at Point o is,

CL1o,Fo = TdCL1o′,Fo′
Tf (5.63)

Since Link 2 is a mirrored structure of Link 1 along the yo-axis, the compliance of
Link 2 at Point o can be obtained as shown below,

CL2o,Fo =


CL1o,Fo(1, 1) −CL1o,Fo(1, 2) CL1o,Fo(1, 3)

−CL1o,Fo(2, 1) CL1o,Fo(2, 2) −CL1o,Fo(2, 3)

CL1o,Fo(3, 1) −CL1o,Fo(3, 2) CL1o,Fo(3, 3)

 (5.64)
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5.1.1.4 Compliance matrix Co,Fo

Since Link 1 and 2 are arranged parallel to each other (see Figure 5.2), the compli-
ance matrix of the four-bar compliant mechanism, Co,Fo can be found using the
rule of calculating the equivalent compliances for parallel connections of springs,

Co,Fo =
(
C−1

L1o,Fo
+ C−1

L2o,Fo

)−1 (5.65)

The output displacements of the four-bar compliant mechanism due to applied
forces/moment can be expressed as,

∆xo

∆yo

∆αo


4bar

= Co,FoFo (5.66)

5.1.2 Derivation of the compliance matrix, Co,Fin
and Cin,Fo

The compliance matrix, CL1o′,Fin
of Link 1 at Point o′ due to Fin is firstly calculated.

Then, the compliance matrix at Point o, CL1o,Fin
is calculated by multiplying the

transformation matrix, Td to CL1o′,Fin
.

5.1.2.1 Derivation of CL1o′,Fin
and CL1o,Fin

When input force Fin is applied, compliances of Link 1 at Point o′ and Point o are
only affected by the compliances of Hinge 1 due to its open-chain configuration.
The compliance matrix at Point o′, CL1o′,Fin

due to Hinge 1 is expressed as,

CL1o′,Fin
= Tπ/2


∂∆x1

o′/∂Fin

∂∆y1
o′/∂Fin

∂∆α1
o′/∂Fin

 (5.67)

where the partial derivative terms in Equation 5.67 are derived as follows: The
∆α1

1-, ∆y1
1- and ∆x1

1-displacement are derived using the local coordinate of x1y1.
Therefore Equation 5.67 is rotated by 90◦.

From Equations 5.4 , 5.11 and 5.19, ∆α1
1-, ∆y1

1- and ∆x1
1-displacements are,

∆α1
1 =

[
∆αz

Mz

]
1

{−Fo′x (l2 + l3 + 2R2)− Finl1 + Mo′z}+

[
∆αz

Mz

]
1

(−Fo′x − Fin) R1
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∆y1
1 = −

[
∆y

Fy

]
1

(Fo′x + Fin) +

[
∆αz

Mz

]
1

{−Fo′x (l2 + l3 + 2R2)− Finl1 + Mo′z}R1

∆x1
1 =

[
∆x

Fx

]
1

Fo′x

The ∆α1
1-, ∆y1

1- and ∆x1
1-compliances of Hinge 1 caused by Fin are obtained by

taking the partial derivatives of ∆α1
1, ∆y1

1 and ∆x1
1 with respect to the input force

Fin acting at Point 1in (see Figure 5.3),

∂∆α1
1

∂Fin

= − (l1 + R1)

[
∆αz

Mz

]
1

(5.68)

∂∆y1
1

∂Fin

= −
[
∆y

Fy

]
1

− (l1R1)

[
∆αz

Mz

]
1

(5.69)

∂∆x1
1

∂Fin

= 0 (5.70)

The ∆α1
o′-displacement is the same as ∆α1

1-displacement. Therefore, the results
of the partial derivatives with respect to Fin are the same as Equation 5.68.

∂∆α1
o′

∂Fin

= − (l1 + R1)

[
∆αz

Mz

]
1

(5.71)

From Equations 5.15 and 5.24, the ∆y1
o′- and ∆x1

o′-displacements are,

∆y1
o′ = ∆y1

1 + ∆α1
o′ (l2 + l3 + 2R2)

∆x1
o′ = ∆x1

1

The ∆y1
o′- and ∆x1

o′-compliances of Hinge 1 caused by Fin are obtained by taking
the partial derivatives of ∆y1

o′ and ∆x1
o′ with respect to the input force at Point 1in,
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∂∆y1
o′

∂Fin

=
∂∆y1

1

∂Fin

+
∂∆α1

o′

∂Fin

(l2 + l3 + 2R2)

=

{
−
[
∆y

Fy

]
1

− (l1R1)

[
∆αz

Mz

]
1

}
+

{
− (l1 + R1)

[
∆αz

Mz

]
1

(l2 + l3 + 2R2)

}
= −

[
∆y

Fy

]
1

−
{

l1R1 + (l2 + l3 + 2R2) (l1 + R1)

[
∆αz

Mz

]
1

}
(5.72)

∂∆x1
o′

∂Fin

=
∂∆x1

1

∂Fin

= 0 (5.73)

By substituting Equations 5.71, 5.72 and 5.73 into Equation 5.67, CL1o′,Fin
can be

found.

The compliance matrix at Point o, CL1o,Fin
is,

CL1o,Fin
= TdCL1o′,Fin

(5.74)

5.1.2.2 Derivation of Co,Fin

The output displacement of Link 1, DL1o,Fin
at Point o due to input force Fin is,

DL1o,Fin
= CL1o,Fin

Fin (5.75)

By using Equation 5.63, the output displacement of Link 1, DL1o,Fo at Point o due
to output force Fo is,

DL1o,Fo = CL1o,FoFo (5.76)

By equating Equations 5.75 and 5.76, the equivalent output force FL1o,eqv at Point
o when Fin = 1N (unit force) can be calculated as below, where FL1o,eqv = Fo in
Equation 5.76,

FL1o,eqv = [CL1o,Fo ]
−1 CL1o,Fin

(5.77)

By multiplying the equivalent output force FL1o,eqv to Co,Fo , the output displace-
ment of the four-bar compliant structure caused by Fin from Link 1 can be found.
Since a unit force of Fin is used to calculate the equivalent output force, the out-
put displacement obtained can also represent the output compliance of the stage
caused by Fin,
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Co,Fin
= Do,Fin

= Co,FoFL1o,eqv (5.78)

Cin,Fo is the transpose of Co,Fin
and can be obtained as below,

Cin,Fo = [Co,Fin
]T (5.79)

5.1.3 Derivation of the compliance matrix, Cin,Fin

The input displacements, uin,Fin
due to input force Fin can be calculated as below,

where Cin,Fo is obtained from Equation 5.79 and FL1o,eqv is obtained from Equa-
tion 5.77. Note that FL1o,eqv is the equivalent force calculated at Point o when input
force Fin is applied at Link 1. Since a unit force of Fin is used to obtain the equiv-
alent output force, the input displacements uin,Fin

obtained can also represent the
input compliances of the stage caused by Fin,

Cin,Fin
= uin,Fin

= Cin,FoFL1o,eqv (5.80)

where uin,Fin
is the displacement at Point 1in (see Figure 5.1) of the four-bar com-

pliant mechanism due to Fin.

5.1.4 The Jacobian matrix of four-bar compliant mechanisms

The relationship between the input and output displacements can be derived from
Equation 5.1 for a given Fo. For example, when there is no external force, Fo = 0,
and therefore,

Uo = Co,Fin
Fin (5.81)

Fin = C−1
o,Fin

Uo (5.82)

and,

Uin = Cin,Fin
Fin (5.83)

Fin = C−1
in,Fin

Uin (5.84)
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By equating Equation 5.82 and Equation 5.84 ,

Uo = Co,Fin
C−1

in,Fin
Uin (5.85)

A constant Jacobian matrix is used in this thesis (as explained in Section 4.2) to
relate the output displacements (Uo) to the input displacements (Uin) of the com-
pliant mechanisms; therefore the Jacobian matrix is defined as below,

J = Co,Fin
C−1

in,Fin
(5.86)

5.1.5 Case studies of the four-bar compliant mechanism

For comparison purposes, the four-bar compliant mechanism studied in this sec-
tion is the same as that in Chapter 4. Material properties, link lengths and flexure
hinge dimensions of the mechanism are shown in Table 5.2.

Two cases were studied where analytical matrices of the kinetostatic model of
Case 1 were calculated by deliberately choosing the flexure hinge equations with
large differences when compared to the FEA results (refer to Figures 3.12-3.14).
Meanwhile, analytical matrices of Case 2 were obtained by choosing the flexure
hinge equations with small differences (refer to Figures 3.12-3.14 and Table 3.9).
Table 5.3 shows the flexure hinge equations chosen from various published re-
search studies for Cases 1 and 2 respectively. Table 5.4 shows the analytical results
of Cases 1 and 2. Since Co,Fin

= C−1
in,Fo

, the result of Co,Fin
is not repeated in Table

5.4.
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Material properties

E 71.7 GPa

Poisson’s ratio, v 0.33

Link length l1 l2 l3 l4

(mm) 2 4 0 10

Flexure hinge t1, t2 R1, R2 t1/R1, t2/R2 b

(mm) 1 3 0.33 5

Table 5.2: Material properties, link lengths and flexure hinge dimensions of the
four-bar compliant mechanism
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Case 1 Analytical results

Co,Fo

(µm/N , µrad/N

µm/Nm, µrad/Nm)

1.14 0 −1.18

0 0.01 0

−1.18 0 147.04

Cin,Fo

(µm/N , µrad/N )
0.57 0 −0.37

Cin,Fin

(µm/N )
0.283

Janalytical,4bar

2.001

0

−1.27

Case 2 Analytical results

Co,Fo

(µm/N , µrad/N

µm/Nm, µrad/Nm)

1.92 0 −0.81

0 0.01 0

−0.81 0 100.62

Cin,Fo

(µm/N , µrad/N )
0.96 0 −0.25

Cin,Fin

(µm/N )
0.48

Janalytical,4bar

2.002

0

−0.52

Table 5.4: Case studies - Analytical matrices of the kinetostatic model of the four-
bar compliant mechanism

5.1.5.1 Discussion

The resulting compliance and Jacobian of the two cases in Table 5.4 suggest that the
four-bar compliant mechanism has high translational stiffness in the yo-direction
and high rotational stiffness along the zo-direction which are in agreement to the
one-DOF characteristic of a four-bar mechanism. It can also be observed that the
analytical results of Cases 1 and 2 are noticeably different except for the transla-
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tional term in the Jacobian matrix. The translational terms (∆xo) of the two Jaco-
bian matrices are similar but the rotational terms (∆αo) are different. The similarity
of the ∆xo terms in the Jacobian matrices is explained by the fact that the Jacobian
represents the kinematics of the micro-motion structures; therefore the Jacobian is
almost independent of the compliances or stiffnesses of flexure hinges. The choice
of flexure hinge equations used to calculate the analytical results has minimal ef-
fects on the results of the Jacobian matrix. The choice of flexure hinge equations
influence the ∆αo term of the Jacobian matrix by a very small amount, which is
0.75 µrad/µm. This influence on the ∆αo term is insignificant. The analytical Jaco-
bian results will be compared to the FEA and experimental results to justify their
accuracies.

The differences between the compliance results of Cases 1 and 2 suggest that
the choice of flexure hinge compliance equations affects the results of the kineto-
static model. Since the kinetostatic model is derived to have flexure hinge compli-
ances as one of the variables, flexure hinge equations with small differences when
compared to FEA results can be selected based on the scheme developed in Chap-
ter 3, and these hinge equations can be incorporated into the kinetostatic model to
accurately predict both the kinematics and statics of compliant mechanisms. The
modelling results of Cases 1 and 2 will be compared to the FEA and experimental
results in Chapters 6 and 7 in order to verify their accuracies.
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5.2 Kinetostatic modelling of 3-RRR micro-motion

stages

The kinetostatic model of a 3-RRR micro-motion stage is shown below, Uo

Uin

 =

 Co,Fo Co,Fin

Cin,Fo Cin,Fin


 Fo

Fin

 (5.87)

where Uo =

[
∆xo ∆yo ∆αo

]T

is a 3x1 matrix representing the output displace-

ments of the stage,

Uin =

[
u1in u2in u3in

]T

is a 3x1 matrix representing the input displacements of

the stage,

Fo =

[
Fox Foy Moz

]T

is a 3x1 matrix representing the output forces/moment

acting at Point o,

Fin =

[
F1in F2in F3in

]T

is a 3x1 matrix representing the input forces,

Co,Fo is a 3x3 compliance matrix relating the output displacements to the output
forces /moment,
Co,Fin

is a 3x3 compliance matrix relating the output displacements to the input
forces,
Cin,Fo is a 3x3 compliance matrix relating the input displacements to the output
forces/moment,
Cin,Fin

is a 3x3 compliance matrix relating the input displacements to the input
forces.

5.2.1 Derivation of the output compliance matrix, Co,Fo

Due to the symmetrical structure of the 3-RRR compliant micro-motion stage (see
Figure 5.10), the 3-RRR structure can be divided into three links in order to calcu-
late the Co,Fo matrix. Each link consists of a RRR topology which has three flex-
ure hinges. The flexure hinge compliances are [∆αz/Mz]j , [∆y/Fy]j and [∆x/Fx]j ,
where j =1, 2, 3. The RRR compliant structure is shown in Figure 5.10b together
with its dimensions, displacements, local coordinates of flexure hinges and the
applied forces/moment. The compliances at Point o′ contributed by each flexure
hinge in the structure are firstly calculated. These compliance matrices are named
Ch1, Ch2 and Ch3. The three flexure hinges of the RRR structure are arranged in
series; therefore the compliance matrix of the RRR structure at Point o′ can be ob-
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tained by summing Ch1, Ch2 and Ch3 together. The compliance matrices of the
three RRR links are referred to as CL1o,Fo , CL2o,Fo and CL3o,Fo respectively. The
three RRR links of the 3-RRR compliant structure are arranged in parallel; there-
fore Co,Fo matrix in Equation 5.87 is calculated by summing CL1o,Fo , CL2o,Fo and
CL3o,Fo using the rule of parallel connection of springs (see Figure 5.11).

