
CHAPTER 1

Introduction

1.1 Background and motivation

This thesis presents an investigation of the accuracy of various circular flexure
hinge compliance (inverse of stiffness) equations and the modelling of the kine-
tostatics (describes both the kinematics and statics) of micro-motion stages. Two
planar mechanism topologies are studied in this thesis, which are a four-bar and a
3-RRR (revolute-revolute-revolute) compliant micro-motion stage. The two com-
pliant micro-motion stages and their topological diagrams are shown in Figure
1.1. A prototype of the 3-RRR micro-motion stage is shown in Figure 1.2. This
prototype was used to conduct experiments to verify analytical and FEA models.
The four-bar compliant mechanism has one-degree-of-freedom (DOF) and it con-
sists of four circular flexure hinges. The 3-RRR compliant micro-motion stage has
three-DOF, which are the translational motions in the x- and y-axis and the rota-
tional motions about the z-axis. It consists of three RRR links arranged in parallel
and each link has three circular flexure hinges. The 3-RRR compliant stage was
designed to be used in a scanning-electron-microscope (SEM). The design specifi-
cations of the stage can be found in Handley (2006).

The kinetostatic model of a simple mechanism, in this case the four-bar mech-
anism, was derived initially. The methodology of deriving the kinetostatic model
was then extended to a more complicated topology, which was the 3-RRR compli-
ant micro-motion stage. The purpose of presenting the derivation of the kine-
tostatic models of these two compliant mechanisms is to demonstrate that the
methodology is applicable to different topologies of planar compliant mechanisms.
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(a) Four-bar micro-motion stage

(b) 3-RRR micro-motion stage

Figure 1.1: Compliant micro-motion stages and their topological diagrams

Nevertheless, the main focus of this thesis is the 3-RRR compliant micro-motion
stage.

Micro-motion stages have emerged as an important technological advance-
ment in the past three decades. The significance of this advancement is high-
lighted in many applications where the positioning of components with accuracies
in the micrometre or nanometre range is required. Examples include the position-
ing of samples in a scanning-electron-microscopes (SEM), the alignment of fibre-
optics and lasers, the positioning of masks in lithography, the manipulation of
cells in micro-biology and the manipulation of micro-scale components in micro-
assembly.

Most of the micro-motion stages are designed based on the compliant mech-
anism concept. Compliant mechanisms generate their motions through elastic
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Figure 1.2: Prototype of the 3-RRR micro-motion stage

deformations. These mechanisms replace most of their joints in rigid-link mecha-
nisms using flexure hinges. Compliant mechanisms are commonly machined from
a single piece of material and no assembly of parts is required. Therefore, compli-
ant mechanisms are advantageous over rigid-link designs where the number of
parts for compliant mechanisms is reduced, resulting in weight savings. Compli-
ant mechanisms also avoid the use of moving and sliding joints. Thus, the problem
of wear, backlash, friction and need for lubrication can be eliminated.

Compliant micro-motion stages are capable of achieving sub-micrometre or
even sub-nanometre positioning resolution. The positioning resolution of a micro-
motion stage is only limited by the resolution of the actuators and position sensors
which are used to detect the motion.

Many actuation principles have been applied to drive micro-motion stages.
Piezoelectric stack actuators (hereafter referred to as piezo-actuators), electrostatic,
electromagnetic and shape memory alloy actuators have been utilised to provide
fine motions to micro-motion stages. Piezo-actuators are commonly used to pro-
vide fine resolution of input displacements, potentially in the sub-nanometre range
depending on the noise of the voltage signal applied. Piezo-actuators were used
as driving elements in the compliant micro-motion stage studied in this thesis (see
Figure 1.2).

The four bar and 3-RRR micro-motion stages studied in this thesis have parallel
structure configurations which are advantageous over serial structures. All actua-
tors of parallel structures can be located at the base, thus reducing the link mass.
A parallel structure also has a high mechanical stiffness, high motion accuracy
and high resonant frequency. Therefore, parallel structures are better than serial
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structures for applications requiring high positioning accuracy and speed. 3-RRR
compliant stages also have a symmetrical configuration, and thus are less sensitive
to temperature variations that could change the kinematics of the structure due to
material expansion or contraction.

Despite all the advantages aforementioned, there are some disadvantages as-
sociated with compliant micro-motion stages with flexure hinges. For example,
it is more complicated to model and to control the motion of compliant stages
precisely compared to the well understood rigid-body mechanisms with simple
revolute joints. This is partly due to the fact that flexure hinges possess more than
one-DOF. Unlike revolute joints which have only the rotational motion about the
z-axis, flexure hinges have both translational and rotational motions in the x-, y-
and z-axis (a total of six-DOF which are ∆x, ∆y, ∆z, ∆αx ,∆αy and ∆αz). All
micro-motion stages studied in this thesis are planar structures and circular flex-
ure hinges with high out-of-plane stiffnesses are used. Therefore, circular flexure
hinges could be modelled to have only three in-plane DOFs, which are the transla-
tion DOFs (∆x and ∆y) in the x and y axes, and the rotational DOF (∆αz) about the
z-axis (see Figure 1.3). Although this assumption simplifies the modelling of cir-
cular flexure hinges, the modelling of micro-motion stages are still far more com-
plicated than rigid-body mechanisms. There are a number of modelling methods
that have been previously applied to model the kinematics (motions) and stat-
ics (stiffnesses/compliances) of micro-motion stages, however the error of some of
these analytical models are large when compared to FEA and experimental results.
This is partly due to the fact that flexure hinges are modelled to have only one or
two-DOF. For example, the method of the Pseudo-Rigid-Body-Model (PRBM) is
commonly used to predict the displacement of compliant mechanisms. The PRBM
commonly models a flexure hinge as a revolute joint (one-DOF) with an attached
torsional spring. The thick sections joining the flexure hinges are modelled as rigid
links. The accuracy of the kinematics predicted using the PRBM reduces when the
∆x- and ∆y-deformations of flexure hinges are ignored. The inaccuracy of the
PRBM method that excluded the modelling of the ∆x- and ∆y-deformations of
flexure hinges was reported previously in various published research studies and
will be presented in the literature review chapter.

The presence of large errors of some previously derived models of micro-motion
stages could also be attributed to the inaccurate modelling of flexure hinges. Since
a compliant micro-motion stage uses a few flexure hinges to provide the desired
motions through deformations, the accuracy of the kinetostatic model of micro-
motion stages partly relies on the accuracy of flexure hinge models. Compliance
equations of flexure hinges are required to be as accurate as possible to reduce
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the accumulated modelling errors from flexure hinges in a compliant structure. A
great deal of research has been conducted in modelling the compliance of circular
flexure hinges. However, it was not clear that these compliance equations would
be suitable for application on different values of the geometrical ratio, t/R (see Fig-
ure 1.3) of circular flexure hinges. There was no proper scheme developed for se-
lecting the most suitable flexure hinge equations (with certain t/R ratios) for hinge
compliance calculations. A scheme for selecting the most suitable hinge equations
for circular flexure hinges with certain t/R ratios is presented in this thesis.

Currently, published research regarding the aspects of kinetostatics of micro-
motion stages is limited. The development of the kinetostatic model allows the
fulfillment of both the kinematics and the statics design criteria (Krovi et al., 2002)
of micro-motion stages. A precise kinetostatic model of compliant micro-motion
stages will benefit researchers in at least the design and optimization phases where
a good estimation of kinematics, workspace or stiffness of a micro-motion stage
could be realised. The kinetostatic model is also an alternative method to the finite-
element approach which uses commercially available software. The modelling and
meshing procedures using finite-element software is relatively time consuming
and costly.

A simple methodology of deriving kinetostatic models for micro-motion stages
with different topologies are presented in this thesis. The kinetostatic model is sim-
ple and has closed-form equations. These closed-form equations are expressed in
terms of flexure hinge compliances, material properties and geometrical parame-
ters. Flexure hinges in the kinetostatic model derived in this thesis are modelled
to have three-DOF; therefore this kinetostatic model is expected to be more ac-
curate than the PRBM method which excludes the modelling of the ∆x- and ∆y-
deformations of flexure hinges. Flexure hinges in the kinetostatic model are mod-
elled to have only three-DOF instead of all six-DOF because micro-motion stages
studied in this thesis are planar stages with a large thickness b (see Figure 1.3).
Therefore the out-of-plane DOFs (∆αx, ∆αy and ∆z) are not taken into considera-
tion.

1.2 Objectives and scope

This thesis only involves the study of planar micro-motion stages with circular
flexure hinges. Therefore, only in-plane motions of flexure hinges and micro-
motion stages are considered. Flexure hinges are modelled to have only three-
DOF. Finite-element-analysis (FEA) models of flexure hinges and micro-motion
stages developed in this thesis are two-dimensional models. There are two major
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Figure 1.3: Circular flexure hinge

objectives in this thesis.

Objective 1 There are various flexure hinge equations derived previously using
different methods to predict the compliances of flexure hinges. However, some
of the analytical/empirical compliance equations provide better accuracies than
others depending on the t/R ratio of circular flexure hinges, and flexure hinge
compliance equations derived previously by any particular method may not be
suitable for a large range of t/R ratios. There is no proper scheme developed up
to this date on how to select the most suitable and accurate hinge equations from
the previously derived equations. Therefore, the first objective of this thesis is to
investigate the accuracy and limitation of previously derived compliance equa-
tions of circular flexure hinges based on their t/R ratios, and therefore to develop
a scheme to guide designers for selecting the most suitable hinge equation based
on the t/R ratio of flexure hinges.

Objective 2 The second objective is to develop a simple methodology of deriv-
ing an accurate kinetostatic model of compliant mechanisms by incorporating the
scheme developed in Objective 1. The methodology models flexure hinges to have
three in-plane DOF. The kinetostatic model is derived to have closed-form equa-
tions. Compliances of flexure hinges are one of the variables in the model. There-
fore the most suitable flexure hinge equations can be selected based on the scheme
developed in Objective 1 to calculate the kinetostatics of micro-motion stages ac-
curately.
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1.3 Organisation of thesis

A literature review is presented in Chapter 2. Chapter 3 presents a review on var-
ious flexure hinge equations by comparing the results of the equations with that
of FEA models. A scheme for selecting the most suitable flexure hinge equations
based on the t/R ratios of circular flexure hinges is then presented. Analytical
kinematic modelling of compliant micro-motion stages using the PRBM method
and the loop-closure theory (which excludes the modelling of the ∆x- and ∆y-
deformations of flexure hinges) are presented in Chapter 4. The derivation of the
kinetostatic model of compliant micro-motion stages are presented in Chapter 5. In
Chapter 6, the FEA modelling methods of the micro-motion stages using ANSYS
are presented. The results of the PRBM and the kinetostatic models are compared
to the FEA results and the differences are discussed. Chapter 7 presents the exper-
imental equipment, techniques and setup used to verify the analytical and FEA
models developed in Chapter 4, 5 and 6. Results of the PRBM, the kinetostatic
models and the FEA are compared with the experimental results and their differ-
ences are discussed. Conclusions and suggestions for future work are presented
in Chapter 8.



CHAPTER 2

Literature Review

This chapter provides a thorough review of the literature relating to the modelling
of flexure hinges and compliant micro-motion stages. An in-depth discussion of
various profiles of flexure hinges and various modelling methods used to derive
flexure hinge compliance equations are presented. The kinematic, static and kine-
tostatic modelling of various micro-motion stages are also discussed in-depth.
Gaps in current knowledge are identified which provide the main aims of this
study.

At this point, it may be useful to clarify some phrases used in this thesis,

• compliance is the inverse of stiffness;

• compliances of flexure hinges refer to deformations of flexure hinges due to
forces/moment applied at the flexure hinges (see Figure 1.3);

• compliances of micro-motion stages refer to deformations of stages (which
consists of several flexure hinges) when forces/moment are applied at the
stage;

• degrees-of-freedom (DOF) of flexure hinges: It will be frequently men-
tioned in this thesis that flexure hinges are modelled to have certain DOFs.
This indicates that flexure hinges may be modelled with translational and
rotational deformations along the x, y and z axes (see Figure 1.3). These
deformations are also referred to as ∆x-, ∆y-, ∆z-, ∆αx-, ∆αy- and ∆αz-
deformations;

9
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• degrees-of-freedom (DOF) of micro-motion stages refer to the DOF of the
end-effector of the micro-motion stages; and

• flexure hinge compliance equations refer to equations derived to calculate
in-plane compliances, ∆x/Fx, ∆y/Fy, ∆αz/Mz and out-of-plane compliances,
∆αx/Mx, ∆αy/My, ∆z/Fz of flexure hinges.

2.1 Modelling of flexure hinges

The motion range, workspace and stiffness of compliant micro-motion stages are
heavily affected by the topology of the stage, and the profiles and stiffnesses of
flexure hinges. Most of the flexure hinges are designed to provide rotational com-
pliances about the z-axis. However, the compliances at other axes are unavoidable.
The parameters and profiles of flexure hinges affect the compliances and motion
ranges of flexure hinges. For example, the compliance of flexure hinges vary with
the smallest thickness t, the radius R, the angle of the curvature θm, the cross-
sectional thickness b (see Figure 1.3 for dimensions) and the material properties of
the hinge. The accuracy of a compliant micro-motion stage model partly relies on
the accuracy of the flexure hinge modelling. Therefore, compliance equations of
flexure hinges are demanded to be as accurate as possible to reduce the accumu-
lated modelling errors of hinges in a compliant stage.