5.2.1.1 Compliances of the RRR mechanism due to Hinge 1

The compliance matrix of the RRR mechanism due to Hinge 1 is expressed as,

Ch1 =


∂∆x1

o′/∂Fo′x ∂∆x1
o′/∂Fo′y ∂∆x1

o′/∂Mo′z

∂∆y1
o′/∂Fo′x ∂∆y1

o′/∂Fo′y ∂∆y1
o′/∂Mo′z

∂∆α1
o′/∂Fo′x ∂∆α1

o′/∂Fo′y ∂∆α1
o′/∂Mo′z

 (5.88)

where the partial derivative terms in Equation 5.88 are derived as follows:
From Figure 5.12, forces/moment acting at Point o′ and Point 1in

† can be re-
solved into forces/moment acting at Point 1 as follows.

F1x = Fo′x

F1y = Fo′y − F1in

M1z = −Fo′xl4 + Fo′yl1 + Mo′z − F1inl5 (5.89)

Derivation of ∂∆α1
o′/∂Fo′x, ∂∆α1

o′/∂Fo′y and ∂∆α1
o′/∂Mo′z

The rotational displacements about the z-axis, ∆α1
1-displacement at Point 1 is,

∆α1
1 =

[
∆αz

Mz

]
1

M1z +

[
∆αz

Mz

]
1

F1yR1

=

[
∆αz

Mz

]
1

(−Fo′xl4 + Fo′yl1 + Mo′z − F1inl5) +

[
∆αz

Mz

]
1

(Fo′y − F1in) R1

=

[
∆αz

Mz

]
1

{−Fo′xl4 + Fo′y (l1 + R1) + Mo′z − F1in (l5 + R1)} (5.90)

The ∆α1
1-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆α1
1 with respect to the forces/moment acting at

†Input forces acting at this point are going to be used to calculate compliance matrices Co,Fin
,

CFin,o and Cin,Fin
later in this chapter.
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(a) 3-RRR compliant mechanism

(b) RRR compliant mechanism

Figure 5.10: 3-RRR compliant micro-motion stage
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Figure 5.11: Parallel spring model of a 3-RRR micro-motion stage

Figure 5.12: Compliances due to Hinge 1
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Point o′,

∂∆α1
1

∂Fo′x
= −l4

[
∆αz

Mz

]
1

(5.91)

∂∆α1
1

∂Fo′y
= (l1 + R1)

[
∆αz

Mz

]
1

(5.92)

∂∆α1
1

∂Mo′z
=

[
∆αz

Mz

]
1

(5.93)

The results of the partial derivatives of ∆α1
1 in Equations 5.91, 5.92 and 5.93 de-

scribe the relationship between the ∆α1
1-displacement and the forces/moment.

The rotational displacements, ∆α1
o′-displacement at Point o′ is the same as ∆α1

1-
displacement. Therefore, their results of the partial derivatives are the same as
Equations 5.91, 5.92 and 5.93,

∂∆α1
o′

∂Fo′x
= −l4

[
∆αz

Mz

]
1

(5.94)

∂∆α1
o′

∂Fo′y
= (l1 + R1)

[
∆αz

Mz

]
1

(5.95)

∂∆α1
o′

∂Mo′z
=

[
∆αz

Mz

]
1

(5.96)

Derivation of ∂∆y1
o′/∂Fo′x, ∂∆y1

o′/∂Fo′y and ∂∆y1
o′/∂Mo′z

The translational displacements along the y-axis, ∆y1
1-displacement at Point 1 is,

∆y1
1 =

[
∆y

Fy

]
1

F1y +

[
∆αz

Mz

]
1

M1zR1

=

[
∆y

Fy

]
1

(Fo′y − F1in)

+

[
∆αz

Mz

]
1

(−Fo′xl4 + Fo′yl1 + Mo′z − F1inl5) R1 (5.97)
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Figure 5.13: ∆y1
o′-displacement caused by the amplification of link, l1. Dashed

lines represent initial position of the RRR structure. The flexure hinge is drawn as
a solid line and the rigid link is drawn as a block

The ∆y1
1-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆y1
1 with respect to the forces/moment acting at

Point o′,

∂∆y1
1

∂Fo′x
= −l4R1

[
∆αz

Mz

]
1

(5.98)

∂∆y1
1

∂Fo′y
=

[
∆y

Fy

]
1

+ l1R1

[
∆αz

Mz

]
1

(5.99)

∂∆y1
1

∂Mo′z
= R1

[
∆αz

Mz

]
1

(5.100)

Due to the amplification of the link with distance l1, the translational displace-
ments, ∆y1

o′-displacement at Point o′ is the summation of ∆y1
1-displacement at

Point 1 and the amplified displacements caused by the rotational motions of the
link (see Figure 5.13). Therefore, the ∆y1

o′-displacement is,

∆y1
o′ = ∆y1

1 + ∆α1
o′l1 (5.101)
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The ∆y1
o′-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆y1
o′ with respect to all the forces/moment acting

at Point o′,

∂∆y1
o′

∂Fo′x
=

∂∆y1
1

∂Fo′x
+

∂∆α1
o′

∂Fo′x
l1

= −l4R1

[
∆αz

Mz

]
1

+

(
−l4

[
∆αz

Mz

]
1

l1

)
= −l4 (l1 + R1)

[
∆αz

Mz

]
1

(5.102)

∂∆y1
o′

∂Fo′y
=

∂∆y1
1

∂Fo′y
+

∂∆α1
o′

∂Fo′y
l1

=

[
∆y

Fy

]
1

+ l1R1

[
∆αz

Mz

]
1

+ (l1 + R1)

[
∆αz

Mz

]
1

l1

=

[
∆y

Fy

]
1

+ {l1R1 + l1 (l1 + R1)}
[
∆αz

Mz

]
1

(5.103)

∂∆y1
o′

∂Mo′z
=

∂∆y1
1

∂Mo′z
+

∂∆α1
o′

∂Mo′z
l1

= R1

[
∆αz

Mz

]
1

+

[
∆αz

Mz

]
1

l1

= (l1 + R1)

[
∆αz

Mz

]
1

(5.104)

Derivation of ∂∆x1
o′/∂Fo′x, ∂∆x1

o′/∂Fo′y and ∂∆x1
o′/∂Mo′z

The translational displacements along the x-axis, ∆x1
1-displacement at Point 1 is,

∆x1
1 =

[
∆x

Fx

]
1

F1x

=

[
∆x

Fx

]
1

Fo′x (5.105)

The ∆x1
1-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆x1
1 with respect to the forces/moment acting at

Point o′,
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Figure 5.14: ∆x1
o′-displacement caused by the amplification of link with distance

l4. Dashed lines represent initial position of the RRR structure. The flexure hinge
is drawn as a solid line and the rigid link is drawn as a block.

∂∆x1
1

∂Fo′x
=

[
∆x

Fx

]
1

(5.106)

∂∆x1
1

∂Fo′y
= 0 (5.107)

∂∆x1
1

∂Mo′z
= 0 (5.108)

Due to the amplification of the link with distance l4, the translational displace-
ments, ∆x1

o′-displacement at Point o′ is the summation of ∆x1
1-displacement at

Point 1 and the amplified displacements caused by the rotational motions of the
link (see Figure 5.14). Therefore, the ∆x1

o′-displacement is,

∆x1
o′ = ∆x1

1 −∆α1
o′l4 (5.109)

The negative sign of ∆α1
o′l4 is due to the fact that when ∆α1

o′ is rotated towards
the anti-clockwise direction (negative rotations), Point o′ is moved towards the
positive ∆x1-direction.

The ∆x1
o′-compliances of Hinge 1 caused by Fo′x, Fo′y and Mo′z are obtained by

taking the partial derivatives of ∆x1
o′ with respect to the forces/moment acting at
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Point o′,

∂∆x1
o′

∂Fo′x
=

∂∆x1
1

∂Fo′x
− ∂∆α1

o′

∂Fo′x
l4

=

[
∆x

Fx

]
1

−
(
−l4

[
∆αz

Mz

]
1

l4

)
=

[
∆x

Fx

]
1

+ l24

[
∆αz

Mz

]
1

(5.110)

∂∆x1
o′

∂Fo′y
=

∂∆x1
1

∂Fo′y
− ∂∆α1

o′

∂Fo′y
l4

= −l4 (l1 + R1)

[
∆αz

Mz

]
1

(5.111)

∂∆x1
o′

∂Mo′z
=

∂∆x1
1

∂Mo′z
− ∂∆α1

o′

∂Mo′z
l4

= −l4

[
∆αz

Mz

]
1

(5.112)

By substituting Equations 5.94-5.96, 5.102-5.104 and 5.110-5.112 into Equation
5.88, the compliance matrix of the RRR structure due to Hinge 1, Ch1 can be ob-
tained.

5.2.1.2 Compliances of the RRR mechanism due to Hinge 2

The compliance matrix of the RRR structure due to Hinge 2 is expressed as,

Ch2 =


∂∆x2

o′/∂Fo′x ∂∆x2
o′/∂Fo′y ∂∆x2

o′/∂Mo′z

∂∆y2
o′/∂Fo′x ∂∆y2

o′/∂Fo′y ∂∆y2
o′/∂Mo′z

∂∆α2
o′/∂Fo′x ∂∆α2

o′/∂Fo′y ∂∆α2
o′/∂Mo′z

 (5.113)

The procedures of deriving all the components of Ch2 in Equation 5.113 is the same
as that presented in Section 5.1.1.1. Therefore, the detailed procedures will not be
presented again in this section.
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Derivation of ∂∆α2
o′/∂Fo′x, ∂∆α2

o′/∂Fo′y and ∂∆α2
o′/∂Mo′z

∂∆α2
o′

∂Fo′x
= − (l2 + l3 + 2R3 + R2)

[
∆αz

Mz

]
2

(5.114)

∂∆α2
o′

∂Fo′y
= 0 (5.115)

∂∆α2
o′

∂Mo′z
=

[
∆αz

Mz

]
2

(5.116)

Derivation of ∂∆y2
o′/∂Fo′x, ∂∆y2

o′/∂Fo′y and ∂∆y2
o′/∂Mo′z

∂∆y2
o′

∂Fo′x
=

∂∆y2
2

∂Fo′x
+

∂∆α2
o′

∂Fo′x
(l2 + l3 + 2R3)

= −
[
∆y

Fy

]
2

− {(l2 + l3 + 2R3) R2

+ (l2 + l3 + 2R3) (l2 + l3 + 2R3 + R2)}
[
∆αz

Mz

]
2

(5.117)

∂∆y2
o′

∂Fo′y
=

∂∆y2
2

∂Fo′y
+

∂∆α2
o′

∂Fo′y
(l2 + l3 + 2R3)

= 0 (5.118)

∂∆y2
o′

∂Mo′z
=

∂∆y2
2

∂Mo′z
+

∂∆α2
o′

∂Mo′z
(l2 + l3 + 2R3)

= (l2 + l3 + R2 + 2R3)

[
∆αz

Mz

]
2

(5.119)

Derivation of ∂∆x2
o′/∂Fo′x, ∂∆x2

o′/∂Fo′y and ∂∆x2
o′/∂Mo′z

∂∆x2
o′

∂Fo′x
= 0 (5.120)

∂∆x2
o′

∂Fo′y
=

[
∆x

Fx

]
2

(5.121)
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∂∆x2
o′

∂Mo′z
= 0 (5.122)

By substituting Equations 5.114-5.116, 5.117-5.119 and 5.120-5.122 into Equa-
tion 5.113, the compliance matrix of the RRR structure due to Hinge 2, Ch2 can be
obtained.

5.2.1.3 Compliances of the RRR mechanism due to Hinge 3

The compliance matrix of the RRR structure due to Hinge 3 is expressed as,

Ch3 =


∂∆x3

o′/∂Fo′x ∂∆x3
o′/∂Fo′y ∂∆x3

o′/∂Mo′z

∂∆y3
o′/∂Fo′x ∂∆y3

o′/∂Fo′y ∂∆y3
o′/∂Mo′z

∂∆α3
o′/∂Fo′x ∂∆α3

o′/∂Fo′y ∂∆α3
o′/∂Mo′z

 (5.123)

The procedure of deriving all the components of Ch3 in Equation 5.123 is the same
as that presented in Section 5.1.1.2. Therefore, the detailed procedure will not be
presented again in this section.

Derivation of ∂∆α3
o′/∂Fo′x, ∂∆α3

o′/∂Fo′y and ∂∆α3
o′/∂Mo′z

∂∆α3
o′

∂Fo′x
= − (l3 + R3)

[
∆αz

Mz

]
3

(5.124)

∂∆α3
o′

∂Fo′y
= 0 (5.125)

∂∆α3
o′

∂Mo′z
=

[
∆αz

Mz

]
3

(5.126)

Derivation of ∂∆y3
o′/∂Fo′x, ∂∆y3

o′/∂Fo′y and ∂∆y3
o′/∂Mo′z

∂∆y3
o′

∂Fo′x
=

∂∆y3
3

∂Fo′x
+

∂∆α3
o′

∂Fo′x
l3

= −
[
∆y

Fy

]
3

− l3 (l3 + 2R3)

[
∆αz

Mz

]
3

(5.127)
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∂∆y3
o′

∂Fo′y
=

∂∆y3
3

∂Fo′y
+

∂∆α3
o′

∂Fo′y
l3

0 (5.128)

∂∆y3
o′

∂Mo′z
=

∂∆y3
3

∂Mo′z
+

∂∆α3
o′

∂Mo′z
l3

= (l3 + R3)

[
∆αz

Mz

]
3

(5.129)

Derivation of ∂∆x3
o′/∂Fo′x, ∂∆x3

o′/∂Fo′y and ∂∆x3
o′/∂Mo′z

∂∆x3
o′

∂Fo′x
= 0 (5.130)

∂∆x3
o′

∂Fo′y
=

[
∆x

Fx

]
3

(5.131)

∂∆x3
o′

∂Mo′z
= 0 (5.132)

By substituting Equations 5.124-5.126, 5.127-5.129 and 5.130-5.132 into Equa-
tion 5.123, the compliance matrix of the RRR structure due to Hinge 3, Ch3 can be
obtained.