This literature review of flexure hinges focuses on the modelling of hinges
which display a linear elastic behaviour. Flexure hinges are classified into dif-
ferent profiles such as circular, leaf-spring, beam-type, elliptical, corner-filleted,
parabolic and hyperbolic (Paros and Weisbord, 1965; Smith et al., 1997; Lobontiu
et al., 2001, 2002a). In early designs, circular flexure hinges were widely used due
to the ease of machining of these profiles. Circular hinges could be easily man-
ufactured by drilling two closely spaced holes on a flat piece of material. There-
fore, compliances of circular flexure hinges have been studied intensively (Paros
and Weisbord, 1965; Smith et al., 1987; Her and Chang, 1994; Xu and Qu, 1996;
Zhang and Fasse, 2001; Tseytlin, 2002; Wu and Zhou, 2002; Lobontiu, 2003). In
recent years, the advancement of manufacturing techniques, in particular wire-
electrical-discharge-machining (wire-EDM) has made the accurate manufacturing
of the leaf-spring, elliptical, corner-filleted, parabolic and hyperbolic flexure hinge
profiles possible.

Paros and Weisbord (1965) were the first group to introduce circular flexure
hinges. They formulated the design equations, including both the full and sim-
plified equations, to calculate compliances of circular flexure hinges in the x, y
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and z axes. Their simplified equations must satisfy two assumptions, which are
t/2R � 1 and t/2R � h/2R, in order to obtain accurate compliance results of flex-
ure hinges. The differences of their simplified equations relative to their full equa-
tions were within 1% for hinges with t/R in the range of 0.02 to 0.1, and within
5% to 12% for thicker hinge with t/R in the range 0.2 to 0.6 (Tseytlin, 2002). How-
ever, both the full and simplified ∆αz-compliance equations (∆αz/Mz) showed a
large difference of up to 25% or more for t/R = 0.6 when compared to FEA and
experimental results (Tseytlin, 2002). A comparison was conducted in this thesis
between the experimentally determined rotational compliances (∆αz/Mz) of Smith
et al. (1997) and the analytical compliances determined using the full and simpli-
fied equations of Paros and Weisbord. Experimental results of three flexure hinges
with t/R = 0.125, 0.246 and 0.403 were available for comparison. Results of the
comparison are shown in Table 2.1 below.

Flexure hinge (mm) t/R Exp. ∆αz/Mz Analytical ∆αz/Mz (rad/Nm)

b= 12.7mm (rad/Nm) Full % diff. Simpl. % diff.

t = 1.19, R = 9.53 0.125 0.0293 0.0304 3.8 0.0309 5.5

t = 2.34, R = 9.53 0.246 0.0059 0.0055 -6.0 0.0057 -3.0

t = 3.38, R = 9.53 0.403 0.0018 0.0016 -13.8 0.0017 -9.1

Table 2.1: Differences between the experimentally determined compliances
(∆αz/Mz) of Smith et al. (1997) and the analytical compliances of Paros and Weis-
bord (1965)

It was expected that the full equation of Paros and Weisbord would be more
accurate than that of the simplified equation. However, the results of the com-
parison revealed that the simplified equation provided better accuracies than that
of the full equation for hinges with t/R = 0.246 and 0.403. It was also reported
by Smith et al. (1997) that Paros and Weisbord’s full equation of ∆αz/Mz provided
larger differences than the simplified equation when compared to their FEA results
for flexure hinges with 0.2 ≤ t/R ≤ 0.6. From the results of these findings, it can
be concluded that the accuracy of Paros and Weisbord’s equations was ambiguous
and unclear. Paros and Weisbord (1965) did not present FEA or experimental vali-
dations of their equations. Nonetheless, their equations have been widely applied
in the design analysis of compliant mechanisms.

FEA approach was also used to estimate compliances of flexure hinges. Smith
et al. (1987) derived an empirical equation of circular flexure hinges based on FEA
results to predict only the rotational compliance, ∆αz/Mz. However, they did
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not experimentally verify the accuracy of their empirical equations or compared
their results with that of Paros and Weisbord (1965). It was reported by Tseytlin
(2002) that the empirical equation developed by Smith et al. was tractable and
adequate only for thick hinges with t/R in the range of 0.2 to 1.0. Therefore, the
accuracy of the empirical equation for thin hinges with small t/R ratios was un-
clear. Smith et al. (1987) did not derive empirical equations to predict the ∆x- and
∆y-compliances (∆x/Fx and ∆y/Fy) of flexure hinges.

Rong et al. (1994) derived analytical compliance equations of circular flexure
hinges which can be reduced to the simplified equations of Paros and Weisbord
(1965). They presented the compliance ratio of flexure hinges, which related the
compliance in the axes of desired motion to compliances in the axes of undesired
motion. Their equations were not verified with FEA or experimental results.

Her and Chang (1994) used the FEA approach to numerically determine the
rotational stiffness (Mz/∆αz) of circular flexure hinges. A design graph of the
normalised rotational stiffness for various t and R values was presented. Dis-
placement analyses of two compliant micro-motion stages were presented. Dis-
placements of the stages predicted using the FEA determined stiffness were sig-
nificantly different from that predicted using the simplified equations of Paros and
Weisbord (1965), especially for large t/R ratios. However, Her and Chang did not
experimentally verify their results. They did not investigate the stiffnesses of flex-
ure hinges in the x and y axes.

Xu and King (1995, 1996) used the FEA approach to analyse different flex-
ure hinge profiles, which included the circular, elliptic and corner-filleted flexure
hinges. They investigated the rotational deformations (∆αz) of hinges about the
z-axis, the offset of the centre of hinges and the maximum stress of hinges during
deformations. They found that circular flexure hinges provided only a small offset
at the centre of the hinge during deformations when compared to the elliptical and
the corner-filleted hinges. However, the circular flexure hinges were the least flexi-
ble which reduced the motion range of flexure hinges. They suggested that circular
flexure hinges be used for applications that require a displacement of less than 0.1
mm with a small output force. They also found that elliptical flexure hinges have a
lower accuracy than that of corner-filleted hinges; however elliptical hinges were
able to achieve higher compliances with relatively lower maximum stress com-
pared to both the corner-fillet and circular hinges. They verified the FEA model
by testing a simple lever amplifier with flexure hinges. The difference between
the FEA and the experimental output was less than 10%. Their papers focused
on the analysis of different flexure hinge profiles; therefore analytical or empirical
equations of predicting the hinge compliances were not presented.
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Xu and Qu (1996) investigated the rotational stiffness of a limited number of
circular flexure hinges with different t and R values using FEA software. They
also analysed the effect of machining errors of flexure hinges on the displacements
of a compound parallel stage. However, they did not compare their FEA results
with previously derived analytical equations, such as equations derived by Paros
and Weisbord (1965). Furthermore, they did not investigate stiffnesses of flexure
hinges in the x and y axes.

Smith et al. (1997) studied both the compliance of circular and elliptical flexure
hinges. They studied the differences between the full and the simplified ∆αz/Mz

equations derived by Paros and Weisbord (1965). They found that Paros and
Weisbord’s full equation of ∆αz/Mz provided larger differences than the simpli-
fied equation when compared to the FEA results of Smith et al. (1997) for flexure
hinges with 0.2 ≤ t/R ≤ 0.6. This finding suggests that the accuracy of Paros and
Weisbord’s equations are ambiguous. Smith et al. derived closed-form analytical
equations to predict the compliances of elliptical hinges based on a modification
of Paros and Weisbord’s equations. They compared their analytical results of el-
liptical flexure hinges with various dimensions to the FEA results. The maximum
difference was 11.6%. They also experimentally verified their analytical equations
and the maximum difference was 10%. They did not investigate the ∆x- and ∆y-
compliances of flexure hinges.

Ryu and Gweon (1997) studied the motion errors of flexure hinge models in-
duced by various types of machining imperfections such as drilling, reaming and
wire-EDM processes. The compliance matrix of flexure hinges was obtained using
equations derived by Paros and Weisbord (1965). Ryu and Gweon presented the
effect of manufacturing errors on a simple compound stage. They demonstrated
that the machining errors in the position and size of the holes of flexure hinges may
cause significant in-plane motion errors, whereas machining errors in the perpen-
dicularity of holes with respect to the plate may cause large out-of-plane motion
errors.

Zhang and Fasse (2001) derived empirical equations based on FEA results to
predict the ∆αz-compliance of circular flexure hinges. Their empirical equations
were expressed in terms of hinge dimensions and material properties. They com-
pared their empirical results to Smith et al. (1987), Paros and Weisbord (1965) and
to the unpublished results of Braak. The comparisons showed some differences
between Zhang and Fasse’s results and the others. Reasons for the differences
were unclear. Zhang and Fasse did not experimentally verify the results of their
empirical equations.

Wu and Zhou (2002) developed analytical compliance equations along all three
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axes of circular flexure hinges. They compared their analytical results with the full
and simplified equations derived by Paros and Weisbord (1965). Three flexure
hinges with t/R ratios of 0.75, 1.143 and 0.257 were compared. Wu and Zhou’s
equations have the same results as Paros and Weisbord’s full equations, except the
signs of ∆αz/Fz and ∆y/Mz were opposite. This was due to the fact that Paros and
Weisbord’s equations were not concerned about the direction of forces, moments
and deflections. Wu and Zhou also carried out comparisons between their compli-
ance results with that of Paros and Weisbord’s simplified equations, and Smith et
al.’s equation (Smith et al., 1987). Compliances calculated using Smith et al.’s equa-
tion and Paros and Weisbord’s simplified equations showed significant differences
from that of Wu and Zhou as t approaches R. Wu and Zhou did not verify their
analytical results with that of FEA or experiments; therefore the accuracy of their
equations was unclear.

Tseytlin (2002) derived the ∆αz-compliance equations (∆αz/Mz) for both the
circular and elliptical flexure hinges using the inverse conformal mapping method.
Both circular and elliptical flexure hinges were classified into thin, intermediate
and thick categories, and an equation was derived for each of the categories re-
spectively. Tseytlin claimed that the conformal mapping equations were within
10% of the FEA and experimental results. However, the analytical equations were
compared with experimental results only for circular flexure hinges with t/R in the
range 0.02 to 0.1. Tseytlin compared the analytical results to that of Paros and Weis-
bord (1965) and Smith et al. (1987) for circular hinges with 0.2≤ t/R ≤0.5. Tseytlin’s
results were in close agreement to Smith et al.’s results, but were approximately
15% (when t/R= 0.5) different from that of Paros and Weisbord. Tseytlin com-
pared Paros and Weisbord’s full and simplified equation results (∆αz/Mz) with
FEA and experimental results. The comparisons show that the full and simplified
equations have large differences (up to 25% or more). Tseytlin also reported that
the empirical equation derived by Smith et al. (1987) was adequate only for thick
circular hinges with t/R in the range of 0.2 to 1. Tseytlin’s work indicated that his
new analytical equations provided better prediction of ∆αz/Mz than that of Paros
and Weisbord and Smith et al. for 0.07≤ t/R ≤0.6. However, Tseytlin did not
derive the ∆x- and ∆y-compliance equations of circular flexure hinges.

Lobontiu et al. (2001) derived analytical equations to predict the compliances
of the corner-filleted flexure hinges along all three axes. Castigliano’s second the-
orem was applied to derive the compliance equations. They compared compli-
ances between the corner-filleted and the circular flexure hinges. It was found that
corner-filleted hinges could deform more but induce lower stresses than that of
circular hinges. However, the corner-filleted flexure hinges were less precise in
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keeping their positions of the centres of rotation. Lobontiu et al. verified their ana-
lytical results of corner-filleted hinges with FEA and experimental results, and the
differences were less than 10% and 6% respectively.

Lobontiu et al. (2002a) derived closed-form compliance equations for circular,
elliptic, parabolic and hyperbolic flexure hinges. They considered only in-plane
compliances in this paper. The compliance equations were derived using the Cas-
tigliano’s second theorem. t/R ratios of circular hinges studied in this paper were
0.05, 0.1 and 0.2. Results of the analytical equations were compared with that of
FEA (ANSYS). The results of the comparison reveal a 10% difference margin be-
tween FEA and analytical results. There were no experimental results presented
in this paper. Lobontiu et al. (2002b) again presented the closed-form equations
of parabolic and hyperbolic flexure hinges but this time they considered both the
in-plane and the out-of-plane compliances. They also analysed the stress level of
the parabolic and the hyperbolic hinges. FEA and experimental results were used
to verify these analytical equations. Differences between analytical equations and
FEA simulations were less than 8%. Differences between analytical and experi-
mental results were within 4%. They also concluded that the parabolic flexure
hinges were more compliant about the input axis and were subjected to less stress,
whereas the hyperbolic flexure hinges were less sensitive to parasitic loading ef-
fects.

Lobontiu and Garcia (2003b) introduced a new class of flexure hinges, namely
the axially-collocated and symmetric two-axis flexure hinges. This new class of
flexure hinges have two sensitive axes which define the main rotational motions
of the hinges. Generic mathematical equations were derived to predict the com-
pliances of these hinges. Numerical analyses were carried out on parabolic-profile
two-axis flexure hinges. Analytical results were compared to FEA simulation re-
sults and differences were less than 6%. There were no experimental data pre-
sented to verify the analytical equations.

Schotborgh et al. (2005) presented dimensionless graphs for three types of flex-
ure hinge, namely circular, beam and cross hinges. Results of these dimensionless
graphs were obtained using FEA simulations (ANSYS). The t/R range of the di-
mensionless graphs was from 0 to 2. These dimensionless graphs were used to
obtain stiffnesses and stresses of flexure hinges in various axes. However, they did
not compare the results of the dimensionless graphs with the previously derived
analytical equations. They also did not conduct experiments to verify the accuracy
of these dimensionless graphs.
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2.1.1 Gaps in current knowledge of the modelling of flexure

hinges

A few conclusions can be drawn from all the above work regarding the modelling
of flexure hinges with various profiles. Circular flexure hinges provide accurate
rotational motions in terms of keeping their positions of the centre of rotation as
reported by Xu and King (1995, 1996) and Lobontiu et al. (2002a). Circular flexure
hinges are suitable for applications requiring precision and predictable motions.
Therefore, micro-motion stages studied in this thesis utilise only circular flexure
hinges.

There were various compliance equations available for circular flexure hinges.
A few research studies (Smith et al., 1987; Her and Chang, 1994; Smith et al., 1997;
Zhang and Fasse, 2001; Tseytlin, 2002; Lobontiu et al., 2002a; Schotborgh et al.,
2005) conducted comparisons of their analytical or empirical compliance equa-
tions with their FEA results. However, there were only two research groups (Smith
et al., 1997; Tseytlin, 2002) who experimentally verified their analytical or empir-
ical equations of circular flexure hinges. Furthermore, there were not many re-
searchers who compared their analytical or empirical results with the previously
derived equations. Zhang and Fasse (2001) compared their empirical results with
that of Smith et al. (1987). However, it was reported by Tseytlin (2002) that Smith
et al.’s equation was accurate only for flexure hinges with t/R in the range of 0.2 to
1. Therefore, the comparison conducted by Zhang and Fasse (2001) was valid only
for t/R ≥0.2. Tseytlin (2002) compared analytical results with that of Paros and
Weisbord (1965) and Smith et al. (1987) for circular hinges with t/R in the range of
0.2 to 0.5. Tseytlin’s results were close to that of Smith et al.; however the compar-
isons above were carried out for the ∆αz-compliance of flexure hinges only. There
was no literature review up to this date reporting the comparison of all three in-
plane compliance equations, ∆x/Fx, ∆y/Fy and ∆αz/Mz for a wide t/R range of
circular flexure hinges.

Some of the previously derived analytical/empirical compliance equations pro-
vide better accuracies than others depending on the t/R ratios of circular flexure
hinges. Flexure hinge compliances derived by any particular research group may
not be accurate for a large range of t/R ratios. These two issues can be observed
from the result of comparisons conducted by Tseytlin (2002). There is a lack of liter-
ature reporting the accuracy of the previously derived hinge equations for a wide
range of t/R values. There was also no proper scheme developed to guide design-
ers on how to select the most suitable flexure hinge equation out of the previously
derived analytical or empirical equations. Therefore, this thesis investigates the
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accuracy of various hinge compliance equations for a large range of t/R ratios
(0.05 ≤ t/R ≤ 0.8), and proposes a scheme for selecting the most suitable hinge
equation based on the t/R ratio.

2.2 Modelling of compliant micro-motion stages

As mentioned in the introductory chapter, it is more complicated to model the
kinematics and statics of compliant stages precisely compared to the well under-
stood rigid-body mechanisms with simple revolute joints. This was partly due
to the fact that flexure hinges possess more than one-DOF. Unlike revolute joints
which have only the rotational motions about the z-axis, flexure hinges have both
translational and rotational motions in the x, y and z axes, resulting in a total of
six-DOF.

Circular flexure hinges are designed to predominantly provide one-DOF, na-
mely the rotational motions, ∆αz about the z-axis only. Therefore the simplest
technique used to model a compliant mechanism is to model flexure hinges as
having only one-DOF. The PRBM method is widely used to predict the displace-
ments of compliant mechanisms with flexure hinges. The PRBM commonly mod-
els a flexure hinge as a revolute joint (one-DOF) with an attached torsional spring.
However, flexure hinges do not provide purely rotational motions. Flexure hinges
have other DOFs as shown in Figure 2.1. Although the PRBM method is effec-
tive and it simplifies the model of compliant mechanisms, the PRBM suffers some
inaccuracies when it ignores the other DOFs of flexure hinges.

For planar compliant micro-motion stages, circular flexure hinges are com-
monly modelled to have only the in-plane DOFs, which are the translation mo-
tions (∆x and ∆y) in the x and y axes, and the rotational motions (∆αz) about the
z-axis. This simplification is made because circular flexure hinges possess high
out-of-plane stiffnesses (Smith et al., 1997). Out-of-plane motions of circular flex-
ure hinges are small and therefore can be neglected.

Scire and Teague (1978) developed a one-DOF compliant stage for the use of
optical and electron microscopes in the microelectronics industry. Initially, they
derived an equation using the PRBM method to predict the kinematics and the am-
plified output displacements of the stage. However, the predicted total displace-
ment gain of the stage was 30.3 while the measured gain was only 16.9. The equa-
tion derived using the PRBM was not accurate as the stage was over-constrained
and it led to the ∆x- and ∆y-deformation of flexure hinges. Scire and Teague im-
proved their model where they considered axial strain (in the x-axis) in the most
stressed hinge. They used the simplified hinge equations developed by Paros and
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   Figure 2.1: Flexure hinge (Handley, 2006) 
 
 
 

Weisbord (1965) to model the flexure hinge compliances. The model showed a 

significant improvement. However, they only considered the ∆x-deformation on the 

most stressed hinge while ignoring the ∆x-deformation of the remaining flexure 

hinges. Furthermore, they did not include the ∆y-deformation of hinges in their 

model. The static model of compliant stages was not presented. 

Han et al. (1989, 1991) presented the modelling and optimal design of a six-DOF 

parallel micromanipulator using a Stewart Platform. A kinematic model was derived 

based on the PRBM method, the kinematic influence coefficient concept and the 

virtual work principle. Flexure hinge compliances were derived and analysed using 

the Castigliano’s theorem; however only the rotational DOF of flexure hinges was 

considered. The kinematic model was not experimentally verified. 

Furukawa and Mizuno (1990) predicted the kinematics and statics of a one-DOF 

compliant mechanism. The mechanism was used as both a magnifying and reducing 

mechanism. The kinematic and static models were first derived using the PRBM 

method and later incorporated the ∆x-compliance of flexure hinges to improve the 

modelling accuracy of the compliant mechanism. The input and output displacements 

were measured during experiments and their results were in good agreement with the 

analytical values. However, the static model was not experimentally verified and the 

accuracy of this model is unclear. 

Rong et al. (1994) investigated the design of a one-DOF compliant micro-motion 

stage. They investigated the manufacturing error effects of the stage by carrying 
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out some simple analysis using the PRBM method. However, they did not derive
kinematic and static models of the one-DOF micro-motion stage. Therefore, no
comparisons were made among the analytical, FEA and experimental results.

Her and Chang (1994) developed a linear scheme for displacement analysis
of compliant stages with flexure hinges. The scheme was developed based on
the PRBM method and the linearisation of the geometric constraint equations of
a compliant structure. The principle of virtual work was incorporated into the
scheme to provide additional constraint equations to solve all unknowns. Rota-
tional stiffnesses of flexure hinges were found using a commercially available FEA
software. They claimed that the obtained stiffnesses from the FEA model were
more accurate than the commonly used simplified equations derived by Paros and
Weisbord (1965). Their method did not consider the ∆x- and ∆y-deformations
of flexure hinges. The maximum displacement differences of the linear scheme
method was about 20% when compared to their FEA results. The accuracy of this
linear scheme method was not experimentally verified. Her and Chang also ap-
plied their analytical modelling method on an over-constrained mechanism (sim-
ilar to the mechanism presented by Scire and Teague (1978)). They stated that a
link must deform for such an over-constrained structure. However, it was more
likely that the hinges deformed in the ∆x- and ∆y-directions before the linkages
deformed (Handley, 2006). Such hinge deformations were not modelled by the lin-
ear scheme method. This could explain the differences between the linear scheme
and FEA results. The static model of the compliant stage was not presented.

Furukawa et al. (1995) analysed the kinematics, statics and dynamics of a one-
DOF translational stage with circular flexure hinges. The PRBM method was ini-
tially used to predict the amplification of the mechanism. They found that the
amplification ratio of the stage was reduced due to the ∆x-deformation of flexure
hinges. Therefore, they incorporated the effects of the ∆x-deformation of hinges
in the PRBM. They used the compliance equations of circular flexure hinges de-
rived by Paros and Weisbord (1965) to calculate the ∆αz- and ∆x-compliances of
flexure hinges. The ∆y-compliances of flexure hinges were not considered in their
formulations. They experimentally verified their results and claimed that the pre-
dicted amplification of the mechanism was in close agreement to the experimental
results; however the differences were not presented.

Yang et al. (1996) developed a piezo-driven vertical motion compliant stage for
the use in laser-welding. An analytical model for statics estimation of the stage
was derived based on the PRBM method. The statics of the compliant stage was
obtained through force balancing. The ∆x-deformation of hinges was not consid-
ered initially. The ∆αz-compliances of flexure hinges were calculated based on the



20 Chapter 2. Literature Review

simplified equation of Paros and Weisbord (1965). The analytical model showed
a significant difference, up to 30% when compared to their FEA results. Further
investigation revealed that the heavily stressed hinge experienced deformations in
the x-axis of flexure hinges. Therefore, a modified model was derived which con-
sidered the ∆x-deformation of the heavily stressed hinges. The modified analyti-
cal results were compared to their FEA model and the difference was only 2%. The
stiffness of the stage was experimentally verified. The experimentally determined
stiffness was 5% lower than the FEA predicted value. Their analytical model did
not include the ∆y-deformation of flexure hinges; therefore this deformation effect
on the static behaviour of the stage was unclear.

Shim et al. (1997) derived a kinematic model of a six-DOF parallel micromanip-
ulator for micro-positioning applications. The model was derived using the PRBM
method; therefore flexure hinges were modelled to have only one-DOF. They in-
vestigated the workspace and singularity of the micromanipulator using the de-
rived kinematic model. However, they did not compare the analytical model with
FEA simulations or experimental results. Therefore, the accuracy of the model was
unclear.

Lee and Kim (1997) presented a XYθ precision stage for the alignment of wafers
in microlithography. A kinematic model was derived to relate the elongations of
piezo-actuators to the output displacements of the stage. This model was used
with a proportional-integral-derivative (PID) controller for the control of position-
ing. The positioning resolution for the x and y motions was approximately 10 nm,
while the resolution of the θ motion was 0.114 arcsec. However, the accuracy of the
kinematic model was not experimentally verified. Lee and Kim’s paper focused on
the design and control of the precision stage. There was no static model presented
to estimate the stiffness of the stage.

Chang and Du (1998) designed a one-DOF micropositioner compliant stage us-
ing multiple Scott-Russell linkages. They derived equations to relate the input and
output displacements of the mechanism using the PRBM method. The ∆x- and
∆y-compliances of flexure hinges were not considered in the equation. The de-
rived input-output displacement equation was used in the optimisation technique
(named the Taguchi method) as a control factor to find an optimised configuration
of the micropositioning stage. A two-dimensional FEA model was used to analyse
displacements for 27 different control factor settings. Experiments were carried
out to measure the amplified output displacements of the mechanism. According
to the optimised results, the amplification gain of the mechanism was expected to
be 20; however the observed gain was only 9.66 during their experiments. They
claimed that the differences were attributed to a) the reaction force produced by the
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leaf springs which reduced the overall displacements of the piezo-actuator, and b)
the bending of linkages which reduces the output displacement of the stage. How-
ever, the differences could also be attributed to the unmodelled DOF, which were
the ∆x- and ∆y-deformations of flexure hinges, but it was not discussed by Chang
and Du. Therefore, the effect of these unmodelled DOF on the amplification of the
micropositioning stage is unclear.

Gao et al. (1999) derived a static model for a two-DOF compliant stage. The
∆x-deformation of flexure hinges was considered in these models. Paros and Weis-
bord’s simplified equations were used to calculate the ∆αz- and ∆x-compliances
of flexure hinges. Therefore, the accuracy of the static model was dependent on the
accuracy of the simplified hinge equations. The static model was derived through
the equilibrium of forces. The maximum difference of stiffness between analytical
and experimental results was approximately 14%. Gao and Swei (1999) also devel-
oped a six-DOF micro-motion stage. This stage used a 3-RRR (revolute-revolute-
revolute) and a 3-PRP (revolute-prismatic-revolute) stage to provide the six-DOF
motions. A forward and inverse kinematics of the stage were derived using the
PRBM and the assumption of small angle approximations. The derived kinematic
model was expressed in the form of a constant Jacobian matrix. However, the
kinematic model did not consider the ∆x- and ∆y-deformations of flexure hinges.
Static analysis of the stage was not presented. The results of the kinematic model
were not compared with the FEA and experimental results; therefore the accuracy
of the model is unclear.

Chang et al. (1999a) developed a three-DOF micropositioner for ultraviolet litho-
graphy applications. The micropositioner consists of a XY stage and a θz stage
attached on top of the XY stage. Four piezo-actuators were installed at the XY
stage to provide the two translational motions and two piezo-actuators were in-
stalled at the θz stage to provide the rotational motions. Details of the analytical
modelling procedures were not presented. A FEA (ANSYS) model was developed
to simulate the static and dynamic behaviour of the micropositioner for compari-
son purposes. The static performance of the micropositioner was experimentally
verified (Chang et al., 1999b). Static displacements of the micropositioner were
obtained when piezo-actuators were driven at 100V. When compared to the FEA,
the maximum difference of static displacements was 2.7% along the y-axis. When
compared to the experimental results, the maximum difference of static displace-
ments was 7.9% about the θz-axis. The analytical model of the micropositioner
showed good accuracy when compared to FEA and experimental results. How-
ever, these accuracies were achieved using six piezo-actuators compared to most
of the three-DOF structures which used only three piezo-actuators. The kinematic
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model of the micropositioner was not presented.