5.2.1.4 Compliance matrices of Links 1, 2 and 3

Since the three flexure hinges are arranged in series in the RRR structure, the over-
all compliances of the RRR structure at Point o′ can be calculated by summing
the compliance matrices, Ch1, Ch2 and Ch3. However, the compliance matrices
Ch2 and Ch3 are defined using the local coordinate of x2y2, and x3y3 respectively.
These local coordinates are orientated 90◦from the coordinate of xo′yo′ . Therefore,
Ch2 and Ch3 need to be rotated by 90◦ before the summation. The rotated Ch2 and
Ch3 are referred to as C

′

h2 and C
′

h3 respectively.

C
′

h2 = Tπ/2Ch2 (5.133)

C
′

h3 = Tπ/2Ch3 (5.134)

where Tπ/2 is obtained from Equation 5.56.
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The compliance matrix at Point o′ of Link 1, which is the first RRR link in the 3-RRR
micro-motion structure is,

CL1o′,Fo′
= Ch1 + C

′

h2 + C
′

h3 (5.135)

where the subscript “L1” indicates Link 1 of the 3-RRR structure.

The output displacements at Point o′ of Link 1 is,


∆xo′

∆yo′

∆αo′


L1

= CL1o′,Fo′
Fo′ (5.136)

where Fo′ =

[
Fo′x Fo′y Mo′z

]T

.

When output forces are applied at Point o instead of Point o′ (see Figure 5.10a)
and the displacements at this point is desired, matrix Tf can be used to transfer the
output forces from Point o to Point o′. Once CL1o′,Fo′

is determined using Equation
5.135, the compliances at Point o can be calculated by transforming CL1o′,Fo′

to
Point o using a matrix, Td. Intuitively, we know that ∆xo = ∆xo′ and ∆αo = ∆αo′ .
However, ∆yo 6= ∆yo′ due to rotational motions (∆αo′) and the amplification of
lever arm, l6. This link amplification effect is taken into consideration by the matrix
Td. The displacement, ∆yo of the RRR stage is illustrated in Figure 5.15.

The force transformation matrix is,

Tf =


1 0 0

0 1 0

0 −l6 1

 (5.137)

where,
Fo′ = TfFo (5.138)

and,

Fo =

[
Fox Foy Moz

]T

.

The displacement transformation matrix is,
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Figure 5.15: Calculation of compliances at Point o. Dashed lines represent initial
position of the RRR structure. The flexure hinge is drawn as a solid line and the
rigid link is drawn as a block

Td =


1 0 0

0 1 −l6

0 0 1

 (5.139)

The output displacements at Point o of Link 1 is,


∆xo

∆yo

∆αo


L1

= TdCL1o′,Fo′
(TfFo) (5.140)

Therefore, the compliance of Link 1 at Point o is,

CL1o,Fo = TdCL1o′,Fo′
Tf (5.141)

Since Links 2 and 3 are arranged to be -120◦ and 120◦ apart from Link 1, the com-
pliance of Links 2 and 3 at Point o can be obtained as shown below:

The displacements, DL2o,Fo and DL3o,Fo at Point o due to compliances of Links 2
and 3 respectively are,
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DL2o,Fo = T−2π/3CL1o,FoT
T
−2π/3Fo (5.142)

DL3o,Fo = T2π/3CL1o,FoT
T
2π/3Fo (5.143)

where,

T2π/3 =


cos(2π/3) −sin(2π/3) 0

sin(2π/3) cos(2π/3) 0

0 0 1

 (5.144)

T−2π/3 =


cos(−2π/3) −sin(−2π/3) 0

sin(−2π/3) cos(−2π/3) 0

0 0 1

 (5.145)

and TT
2π/3 and TT

−2π/3 are the transpose of T2π/3 and T−2π/3 respectively.

Therefore from Equations 5.142 and 5.143, compliance matrices of Links 2 and 3
can be expressed as,

CL2o,Fo = T−2π/3CL1o,FoT
T
−2π/3 (5.146)

CL3o,Fo = T2π/3CL1o,FoT
T
2π/3 (5.147)

Since Links 1, 2 and 3 are arranged in parallel to each other (see Figure 5.11), the
compliance matrix of the 3-RRR compliant micro-motion stage, Co,Fo can be found
using the rule of calculating the equivalent compliances for parallel connections of
springs.

Co,Fo =
(
C−1

L1o,Fo
+ C−1

L2o,Fo
+ C−1

L3o,Fo

)−1 (5.148)

The output displacements of the 3-RRR compliant stage due to applied forces/moment
can be expressed as,


∆xo

∆yo

∆αo


3RRR

= Co,FoFo (5.149)
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5.2.2 Derivation of the compliance matrix, Co,Fin
and Cin,Fo

The compliance matrix which relates the output displacements at Point o to input
forces F1in, F2in and F3in is,

Co,Fin
=

[
Co,F1in

Co,F2in
Co,F3in

]
(5.150)

where Co,F1in
, Co,F2in

and Co,F3in
are 3x1 matrices relating the output displace-

ments to the input forces.

In order to find Co,F1in
in Equation 5.150, the 3-RRR compliant stage is divided

into three RRR links, similar to the calculation of Co,Fo . The compliance matrix
(CL1o′,F1in

) of Link 1 at Point o′ due to F1in is firstly calculated. Then, the compli-
ance matrix at Point o, CL1o,F1in

is calculated by multiplying the transformation
matrix, Td to CL1o′,F1in

.

5.2.2.1 Derivation of CL1o′,F1in
and CL1o,F1in

When input force F1in is applied, compliances of the RRR Link 1 at Point o′ and
Point o are only affected by the compliances of Hinge 1 due to its open-chain con-
figuration. The compliance matrix at Point o′, CL1o′,F1in

due to Hinge 1 is expressed
as,

CL1o′,F1in
=


∂∆x1

o′/∂F1in

∂∆y1
o′/∂F1in

∂∆α1
o′/∂F1in

 (5.151)

where the partial derivative terms in Equation 5.151 are derived as follows:

From Equations 5.90 , 5.97 and 5.105, ∆α1
1-, ∆y1

1- and ∆x1
1-displacements are,

∆α1
1 =

[
∆αz

Mz

]
1

{−Fo′xl4 + Fo′y (l1 + R1) + Mo′z − F1in (l5 + R1)}

∆y1
1 =

[
∆y

Fy

]
1

(Fo′y − F1in) +

[
∆αz

Mz

]
1

(−Fo′xl4 + Fo′yl1 + Mo′z − F1inl5) R1

∆x1
1 =

[
∆x

Fx

]
1

Fo′x

The ∆α1
1-, ∆y1

1- and ∆x1
1-compliances of Hinge 1 caused by F1in are obtained by

taking the partial derivatives of ∆α1
1, ∆y1

1 and ∆x1
1 with respect to the input force
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F1in acting at Point 1in (see Figure 5.12),

∂∆α1
1

∂F1in

= − (l5 + R1)

[
∆αz

Mz

]
1

(5.152)

∂∆y1
1

∂F1in

= −
[
∆y

Fy

]
1

− (l5R1)

[
∆αz

Mz

]
1

(5.153)

∂∆x1
1

∂F1in

= 0 (5.154)

The ∆α1
o′-displacement is the same as ∆α1

1-displacement. Therefore, the results
of the partial derivatives with respect to F1in are the same as Equation 5.152.

∂∆α1
o′

∂F1in

= − (l5 + R1)

[
∆αz

Mz

]
1

(5.155)

From Equations 5.101 and 5.109, the ∆y1
o′- and ∆x1

o′-displacements are,

∆y1
o′ = ∆y1

1 + ∆α1
o′l1

∆x1
o′ = ∆x1

1 −∆α1
o′l4

The ∆y1
o′- and ∆x1

o′-compliances of Hinge 1 caused by F1in are obtained by taking
the partial derivatives of ∆y1

o′ and ∆x1
o′ with respect to the input force, F1in acting

at Point 1in,

∂∆y1
o′

∂F1in

=
∂∆y1

1

∂F1in

+
∂∆α1

o′

∂F1in

l1

=

{
−
[
∆y

Fy

]
1

− (l5R1)

[
∆αz

Mz

]
1

}
+

{
− (l5 + R1)

[
∆αz

Mz

]
1

l1

}
= −

[
∆y

Fy

]
1

−
{

(l5R1 + l1 (l5 + R1))

[
∆αz

Mz

]
1

}
(5.156)
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∂∆x1
o′

∂F1in

=
∂∆x1

1

∂F1in

− ∂∆α1
o′

∂F1in

l4

= −
{
− (l5 + R1)

[
∆αz

Mz

]
1

l4

}
= l4 (l5 + R1)

[
∆αz

Mz

]
1

(5.157)

By substituting Equations 5.155, 5.156 and 5.157 into Equation 5.151, CL1o′,F1in
can

be found.

The compliance matrix at Point o, CL1o,F1in
is,

CL1o,F1in
= TdCL1o′,F1in

(5.158)

5.2.2.2 Derivation of Co,F1in
, Co,F2in

and Co,F3in

The output displacement of Link 1, DL1o,F1in
at Point o due to input force F1in is,

DL1o,F1in
= CL1o,F1in

F1in (5.159)

By using Equation 5.141, the output displacement of Link 1, DL1o,Fo at Point o due
to output force Fo is,

DL1o,Fo = CL1o,FoFo (5.160)

By equating Equations 5.159 and 5.160, the equivalent output force FL1o,eqv at
Point o when F1in = 1N (unit force) can be calculated as below, where FL1o,eqv =

Fo in Equation 5.160,

FL1o,eqv = [CL1o,Fo ]
−1 CL1o,F1in

(5.161)

By multiplying the equivalent output force FL1o,eqv to Co,Fo , the output displace-
ment of the 3-RRR compliant stage caused by F1in from Link 1 can be found. Since
a unit force of F1in is used to calculate the equivalent output force, the output dis-
placement obtained can also represent the output compliance of the stage caused
by F1in:

Co,F1in
= Do,F1in

= Co,FoFL1o,eqv (5.162)

Since Links 2 and 3 are orientated by -120◦ and 120◦ from Link 1, Co,F2in
and Co,F3in

can be found as shown below,
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Co,F2in
= T−2π/3Co,F1in

(5.163)

Co,F3in
= T2π/3Co,F1in

(5.164)

By substituting Equations 5.162, 5.163 and 5.164 into Equation 5.150, the compli-
ance matrix Co,Fin

of the 3-RRR stage can be obtained.

And Cin,Fo is the transpose of Co,Fin
and can be obtained as below,

Cin,Fo = [Co,Fin
]T (5.165)

5.2.3 Derivation of the compliance matrix, Cin,Fin

The compliance matrix which relates the input displacements at Points 1in, 2in and
3in to input forces F1in, F2in and F3in is,

Cin,Fin
=

[
Cin,F1in

Cin,F2in
Cin,F3in

]
(5.166)

where Cin,Fin
is a 3x3 matrix, Cin,F1in

, Cin,F2in
and Cin,F3in

are 3x1 matrices.

The input displacements, Din,F1in
due to input force F1in can be calculated as

below, where Cin,Fo is obtained from Equation 5.165 and FL1o,eqv is obtained from
Equation 5.161. Note that FL1o,eqv is the equivalent force calculated at Point o

when input force F1in is applied at Link 1. Since a unit force of F1in is used to
obtain the equivalent output force, the input displacements Din,F1in

obtained can
also represents the input compliances of the stage caused by F1in:

Cin,F1in
= Din,F1in

=


u1in,F1in

u2in,F1in

u3in,F1in

 = Cin,FoFL1o,eqv (5.167)

where u1in,F1in
, u2in,F1in

and u3in,F1in
are displacements at Points 1in, 2in and 3in (see

Figure 5.10) of the 3-RRR stage due to F1in.

Similarly for Links 2 and 3,
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Cin,F2in
= Din,F2in

=


u1in,F2in

u2in,F2in

u3in,F2in

 = Cin,FoFL2o,eqv (5.168)

FL2o,eqv = T−2π/3FL1o,eqv

where u1in,F2in
, u2in,F2in

and u3in,F2in
are displacements at the three input points of

the 3-RRR stage due to F2in,

Cin,F3in
= Din,F3in

=


u1in,F3in

u2in,F3in

u3in,F3in

 = Cin,FoF3o,eqv (5.169)

FL3o,eqv = T2π/3FL1o,eqv

where u1in,F3in
, u2in,F3in

and u3in,F3in
are displacements at the three input points of

the 3-RRR stage due to F3in.

By substituting Equations 5.167, 5.168 and 5.169 into Equation 5.166, compliance
matrix Cin,Fin

can be obtained.

5.2.4 The Jacobian matrix of 3-RRR micro-motion stages

The relationship between the input and output displacements can be derived from
Equation 5.87 for a given Fo. For example, when there is no external force, Fo = 0,
and therefore,

Uo = Co,Fin
Fin (5.170)

Fin = C−1
o,Fin

Uo (5.171)
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and,

Uin = Cin,Fin
Fin (5.172)

Fin = C−1
in,Fin

Uin (5.173)

By equating Equation 5.171 and Equation 5.173 ,

Uo = Co,Fin
C−1

in,Fin
Uin (5.174)

A constant Jacobian matrix is used in this thesis (as explained in Section 4.2) to
relate the output displacements (Uo) to the input displacements (Uin) of the com-
pliant mechanisms; therefore the Jacobian matrix is defined as below,

J = Co,Fin
C−1

in,Fin
(5.175)

5.2.5 Case studies of the 3-RRR compliant micro-motion

stage

For comparison purposes, the 3-RRR compliant micro-motion stage studied in this
section is the same as that in Chapter 4. Material properties, link lengths and
flexure hinge dimensions of the mechanism are shown in Table 5.5.

Two cases were studied where analytical matrices of the kinetostatic models of
Case 1 were calculated by deliberately choosing the flexure hinge equations with
large differences when compared to FEA results (refer to Figures 3.12-3.14). Mean-
while, analytical matrices of Case 2 were obtained by choosing the flexure hinge
equations with small differences (refer to Figures 3.12-3.14 and Table 3.9). Table 5.6
shows the flexure hinge equations chosen from various published research studies
for Cases 1 and 2 respectively. Table 5.7 shows the analytical results of Cases 1 and
2 respectively.

5.2.5.1 Discussion

It can be observed in Table 5.7 that the off-diagonal terms of the compliance ma-
trix, Co,Fo are zero. This is expected as the 3-RRR compliant stage has a Remote-
Centre-of-Compliance (RCC) configuration and deformations occur only along the
direction of the applied force/moment (Kim et al., 2000). The 3-RRR stage was
designed to have a somewhat decoupled characteristic where the input displace-
ments of one link have small effects on the input displacements of the other links.
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This characteristic can be observed in Cin,Fin
. The off-diagonal terms of Cin,Fin

are
approximately a factor of 8 smaller than its diagonal terms. It can also be observed
that the analytical results of Cases 1 and 2 are noticeably different except for the Ja-
cobian matrix. This is because the Jacobian matrix represents the kinematics of the
micro-motion structures; therefore it is almost independent of the compliances or
stiffnesses of flexure hinges. The choice of flexure hinge equations used to calcu-
late the analytical results has minimal effects on the results of the Jacobian matrix.

The differences of results of Cases 1 and 2 suggest that the choice of flexure
hinge compliance equations affects the results of the kinetostatic model. Since
the kinetostatic model is derived to have flexure hinge compliances as one of the
variables, flexure hinge equations with small errors can be selected based on the
scheme developed in Chapter 3 in order to obtain an accurate kinetostatic model.
The modelling results of Cases 1 and 2 will be compared to the FEA and experi-
mental results in Chapters 6 and 7 respectively in order to verify their accuracies.



124 Chapter 5. Kinetostatic Modelling of Micro-motion Stages

Material properties

E 71.7 GPa

Poisson’s ratio, v 0.33

Link length l1 l2 l3 l4 l5 l6

(mm) 47.9 22.17 0 30 4 12

Flexure hinge t1 t2 t3 R1 R2 R3 t1/R1 t2/R2 t3/R3 b

(mm) 0.84 0.7 0.5 1.1 1.87 3 0.764 0.374 0.167 12.7

Table 5.5: Material properties, link lengths and flexure hinge dimensions of the
3-RRR compliant micro-motion stage
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Case 1 Analytical results

Co,Fo

(µm/N , µrad/N

µm/Nm, µrad/Nm)

10.104 0 0

0 10.104 0

0 0 23960

Co,Fin

(µm/N , µrad/N )

0.775 0.222 −0.998

0.705 −1.024 0.319

−29.789 −29.789 −29.789

Cin,Fin

(µm/N )

0.146 −0.017 −0.017

−0.017 0.146 −0.017

−0.017 −0.017 0.146

Janalytical

4.758 1.367 −6.125

4.326 −6.284 1.958

−268.114 −268.114 −268.114

Case 2 Analytical results

Co,Fo

(µm/N , µrad/N

µm/Nm, µrad/Nm)

12.250 0 0

0 12.250 0

0 0 27402

Co,Fin

(µm/N , µrad/N )

0.948 0.267 −1.215

0.856 −1.249 0.393

−34.297 −34.297 −34.297

Cin,Fin

(µm/N )

0.176 −0.024 −0.024

−0.024 0.176 −0.024

−0.024 −0.024 0.176

Janalytical

4.746 1.338 −6.083

4.284 −6.252 1.968

−266.328 −266.328 −266.328

Table 5.7: Case studies - Analytical matrices of the kinetostatic model of the 3-RRR
micro-motion stage
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5.3 Concluding remarks

The kinetostatic results (both compliance and Jacobian matrices) of the four-bar
and the 3-RRR compliant micro-motion stages for Cases 1 and 2 are noticeably
different except for some of the terms in the Jacobian matrices. The Jacobian matrix
represents the kinematics of the micro-motion structures; therefore the accuracies
of flexure hinge compliance equations are expected to have minimal effects on the
results of the Jacobian matrix.

The differences between the compliance results of Cases 1 and 2 a) show the in-
fluences of the choice of flexure hinge compliance equations on the accuracy of the
kinetostatic models, and also b) highlight the advantage of the closed-form kine-
tostatic model (with flexure hinge compliance equations as one of the variables
in the equations) where the most suitable flexure hinge equations can be used to
calculate the kinetostatics of compliant mechanisms accurately. The kinetostatic
results of Cases 1 and 2 will be compared to the FEA and experimental results in
Chapters 6 and 7 respectively in order to verify their accuracies.



CHAPTER 6

Finite Element Analysis

In Chapter 4, the kinematics of the four-bar and the 3-RRR compliant micro-motion
stages were modelled using the PRBM method and the loop-closure theory. In
Chapter 5, the kinetostatics of the two micro-motion stages were derived. In or-
der to verify the accuracies of the kinematic and the kinetostatic models, two-
dimensional finite-element-analysis (FEA) models of these compliant stages were
generated using ANSYS for comparison purposes. This chapter presents the FEA
modelling techniques for both the four-bar compliant mechanism and the 3-RRR
compliant micro-motion stage using ANSYS. The results of the comparison be-
tween the Jacobian matrix obtained using the PRBM method and the FEA model
are presented. The results of the comparison between the compliance and Joco-
bian matrices obtained using the kinetostatic model and the FEA model are also
presented.

6.1 FEA modelling of micro-motion stages

FEA models of the micro-motion stages were generated using ANSYS. Similar to
the FEA modelling technique in Chapter 3, the micro-motion stages were gener-
ated using 8-node, two-dimensional, plane elements (PLANE82) with two-DOF
on each node. The DOF are the translations in the nodal x and y directions. Thick-
nesses of the models were taken into account by using the plane stress element
type with thickness option. To ensure that the mesh size was fine enough es-
pecially near the flexure hinge locations, a number of analyses were carried out
where different mesh sizes were used. The output was checked each time the

129
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mesh size was decreased. When a consistent output was obtained, it implied that
the mesh was fine enough. When nodal displacements were measured from the
same node which forces are applied, pressures were applied on a line instead to
avoid inaccuracy of results associated with singularities on the nodes.

6.1.1 FEA modelling of the four-bar micro-motion stage

Meshes and constraints of the FEA model of the four-bar compliant stage are
shown in Figure 6.1. The following procedures were carried out to obtain the com-
pliance and Jacobian matrices of the stage:

1. To obtain the compliant matrix Co,Fo of the stage, a point force F ∗
ox was ap-

plied at a distance from Point o but along the same line of action as force
Fox (see Figure 6.1). Pressure Poy, which is equivalent to a unit point force
Foy, was applied on a line as shown in Figure 6.1. The corresponding nodal
deformations (∆xo, ∆yo , ∆αo) at Point o were measured after these forces/
pressures were applied. In order to obtain the compliances corresponding to
a unit moment, two equal but opposite forces, Fm were applied as shown.
Rotational deformations (∆αo) can not be measured directly from the node
at Point o because the nodes of PLANE82 elements do not have a rotational
DOF. However, ∆αo can be easily calculated using the similar method as pre-
sented in Chapter 3.

2. To obtain the compliance matrix Co,Fin
of the stage, pressure Pin, which is

equivalent to a unit input force, was applied on the line where Point 1in was
located as shown in Figure 6.3, and the corresponding nodal deformations
(∆xo, ∆yo , ∆αo) at Point o were measured.

3. To obtain the compliance matrix Cin,Fo of the stage, unit point forces were
applied at Point o and the corresponding nodal deformation (Uin) at Point 1in

was measured. Moment was applied using two equal but opposite forces,
Fm.

4. To obtain the compliance matrix Cin,Fin
of the stage, pressure Pin, which is

equivalent to a unit input force Fin, was applied on the line where Point 1in

was located, and the corresponding nodal deformations at this point was
measured.

5. To obtain the Jacobian matrix, a pressure Pin was applied on the line where
Point 1in was located. The corresponding input displacement (Uin) at Point
1in and the output displacements (∆xo, ∆yo , ∆αo) at Point o were measured.
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(a) F ∗
ox is applied away

from Point o, along the
same line of action as Fox

(b) Poy is applied on a
line which is equivalent
to a unit force, Foy

(c) Two equal but oppo-
site forces Fin are applied
which are equivalent to a
unit moment, Moz

Figure 6.1: The FEA model of the four-bar compliant micro-motion stage

The Jacobian matrix was obtained where the output displacements were di-
vided by the input displacement,

JFEA,4bar =


∆xo/Uin

∆yo/Uin

∆αo/Uin


Figure 6.2 shows the deformation results of the four-bar compliant mechanism.

The FEA results show relatively insignificant link deformations for the loading
case along the x-direction. The degree-of-freedom of the four-bar compliant struc-
ture was along the x-direction; therefore the four-bar structure was expected to
have lower structural stiffness along this direction compared to that along the y-
and about the z-directions. The four-bar compliant mechanism was considered
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FEA results

Co,Fo

(µm/N , µrad/N

µm/Nm, µrad/Nm)

1.904 0 0.904

0 4.909 0

−0.911 0 112.9

Co,Fin

(µm/N , µrad/N )

0.961

0

−0.252

Cin,Fin

(µm/N )
0.459

JFEA

2.07

0

−0.62

Table 6.1: FEA compliance and Jacobian matrices of the four-bar compliant mech-
anism (with rigid-link deformations)

as a non over-constrained structure for the loading case along the x-direction and
most of the deformations occurred at flexure hinges instead of links.

It was observed in Figure 6.2b that the FEA predicted significant deformations
of the link for the loading case along the y-direction. The four-bar compliant struc-
ture was considered as an over-constrained structure for this loading case because
the structural stiffness along the y-direction was large and significant link defor-
mations were observed.

Some local deformations of the FEA mesh were observed when moments were
applied (Figure 6.2c). Nodal deformations at the nodes where Fm was applied
were not used for the calculation of the rotational deformations, ∆αo in order to
avoid modelling inaccuracies due to the local deformations. Nodal deformations
of nodes as shown in Figure 6.2c were measured and these nodal deformations
were used instead to calculate the rotational deformations of the four-bar compli-
ant mechanism.

Table 6.1 shows the FEA results of the four-bar compliant mechanism.

6.1.1.1 Comparison of analytical results with ANSYS

The Jacobian matrix obtained using the PRBM method in Chapter 4, the analytical
compliance and Jacobian matrices of Cases 1 and 2 obtained in Chapter 5 were
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Fox

(a) Loading along the
x-direction

Poy

(b) Loading along the y-
direction

(c) Loading about the z-direction

Figure 6.2: ANSYS results of structural deformations of the four-bar compliant
mechanism
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compared to the ANSYS results. Table 6.2 shows the differences of the kinetostatic
results of Cases 1 and 2, and the Jacobian results derived using the PRBM method
when compared to the FEA results.
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6.1.1.2 Discussion

From Table 6.2, it is observed that the differences of the compliance terms (along
the y-direction) in Co,Fo for both Cases 1 and 2 are large (99.7% different) when
compared to the FEA results. This is because the kinetostatic model derived in
this thesis assumes that no deformations occur at rigid-links. However, rigid-link
deformations are observed from the ANSYS results for the loading case along the
y-direction of the four-bar compliant mechanism (see Figure 6.2b). The differences
between the FEA and analytical compliances along the y-direction are attributed
to the unmodelled rigid-link deformations in the kinetostatic model. To support
the above statement, an investigation was carried out where rigid-links were mod-
elled to have high stiffness in the ANSYS model by increasing the Young’s modu-
lus of the material. Pressures were once applied as shown in Figure 6.1b and the
corresponding nodal deformations, ∆yo at Point o were measured. The new cal-
culated FEA compliance along the y-direction is 0.011 µm/N . Table 6.3 shows the
results of the comparison between the FEA determined compliance (obtained by
modelling links to have high stiffnesses) and the analytical compliances of Cases
1 and 2. It is observed from Table 6.3 that the differences of the compliance along
the y-direction are reduced from 99.7% (see Table 6.2) to 30.3% (see Table 6.3) for
Case 1, and from 99.7% (see Table 6.2) to 11% (see Table 6.3) for Case 2. The results
of Case 2 are closer to the FEA results compared to that of Case 1 because the flex-
ure hinge compliance equations used to calculate the kinetostatic results of Case
2 are closer to the FEA results than that of Case 1. Results in Table 6.3 show that
the derived kinetostatic results (Case 2) are in close agreement to the FEA results
when the deformations of rigid-links of compliant mechanisms are insignificant.

By observing the kinetostatic results of Cases 1 and 2 in Table 6.2 (for the re-
sults of Co,Fin

and Cin,Fin
) and Table 6.3 (for the results of Co,Fo) of the four-bar

compliant micro-motion stage, it can be noted that the differences of compliance
matrices, Co,Fo , Co,Fin

and Cin,Fin
are significantly reduced for Case 2. The aver-

age absolute difference of Co,Fois reduced from 32% to 9.2%. The average absolute
difference of Co,Fin

is reduced from 35.2% to 6.1%. The difference of Cin,Fin
is re-

duced from 38.3% to 4.5%. These results show that the flexure hinge compliance
equations affect the results of the kinetostatic models. The kinetostatic results are
closer to the FEA results when flexure hinge compliance equations which have
small differences when compared to the FEA results (Case 2) are used compared
to if hinge equations which have large differences (Case 1) are used. The results of
comparisons also highlight the advantage of the derived closed-form kinetostatic
model with flexure hinge compliances as one of the variables in the equation. The
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Kinetostatic model - Case 1

Analytical results % diff. compared to FEA

Co,Fo

(µm/N , µrad/N

µm/Nm, µrad/Nm)

1.14 0 −1.18

0 0.015 0

−1.18 0 147.04

−40.1 −− 30.1

−− 30.3 −−

29.1 −− 30.2

Kinetostatic model - Case 2

Analytical results % diff. compared to FEA

1.92 0 −0.81

0 0.01 0

−0.81 0 100.62

1.0 −− −11.0

−− −11.0 −−

12.0 −− −11.0

Table 6.3: Analytical compliance results of the four-bar compliant mechanism and
their differences compared to FEA results (links are modelled to have high stiffness
in the FEA model)

most suitable flexure hinge equations can be chosen using the scheme developed
in Chapter 3 in order to obtain an accurate kinetostatic model of compliant mech-
anisms.