Ryu et al. (1997) developed a XY θ compliant stage which was driven by three
piezo-actuators. The topology of this stage is similar to a 3-RRR mechanism except
it consists of a double compound lever at each of the three input linkages. These
double compound levers act as an amplification lever to provide mechanical dis-
placement gain. They formulated a kinetostatic model to describe the relationship
between input and output displacements, and stiffnesses of the stage by consid-
ering compliances of flexure hinges in all three axes. The analytical results were
compared with experimental results. By comparing the predicted and measured
output motions, the difference in the x-axis was 29%, the difference in the y-axis
was 36% and the difference of rotational motions about the z-axis was 11%. They
claimed that these differences may be caused by the machining errors of the stage
as well as analytical modelling errors. Ryu et al. (1999) also showed that a cali-
bration was required to improve the kinematic model; therefore it could be use
for open-loop position control with a 5% positioning error. The methodology pre-
sented by Ryu et al. (1997) of deriving the kinetostatic model was complicated and
involved an intensive number of coordinate transformations. They experimentally
verified the kinematics of the model; however they did not verify the static results
with that of FEA or experiments. Therefore, the accuracy of the static estimations
of this kinetostatic model is unclear.

Ohya et al. (1999) developed a spatial three-DOF micro-manipulator using cir-
cular and spherical flexure hinges. The inverse kinematics of the device was de-
rived using conventional robotics and the PRBM method. Their model did not
consider the ∆x- and ∆y-deformations of flexure hinges. They did not compare
the analytical model with FEA or experimental results. The analytical model was
not used for control purposes. They presented a calibration process to obtain the
Jacobian matrix and this experimentally determined Jacobian was used for control
instead. The accuracy of the derived kinematic model is unclear. They did not
present the static model of the device.

Gao et al. (2000) designed an ultra-precision stepping positioner with a dis-
placement resolution of over 10 nm. They derived an analytical static model to
predict the stiffness of the positioner. However, they only considered the ∆αz-
compliance of flexure hinges in their models. The effect of the unmodelled ∆x-
and ∆y-compliances on the performance of the stage is unclear. Experiments were
carried out to measure the resolution and the natural frequency of the positioner.
The experimentally determined natural frequency was in close agreement with the
analytical result.

Hsiao and Lin (2001) derived a static model for a RRR compliant stage with
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three flexure hinges. They derived a relationship between external applied loads
and deflections at the loading point. One-dimensional beam theory and the Cas-
tigliano’s theorem were used to determine the deformations of the stage. A FEA
model was developed for comparison purposes. The maximum difference be-
tween the FEA determined compliance and analytical compliance was 8.5%. The
analytical model was also experimentally verified. Differences were within 14% in
the case of horizontal loading while differences were within 18% in the case of ver-
tical loading. They also presented the effect of various flexure hinge dimensions to
the compliance of the RRR structure. However, their modelling method was not
used to model other closed-loop compliant mechanisms, such as a simple com-
pound stage with a four-bar linkage topology and a 3-RRR compliant mechanism.
It is not clear if this method would be applicable to those type of mechanisms.

Chung et al. (2001) developed a spatial three-DOF micro-motion stage for tele-
operations to manipulate microscopic objects. They derived the forward and in-
verse kinematic models of the stage based on the PRBM model. The forward kine-
matic model was compared with the FEA simulations and the kinematic results
were in close agreement with the FEA results. However, the kinematic results
were obtained by using the flexure hinge deformations obtained from the FEA
simulations of the stage. Therefore, the analytical kinematic models were relied on
the FEA simulations of this particular stage. The kinematic model was not experi-
mentally verified. A static model of the stage was not presented.

Elmustafa and Lagally (2001) designed a one-DOF nanopositioner for the use
in precision machining such as the CNC milling machine. The nanopositioner
consists of four beam-type flexure hinges. The stage was designed to have a high
stiffness and a large load carrying ability. A static analysis was carried out using
FEA simulations. Graphs of selection of design parameters to meet certain require-
ments were produced through the static analysis. There was no analytical models
presented to predict the kinematic and static performances of the stage.

Zhang et al. (2002) developed a 3-RRR compliant stage. The topology of this
stage was the same as the topology studied in this thesis. A kinematic model of the
stage was derived based on the PRBM and the ∆x- and ∆y-deformations of flexure
hinges were not considered in the model. They linearised the kinematic model us-
ing a Taylor series expansion for the derivation of the displacement variables. This
method was feasible as the displacement of links were sufficiently small. Exper-
iments were conducted to verify the accuracy of the kinematic model. However,
a comparison revealed significant differences between the model and experimen-
tal results. Therefore, calibrations were carried out to improve the accuracy of
the kinematic model. The calibrated kinematic model would not be applicable for
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other 3-RRR mechanisms with different geometries and flexure hinge dimensions.
A static model of the 3-RRR compliant mechanism was not presented in this paper.

Koseki et al. (2002) derived a kinematic model for a translational three-DOF
micro-parallel mechanism using a matrix method. The matrix method assumed
that a) the relationship between forces and deformations are linear (Hook’s Law)
and b) the translational and rotational displacements are small enough to be lin-
earised. They claimed that the matrix method was well suited to model circular
flexure hinges in their mechanism. The method modelled both the compliances
of flexure hinges and beam elements in all three axes. Therefore the kinematic
model was expected to provide good accuracies. However, this was not the case.
The kinematic model, in the form of a constant Jacobian matrix which described
the relationship between the input and output displacements, was compared to
an experimentally determined Jacobian matrix. The comparison revealed signifi-
cant differences where the differences between the Jacobian terms were more than
50%. They suggested that some errors might be attributed to the friction between
the three piezo-actuators and the mechanism. A static model of the compliant
mechanism was not presented.

Pham and Chen (2002) presented a two-DOF parallel compliant mechanism
with flexure hinges. They derived the kinematic and static models of the mecha-
nism based on the PRBM method and flexure hinges were modelled to have only
one-DOF. They compared the results of the models with FEA simulations. The dif-
ferences between the analytical model and the FEA simulations were 1% for the
displacements and 3% for the holding forces of the actuators. However, they did
not derive equations to estimate the stiffnesses of the end-effector. They did not
experimentally verify their models.

Jouaneh and Yang (2003) developed a kinetostatic model to predict the dis-
placement and stiffness of the same vertical motion compliant stage as Yang et al.
(1996). The displacement ratio between the input and output motions of one of
the levers, together with the stiffness at either end of this lever were firstly ob-
tained. The overall displacement and stiffness of the compliant stage were then
obtained by combining the individual results from each lever. The developed
equations modelled flexure hinges as having multi-DOF, namely the ∆x-, ∆y- and
∆αz-deformations. The analytical results were compared with both the FEA and
experimental results. The differences between the analytical and the FEA results
were 3.1% for displacement and 1.3% for stiffness of the compliant stage. The dif-
ferences between the analytical and the experimental results were 10.4% and 6.7%
respectively for displacement and stiffness of the compliant stage respectively. By
incorporating the effects of the ∆x- and ∆y-deformations of hinges in the kine-
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tostatic model, differences of the stiffness prediction of the compliant stage were
reduced from 10% to 6.7% when compared to experimental results. This showed
the significance of modelling flexure hinges as having multi-DOF. The kinetostatic
modelling method was applied on a one-DOF compliant stage. It was not clear
if this method would be applicable to multi-DOF compliant stages such as 3-RRR
compliant micro-motion stages.

Lobontiu and Garcia (2003a) formulated an analytical method for displacement
and stiffness calculations of planar compliant mechanisms with flexure hinges.
The closed-form formulations were based on strain energy and Castigliano’s dis-
placement theorem which considered all three in-plane compliances of hinges. The
closed-form equations were expressed as a load-deformation relationship. The
displacement, input stiffness and output stiffness equations of a one-DOF com-
pliant mechanism were expressed as a function of geometry and material proper-
ties. Differences between analytical and FEA (ANSYS) results were 5%, 3.2% and
4.9% for displacement, input stiffness and output stiffness respectively. However,
there was no experimental results to further justify the accuracy of the analytical
method. The modelling method was not applied to multi-DOF compliant mecha-
nisms such as 3-RRR micro-motion stages and it is not clear if this method would
be applicable to these type of mechanisms.

Yi et al. (2003) developed a kinematic and a stiffness model for a 3-RRR com-
pliant stage. They modelled the first flexure hinge of each RRR chain to have
two-DOF, which were the ∆αz- and ∆x-displacement. This solution resulted in a
compliant stage mobility of six, and six piezo-actuators were required to control
the stage. They derived the kinematic and stiffness models for a three-mobility
(conventional 3-RRR structure driven by three piezo-actuators) and a six-mobility
compliant stage. The analytical displacements were compared with FEA results.
The six-mobility model results were significantly closer to the FEA results com-
pared to that of the three-mobility model. Experiments were also conducted to
measure the stiffness of the compliant stage. The differences were 2.6% for the
stiffness in the x and y axes. However, the difference was 31% for the rotational
stiffness about the z-axis. These accuracies were achieved with six piezo-actuators
instead of the conventional three piezo-actuators. Extra piezo-actuators increase
expenses and control complications to a system. Furthermore, only three out of
nine flexure hinges were modelled to have two-DOF. The unmodelled DOFs at the
other six flexure hinges may introduce errors to the model. The ∆y-deformation
of flexure hinges was not considered in their models.

Liu and Li (2002) derived a kinematic and a dynamic model for a three-DOF
parallel compliant stage. This compliant stage consists of four-bar linkages as the
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driving structures. Their models only considered the ∆αz-deformations of flex-
ure hinges. The ∆x- and ∆y-deformations were ignored. The accuracies of the
analytical models were unclear because the models were not compared to FEA or
experimental results.

Yu et al. (2004) derived a kinematic model for a three-DOF compliant micro-
motion stage. The design of this mechanism was based on a modified DELTA
mechanism. The kinematic model was derived based on the PRBM concept and
flexure hinges were modelled to have only one-DOF. An analytical constant Jaco-
bian matrix was obtained. However, the analytical Jacobian showed significant
differences when compared to an experimental Jacobian. The reason for the large
difference was not explained. Calibrations were carried out to obtain an experi-
mental Jacobian matrix for positioning control purposes. Yu et al. (2004) did not
derive a more accurate kinematic model nor quantify the error in their kinematic
model. Therefore, their approach of deriving the kinematic model is still question-
able.

Wu and Zhou (2004) developed a XY θ compliant mechanism which was driven
by only one actuator, resulting in a smaller and more compact mechanism com-
pared to other three-DOF mechanisms with three or more actuators. The princi-
ple of inchworm movement was adopted to actuate the mechanism. Experiments
were carried out to measure the displacement of the mechanism. Although only
one actuator was required in this mechanism to provide three-DOF motions, the
motions were coupled to each other. Therefore, this mechanism could not provide
pure translational or rotational motions. There was no analytical model presented
in this paper.

Culpepper and Anderson (2004) designed the HexFlexTM , a six-DOF nanoma-
nipulator which utilises beam-type flexures. The nanomanipulator was driven by
two-axis electromagnetic actuators. The symmetrical characteristic of the design
made the nanomanipulator insensitive to thermal expansion. The geometry of the
compliant mechanism was designed using the CoMeTTM (Compliant Mechanisms
Tool), which is a design tool developed at the MIT Precision Compliant Systems
Laboratory. The CoMeTTM design tool was written in Matlab and the beam theory
was used to calculate the kinematics and statics of compliant mechanisms. The dis-
placements of the HexFlexTM compliant mechanism calculated using the CoMeTTM

was experimentally verified and the differences were within 14%. However, beam-
type flexures were used in the six-DOF nanomanipulator design. The accuracy of
using the CoMeTTM to calculate the deformation of nanomanipulators with circu-
lar flexure hinges is unclear.

Park and Yang (2005) developed a monolithic six-DOF ultra precision position-
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ing compliant mechanism driven by six piezo-actuators. They derived a kineto-
static model using the Castigliano’s second theorem to describe the relationship
between displacements and forces applied at the end point of flexure hinges. The
flexure hinges were modelled to have six-DOF. Relative displacements between
flexure hinges were calculated using vector analysis. A stiffness matrix of the com-
pliant mechanism was derived using the least action principle. The relationship
between the input and the output displacements was also derived. Results of this
relationship were compared with FEA results; for translational motions, the dif-
ferences were 28% along the x-axis and 29% along the y-axis, and for rotational
motions, the differences were 17% about the x-axis, 23% about the y-axis and 13%
about the z-axis. Stiffnesses of the compliant mechanism were not verified with
FEA models. The accuracy of the kinetostatic model was not experimentally veri-
fied.

Kim et al. (2005) designed a flexure hinge-based XYZ scanning stage for an
atomic force microscopy scanner. They carried out an optimisation analysis based
on the approach of Ryu et al. (1997). Their main objective was to design a scanning
stage with minimum Abbe errors. Flexure hinges were modelled to have six-DOF.
The compliance equations derived by Paros and Weisbord (1965) were used to cal-
culate the compliances of flexure hinges. A FEA model was generated to compare
with the analytical model. The full range displacement differences were 8.9% and
4.9% in the x- and y-axis respectively. The comparison of the full range displace-
ments in the z-axis was not presented. The predicted full range displacements
were not compared to experimental results. They conducted experiments to in-
vestigate the Abbe errors of the stage. Results showed that the stage had small
Abbe errors. They did not derive formulations to describe the relationship be-
tween the input and output displacements nor to estimate the stiffnesses of the
scanning stage.

Choi and Lee (2005) developed a six-DOF compliant wafer stage for nano-
imprint lithography, which requires surface contact between a template with nano
patterns and a wafer that transfers the patterns. Beam-types and L-shape flex-
ures were used in the wafer stage design to provide the required deformations. A
dynamic model was derived to aid the stiffness analysis of the wafer stage. Exper-
iments were conducted on the wafer stage in a nano-imprint machine, and nano
patterns with line widths of 100 and 86 nm were transfered successfully. However,
they did not present experimental results to verify the analytical stiffness results
of the structure.

Ma et al. (2006) presented an analysis of the amplification ratio of a one-DOF
compliant mechanism which has the same topology as studied by Lobontiu and
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Garcia (2003a). Bridge-type flexure hinges were used in the mechanism to provide
the required deformations. The bridge-type flexure hinges were modelled to have
six-DOF. The estimated amplification ratios of the mechanism were significantly
different from the FEA results (by a factor of two approximately) for certain link
arrangements of the mechanism. They did not derive equations to estimate the
input and output stiffnesses of the mechanism. The method was not applied to
multi-DOF compliant mechanisms such as 3-RRR micro-motion stages and it is
not clear if this method would be applicable to these type of mechanisms.

Choi et al. (2006) derived a formulation using the Lagrange’s equation to pre-
dict the amplification ratio of a one-DOF compliant mechanism with circular flex-
ure hinges. They modelled flexure hinges to have six-DOF which included the
out-of-plane DOF. The predicted amplification ratio was 22. Experiments were
conducted to measure the amplification ratio of the mechanism. The measured
ratio varied from 18.6 to 21.9. The differences between the analytical and the ex-
perimental results were approximately 10%. They suggested that the differences
between the analytical and the experimental results were due to the fabrication
errors, the experimental errors and also due to the fact that the Poisson’s ratio of
the steel did not feature in their proposed analytical model. The input and output
stiffnesses of the mechanism were not presented. The modelling method was not
applied to multi-DOF compliant mechanisms such as 3-RRR micro-motion stages
and it is not clear if this method would be applicable to those type of mechanisms.

Pham et al. (2005) derived a kinematic model of a three-DOF flexure parallel
mechanism (FPM) using an extended PRBM method, named the PRB-D method.
The FPM consists of three double compound linear structures (one-DOF mecha-
nism) and three 3-RRR compliant mechanisms (three-DOF mechanism) in order to
achieve three-DOF. The PRB-D method models flexure hinges to have six-DOFs.
They used the PRBM and PRB-D kinematic results to control the mechanism and
the PRB-D results produced 1/3 the error of the PRBM results. The input and
output compliances of the mechanism were not presented.

Pham and Chen (2005, 2006) derived analytical models to estimate the output
stiffnesses of the same FPM aforementioned. The method of deriving the stiffness
model involved an intensive number of transformation matrices. This method
could lead to complications and difficulties when it is applied to other mecha-
nisms. The analytical output stiffnesses of the FPM were compared to the FEA
and experimental results and the differences were within 10%. The input stiffness
of the FPM was not presented and it was not clear if this methodology can be used
to estimate the input stiffness of compliant mechanisms.
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Choi and Kim (2006) designed a two-DOF linear compliant mechanism with
beam-type flexures. They derived a mathematical model to analyse the deforma-
tion and natural frequencies of the mechanism. A FEA model was generated using
ANSYS for comparison with the analytical values. They claimed that the analytical
and the FEA results were in close agreement. However, their modelling method
was used to model a compliant mechanism with beam-type flexures. The accuracy
of using their model to calculate the deformation of compliant mechanisms with
circular flexure hinges is unclear.

Handley (2006); Handley et al. (2006) developed a Simple-Compliant-Hinge-
Model (SCHM) using ANSYS to model flexure hinges of compliant mechanisms to
have three-DOF. Flexure hinges were modelled using two coincident nodes joined
by two elements, which were the COMBIN7 and COMBIN14 elements. The COM-
BIN7 provides a three-dimensional revolute joint with stiffnesses, whereas the
COMBIN14 provides extra stiffness in the x-direction to the hinge model. These
SCHM of flexure hinges were connected using BEAM3 elements to generate var-
ious topologies of compliant mechanisms. The SCHM method was used to esti-
mate the kinematics, input and output stiffnesses of 3-RRR micro-motion stages.
The SCHM method is a numerical kinetostatic model and it was shown to be com-
putational efficient. The SCHM results were verified with two-dimensional FEA
models and experimental results. The Jacobian (kinematics) results of the SCHM
were within 2% in translational motions and 27% in rotational motions when com-
pared to the FEA and the experimental results respectively. However, the SCHM
method requires a FEA simulation which may be expensive. Therefore, analytical
kinetostatic models are preferred as an alternative to the FEA dependent models.

2.2.1 Gaps in current knowledge of the kinetostatic modelling

of compliant micro-motion stages

There were various kinetostatic models previously derived to predict the kine-
matic and static performances of micro-motion stages. However, most of the mod-
els were derived based on the PRBM method where flexure hinges were modelled
to have only one-DOF. A few research groups modelled some or all flexure hinges
to have two-DOF, which were the ∆αz- and ∆x-deformations. However, the ∆y-
deformation of flexure hinges was ignored. This unmodelled DOF could introduce
inaccuracies in the analytical model.

There were only a few research groups who derived kinetostatic models which
modelled circular flexure hinges to have three-DOF or more (Jouaneh and Yang,
2003; Ryu et al., 1997; Lobontiu and Garcia, 2003a; Park and Yang, 2005; Choi et al.,
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2006; Pham and Chen, 2005; Handley, 2006). However, except for Jouaneh and
Yang (2003), Ryu et al. (1997), Choi et al. (2006), Pham and Chen (2005) and Handley
(2006), these research groups did not experimentally verify the kinetostatic mod-
els. Jouaneh and Yang (2003), and Choi et al. (2006) applied their modelling meth-
ods on a one-DOF of micro-motion stage, however they did not apply their mod-
elling method on multi-DOF compliant structures such as 3-RRR micro-motion
stages. It is not clear if these methods would be applicable to those type of mecha-
nisms. Ryu et al. (1997) modelled a compliant stage similar to a 3-RRR mechanism
except it consists of a double compound lever at each of the three input linkages.
Their method involved an intensive number of coordinate transformations, and
therefore may be complicated. They experimentally verified the kinematic model;
however they did not verify the stiffnesses of the stage. Therefore, the accuracy of
the stiffness predictions of the kinetostatic model is unclear. Pham and Chen (2005)
modelled the kinetostatics of a three-DOF flexure parallel mechanism (FPM) which
consists of three 3-RRR compliant mechanisms and three double compound linear
structures. Their method involved an intensive number of transformation matri-
ces. This method could lead to complications and difficulties when it is applied to
other mechanisms. The input stiffness of the FPM was not presented and it is not
clear if this methodology can be used to estimate the input stiffness of compliant
mechanisms. The prediction of the input stiffness was particularly important for
the design of piezo-driven compliant mechanisms because the maximum displace-
ment of a piezo-actuator is governed by the structural input stiffness. High input
stiffnesses reduce the maximum displacement of a piezo-actuator, which leads to
the reduction of the workspace of compliant mechanisms (Handley, 2006). The
SCHM method of Handley (2006) relied on a FEA simulation software such as
ANSYS. Although the SCHM method was more computational efficient than a
two- or three-dimensional FEA model, an analytical kinetostatic model would be
preferred as an alternative modelling method because FEA simulation software is
relatively expensive.

As a conclusion, a simple analytical kinetostatic modelling method which can
be used to predict the kinematics, and both the input and output stiffnesses/ com-
pliances of compliant mechanisms, especially for 3-RRR micro-motion stages has
still not been studied in great detail.

2.3 Summary

There are two main gaps identified in the area of the modelling of compliant micro-
motion stages that lead to the main objectives of this thesis:
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• there is no proper scheme developed for selecting the most suitable flexure
hinge equation based on the t/R ratio of flexure hinges; and

• the kinetostatic modelling of compliant mechanisms, especially the 3-RRR
micro-motion stages, has still not been studied in great detail.



CHAPTER 3

A Scheme for Selecting Flexure Hinge Compliance

Equations

Prior to the development of a scheme for selecting the most suitable circular flexure
hinge compliance equation, it is necessary to investigate the accuracy and limita-
tion of previously derived hinge equations (Paros and Weisbord, 1965; Lobontiu,
2003; Wu and Zhou, 2002; Tseytlin, 2002; Smith et al., 1987; Schotborgh et al., 2005;
Zhang and Fasse, 2001). The investigation requires that the result of hinge equa-
tions be compared to either FEA or experimental results. However, it is impractical
to conduct experiments for a large number of flexure hinges with different t/R ra-
tios. Therefore, FEA results generated using ANSYS were chosen to serve as a
benchmark for comparisons in this thesis. In order to ensure that the FEA deter-
mined compliances well represent the actual compliances of flexure hinges for a
wide range of t/R ratio, experiments were carried out to measure the compliances
of three flexure hinges from each of the categories of thin (t/R ≤ 0.07), intermedi-
ate (0.07 < t/R ≤ 0.2) and thick (0.2 < t/R ≤ 0.8). These categories were defined
to be the same as that of Tseytlin (2002). The FEA results were compared to the
experimental results and the differences are presented in this chapter. The FEA re-
sults were in close agreement to the experimental results; therefore the FEA model
was appropriate to serve as a benchmark for comparisons.

For further justification of the accuracy of the FEA results in this thesis, the FEA
results were also compared to the experimental results of Smith et al. (1997). Smith
et al. (1997) conducted experiments to measure the ∆αz- compliances of three flex-
ure hinges from the intermediate and thick hinge categories. The FEA results in

33
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this thesis were in close agreement to the experimental results of Smith et al.; there-
fore the FEA model was adequate and appropriate to serve as a benchmark for
comparisons.

Flexure hinge compliance equations which were studied in this chapter include
equations derived by Paros and Weisbord (1965) (both full and simplified), Lobon-
tiu (2003), Wu and Zhou (2002), Tseytlin (2002), Smith et al. (1987), Schotborgh
et al. (2005) and Zhang and Fasse (2001). The results of these analytical and empir-
ical equations were compared to FEA results. Graphs of differences between the
analytical/empirical and FEA results versus t/R ratios of flexure hinges were pre-
sented. The differences were analysed, and thus a scheme for selecting the most
suitable flexure hinge equations based on the t/R ratio was developed.

3.1 Modelling of circular flexure hinges using FEA

ANSYS was used to construct FEA models of flexure hinges. These flexure hinge
models were generated using 8-node, two-dimensional, plane elements (PLANE82)
with two-degrees-of-freedom on each node (which are the translations in the nodal
x and y directions). This element type is well-suited to model irregular shapes and
curved boundaries without much loss of accuracy (ANSYS, 2002). The thickness
of the model was taken into consideration by using the plane stress element type
(with thickness option). Plane stress elements were used instead of plane strain
elements. It has been reported by Schotborgh et al. (2005) that plane stress ele-
ments provide a safer prediction of stiffness with a possibility of 5 to 10% under-
estimation, while plane strain elements provide an even greater over-estimation
of stiffnesses. The modelled flexure hinge has a thickness of 12.7 mm (aluminium
alloy, 7075-T6) with a Young’s modulus (E) of 71.7 GPa and a Poisson’s ratio (v)
of 0.33. A mapped meshing technique was used instead of a “smart” meshing,
the latter automatically produces fine meshing at areas that high stress concentra-
tions were most likely to occur. Mapped meshing is advantageous over “smart”
meshing because mapped meshing provides better control of the distribution and
size of elements in an area (see Figure 3.1). To ensure that the mesh size was fine
enough especially near the smallest thickness of the hinge, a number of analyses
were carried out where different mesh sizes were used. The output of each analy-
sis was checked each time the mesh size was decreased. When a consistent output
was obtained, it implied that the mesh was fine enough.
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(a) "Smart" meshing (b) Mapped meshing

Figure 3.1: FEA meshing techniques

3.1.1 Boundary conditions

The accuracy of the FEA model was significantly influenced by the way the bound-
ary conditions and forces were assigned. For example, when a point load is ap-
plied on a node, it causes a singularity on the node where the area near the node
encounters a large local deformation. This will reduce the accuracy of the FEA
results if displacements near the load are of interest in an analysis. To avoid inac-
curacies of results associated with singularities, constraints and point loads were
applied at a distance of at least 3h from a node where nodal displacements will be
measured (see Figure 3.2).

Figure 3.2: Dimensions of a FEA flexure hinge model

3.1.2 Applying forces and moments

Displacements of nodes at the left portion of flexure hinges, which have a distance
of 3h from Point A, were constrained to be zero as shown in Figure 3.2. Forces
were applied at a distance of 3h from Point B due to the same reason discussed
in the previous section. However, analytical equations were derived to find the
flexure hinge compliances at Point B (see Figure 3.3) when forces/moments were
applied at this point. Although forces/moments were not applied at Point B in the
FEA model, the applied forces/moments were calculated to have the equivalent
loading effects as forces/moments applied at Point B. This allowed the comparison
of results between the analytical and the FEA models.
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Longitudinal force, Fx was applied as shown in Figure 3.4a. Since Fx was ap-
plied along the horizontal line of Point B, it provided the equivalent loading effect
as Fx was directly applied on Point B.

In order to apply a pure unit force in the y-direction (transverse force, Fy) at
Point B, an additional moment was applied to counter the moment effect caused by
Fy. The additional moment was introduced by applying two horizontal forces, Fx

in opposite direction as shown in Figure 3.4b. The value of each Fx was calculated
as below,

MFy = Fy × length (3.1)

Madditional = 2Fx ×
h

2
= Fxh (3.2)

MFy = Madditional

Fy × length = Fxh

Fx = length/h

(3.3)

where Fy = 1 N (unit force), Madditional is the additional moment and MFy is the
moment caused by Fy.

Similarly, a unit moment was generated by applying two horizontal, equal
forces Fx in opposite direction as shown in Figure 3.4c. Each force was set to a
value of Fx = 1/h to generate a unit moment, Mz applied on the model.