The differences of the ∆xo term in the Jacobian matrices of Cases 1 and 2 are
similar. This is because the Jacobian matrix represents the kinematics of the micro-
motion structures; therefore it is almost independent to the compliances or stiff-
nesses of flexure hinges. The choice of flexure hinge equations used to calculate
the analytical results has minimal effects on the results of the Jacobian matrix. The
choice of the flexure hinge equations influence the ∆αo term in the Jacobian matrix
by a very small amount, which is 0.75 µrad/µm and this influence on the ∆αo term
is insignificant.

The Jacobian matrix of the four-bar compliant mechanism obtained from the
kinetostatic models are closer to the FEA determined Jacobian than that of the
Jacobian derived using the PRBM method in this thesis (see Table 6.2). This is
expected as the Jacobian obtained from the kinetostatic model considers flexure
hinges to have three-DOF while the kinematics derived using the PRBM in this
thesis models flexure hinges to have only one-DOF. It can be observed in Table 6.2
that the PRBM method produces larger predictions of motions compared to the
FEA and the kinetostatic results. The PRBM Jacobian does not provide the predic-
tion of the ∆αo-deformation of the four-bar compliant mechanism while the kine-
tostatic and FEA results show small ∆αo-deformations in the Jacobian matrices.
This suggests that the PRBM method is not as accurate as the kinetostatic model
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when the ∆x- and ∆y-deformations of flexure hinges are not incorporated into the
PRBM model. The PRBM could possibly provide an over estimation of motions of
compliant mechanisms. This is a disadvantage to researchers in design processes.
The PRBM method can be extended to model flexure hinges to have multi-DOF.
Pham et al. (2005) extended the PRBM method to include all six DOFs of flexure
hinges in the kinematic model of a 3-RRR compliant mechanism. This extended
modelling method is named the PRB-D method. However, there are 42 variables
which require 42 equations to solve. It is possible to model flexure hinges to have
only three-DOF using the PRBM method; however the method could still produce
a large number of variables to be solved. Unlike the kinetostatic model derived in
this thesis, the kinetostatic model is a simple closed-form model and it does not
require extensive computational loads.

6.1.2 FEA modelling of the 3-RRR micro-motion stage

Meshes and constraints of the FEA model of the 3-RRR micro-motion stage are
shown in Figure 6.3. The following procedures were carried out to obtain the com-
pliance and Jacobian matrices of the stage:

1. To obtain the compliance matrix Co,Fo of the stage, forces F ∗
ox and F ∗

oy were
applied at a distance from Point o but along the same lines of action as Fox

and Foy (see Figure 6.3). The corresponding nodal deformations (∆xo, ∆yo

, ∆αo) at Point o were measured. In order to obtain the compliances corre-
sponding to a unit moment, two equal but opposite forces, Fm were applied
as shown. Rotational deformation (∆αo) could not be measured directly from
the node at Point o because the nodes of the element type PLANE82 do not
have a rotational DOF. However, ∆αo can be easily calculated using the sim-
ilar method as presented in Chapter 3.

2. To obtain the compliance matrix Co,Fin
of the stage, pressures (P1in, P2in, P3in)

corresponding to unit input forces were applied on lines where Points 1in,
2in and 3in were located as shown in Figure 6.3, and the corresponding nodal
deformations (∆xo, ∆yo , ∆αo) at Point o were measured.

3. To obtain the compliance matrix Cin,Fo of the stage, unit input forces were
applied at Point o and the corresponding nodal deformations (u1in, u2in, u3in)
at Points 1in, 2in and 3in were measured. Moment was applied using two
equal but opposite forces, Fm.

4. To obtain the compliance matrix Cin,Fin
of the stage, pressures (P1in, P2in,

P3in) corresponding to unit input forces were applied on lines where Points



6.1. FEA modelling of micro-motion stages 139

1in, 2in and 3in were located, and the corresponding nodal deformations at
these points were measured.

5. To obtain the Jacobian matrix, pressures (P1in, P2in, P3in) were applied in-
dependently on lines where Points 1in, 2in and 3in were located. The corre-
sponding input displacements (u1in, u2in, u3in) at Points 1in, 2in and 3in, and
the output displacement (∆xo, ∆yo , ∆αo) at Point o were measured. The Ja-
cobian matrix was obtained where the output displacements were divided
by the input displacements.
For example, when u1in was applied at Point 1in,

∆xo

∆yo

∆αo

 =


JFEA11 JFEA12 JFEA13

JFEA21 JFEA22 JFEA23

JFEA31 JFEA32 JFEA33




u1in

0

0

 =


JFEA11u1in

JFEA21u1in

JFEA31u1in




JFEA11

JFEA21

JFEA31

 =


∆xo/u1in

∆yo/u1in

∆αo/u1in


where JFEAij

(i = j = 1, 2, 3) are the row and column components of the FEA
determined Jacobian matrix, JFEA.

Unlike the four-bar compliant mechanism, the 3-RRR compliant stage is a non
over-constrained structure for all loading cases. The rigid-link deformations are
insignificant and cannot be observed from the FEA results. Therefore, the results
of the kinetostatic model are expected to be in close agreement to the FEA results.
Table 6.4 shows the results of the compliance and Jacobian matrices of the micro-
motion stage. Since Cin,Fo is the transpose of Co,Fin

, the results of Cin,Fo are not
repeated in Table 6.4.

6.1.2.1 Comparison of analytical results with FEA

The Jacobian results derived using the PRBM method in Chapter 4 and the results
of kinetostatic models of Cases 1 and 2 obtained in Chapter 5 were compared to
the FEA results. Table 6.5 shows the differences when compared to FEA results.
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(a) F ∗
ox is applied away

from Point o, along the
same line of action as
Fox

(b) F ∗
oy is applied away

from Point o, along the
same line of action as
Foy

(c) Two equal but
opposite forces, Fm

are applied which are
equivalent to a unit
moment

Figure 6.3: FEA model of the 3-RRR compliant micro-motion stage
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FEA results

Co,Fo

(µm/N , µrad/N

µm/Nm, µrad/Nm)

11.498 0 0

0 11.476 0

0 0 27966

Co,Fin

(µm/N , µrad/N )

0.879 0.257 −1.136

0.803 −1.162 0.357

−32.141 −32.245 −32.115

Cin,Fin

(µm/N )

0.182 −0.024 −0.024

−0.024 0.182 −0.024

−0.024 −0.024 0.182

JFEA

4.259 1.250 −5.499

3.897 −5.645 1.734

−240.768 −241.315 −240.481

Table 6.4: FEA compliance and Jacobian matrices of the 3-RRR micro-motion stage



142 Chapter 6. Finite Element Analysis
K

in
et

os
ta

ti
c

m
od

el
-C

as
e

1
K

in
et

os
ta

ti
c

m
od

el
-C

as
e

2

A
na

ly
ti

ca
lr

es
ul

ts
%

di
ff

.c
om

pa
re

d
to

FE
A

A
na

ly
ti

ca
lr

es
ul

ts
%

di
ff

.c
om

pa
re

d
to

FE
A

C
o
,F

o

(µ
m

/N
,µ

ra
d
/N

µ
m

/N
m

,µ
ra

d
/N

m
)

10
.1

04
0

0

0
10

.1
04

0

0
0

23
96

0

−
12

.1
−
−

−
−

−
−

−
11

.9
−
−

−
−

−
−

−
14

.3

12
.2

50
0

0

0
12

.2
50

0

0
0

27
40

2

6.
5

−
−

−
−

−
−

6.
8

−
−

−
−

−
−

−
2.

0

C
o
,F

in

(µ
m

/N
,µ

ra
d
/N

)

0.
77

5
0.

22
2

−
0.

99
8

0.
70

5
−

1.
02

4
0.

31
9

−
29

.7
89

−
29

.7
89

−
29

.7
89

−
11

.8
−

13
.4

−
12

.2

−
12

.2
−

11
.9

−
10

.6

−
7.

3
−

7.
6

−
7.

2

0.
94

8
0.

26
7

−
1.

21
5

0.
85

6
−

1.
24

9
0.

39
3

−
34

.2
97

−
34

.2
97

−
34

.2
97

7.
8

3.
9

7.
0

6.
6

7.
5

10
.2

6.
7

6.
4

6.
8

C
in

,F
in

(µ
m

/N
)

0.
14

6
−

0.
01

7
−

0.
01

7

−
0.

01
7

0.
14

6
−

0.
01

7

−
0.

01
7

−
0.

01
7

0.
14

6

−
20

.0
−

29
.3

−
29

.3

−
29

.3
−

20
.0

−
29

.3

−
29

.3
−

29
.3

−
20

.0

0.
17

6
−

0.
02

4
−

0.
02

4

−
0.

02
4

0.
17

6
−

0.
02

4

−
0.

02
4

−
0.

02
4

0.
17

6

−
3.

2
−

3.
1

−
3.

1

−
3.

1
−

3.
2

−
3.

1

−
3.

1
−

3.
1

−
3.

2

J
(µ

m
/µ

m
,
µ
ra

d
/µ

m
)

A
na

ly
ti

ca
lr

es
ul

ts
%

di
ff

.c
om

pa
re

d
to

FE
A

J k
in

e
to

,C
a
se

1

4.
75

8
1.

36
7

−
6.

12
5

4.
32

6
−

6.
28

4
1.

95
8

−
26

8.
11

4
−

26
8.

11
4

−
26

8.
11

4

11
.7

9.
4

11
.4

11
.0

11
.3

12
.9

11
.4

11
.1

11
.5

J k
in

e
to

,C
a
se

2

4.
74

6
1.

33
8

−
6.

08
3

4.
28

4
−

6.
25

2
1.

96
8

−
26

6.
32

8
−

26
6.

32
8

−
26

6.
32

8

11
.4

7.
0

10
.6

9.
9

10
.8

13
.5

10
.6

10
.4

10
.7

J P
R

B
M

4.
66

4
1.

47
1

−
6.

13
4

4.
39

0
−

6.
23

5
1.

84
4

−
28

8.
73

4
−

28
8.

73
4

−
28

8.
73

4

9.
5

17
.7

11
.6

12
.7

10
.5

6.
3

19
.9

19
.7

20
.1

Ta
bl

e
6.

5:
A

na
ly

ti
ca

lr
es

ul
ts

of
th

e
3-

R
R

R
m

ic
ro

-m
ot

io
n

st
ag

e
an

d
th

ei
r

di
ff

er
en

ce
s

co
m

pa
re

d
to

FE
A

re
su

lt
s



6.1. FEA modelling of micro-motion stages 143

6.1.2.2 Discussion

It is noted that the differences of compliance matrices, Co,Fo , Co,Fin
and Cin,Fin

are significantly reduced for Case 2. The average absolute difference of Co,Fois
reduced from 12.9% to 5%. The average absolute difference of Co,Fin

is reduced
from 10.5% to 7%. The absolute difference of Cin,Fin

is reduced from 24% to 3.1%.
These results show that the choice of the flexure hinge compliance equations af-
fects the results of the kinetostatic models. The kinetostatic results are closer to
the FEA results when flexure hinge compliance equations which have small dif-
ferences (when compared to FEA results) are used compared to that if hinge equa-
tions with large differences (Case 1) are used. The results of comparisons also
highlight the advantage of the derived closed-form kinetostatic model where the
accuracy of the kinetostatic model can be improved by choosing the suitable flex-
ure hinge equations using the scheme developed in Chapter 3.

The small differences of the kinetostatic model in Case 2 are attributed to the
assumption made in deriving the kinetostatic model. The kinetostatic model as-
sumes that the deformations of rigid-links of the micro-motion stage is small and
can be ignored. Although the rigid-link deformations of the 3-RRR micro-motion
stage are insignificant, the small differences between the kinetostatic results and
the FEA results can be attributed to these unmodelled rigid-link deformations in
the kinetostatic model.

The differences of the Jacobian results are also reduced slightly but not as much
as the compliance matrices. This is because the Jacobian matrix represents the
kinematics of the micro-motion structures. The choice of flexure hinge equations
used to calculate the analytical results has minimal effects on the results of the
Jacobian matrix. Nevertheless, the overall accuracy of the analytical kinetostatic
results are improved significantly, especially for the compliance matrices when the
suitable flexure hinge equations are used (Case 2). This highlights the advantage
of the derived closed-form kinetostatic model with flexure hinge compliances as
one of the variables in the equations and the significances of the developed scheme
in Chapter 3.

The Jacobian matrix obtained from the kinetostatic model is also compared to
the Jacobian matrix obtained using the PRBM method. The Jacobian matrices of
the 3-RRR compliant stage obtained from the kinetostatic models are more accu-
rate than that of the Jacobian derived using the PRBM method especially for the
rotational terms in the matrix (see Table 6.5). This is expected as the Jacobian re-
sults obtained from the kinetostatic model consider flexure hinges to have three-
DOF while the PRBM derived in this thesis models flexure hinges to have only
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one-DOF. It can be observed in Table 6.5 that the PRBM Jacobian predicts much
larger ∆αo-deformations compared to that of the FEA and the kinetostatic models.
This suggests that the PRBM, which models flexure hinges to have only one-DOF,
could possibly provides an over estimation of motions of compliant mechanisms
which is a disadvantage to researchers during design phases. It is possible to ex-
tend the PRBM method to model flexure hinges to have multi-DOF as mentioned
in Section 6.1.1.2. However, the extended PRBM method could produce a large
number of variables to be solved, which require extensive computational effort.
On the other hand, the kinetostatic model derived in this thesis is a simple closed-
form model and it does not require extensive computational effort.