Figure 3.3: Dimensions, forces, moments and deflections of flexure hinge
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(a) Applying a unit force along the x-direction

(b) Applying a pure unit force along the y-direction

(c) Applying a unit moment about the z-direction

Figure 3.4: Method of applying forces/moments on the FEA flexure hinge model

3.1.3 Nodal deformations of FEA flexure hinge model

The FEA model in Figure 3.2 consists of two beam sections and a hinge section.
Nodal deformations measured at Point B were the total deformation contributed
by the left-hand side beam section as well as the hinge section. Therefore, rota-
tions and deformations of the beam section (nodal deformations at Point A) were
subtracted from the total deformation measured at Point B to obtain pure defor-
mations caused by only the hinge.

Nodal deformations along the x-direction of flexure hinges can be easily ob-
tained by subtracting the nodal deformations at Point A from Point B,

∆xhinge = ∆xB −∆xA (3.4)

where ∆xA and ∆xB were nodal deformations obtained directly from FEA nodal
results.

Rotational deformations at Points A and B cannot be measured directly from
nodes. However, rotational motions at Points A and B can be calculated as shown
in Figure 3.5. NA1, NA2, NB1 and NB2 are nodes at positions shown in the figure.
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UxnA1 and UxnA2 are nodal deformations of nodes NA1 and NA2 respectively along
the x-direction. UynA1 and UynA2 are deformations of nodes NA1 and NA2 respec-
tively along the y-direction. Similar notations were assigned for UxnB1, UxnB2,
UynB1 and UynB2. Rotational motions of Points A and B were obtained as follows,

∆αA = arctan

(
UxnA1 + UxnA2

h + UynA1 − UynA2

)
(3.5)

Similarly,

∆αB = arctan

(
UxnB1 + UxnB2

h + UynB1 − UynB2

)
(3.6)

Therefore, rotational deformations of the hinge were obtained by subtracting rota-
tional deformations at Point A from Point B.

∆αhinge = ∆αB −∆αA (3.7)

Nodal deformations caused by the beam section were subtracted from the total
deformation, ∆yB at Point B in order to calculate the deformation of the hinge
along the y-direction (see Figure 3.6). ∆yA and ∆yB were obtained from FEA nodal
results at Points A and B respectively,

∆yB = (∆yA + 2R×∆αA) + ∆yhinge

∆yhinge = ∆yB − (∆yA + 2R×∆αA) (3.8)

where ∆αA was obtained from Equation 3.5. (∆yA + 2R×∆αA) is the deformation
contributed by the beam section.

Compliances of flexure hinges were calculated by dividing the deformations,
∆xhinge, ∆yhinge and ∆αhinge by the applied forces or moment, Fx, Fy and Mz re-
spectively.

3.2 Experimental validation of the FEA model

Three flexure hinges from each of the categories of thin (t/R ≤ 0.07), intermedi-
ate (0.07 < t/R ≤ 0.2) and thick (0.2 < t/R ≤ 0.8) circular hinges were selected
for experimental study to verify the accuracy of the FEA model. The three flexure
hinges were manufactured via wire-EDM. The experimentally determined com-
pliances were also compared with various analytical and empirical equations to
justify that a) some of the analytical/empirical compliance equations provide bet-
ter accuracies than others depending on the t/R ratios of circular flexure hinges,
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Figure 3.5: Calculation of rotational motions from nodal deformations obtained
from FEA

and b) flexure hinge compliances determined using any particular method may
not be accurate for a large range of t/R ratios.

The aim of this experiment was to measure the ∆αz-compliance (∆αz/Mz), the
∆y-compliance (∆y/Fy) and the ∆x-compliance (∆x/Fx) of flexure hinges. Unfor-
tunately, a consistent result of the ∆x-compliance could not be obtained due to the
limitation of the sensors and experimental setup. Flexure hinges were mounted
on a plate using screws as shown in Figure 3.7. Weights were hung at the flex-
ure hinges to apply certain forces and moments on the hinges. The stiffness along
the x-direction of the flexure hinges are very high (small ∆x-compliance). When
weights of 10 to 200g were applied on the flexure hinges, the deformations of the
flexure hinges were too small to be measured due to the limitation of the resolu-
tion of the sensors. When weights of more than 200g were applied, inconsistent
deformations were measured by the sensors. The inconsistency of the measure-
ments could be attributed to the compliances of the screws. These measured ∆x-
deformations could not be used to determine the ∆x-compliances of the flexure
hinges.

Although the ∆x-compliance of the FEA model cannot be verified experimen-
tally, the order of accuracy of the FEA determined ∆x-compliance was expected
to be approximately the same as the ∆αz- and ∆y-compliances. This assumption
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Figure 3.6: Calculation of deformation along the y-direction of the flexure hinge

Figure 3.7: ∆x-compliance measurement of flexure hinges

was made because the FEA modelling concept of determining the ∆x-compliance
was the same as that of the ∆αz- and ∆y-compliances.

3.2.1 Experimental setup

3.2.1.1 Measurement of ∆αz -compliance

The experimental setup of measuring the ∆αz-compliance is shown in Figure 3.8.
The experiment was setup on an anti-vibration table. Two eddy-current sensors
were used to detect deformations of the hinge. These eddy-current sensors were
calibrated using a Michelson laser interferometer. Details of the calibration are
presented in Appendix A. The resolutions of the eddy-current sensors are 18.5
and 10.1 nm for sensor 3316 and 3317 respectively. Aluminium targets of eddy-
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current sensors were mounted on the flexure hinges. Eddy-current sensors, 3316
and 3317 were mounted on translation stages. These stages have a travel range of
6 mm and a fine adjustment of 5 µm. They were used to position the two eddy-
current sensors to their corresponding linear measurement ranges. Signals of the
two sensors were recorded using a dSPACE DS1104 controller board via its inbuilt
ADC channels. Forces were applied on the flexure hinges by hanging weights at
a predetermined position as shown in Figure 3.8. Table 3.1 shows the range of
weights applied on the three flexure hinges.

Eddy-current sensors

Weight

Flexure
hinge

Sensor
targets

Translation
stage

Sensor
3317

Sensor
3316

Figure 3.8: Experimental setup of the ∆αz-compliance measurement of flexure
hinges

Flexure hinge t/R Range of weight (g)

t= 0.5mm, R= 3mm 0.17 10 - 70

t= 0.7mm, R= 1.87mm 0.37 10 - 200

t= 0.84mm, R= 1.1mm 0.76 10 - 500

Table 3.1: Weights applied on the three flexure hinges to measure the ∆αz-
compliance
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3.2.1.2 Measurement of ∆y-compliance

The experimental setup of measuring the ∆y-compliance is shown in Figure 3.9.
This experiment was setup similar to Section 3.2.1.1 except that a fibre-optic sensor
was used instead of the two eddy-current sensors. This is because the fibre-optic
sensor has smaller resolution than the eddy-current sensors which is more suited
for measuring the small ∆y-deformations of flexure hinges. The fibre-optic sen-
sor was calibrated using the Michelson laser interferometer (see Appendix A for
details). The resolution of the fibre-optic sensor is 3.5 nm. The fibre-optic sensor
was mounted on a NanoFlexTM translation stage which has a travel range of 5 mm
and a resolution of 50 nm. The translation stage was used to position the fibre-
optic sensor to its measurement range. Forces were applied on the flexure hinge
by hanging weights at a predetermined position shown in Figure 3.9. Table 3.2
shows the range of weights applied on the three flexure hinges.

Fibre-optics
sensors

Mirror

Weight

Flexure
hinge

Translation
stage

Figure 3.9: Experimental setup of the ∆y-compliance measurement of flexure
hinges
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Flexure hinge t/R Range of weight (g)

t= 0.5mm, R= 3mm 0.17 10 - 200

t= 0.7mm, R= 1.87mm 0.37 100 - 500

t= 0.84mm, R= 1.1mm 0.76 100 - 500

Table 3.2: Weights applied on the three flexure hinges to measure the ∆y-
compliance

3.2.2 Experimentally determined flexure hinge compliances

3.2.2.1 ∆αz-compliance

The ∆αz-deformation of a flexure hinge can be calculated easily from deforma-
tions detected by sensors 3316 and 3317. Figure 3.10 shows the schematic of the
experimental setup and dimensions.

The rotational angle of the hinge is,

∆αz = arctan

(
d1 − d2

L1 − L2

)
(3.9)

where d1 and d2 are the displacements measured by the sensors.

Therefore, the ∆α- compliance (∆αz/Mz) is calculated as,

∆αz

Mz

=
∆αz

F1 (L1 + R)
(3.10)
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Figure 3.10: Schematic of the experimental setup

3.2.2.2 ∆y-compliance

The overall deformation measured by the fibre-optic sensor consists of a defor-
mation component caused by a force, Fy = F2 and a deformation component
caused by a moment, Mz2 = F2L2 (see Figure 3.11). In order to calculate the ∆y-
deformation and compliance which are only caused by Fy, the deformation caused
by Mz2 is required to be subtracted from the measured results.

Rotational deformation caused by Mz2 is,

∆αz,Mz2 =
∆αz

Mz

·Mz2 (3.11)

where
∆αz

Mz

is determined from Equation 3.10.

∆y-deformation caused by Mz2 is,

∆yMz2 = ∆αz,Mz2 ·R (3.12)

Thus, the ∆y-deformation caused by Fy is,

∆y = ∆yfibre−optics −∆yMz2 (3.13)
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Figure 3.11: Equivalent forces/moment on a flexure hinge

The ∆y-compliance (∆y/Fy) of the hinge is then calculated by dividing Equation
3.13 with Fy.

3.2.3 Experimental results and comparisons

Table 3.3 shows the average experimental results of compliances each obtained
from 25 sets of measurement data for the ∆αz- and ∆y-compliances. The table also
illustrates the comparison of compliances between FEA and experimental results.
The FEA determined ∆αz-compliances were within 3% of the experimental re-
sults while the ∆y-compliances were within 6% of the experimental compliances.
These results indicated that the developed FEA model was defined with appropri-
ate boundary conditions and mesh sizes, and the model was capable of providing
good accuracies of compliance results for flexure hinges with different t/R ratios.
The comparison of results also confirmed that the FEA model can be used as a
benchmark for comparisons with other analytical results without much loss of ac-
curacy.

In order to further justify the accuracy of the FEA results presented in this the-
sis, the FEA results were also compared to the experimental results of Smith et al.
(1997). Smith et al. measured only the ∆αz-compliances of three flexure hinges
with t/R= 0.125, 0.246 and 0.403 respectively. Table 3.4 shows the comparison of
compliances between the FEA results (this thesis) and the experimental results of
Smith et al. (1997). The maximum difference between the FEA and experimental
results is 6.2%. These results again confirm that the FEA model is capable of pro-
viding good accuracies of compliance results of flexure hinges with different t/R

ratios and the FEA model can be used as a benchmark for comparisons with other
analytical results without much loss of accuracy.
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Flexure hinge t/R ∆αz/Mz(rad/Nm) ∆y/Fy(µm/N)

FEA Exp. % diff. FEA Exp. % diff.

t= 0.5mm,

R= 3mm
0.167 0.1574 0.1590 -1.0 1.5188 1.4774 2.8

t= 0.7mm,

R= 1.87mm
0.374 0.0563 0.0556 1.3 0.2275 0.2181 4.3

t= 0.84mm,

R= 1.1mm
0.764 0.0290 0.0283 2.6 0.0470 0.0442 6.2

Table 3.3: A comparison of FEA results to experimental results (this thesis)

Flexure hinge t/R ∆αz/Mz(rad/Nm)

FEA Exp. (Smith et al., 1997) % diff.

t= 1.19mm, R= 9.53mm 0.125 0.0311 0.0293 6.2

t= 2.34mm, R= 9.53mm 0.246 0.0060 0.0059 3.0

t= 3.38mm, R= 9.53mm 0.403 0.0018 0.0018 -0.5

Table 3.4: A comparison of FEA results to the experimental results of Smith et al.
(1997)

The results of previously derived analytical and empirical compliance equa-
tions were also compared to the experimental results presented in this thesis. Ta-
bles 3.5 to 3.7 show the comparison of various analytical and empirical compli-
ances to the experimentally determined compliances of this thesis. It was observed
that most of the analytical or empirical compliance equations had small differences
when compared to experimental results for t/R= 0.167 (Table 3.5). However, the
differences of equations of Paros and Weisbord (1965) (both full and simplified),
Wu and Zhou (2002), Lobontiu (2003) and Tseytlin (2002) increase when t/R= 0.764
(Table 3.7). Equations of Smith et al. (1987), Schotborgh et al. (2005) and Zhang and
Fasse (2001) have small differences (approximately 5%) for all the three flexure
hinges with t/R= 0.167, 0.374 and 0.764 respectively. The results of the compar-
isons show that a) some of the analytical/empirical compliance equations provide
better accuracies than others depending on the t/R ratio of circular flexure hinges,
and b) flexure hinge compliances determined using any particular method may
not be accurate for a large range of t/R ratios. Therefore, a proper scheme for se-



3.3. A scheme for selecting flexure hinge compliance equations 47

t/R= 0.167, [∆αz/Mz ]exp= 0.159 rad/Nm, [∆y/Fy ]exp= 1.477 µm/N

Analytical/Empirical ∆αz/MZ (rad/Nm) % diff. ∆y/Fy (µm/N) % diff.

PW (Full),

Wu and Zhou (2002)
0.1482 -6.4

no shear compliance 1.3952

with shear compliance 1.4114

-5.2

-4.1

PW

(Simplified)
0.1515 -4.3

no shear compliance 1.3633

with shear compliance 1.3882

-7.3

-6.3

Lobontiu (2003) 0.1482 -6.4
no shear compliance 1.3952

with shear compliance 1.4195

-5.2

-3.5

Tseytlin (2002) 0.1612 1.8 NA NA

Smith et al. (1987) 0.1639 3.5 NA NA

Schotborgh et al. (2005) 0.1549 -2.2 NA NA

Zhang and Fasse (2001) 0.1503 -5.1 NA NA

Table 3.5: Comparisons of various compliance equations to experimental results -
First flexure hinge, t= 0.5 mm, R= 3 mm. Paros and Weisbord (1965) is referred as
PW

lecting the most suitable and accurate compliance equation based on the t/R ratio
is required.

3.3 A scheme for selecting flexure hinge

compliance equations

The results of comparisons between experimental and various analytical/ empir-
ical compliances in Section 3.2.3 show that some of the analytical/empirical com-
pliance equations provide better accuracies than others depending on the t/R ratio
of circular flexure hinges. In order to assist designers in selecting the most suitable
compliance analytical and empirical equations, a review of the accuracies and lim-
itations of various previously derived equations at different t/R ratios is presented
based on their differences when compared to the FEA results obtained in this the-
sis. Suggestions of the most appropriate equation to be used at any particular t/R

range are provided in this chapter. Throughout the review process, it was also
found that there was no accurate equation (within 5% difference when compared
to FEA results) to predict the ∆x- and ∆y-compliances of circular flexure hinges
for a wide t/R range (0.05 ≤ t/R ≤ 0.8). Therefore, general empirical equations
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t/R= 0.374, [∆αz/Mz ]exp= 0.0556 rad/Nm, [∆y/Fy ]exp= 0.2181 µm/N

Analytical/Empirical ∆αz/MZ (rad/Nm) % diff. ∆y/Fy (µm/N) % diff.

PW (Full),

Wu and Zhou (2002)
0.0491 -11.3

no shear compliance 0.1864

with shear compliance 0.1957

-14.2

-9.9

PW

(Simplified)
0.0516 -6.8

no shear compliance 0.1803

with shear compliance 0.1878

-17.0

-13.5

Lobontiu (2003) 0.0491 -11.3
no shear compliance 0.1864

with shear compliance 0.2004

-14.2

-7.7

Tseytlin (2002) 0.0535 -3.4 NA NA

Smith et al. (1987) 0.0540 -2.4 NA NA

Schotborgh et al. (2005) 0.0558 0.9 NA NA

Zhang and Fasse (2001) 0.0539 -2.7 NA NA

Table 3.6: Comparisons of various compliance equations to experimental results
- Second flexure hinge, t= 0.7 mm, R= 1.87 mm. Paros and Weisbord (1965) is
referred as PW

t/R= 0.764, [∆αz/Mz ]exp= 0.0283 rad/Nm, [∆y/Fy ]exp= 0.0442 µm/N

Analytical/Empirical ∆αz/MZ (rad/Nm) % diff. ∆y/Fy (µm/N) % diff.

PW (Full),

Wu and Zhou (2002)
0.0227 -19.4

no shear compliance 0.0312

with shear compliance 0.0366

-29.2

-16.9

PW

(Simplified)
0.0251 -10.9

no shear compliance 0.0303

with shear compliance 0.0333

-31.1

-24.4

Lobontiu (2003) 0.0227 -19.4
no shear compliance 0.0312

with shear compliance 0.0394

-29.2

-10.7

Tseytlin (2002) 0.0318 13.2 NA NA

Smith et al. (1987) 0.0291 3.4 NA NA

Schotborgh et al. (2005) 0.0296 5.1 NA NA

Zhang and Fasse (2001) 0.0281 -0.1 NA NA

Table 3.7: Comparisons of various compliance equations to experimental results -
Third flexure hinge, t= 0.84 mm, R= 1.1 mm. Paros and Weisbord (1965) is referred
as PW
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were developed based on FEA results to estimate the ∆x- and ∆y-compliances of
circular flexure hinges for 0.05 ≤ t/R ≤ 0.8.

3.3.1 A comparison of compliance results with FEA

3.3.1.1 ∆αz-compliance equations

Compliances, ∆αz/Mz of different circular flexure hinges (with various t and R

values), where t/R in a range 0.05 to 0.8, were calculated using hinge equations
of a) Paros and Weisbord (1965) (full), b) Paros and Weisbord (1965) (simplified),
c) Lobontiu (2003), d) Wu and Zhou (2002), e) Tseytlin (2002), f) Smith et al. (1987)
(empirical), g) Schotborgh et al. (2005) (empirical) and h) Zhang and Fasse (2001)
(empirical). These analytical and empirical equations are presented in Appendix C
for references. Their results were compared with that of the FEA model developed
in Section 3.1.3. Differences of the comparison were plotted in Figure 3.12. From
the figure, it is noted that,

• equations of Paros and Weisbord (full), Lobontiu, and Wu and Zhou were de-
rived using a similar method (that was based on the integration of the linear
differential equation of a beam); thus their equations have the same accuracy
when compared to FEA results. The differences of their results when com-
pared to the FEA results increase over the t/R range. Differences are less
than 5% when 0.05 ≤ t/R < 0.15. Differences increased to more than 5% but
less than 10% when 0.15 ≤ t/R < 0.3. When 0.3 ≤ t/R ≤ 0.8, differences
increase from 10% to 22%;

• Paros and Weisbord’s (simplified) results are within 5% of the FEA results
for 0.05 ≤ t/R ≤ 0.2. Differences increase up to 10% when t/R = 0.5 and
13% when t/R = 0.8;

• Tseytlin’s results are within 6% of the FEA results for t/R ≤ 0.23 and 0.35 ≤
t/R < 0.65. The differences are more than 6% when 0.23 < t/R < 0.35.
When t/R = 0.25, the difference is 11.2%. Generally, the differences of the
results are within 10% approximately for the entire t/R range. Tseytlin’s an-
alytical results are different from his experimental and FEA results by about
10% (Tseytlin, 2002), which are in agreement with the results of comparison
presented in this section;

• Smith et al.’s (empirical) results are within 4% of the FEA results for 0.20 ≤
t/R ≤ 0.8. Their results have large differences for t/R < 0.2;
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Figure 3.12: Differences of various compliance equations, ∆αz/Mz compared to
FEA results

• Schotborgh et al.’s results are within 3% of the FEA results for the entire range
of 0.05 ≤ t/R ≤ 0.8 range; and

• Zhang and Fasse’s equation is within 8% of the FEA results for 0.05 ≤ t/R ≤
0.2. The differences become consistent (within 5%) for 0.2 < t/R ≤ 0.8.

3.3.1.2 ∆x- and ∆y-compliance equations

Differences of ∆x/Fx and ∆y/Fy, calculated using design equations of a) Paros
and Weisbord (1965) (full), b) Paros and Weisbord (1965) (simplified), c) Lobontiu
(2003), d) Wu and Zhou (2002) and e) Schotborgh et al. (2005) (empirical), were
plotted in Figure 3.13 and 3.14 respectively.
For ∆x/Fx,

• Paros and Weisbord (full), Lobontiu, and Wu and Zhou achieve the same
results. Their results are within 6% of the FEA results;

• results of Paros and Weisbord (simplified) are not as close as that of Paros and
Weisbord (full), Lobontiu, and Wu and Zhou when compared to the FEA re-
sults. Paros and Weisbord’s (simplified) results have a minimum difference
of 6.6%, and a maximum difference of 49%. The large differences of Paros
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and Weisbord’s equation at high t/R ratios are expected due to the assump-
tion, t � 2R used to simplify their equation. At high t/R ratios, the assump-
tion is violated; therefore the accuracy of the simplified equation is reduced;
and

• Schotborgh et al. are not as close as that of Paros and Weisbord (full), Lobon-
tiu, and Wu and Zhou when compared to the FEA results. Schotborgh et
al.’s results have a minimum difference of 16%, and a maximum difference
of 85% respectively. The reason of the large differences of Schotborgh’s equa-
tion compared to that of other research groups will be discussed later in this
section.

For ∆y/Fy (without shear compliance, SC),

• results of Paros and Weisbord (full), Lobontiu, and Wu and Zhou, with-
out considering shear compliances (SC), are the same. Their differences are
within 10% for 0.05 ≤ t/R ≤ 0.2. Differences increase up to 30% when
t/R = 0.65. When t/R = 0.8, the difference is approximately 38%; and

• Paros and Weisbord’s (simplified) results are within 10% when 0.05 ≤ t/R ≤
0.17. Differences increase to 31% when t/R = 0.65. When t/R = 0.8, the
difference is approximately 39%.

For ∆y/Fy (with shear compliance, SC),

• Lobontiu’s results are the closest to the FEA results compared to that of oth-
ers. The results are within 5% difference for 0.05 ≤ t/R ≤ 0.1. The dif-
ferences increase to within 10% for 0.1 < t/R ≤ 0.3 and to within 18% for
0.3 < t/R ≤ 0.8;

• results of Paros and Weisbord’s (full) and Wu and Zhou are the same. Their
results are within 5% difference for 0.05 ≤ t/R ≤ 0.1. The differences increase
to within 10% for 0.1 < t/R ≤ 0.25 and to within 22% for 0.25 < t/R ≤ 0.8;

• Paros and Weisbord’s (simplified) results are within 5% difference for 0.05 ≤
t/R < 0.1. The differences increase to within 10% for 0.1 ≤ t/R ≤ 0.17. The
maximum difference is 29% when t/R = 0.8;

• Schotborgh et al.’s compliance results (∆y/Fy) do not involve shear compli-
ance. Their results have the largest difference compared to the others. The
minimum difference is 70% and the maximum difference is 98%. The reason
of the large differences of Schotborgh’s equation compared to that of other
research groups will be discussed later in this section.
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Generally, all compliance equations, ∆y/Fy (except Schotborgh et al.’s) are closer
to the FEA results when shear compliances are considered.

3.3.1.2.1 Discussion of the ∆x- and ∆y-compliance equations of Schot-

borgh et al. (2005) Schotborgh et al.’s compliance equations in the x- and y-
directions (∆x/Fx and ∆y/Fy) have large differences compared to other research
groups. Schotborgh et al. developed the compliance equations using a FEA flexure
hinge model with a larger height than that used in this thesis (see Figure 3.15a).
Schotborgh et al.’s compliances were obtained using a spring model (as shown in
Figure 3.15b) which consists of two springs that are connected in series (as told via
a personal communication with Schotborgh). khinge and kbeam are the stiffnesses
of the hinge and beam respectively. kbeam is calculated using the beam equation
below,

kbeam =
EA

l
(3.14)

where E is the Young’s modulus, A is the cross-sectional area of the beam and l is
the length of the beam.

Equation 3.15 below is used to calculate the stiffness of the hinge,

(
1

khinge

)−1

=

(
1

ktotal

− 1

kbeam

)−1

(3.15)

where ktotal is the total stiffness calculated from the FEA model. For example, to
calculate the stiffness of a hinge along the x-direction, a unit displacement Ux was
applied at all the nodes at the end of the beam as shown in Figure 3.15a. The sum
of the reaction forces Fx,total of the nodes were calculated by ANSYS. ktotal along
the x-direction was then calculated by dividing Fx,total by Ux.

It was found by the author and Schotborgh (via personal communication) that
there were inconsistencies with this modelling technique. It was found that the
stiffness of the hinge khinge varies with the height of the FEA hinge model (see Fig-
ure 3.16). These results were unexpected because khinge should remain the same
for the same hinge dimensions (t and R) and material properties. The inconsis-
tency in the FEA modelling technique may explain the differences of Schotborgh
et al.’s results with the others. Nevertheless, the investigation of the change of
khinge with the change of the model height in the FEA modelling technique is be-
yond the scope of this thesis. This modelling inconsistency is recommended to be
investigated in the future.
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Figure 3.13: Differences of various compliance equations, ∆x/Fx compared to FEA
results
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Figure 3.14: Differences of various compliance equations, ∆y/Fy compared to FEA
results
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(a) FEA hinge model

(b) Spring model of flexure hinges

Figure 3.15: Flexure hinge models of Schotborgh et al. (2005)
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Figure 3.16: The change of khinge with the height of the FEA model of Schotborgh
et al. (2005)
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3.3.2 Empirical ∆x- and ∆y-compliance equations

It was observed that there were no accurate design equations (within 5% differ-
ence) to estimate the ∆x-compliance for 0.1 < t/R < 0.25 and the ∆y-compliance
for t/R > 0.15. Therefore, general empirical equations in stiffness form, named
Kx and Ky were developed based on FEA results to estimate stiffness in both the
x and y directions for a wide range of t/R ratios (0.05 ≤ t/R ≤ 0.8). The empirical
∆x- and ∆y-compliance equations were then found by inversing Kx and Ky. FEA
models with various t/R ratios, which were set from 0.05 to 0.8 with an increment
of 0.01, were generated in ANSYS. Unit forces, Fx and Fy were applied on each
model and the corresponding nodal deformations, ∆x and ∆y were measured.
Polynomial functions with 3rd, 4th, 5th and 6th order were fitted through the data
points to obtain empirical stiffness equations. The results of these four empirical
equations were compared with FEA results and their differences were plotted in
Figure 3.17 and 3.18. 5th and 6th order polynomial functions were chosen for Kx

and Ky respectively in order to keep the differences as small as possible. Maxi-
mum differences of the two polynomial functions occur when t/R = 0.05, which
are 1.1% and 2.7% for Kx and Ky respectively. Both empirical equations, ∆x/Fx

and ∆y/Fy (the inverse of Kx and Ky respectively) are shown in Equations 3.17
and 3.19,

Kx = Eb

[
n∑

k=0

ck

(
t

R

)k
]

(3.16)

[∆x/Fx]this thesis = K−1
x =

{
Eb

[
n∑

k=0

ck

(
t

R

)k
]}−1

(3.17)

Ky = Eb

[
n∑

k=0

ck

(
t

R

)k
]

(3.18)

[∆y/Fy]this thesis = K−1
y =

{
Eb

[
n∑

k=0

ck

(
t

R

)k
]}−1

(3.19)

where ck are the coefficients of polynomial functions, n is the order of a polynomial
function. Table 3.8 exhibits coefficients of these equations.
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Figure 3.17: Differences of empirical equations, Kx
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Figure 3.18: Differences of empirical equations, Ky

Finally, Table 3.9 summarises the suggested compliance equations to be used
for any particular t/R range with maximum differences of less than 5% based on
Figures 3.12, 3.13 and 3.14. The minimum, maximum and average differences of
the compliance equations are also presented.
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Coefficients Kx, 5th order Ky, 6th order

c0 0.036343 1.92×10−5

c1 0.98683 -0.00083463

c2 -1.5469 0.021734

c3 3.1152 0.064783

c4 -3.0831 -0.088075

c5 1.2031 0.062278

c6 - -0.018781

Table 3.8: Coefficients of polynomial functions for Kx and Ky
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3.4 Concluding remarks

This chapter presents a review of the accuracies and limitations of various flex-
ure hinge compliance equations by comparing the results of the equations to that
of FEA models. Based on the result of comparisons, a scheme for selecting the
most accurate and appropriate flexure hinge compliance equation was developed.
Throughout the review process, it was also found that there was no accurate equa-
tion (within 5% difference when compared to FEA results) to predict the ∆x- and
∆y-compliances of circular flexure hinges for a wide t/R range (0.05 ≤ t/R ≤ 0.8).
Therefore, general empirical equations were developed based on FEA results to es-
timate the ∆x- and ∆y-compliances of circular flexure hinges for 0.05 ≤ t/R ≤ 0.8.