6.2 Concluding remarks

It was found that the kinetostatic results of Case 2 were closer to the FEA results
than that of Case 1 especially for the compliance matrices. These results showed
that the accuracy of the flexure hinge compliance equations had some effects on
the accuracy of the kinetostatic models. The results also indicated the importance
of the selection of flexure hinge compliance equations when calculating the kine-
tostatics of compliant micro-motion stages. The work presented in this chapter
highlights a) the significances of the scheme developed in Chapter 3, and b) the
advantage of the derived closed-form kinetostatic model with flexure hinge com-
pliances as one of the variables in the equation.

For the four-bar compliant mechanism, the differences of the compliance matri-
ces obtained from the kinetostatic model (Case2) was within 12% when compared
to the FEA results. The differences between the Jacobian matrix obtained from the
kinetostatic model was within 4% for the translational motion ∆xo and was within
15% for the rotational motion ∆αo when compared to the FEA results. For the 3-
RRR micro-motion stage, the differences of the compliance matrices obtained from
the kinetostatic model (Case2) was within 10% when compared to the FEA results.
The differences of the Jacobian matrix obtained from the kinetostatic model was
within 11% when compared to the FEA results. These differences are mainly at-
tributed to the unmodelled rigid-link deformations in the kinetostatic models.

The developed kinetostatic model in this thesis is advantageous over the FEA
model. The kinetostatic model is derived in closed-form equations to estimate
the kinematics and statics of compliant mechanisms; therefore FEA software is
not required. Also, designs of micro-motion stages can be analysed quickly by
changing the parameters in the analytical model. FEA models, on the other hand,
require each individual design to be modelled and meshed separately using FEA
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software (such as ANSYS) and the modelling process could be time consuming.
Furthermore, commercial FEA modelling software may be expensive.



CHAPTER 7

Experimental Validation of the Kinetostatic and FEA

Models

Experiments were conducted to measure the compliances and the Jacobian of the
3-RRR micro-motion stage. The experimentally determined compliance and Jaco-
bian results were used to verify the accuracy of the analytical and FEA models
presented in the previous chapters. The differences between the experimental,
FEA and analytical results are presented and discussed in this chapter.

The experimentally determined compliance matrices of Co,Fo , Co,Fin
and Jexp

matrix are presented. However the compliance matrix of Cin,Fin
could not be mea-

sured due to the limitations of the experimental setup; therefore this result is not
presented. Although the analytical Cin,Fin

results could not be verified experimen-
tally, the analytical results were verified with FEA results in Chapter 6.

The FEA results of Co,Fo , Co,Fin
and J matrices were also compared with the

experimental results. Although the accuracy of the FEA determined Cin,Fin
could

not be verified experimentally, it was expected that the order of accuracy of the
FEA determined Cin,Fin

was approximately the same as the FEA determined Co,Fo ,
Co,Fin

and J matrices because the FEA modelling concept of determining these
matrices was the same.

147
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7.1 Experimentally determined compliance matrix,

Co,Fo

The experimental setup of the compliance measurements is shown in Figure 7.1.
Aluminium targets were mounted to the end-effector as shown in Figure 7.1. Three
eddy-current sensors were mounted on the translation stages. The translation
stages are used to position the sensors to their corresponding measurement ranges
from the aluminium targets. The voltage signals of eddy-current sensors were
recorded using a dSPACE DS1104 DSP controller board via the inbuilt analog-to-
digital converters (ADCs).

Weights of 20, 50, 100 and 200g were hung on the stage along its x and y axes to
provide the corresponding loading forces. To apply moments, a loading rod was
mounted to the end-effector and weights were hung on the loading rod with a dis-
tance of 15 mm from the centre of the end-effector (see Figure 7.1b). When weights
were applied, the corresponding voltage signals of the eddy-current sensors were
recorded and converted to displacements according to their sensitivities (see Ap-
pendix A for sensor calibrations). The translational displacements, ∆xo and ∆yo,
and the rotational displacements ∆αo of the end-effector were calculated from the
displacements measured by the three eddy-current sensors.

The measured displacement ∆yo (when moments were applied via the loading
rod) consists of a displacement component caused by forces, Foy = FW and a dis-
placement component caused by moments, Moz = FW × l where FW is the force
applied via the hanging weights (see Figure 7.2) and l = 15mm. In order to obtain
the ∆yo-displacement which was only caused by Moz, the displacement caused by
Foy was subtracted as shown in the equation below.

∆yo,Moz = ∆yT −∆yo,Foy (7.1)

where ∆yo,Moz is the displacement due to Moz, ∆yo,Foy is the displacement due to
Foy (measured when weights were applied at the centre of the end-effector) and
∆yT is the total displacement measured when weights are applied at a distance l

from the centre of the end-effector.

Graphs of displacements versus forces or moments were plotted and the slopes
of these graphs were obtained. There are a total of nine groups of graphs where
each group of graphs represent each entry in the compliance matrix Co,Fo . There
are a total of sixty sets of measurements in each group, providing a reasonable
sample size to ensure the consistency of the experimental results. Figure 7.3 shows
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the histogram of the measurement data of each entry of the Co,Fo matrix together
with the means and standard deviations.

7.1.1 Discussion

It can be observed in Figure 7.3 that the measurement data of Co,Fo11 , Co,Fo22 and
Co,Fo33 are normally distributed with small standard deviations (σ). The maximum
deviation (2σ/mean) of the measurement from the mean value is 2%. This shows
the consistency of the experimental data. The experimental results show that the
compliances at the x- (Co,Fo11) and y-axis (Co,Fo22) are almost identical. This is ex-
pected because the 3-RRR compliant mechanism has a symmetrical topology.

The non-diagonal results are not normally distributed. This is because the com-
pliances of the non-diagonal terms are very small. The 3-RRR micro-motion stage
is a RCC device where deformations occur only along the direction of the applied
forces/moments. Deformations at the non-loading directions are very small and
the voltage signals that are recorded by the sensor are not accurate partly due to
the limitation of the sensor resolutions. The maximum recorded voltage signal
when measuring the deformations at the non-loading directions of the stage was
within 1.1 mV which was less than the resolution of the eddy-current sensors (ap-
proximately 1.8mV). Therefore, it was most likely that random signal noises were
recorded instead of the “actual” signals.

Since the compliances at the non-loading directions are very small, these com-
pliances are ignored. The experimentally determined output compliance matrix
is,

[Co,Fo ]exp =


13.12 0 0

0 12.95 0

0 0 28012

 (7.2)

Analytical and FEA determined Co,Fo matrices were compared to the experi-
mental result of Equation 7.2 and the results of the comparisons are presented in
Section 7.4.
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(a) Measurement of the translational compliances
along the x- and y-axis

(b) Measurement of the rotational compliance about
the z-axis

Figure 7.1: Experimental setup - the measurement of the compliances, Co,Fo
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Figure 7.2: Equivalent forces/moment on the end-effector of the 3-RRR micro-
motion stage when moments were applied via the loading rod
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Figure 7.3: Histogram of the measurement data of Co,Fo
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7.2 Experimentally determined compliance matrix,

Co,Fin

The experimental setup of the compliance measurements of Co,Fin
is shown in

Figure 7.4. Weights of 20, 50, 100 and 200g were hung at the input locations of the
stage as shown to provide the input forces. Three eddy-current sensors were used
to measure the translational motions (∆xo and ∆yo) along the x- and y-axis, and the
rotational motions (∆αo) about the z-axis. The sensors were positioned as shown
to measure the displacements of the targets. Similarly to the measurement of Co,Fo ,
graphs of displacements versus forces or moments were plotted and the slope of
each graph was obtained. There are a total of nine groups of graphs where each
group of graphs represent each entry in the compliance matrix of Co,Fin

. There are
a total of sixty sets of measurements in each group, providing a reasonable sample
size to ensure the consistency of the experimental results. Figure 7.5 shows the
histogram of the measurement data of each entry of the Co,Fin

matrix together
with the means and standard deviations.

7.2.1 Discussion

It can be observed in Figure 7.5 that the measurement data of all the terms in Co,Fin

are normally distributed with small standard deviations (σ). The maximum devi-
ation (2σ/mean) of the measurement from the mean value is 3.8%. This shows the
consistency of the experimental data.

It can be noted that the first rotational compliance term of [Co,Fin
]exp is larger

than the rest of the two compliance terms. This does not match with the sym-
metrical characteristic of the micro-motion stage. An investigation was conducted
and a manufacturing error was found at the preload mechanism of the first link
(Handley, 2006). A diagram of the preload mechanism is shown in Figure 7.6. It
can be seen that this preload mechanism uses a grub screw to apply compressive
loads on the piezo-actuator to hold it in place. In order to measure the compli-
ances (Co,Fin

) of the micro-motion stage, weights were hung at the centre of the
threaded hole using a pin as shown in Figure 7.7. Unfortunately the location of
the threaded hole was mistakenly machined to have l5= 4.5 mm instead of 4 mm.
The distance of l5 for the first link is 0.5 mm larger than the second and the third
link. Therefore, the rotational compliance of the first link is larger than the rest of
the links due to larger amount of moments applied. In order to have a meaningful
comparison, the FEA and analytical models (except for Co,Fo which is not affected
by the location of the input forces) were modified to take the manufacturing error
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Weight

Eddy-current
sensor

Eddy-current
sensors

Input
location

(a) Weights were hung at the input point

End-effector

Targets

(b) Three eddy-current sensors were used to mea-
sure the displacements of the targets

Figure 7.4: Experimental setup of the measurement of Co,Fin
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Figure 7.5: Histogram of the measurement data of Co,Fin

into considerations.

The experimentally determined compliance matrix Co,Fin
is,

[Co,Fin
]exp =


1.10 0.28 −1.30

1.01 −1.29 0.41

−38.77 −32.95 −31.24

 (7.3)

Analytical and FEA determined Co,Fin
matrices were compared to the experi-

mental result of Equation 7.3 and the results of the comparisons are presented in
Section 7.4.

7.3 Experimentally determined Jacobian matrix

The experimental technique presented by Handley (2006) was used to measure
the Jacobian matrix of the 3-RRR micro-motion stage. An experimental Jacobian
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NOTE:  This figure is included on page 155 of the print copy of the 
thesis held in the University of Adelaide Library 

 
 
 
 
 
 
Figure 7.6: Preload mechanism – compressive load on the piezo-actuator (Handley, 
2006) 
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NOTE:  This figure is included on page 156 of the print copy of the 
thesis held in the University of Adelaide Library. 

Figure 7.8: Closed-loop PI controller using strain gauge feedback (Handley, 2006) 
 
matrix of the same stage was presented in Handley’s thesis. The Jacobian was 

remeasured in this thesis to ensure that the experimental results did not vary over time. A 

more detailed experimental procedure than that of Handley (2006) is presented in this 

thesis. 

The input displacements of the 3-RRR micro-motion stage were provided by three 

piezoelectric actuators. These three Tokin AE0505D16 stack actuators were assembled 

into the compliant mechanism using three preload mechanisms. Compressive forces were 

applied via a grub screw to hold the piezo-actuator in place (see Figure 7.6). A locked nut 

was used to secure the grub screw and the piezoactuator. 

The preload forces will ensure constant contact between the piezos and the compliant 

mechanism during operations. Each piezo-actuator has a maximum elongation of 

11.6±2µm with a 100V input voltage. Each piezo-actuator was driven by a Physik 

Instrumente (PI) amplifier, which provides a bipolar voltage ranging from -20V to 120V. 

The amplifiers have a maximum output power of 30W. Measurement Group EA-06-

125TG-350 strain gauges were mounted to piezoactuators to measure their 

displacements. A full-bridge arrangement was used so that the strain gauges were 

temperature compensated. All strain gauges were connected to a strain gauge conditioner. 

Strain gauges serve as displacement sensors to the system; therefore the piezo-actuators 

could be controlled using closed-loop proportional-integral (PI) control. The closed-loop 

control is shown in Figure 7.8. 

7.3.1 Strain gauge calibrations 
The procedures of calibrating strain gauges and the Jacobian are similar to that of 

Handley (2006). Strain gauges were calibrated after they were assembled into the 

compliant mechanism. A Philtec D20 fibre-optic sensor was used to calibrate these strain 

gauges. A front surface mirror, which was the target of the fibre-optic 
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Figure 7.9: Strain gauge calibration setup

sensor, was attached to the side of an input link as shown in Figure 7.9. The fibre-
optic sensor was positioned as shown to measure the displacement of the mirror.
The fibre-optic sensor was mounted on a NanoFlexTM translation stage which had
a travel range of 5 mm and a resolution of 50 nm. The translation stage was used
to position the fibre-optic sensor to its measurement range. The fibre-optic sensor
was aligned with the axis of the preload mechanism so that the displacements at
the point of force input were recorded. In order to check the alignment, the tip
of the fibre-optic sensor was positioned in the middle of the lock nut as shown in
Figure 7.10. As mentioned by Handley (2006), there are advantages of measuring
the displacement of the compliant input link rather than the length of change of
the piezo-actuator. The advantages are a) the measured Jacobian will give the rela-
tionship between the input link displacement and the end-effector displacements,
which is in accordance with the way the analytical Jacobian matrix was derived,
and b) any unmodelled compliance in the preload mechanism will not cause dis-
crepancies between the experimental and analytical results.

Each piezo-actuator was elongated by providing an increasing voltage from 0
to 100V. The output voltages of each strain gauge and their corresponding input
link displacements (measured by the fibre-optic sensor) were recorded. Graphs of
displacements against strain gauge voltages were plotted and linear lines were fit-
ted through the data points. Slopes of these graphs which represent the sensitivity
of the strain gauge were obtained. The average sensitivity of each strain gauge is
shown in Table 7.1.
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(a) Fibre-optic sensor is aligned
with the preload mechanism axis

(b) Schematic of the preload mechanism and the align-
ment of the fibre-optic sensor (Handley, 2006)

Figure 7.10: Alignment of the fibre-optic sensor with the axis of the preload mech-
anism

Sensitivity (µm/V)

Strain gauge 1 0.8513

Strain gauge 2 0.7926

Strain gauge 3 0.8235

Table 7.1: Average sensitivities of strain gauges
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Figure 7.11: Experimental setup of measuring the Jacobian of the 3-RRR micro-
motion stage

7.3.2 Jacobian measurements

The output displacements (∆xo, ∆yo, ∆αo) of the end-effector were measured us-
ing the three eddy-current sensors as shown in Figure 7.11. Targets of the eddy-
current sensors were mounted to the end-effector. The three eddy-current sensors
were positioned as shown in the figure to measure the displacement of the targets.
The translational displacements, ∆xo and ∆yo, and the rotational motions, ∆αo

of the end-effector were calculated from displacements measured by the eddy-
current sensors. The piezo-actuator driver was connected to the dSPACE board
via the inbuilt digital-to-analog converters (DACs), while the strain gauge condi-
tioning circuitry and the eddy-current transducers were connected to the dSPACE
board via the inbuilt ADCs. A schematic of the experimental setup is shown in
Figure 7.12.

The piezo-actuator was extended one at a time by applying an increasing volt-
age from 0 to 100V. Displacements of the other two piezo-actuators were con-
strained to be zero. The displacements of the three piezo-actuators were con-
trolled using closed-loop PI feedback controllers constructed in Simulink, Matlab.
Output displacements of the end-effector (∆xo, ∆yo, ∆αo) were measured by the
three eddy-current sensors while each of the piezo-actuator was displaced (that is
the input displacement, u1in , u2in, u3in) individually. Graphs of output displace-
ments versus input displacements were plotted and the slope of each graph was
obtained. There are a total of nine groups of graphs where each group of graphs



160  Chapter 7.  Experimental Validation of the Kinetostatic and FEA Models 
________________________________________________________________________ 

  
NOTE:  This figure is included on page 160 of the print copy of the thesis held in 
the University of Adelaide Library.  

Figure 7.12: Schematic of the experimental setup to measure the Jacobian (Lu et al., 
2004)  

 
Eddycurrent sensor  Sensitivity (µm/V )  

3316  10.264  

3317  10.099  

3338  10.184  
 

Table 7.2: Sensitivities of the three eddycurrent sensors (0 to 10V)  

represents each entry in the Jacobian matrix. There were a total of 150 sets of 
measurement in each group, providing a good sample size to ensure the consistency of 
the experimental results. Figure 7.13 shows the histogram together with the means and 
standard deviations of the measurement data of each entry of the Jacobian matrix, Jexp. 

7.3.2.1 Discussion  

It can be observed in Figure 7.13 that some of the measurement data of the Jexp terms 
follow the trend of a normally distributed curve with small standard deviations (σ). The 
maximum deviation (2σ/mean) of the measurement from the mean value is 0.8%. This 
shows the consistency of the experimental data.  

It can be seen in Figure 7.13 that the mean value of Jexp31 is smaller than Jexp32 and 
Jexp33 . This was due to the manufacturing errors at the preload mechanism of the first 

link. As mentioned in Section 7.2.1, the distance of l5 for the first link is 0.5 mm larger 
than the second and the third link. Therefore, the amplification ratio (output displacement 
over input displacement) of the first link was smaller than the rest of the links. The slight 
differences between Jexp32 and Jexp33 could be attributed to manufacturing errors and the 

uneven preload applied on the piezoactuators.  
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Figure 7.13: Histogram of the measurement data of Jexp

7.3.3 Comparison of Jexp results

A comparison was conducted between the experimental Jacobian matrix presented
in this thesis and that presented in Handley (2006). Table 7.3 shows the Jacobian
matrices and their differences relative to the measured Jacobian in this thesis. The
differences between the two Jacobian matrices are small (within 6.7%). The dif-
ferences could be attributed to a) the differences of room temperatures when ex-
periments were conducted, b) the differences of the calibrated strain gauge sensi-
tivities, and c) the differences in the alignment of sensors during the experimental
setup. The change of room temperature affects the measurement range of the sen-
sors (see Appendix A). The measurement range of the sensors decrease with the
increase of room temperature. If the measured voltages fall outside the measure-
ment range of the sensors, the sensitivities of the sensors will be different from
that shown in Table 7.2, which leads to the differences between the two measured
Jacobians. The differences of the strain gauge sensitivities could not be quantified
as there were not presented in Handley (2006). The distances between sensors and
the alignment of the sensors to their aluminium targets may be slightly different
from that of the experimental setup conducted by Handley (2006). The position-
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Jexp (this thesis) Jexp (Handley, 2006) % difference

3.76 1.49 −5.75

3.75 −5.83 1.94

−197.70 −210.39 −211.99

3.84 1.40 −5.62

3.87 −5.44 1.84

−199.77 −211.90 −209.42

2.1 −6.0 −2.3

3.2 −6.7 −5.2

1.0 0.7 −1.2

Table 7.3: Differences between the two experimental Jacobian matrices

ing and the alignment of sensors may contribute to the differences between the
two experimental Jacobians. The sample size of the Jacobian measurements were
not mentioned in Handley (2006); therefore the standard deviation and the consis-
tency of Handley’s results were unclear. Nevertheless, the two measured Jacobian
matrices were closed to each other especially for the rotational terms, Jexp31 , Jexp32

and Jexp33 .

7.4 Comparisons of analytical and FEA results with

experimental results

In order to facilitate a comparison with experimental results, the FEA and ana-
lytical models (except for Co,Fo which is not affected by the dimension l5) were
modified to take the manufacturing error into consideration. Table 7.4, 7.5 and 7.6
show the differences of the analytical and FEA results when compared to experi-
mental results.
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Experimentally determined Co,Fo

13.12 0 0

0 12.95 0

0 0 28012

Kinetostatic Model FEA compliance

Case 1 Case 2

10.10 0 0

0 10.10 0

0 0 23960

12.25 0 0

0 12.25 0

0 0 27402

11.50 0 0

0 11.48 0

0 0 27966

% difference compared to experimentally determined Co,Fo

−23.0 −− −−

−− −22.0 −−

−− −− −14.5

−6.6 −− −−

−− −5.4 −−

−− −− −2.2

−12.4 −− −−

−− −11.4 −−

−− −− −0.16

Table 7.4: Comparison of analytical and FEA results of Co,Fo with that of the ex-
periments
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Experimentally determined Co,Fin

1.10 0.28 −1.30

1.01 −1.29 0.41

−38.77 −32.95 −31.24

Kinetostatic Model FEA compliance

Case 1 Case 2

0.85 0.22 −1.00

0.77 −1.2 0.32

−32.72 −29.79 −29.79

1.04 0.27 −1.22

0.94 −1.25 0.39

−37.65 −34.30 −34.30

0.96 0.26 −1.14

0.88 −1.16 0.36

−35.24 −32.25 −32.12

% difference compared to experimentally determined Co,Fin

−22.6 −20.6 −23.2

−23.5 −21.7 −22.2

−15.6 −9.6 −4.6

−5.4 −4.7 −6.5

−7.1 −3.3 −4.1

−2.9 4.1 9.8

−12.4 −8.3 −12.6

−12.9 −10.0 −13.0

−9.1 −2.1 2.8

Table 7.5: Comparison of analytical and FEA results of Co,Fin
with that of the ex-

periments
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7.4.1 Discussion

7.4.1.1 Differences between the analytical and experimental compliance

matrices

From Table 7.4 and 7.5, it can be seen that the differences of the analytical compli-
ance results in Case 2 are much smaller than that in Case 1 when compared to the
experimental results. This is expected because the flexure hinge equations used to
calculate the compliance matrices of Case 2 have smaller differences (when com-
pared to the FEA results) than that of Case 1. The average absolute difference of
Co,Fo is reduced from 19.2% to 4.1%. The average absolute difference of Co,Fin

is
reduced from 18.2% to 5.3%.

The differences between the analytical and the experimental compliance results
could be attributed to a) measurement errors during experiments, b) unmodelled
deformations of rigid-links in the analytical models, c) applied load types, and d)
manufacturing errors of the 3-RRR micro-motion stage.

7.4.1.1.1 Measurement errors of compliance matrix, Co,Fo During the mea-
surements of Co,Fo , weights were hung from a spacer (which was used to separate
the end-effector and the micro-motion stage) with a distance k from the centre of
the micro-motion stage (see Figure 7.14a). Out-of-plane moments were generated
due to the distance k. It was assumed that the out-of-plane moments will not cause
any in-plane deformations to the micro-motion stage. However this out-of-plane
deformations could contribute to the measurement errors. An investigation was
carried out to study the effect of the out-of-plane rotational motions to the mea-
surement errors. Weights were hung from the end-effector which was further from
the centre of the stage as shown in Figure 7.14b and the compliances were once ob-
tained. The compliances were found to be approximately 2.8% larger than that
when the weights were hung from the spacer (see Figure 7.14a). The out-of-plane
moment caused the end-effector to tilt with a small angle. This small tilting angle
was exaggerated in Figure 7.15. Both the deformations of the micro-motion stage
and the motions at the end of the end-effector caused by the tilting angle were
measured during the experiments. This could explain why the experimentally de-
termined Co,Fo is larger than that of the analytical values. Although weights were
hung at the spacer during the experiments, the motions of the end-effector caused
by the out-of-plane moments could not be avoided.

7.4.1.1.2 Measurement errors of compliance matrix, Co,Fin
Measurement er-

rors of Co,Fin
could be attributed to the hanging locations of the weights. Weights
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(a) Weight is hung from the spacer (b) Weight is hung from the end-effector

Figure 7.14: Side view of the experimental setup of measuring Co,Fo

Figure 7.15: Small tilting angle (exaggerated in the diagram) of the end-effector
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may not be hung exactly at the location of the input point. A pin was used as
shown in Figure 7.7 to locate the weights at the input points. The pin was located
as close to the centre of the hole (input point) as possible. However due to the
thickness of the pin, misalignments were difficult to avoid.

7.4.1.1.3 Unmodelled deformations of rigid-links The kinetostatic model as-
sumes that the deformations of rigid-links of the micro-motion stage are small,
and therefore are ignored. This assumption is made because the 3-RRR compliant
structure is not an over-constrained structure. Therefore, deformations are not ex-
pected at rigid-links. However, the small differences between analytical and the
experimental results could be due to these unmodelled rigid-link deformations.

7.4.1.1.4 Applied load types It was observed that there are some errors when
comparing the analytical Co,Fin

results to that of experiments. This could be at-
tributed to the difference of the type of loads applied. For the analytical model,
point loads were applied at the input points to obtain their compliance results.
However, during experiments, distributed loads were applied at the input loca-
tions through a pin instead. Applying point loads at the input locations during
experiments were impractical due to the threaded hole and also due to the limita-
tion of the experimental setup.

7.4.1.1.5 Manufacturing errors of the 3-RRR micro-motion stage The ma-
chining errors in the position and size of the holes of circular flexure hinges may
have an influence on the compliances of hinges (Ryu and Gweon, 1997). The flex-
ure hinge compliance equations in Appendix C were expressed as a function of
t, b, θm, R and material properties of the hinge. Small variations in each of these
dimensions during the manufacturing process would vary the compliances of the
mechanism. This could partly explain the differences between the analytical com-
pliance results (the ideal hinge models) of the 3-RRR micro-motion stage when
compared to the experimental results.

7.4.1.2 Differences between the FEA and experimental compliance

matrices

The differences between the FEA and experimental compliances could be attributed
to a) measurement errors as explained in Section 7.4.1.1.1, b) the differences of the
type of loads applied as explained in Section 7.4.1.1.4, and c) manufacturing errors
of the 3-RRR micro-motion stage as explained in Section 7.4.1.1.5.
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The FEA compliances were observed to be smaller than the experimentally de-
termined compliances. The under-estimated FEA results may be attributed to the
type of elements used in the FEA model, namely the plane stress element. As
reported by Schotborgh et al. (2005), plane stress elements may provide a 5 to
10% under-estimation of the stiffnesses. Plane stress elements were chosen over
plane strain elements because plain strain elements provide an even greater over-
estimation of the stiffnesses (Schotborgh et al., 2005). A three-dimensional (3-D)
FEA model would provide more accurate results than the two-dimensional (2-D)
model; however an accurate 3-D FEA model is not feasible due to the limited num-
ber of nodes available from the academic ANSYS license.

7.4.1.3 Differences between the Jacobian matrices

The Jacobian matrix of Case 2 was expected to be more accurate than that of Case
1; however both the Jacobian matrix of Cases 1 and 2 provide similar accuracies as
shown in Table 7.6. This is because the Jacobian matrix represents the kinematics
of the micro-motion structures; therefore the Jacobian is almost independent of
compliances or stiffnesses of flexure hinges.

It can be observed in Table 7.6 that overall, the FEA Jacobian gives the closest
prediction to the experimental results. The analytical Jacobian matrices obtained
from the kinetostatic model give similarly close prediction of the translational mo-
tions but provide less accurate predictions of the rotational motions. However,
these Jacobian matrices are more accurate than that of the Jacobian derived using
the PRBM method especially in the rotational terms. This is because the Jaco-
bian matrix obtained using the kinetostatic model considers flexure hinges to have
three-DOF while the PRBM derived in this thesis models flexure hinges to have
only one-DOF.

The differences between the analytical and the experimental Jacobians could
also be attributed to the unmodelled rigid-link deformations in the analytical model
as explained in Section 7.4.1.1.3 and the manufacturing errors of the 3-RRR micro-
motion stage as explained in Section 7.4.1.1.5.

7.5 Concluding remarks

The kinetostatic results of Case 2 were closer to the experimental results than that
of Case 1 especially for the compliance matrices. This indicated the importance of
the selection of flexure hinge compliance equations when calculating the kineto-
statics of compliant micro-motion stages. It also highlighted a) the significance of
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the scheme developed in Chapter 3, and b) the advantage of the derived closed-
form kinetostatic model with flexure hinge compliances as one of the variables in
the equations. The accuracy of the compliance matrices obtained from the kineto-
static model (Case2) was within 7% when compared to the experimental results.
The accuracy of the Jacobian matrix obtained from the kinetostatic model was
within 15% for the translational motions and was within 26% for the rotational
motion when compared to the experimental results. However, these differences
could be attributed to measurement errors, the unmodelled rigid-link deforma-
tions in the kinetostatic model, the differences of applied load types and the man-
ufacturing errors of the micro-motion stages.

The Jacobian matrix obtained from the kinetostatic model provides better pre-
diction of the rotational motions of the 3-RRR micro-motion stage when compared
to that of the PRBM (which does not model the ∆x- and ∆y-deformations of flexure
hinges). As mentioned in Section 6.1.1.2, it is possible to extend the PRBM method
to model flexure hinges to have multi-DOF. However, the extended PRBM method
produces a large number of variables which required extensive computational ef-
fort to solve. Unlike the kinetostatic model derived in this thesis, the kinetostatic
model is a simple closed-form model and it does not require extensive computa-
tional effort to solve.



CHAPTER 8

Conclusions and Future Work

This chapter summarises the work presented in this thesis, highlights the contri-
butions of this thesis and presents the recommendations for future work.

8.1 Objectives of the study

There are two main objectives of this thesis. The first objective is to develop a
scheme for selecting the most suitable circular flexure hinge equations from the
previously derived formulations. There were various flexure hinge equations de-
rived previously using different methods to predict the compliances of circular
flexure hinges. However, it was found that some of these analytical/empirical
compliance equations provided better accuracies than the others depending on
the t/R ratios of circular flexure hinges, and flexure hinge compliance equations
derived previously by any particular method may not be accurate for a large range
of t/R ratios. There was no proper scheme developed on how to select the most
suitable and accurate hinge equation from the previously derived formulations.
Therefore, a scheme to guide designers for selecting the most suitable hinge equa-
tion based on the t/R ratios of circular flexure hinges is developed and presented
in this thesis.

The second objective of this thesis is to develop a simple methodology of deriv-
ing an accurate kinetostatic model of four-bar and 3-RRR compliant micro-motion
stages by incorporating the scheme developed in the first objective. The method-
ology models flexure hinges to have three-DOF. The kinetostatic model is derived
to have closed-form equations. Material properties and link parameters are vari-
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ables in this model. Compliances of flexure hinges are also one of the variables
in the model. Therefore the most suitable flexure hinge equations can be selected
based on the scheme developed in the first objective to calculate the kinetostatics
of compliant micro-motion stages accurately.

8.2 Summary of the research work presented in

this thesis

In Chapter 2, a thorough review of the literature on the modelling of flexure hinges
was conducted. The chapter presents an overview on methods and equations de-
rived previously using various methods to calculate the compliances of circular
flexure hinges. It was identified that the compliance results of a circular flexure
hinge calculated using these equations were different from each other. It was also
found that the accuracy of these previously derived equations changes with the
t/R ratio of circular flexure hinges. There was no proper scheme developed to
guide researchers on how to select the most suitable flexure hinge compliance
equations out of the previously derived formulations. Therefore, a scheme for
selecting the most suitable hinge equation based on the t/R ratio of circular flex-
ure hinges was developed in this thesis. A review of the literature on the kineto-
static modelling of compliant micro-motion stages was also conducted thoroughly.
Several research groups derived kinetostatic models to predict the kinematics and
statics of compliant mechanisms. However, there were only few research groups
who studied the kinetostatics of 3-RRR compliant micro-motion stages. Some of
these kinetostatic models involved an intensive number of transformation matri-
ces which could lead to modelling complications and difficulties. Furthermore,
not all the previously derived kinetostatic models provided the predictions of the
kinematics and both the input and output stiffnesses of compliant micro-motion
stages. The prediction of the input stiffness was particularly important for the de-
sign of piezo-driven compliant mechanisms because the maximum displacement
of a piezo-actuator is governed by the structural input stiffness. High input stiff-
ness will reduce the maximum displacement of a piezo-actuator, which leads to the
reduction of the workspace of compliant mechanisms. As a conclusion, the kine-
tostatic modelling of compliant mechanisms, especially for 3-RRR micro-motion
stages have still not been studied in great detail.

In Chapter 3, a scheme for selecting the most suitable circular flexure hinge
equation based on the t/R ratio of hinges was developed and presented. Com-
pliances of circular flexure hinges determined using a FEA simulation (ANSYS)
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were used as a benchmark for comparisons. Experiments were conducted to mea-
sure the compliances of three flexure hinges in order to investigate the accuracy of
the FEA results and to ensure that the FEA results were suitable to be used as the
benchmark. The three flexure hinges have t/R ratios from each of the categories
of thin (t/R ≤ 0.07), intermediate (0.07 < t/R ≤ 0.2) and thick (0.2 < t/R ≤ 0.8)
hinge respectively in order to cover a wide range of t/R ratios. The FEA results
were in good agreement with the experimental results (within 3% difference for
∆αz-compliance and 6% difference for ∆y-compliance). The FEA results were also
compared to the experimental results of Smith et al. (1997) to further justify the ac-
curacy of the FEA model. The FEA results were in close agreement (within 6.2%)
with the experimental results of Smith et al. (1997). Therefore, the FEA model pre-
sented in this thesis is suitable to serve as the benchmark for comparisons. The
results of various flexure hinge compliance equations (Paros and Weisbord, 1965;
Lobontiu, 2003; Wu and Zhou, 2002; Tseytlin, 2002; Smith et al., 1987; Schotborgh
et al., 2005; Zhang and Fasse, 2001) were compared with that of the FEA model
for flexure hinges with 0.05 ≤ t/R ≤ 0.8. Based on the result of comparisons, the
scheme for selecting the most suitable flexure hinge compliance equation was de-
veloped. Throughout the comparison process, it was also found that there was
no accurate equation (within 5% error when compared to FEA results) to pre-
dict the ∆x- and ∆y-compliance of circular flexure hinges for a wide t/R range
(0.05 ≤ t/R ≤ 0.8). Therefore, general empirical equations were developed based
on FEA results to estimate the ∆x- and ∆y-compliance of circular flexure hinges
for 0.05 ≤ t/R ≤ 0.8.

Kinematic models of a four-bar and a 3-RRR micro-motion stage were derived
using the PRBM method and the loop-closure theory, and were presented in Chap-
ter 4. The kinematic model which was derived in a form of a Jacobian matrix was
linear and simple. However the PRBM in this thesis does not model the ∆x- and
∆y-displacements of flexure hinges which led to modelling inaccuracy of compli-
ant mechanisms. The modelling accuracy of the Jacobian matrix derived using the
PRBM method was verified by comparing with FEA and experimental results in
Chapters 6 and 7.

In Chapter 5, the derivation of kinetostatic models of a four-bar and a 3-RRR
micro-motion stage were presented. Flexure hinges were modelled to have three-
DOF. The kinetostatic model was derived to have closed-form equations where
material properties, link lengths and flexure hinge compliances were variables in
the model. Since flexure hinge compliances were one of the variables in the model,
the scheme developed in Chapter 3 was incorporated into the model in order to
obtain an accurate prediction of the kinetostatics of the two compliant stages. Two
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cases were studies for both the four-bar and 3-RRR micro-motion stages where the
kinetostatic models of Case 1 were calculated by deliberately choosing the flexure
hinge equations with large differences (when compared to FEA results) based on
the scheme developed in Chapter 3. Meanwhile, the kinetostatic models of Case
2 were obtained by choosing the flexure hinge equations with small differences.
The compliance results of the two cases were noticeably different which indicated
that the choice of flexure hinge compliance equations affects the accuracy of the
kinetostatic models. The kinematic results which were derived in a form of Jaco-
bian matrices showed close results for both cases. This was because the Jacobian
matrix represented the kinematics of the micro-motion structures and the choice of
flexure hinge equations used to calculate the analytical results has minimal effects
on the results of the Jacobian matrix.

In Chapter 6, FEA models of the four-bar and the 3-RRR micro-motion stage
were constructed using ANSYS. The FEA determined kinetostatic results of the
compliant stages were used to validate the accuracy of the kinetostatic models.
It was found that the kinetostatic results of Case 2 for both compliant mecha-
nisms were closer to the FEA results than that of Case 1 except for the Jacobian
matrix. This was because the Jacobian matrix represented the kinematics of the
micro-motion structures. The choice of flexure hinge equations used to calculate
the analytical results has minimal effects on the results of the Jacobian matrix. The
improvement of the results of Case 2 indicated the importance of the selection
of flexure hinge compliance equations when calculating the kinetostatics of com-
pliant micro-motion stages. It also highlighted a) the significance of the scheme
developed in Chapter 3, and b) the advantage of the derived closed-form kineto-
static model with flexure hinge compliances as one of the variables in the equation.
The Jacobian matrix derived using the PRBM method and the loop-closure theory
was also compared to the FEA results. It was found that the Jacobian results de-
termined from the kinetostatic model were closer to the FEA results than that of
the PRBM method in this thesis (which ignored the modelling of the ∆x- and ∆y-
deformations of flexure hinges).

In Chapter 7, experiments were conducted to measure the compliances and Ja-
cobian of the 3-RRR micro-motion stage in order to validate the kinematic model
derived using the PRBM, the kinetostatic and the FEA models. It was found that
the kinetostatic results of Case 2 were closer to the experimental results than that
of Case 1 especially for the compliance matrices in the model. Overall, the FEA de-
termined Jacobian provided the closest prediction to the experimental results. The
analytical Jacobian matrices obtained from the kinetostatic model gave similarly
close predictions of the translational motions but provided less accurate predic-



8.3. Contributions 175

tions of the rotational motions. However, the Jacobian matrices obtained from the
kinetostatic models were more accurate than that of the Jacobian derived using
the PRBM method (which does not model the ∆x- and ∆y-deformations of flex-
ure hinges) especially for the rotational terms. It is possible to extend the PRBM
method to model flexure hinges to have multi-DOF. However, the extended PRBM
method produces a large number of variables which require extensive computa-
tional effort to solve. Unlike the kinetostatic model derived in this thesis, the kine-
tostatic model is a simple closed-form model and it does not require extensive
computational effort to solve.

8.3 Contributions

The work presented in this thesis has made several contributions to the current
knowledge:

• A review on the accuracies and limitations of previously derived circular
flexure hinge compliance equations was presented. This review has provided
a good indication that the accuracy of most of the previously derived hinge
equations vary with the t/R ratio of flexure hinges.

• A scheme for selecting the most suitable circular flexure hinge compliance
equations based on the t/R ratio of a hinge was developed.

• A method was presented to derive linear and simple kinematic models using
the PRBM and the loop-closure theory.

• A simple methodology was presented to derive a closed-form kinetostatic
model of four-bar and 3-RRR compliant micro-motion stages. The kineto-
static model provides accurate predictions of kinematics, and both the input
and output compliances of compliant micro-motion stages. The closed-form
kinetostatic model was derived with flexure hinge compliance equations as
one of the variables, and the most suitable flexure hinge equation can be used
to accurately estimate the kinetostatics of compliant micro-motion stages.

• This work has given a good indication that the accuracy of the kinetostatic
model is dependent on the accuracy of the flexure hinge compliance equa-
tions.

• The developed scheme for selecting flexure hinge equations and the derived
kinetostatic model are useful for parametric studies and design optimisations
of micro-motion stages.
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8.4 Recommendations for future work

• The compliance equations (∆x/Fx and ∆y/Fy) of Schotborgh et al. (2005)
had large errors compared to other research groups. This may be attributed
to the uncertainties in their FEA model where the stiffnesses of hinges vary
with the heights of the FEA model. The change of the hinge stiffness with the
change of the height of their FEA model is recommended to be investigated
in future.

• The current scheme for selecting flexure hinge equations was developed based
on the t/R ratio of flexure hinges. The scheme could be extended to include
more dimensions of flexure hinges, such as b/R and h/R, in order to provide
more details on how the accuracy of various compliance equations vary with
these hinge dimensions.

• The current scheme was developed for in-plane compliances of circular flex-
ure hinges. The scheme can be extended to include out-of-plane compliances
of the hinges.

• The kinetostatic model derived in this thesis suffered some inaccuracies which
are attributed to the unmodelled deformation of rigid-links. The kinetostatic
model could be extended to include the deformation of links in order to in-
vestigate the effect of these unmodelled deformations on the accuracy of the
model.

• The kinetostatic model could be extended to include the out-of-plane flexure
hinge compliances, such as ∆αx/Mx, ∆αy/My and ∆z/Fz; therefore it could
be also applied to spatial compliant mechanisms.

• The kinetostatic model could be extended to include the piezo-actuator stiff-
ness in order to predict the kinetostatic of the whole compliant micro-motion
system.

• A 3-D FEA model of the micro-motion stages could be generated using other
FEA software which could provide sufficient number of nodes to accurately
model the stiffnesses and deformations of the structures. The measurement
errors presented in Section 7.4.1.1.1 can be investigated using the 3-D FEA
model. The results of the 2-D FEA compliant stage model are suggested to be
compared to the results of the 3-D model in order to investigate the accuracy
of the 2-D FEA model.
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• The experimental setup of measuring the compliances (Co,Fo and Co,Fin
) of

the 3-RRR micro-motion stage can be improved by using force/torque trans-
ducers to measure the applied forces/moments. Out-of-plane deformations
should be measured using a few extra sensors in order to quantify the mea-
surement errors and to calculate the “actual” in-plane deformations caused
by the applied in-plane forces/moments.
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