The FEA model presented in this chapter was experimentally verified and the
results show that the FEA model provided good estimation of hinge compliances
(within 3% difference for ∆αz-compliance and 6% difference for ∆y-compliance)
for flexure hinges with 0.05 ≤ t/R ≤ 0.8. The FEA results were also compared
to the experimental results of Smith et al. (1997) and the maximum difference was
only 6.2%. Therefore, the FEA model was appropriate to be used a) as a bench-
mark for comparisons with various compliance equations during the review pro-
cess, and b) to develop the empirical ∆x- and ∆y-compliance equations of flexure
hinges.



CHAPTER 4

Kinematic Modelling of Micro-motion Stages

using the PRBM and Loop-closure Theory

In the past, compliant micro-motion stages were commonly modelled using the
Pseudo-Rigid-Body-Model (PRBM) (Scire and Teague, 1978; Furukawa et al., 1995;
Yang et al., 1996). This method commonly models flexure hinges as purely rota-
tional joints with rotational stiffnesses and the thick sections joining the flexure
hinges as rigid-links. Therefore conventional rigid-link mechanism theory can be
used to derive the kinematic model. However, the PRBM which excludes the mod-
elling of the ∆x- and ∆y-displacements of flexure hinges may lead to modelling
inaccuracy of compliant mechanisms. In order to compare the modelling accu-
racy of the PRBM method (which excludes the ∆x- or ∆y-displacements) with the
kinetostatic model developed in this thesis, kinematic models of a four-bar com-
pliant mechanism and a 3-RRR compliant micro-motion stage were derived using
the PRBM and the loop-closure theory in this chapter. The results of the kinematic
models derived using the PRBM method will be compared with the kinetostatic,
FEA and experimental results presented in Chapters 5, 6 and 7 respectively.

4.1 PRBM and loop-closure theory

The derivation of the kinematic model of a 3-RRR micro-motion stage using the
PRBM method and the loop-closure theory has been shown in the author’s pre-
vious work (Yong et al., 2003). This section presents the updated kinematic mod-
elling of a four-bar compliant mechanism and a 3-RRR micro-motion stage based
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using the PRBM and Loop-closure Theory

(a) 3-RRR micro-motion stage (b) Micro-motion stage and the scanning-
electron-microscope

Figure 4.1: Micro-motion system

on the same method and theory. The 3-RRR micro-motion stage studied in this the-
sis was designed to manoeuvre samples in a scanning-electron-microscope (SEM).
Figure 4.1 shows the micro-motion stage and the microscope.

4.1.1 PRBM of compliant micro-motion stages

As mentioned before, the PRBM commonly models circular flexure hinges as rev-
olute joints with rotational stiffness. The PRBM of circular flexure hinges is shown
in Figure 4.2. Figure 4.3 shows the PRBM of the four-bar compliant mechanism
and the SEM 3-RRR micro-motion stage.

For the four-bar compliant mechanism, flexure hinges are labelled as A, B, C
and D. ∆αA, ∆αB, ∆αC and ∆αD represent the change of the angular displace-
ments of the flexure hinges.

For the 3-RRR micro-motion stage, flexure hinges are labelled as Ai, Bi and Ci,
where i= 1, 2 and 3. ∆αAi, ∆αBi and ∆αCi represent the change of the angular
displacements of the flexure hinges.

4.1.2 Loop-closure theory

Loop-closure theory incorporates the complex number method to model the kine-
matics of mechanisms. A loop equation was generated for each closed-loop in the
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Figure 4.2: The PRBM of a circular flexure hinge

(a) Four-bar compliant mechanism

(b) 3-RRR micro-motion stage

Figure 4.3: The PRBM of micro-motion stages



64
Chapter 4. Kinematic Modelling of Micro-motion Stages

using the PRBM and Loop-closure Theory

Figure 4.4: Complex plane

compliant structures. This loop equation was expressed in terms of its real and
imaginary parts, resulting in two equations per loop. Unknowns were found by
solving these equations simultaneously. An intensive study of this method has
been carried out by Howell (2001).

Complex numbers were used to represent vectors in each closed-loop. The com-
plex number was written as,

Z = reiα = r (cosα + isinα) (4.1)

where r is the length of links, α is the initial orientations of the link as shown in
Figure 4.4.

4.2 Kinematic modelling of four-bar compliant

mechanisms

Flexure hinge A in Figure 4.5 is the actuated joint (active joint). Flexure hinges
labelled B, C and D are unactuated (passive joints). Therefore, there are three un-
knowns to be solved, which are ∆αB, ∆αC and ∆αD. Since ∆αB = ∆αC , the
number of unknowns are reduced to two which can be solved by equations ob-
tained from a single closed-loop.

From the loop,

ZAB + ZBC − ZAD − ZDC = 0 (4.2)

Loop equation obtained from the real component of Equation 4.2 is,
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Figure 4.5: Single loop four-bar structure analysis

rabcos (αAB + ∆αA) + rbccos (αBC + ∆αA + ∆αB)

−radcos (αAD)− rdccos (αDC + ∆αD) = 0

(4.3)

Loop equation obtained from the imaginary component of Equation 4.2 is,

rabsin (αAB + ∆αA) + rbcsin (αBC + ∆αA + ∆αB)

−radsin (αAD)− rdcsin (αDC + ∆αD) = 0

(4.4)

where rab is the length of link AiBi, similarly for rbc, rad and rdc . αAB is the argu-
ment of vector ZAB measured from the global x-axis, similarly for αBC , αAD and
αDC .

Since the displacements are in the scale of micrometres, the small angle approxi-
mations of cosine and sine functions can be adopted, which are cos (∆α) ' 1 and
sin (∆α) ' ∆α. By using the trigonometry identities,

cos (x± y) = cos xcos y ∓ sin xsin y

sin (x± y) = sin xcos y ± sin ycos x

Equation 4.3 and 4.4 can be simplified as,
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αAB (rad) αBC (rad) αDC (rad) rab (mm) rbc (mm) rdc (mm) Ro (mm)

π/2 0 π/2 10 20 10 3.5

Table 4.1: Parameters of the PRBM of the four-bar compliant structure

rab (cos (αAB)−∆αAsin (αAB)) + rbc (cos (αBC)− (∆αA + ∆αB) sin (αBC))

−radcos (αAD)− rdc (cos (αDC)−∆αDsin (αDC)) = 0

(4.5)

rab (sin (αAB) + ∆αAcos (αAB)) + rbc (sin (αBC) + (∆αA + ∆αB) cos (αBC))

−radsin (αAD)− rdc (sin (αDC) + ∆αDcos (αDC)) = 0

(4.6)

and,

radcos (αAD) = rabcos (αAB) + rbccos (αBC)− rdccos (αDC)

radsin (αAD) = rabsin (αAB) + rbcsin (αBC)− rdcsin (αDC) (4.7)

Therefore, Equation 4.20 and 4.21 can be reduced to,

−rab∆αAsin (αAB)− rbc (∆αA + ∆αB) sin (αBC) + rdc∆αDsin (αDC) = 0 (4.8)

rab∆αAcos (αAB) + rbc (∆αA + ∆αB) cos (αBC)− rdc∆αDcos (αDC) = 0 (4.9)

The input angular displacements, ∆αA are,

∆αA = −∆uin

Ro

(4.10)

where ∆uin are the input displacements caused by the piezo-actuator, Ro is the
distance from the centre of the piezo-actuator to the centre of the flexure hinge as
shown in Figure 4.6. The negative sign indicates that the direction of rotations are
clockwise.
Table 4.1 exhibits all the parameters of the PRBM of the four-bar compliant struc-



4.2. Kinematic modelling of four-bar compliant mechanisms 67

Figure 4.6: Piezo-actuator and compliant mechanism

ture. By substituting all the parameters and the input angular displacement from
Equation 4.10 into Equations 4.8 and 4.9, the two equations can be solved to obtain
∆αB and ∆αD. These angular displacements are expressed in terms of the input
displacements of the piezo-actuator, ∆uin,

∆αB = c1∆uin (4.11)

∆αD = c2∆uin (4.12)

where c1 and c2 are constants.
By determining all the unknown angular displacements of flexure hinges, the kine-
matics of the four-bar compliant mechanism can be derived easily to find the out-
put displacements (∆xo, ∆yo, ∆αo) of the end-effector when the input displace-
ments, ∆uin are given. A Jacobian matrix is normally used to relate the velocity of
an end-effector to the velocity of actuators. However, for the case of micro-motion
stages, the displacements of the piezo-actuators are substantially small compare
to the link lengths and the motions of the micro-motion stages are also very small.
Therefore, the micro-motion stages are almost configurationally invariant and its
Jacobian matrix is assumed to be constant. The Jacobian of the four-bar compliant
mechanism can be defined as a constant matrix to relate the output displacements
of the end-effector (∆xo ∆yo ∆αo) to the input displacements of the piezo-actuators
(∆uin) as below, 

∆xo

∆yo

∆αo

 = JPRBM,4bar ∆uin (4.13)

The Jacobian matrix of the four-bar compliant mechanism is calculated as below,
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JPRBM,4bar =


2.857

0.59× 10−9

0

 (4.14)

It is observed that the ∆yo term in Equation 4.14 is very small and can be assumed
to be zero.

4.3 Kinematic modelling of 3-RRR compliant

micro-motion stages

All flexure hinges labelled Ai in Figure 4.7 are actuated (active joints). Flexure
hinges labelled Bi and Ci are unactuated (passive joints). Therefore, ∆αBi

and
∆αCi

(i= 1, 2, 3) are unknowns. Six equations were required to solve these six
unknowns, which leads to the need of generating three loop equations. Due to
the advantage of the closed-loop configuration of the 3-RRR structure, the two
relationships below can be determined from the geometry of the 3-RRR structure,

∆αA2 + ∆αB2 + ∆αC2 = ∆αA1 + ∆αB1 + ∆αC1

∆αC2 = ∆αA1 + ∆αB1 + ∆αC1 −∆αA2 −∆αB2 (4.15)

∆αA3 + ∆αB3 + ∆αC3 = ∆αA1 + ∆αB1 + ∆αC1

∆αC3 = ∆αA1 + ∆αB1 + ∆αC1 −∆αA3 −∆αB3 (4.16)

Therefore, there are only four unknowns which required only four equations. The
number of loops required is therefore reduced from three to two loops, which sim-
plifies the modelling process of the 3-RRR mechanism.

Loop 1,

ZA1B1 + ZB1C1 + ZC1C3 −
(
ZA1A3 + ZA3B3 + ZB3C3

)
= 0 (4.17)

Loop equation obtained from the real component of Equation 4.17 is,
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Figure 4.7: Two-loop 3-RRR structure analysis

rabcos (αA1B1 + ∆αA1) + rbccos (αB1C1 + ∆αA1 + ∆αB1)

+rcccos (αC1C3 + ∆αA1 + ∆αB1 + ∆αC1)

−raacos (αA1A3)− rabcos (αA3B3 + ∆αA3)

−rbccos (αB3C3 + ∆αA3 + ∆αB3) = 0

(4.18)

Loop equation obtained from the imaginary component of Equation 4.17 is,

rabsin (αA1B1 + ∆αA1) + rbcsin (αB1C1 + ∆αA1 + ∆αB1)

+rccsin (αC1C3 + ∆αA1 + ∆αB1 + ∆αC1)

−raasin (αA1A3)− rabsin (αA3B3 + ∆αA3)

−rbcsin (αB3C3 + ∆αA3 + ∆αB3) = 0

(4.19)

where rab is the length of link AiBi, rbc is the length of link BiCi, rcc is the length of
link CiCj (i 6= j, i = j = 1, 2, 3), raa is the length of link AiAj . αA1A3 is the argument
of vector ZA1A3 measured from the global x-axis, similarly for αA1B1 , αB1C1 , αC1C3 ,
αA1A3 , αA3B3 and αA3C3 .

Since the displacements are in the scale of micrometres, the small angle approxi-
mations of cosine and sine functions can be adopted, which are cos (∆α) ' 1 and
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sin (∆α) ' ∆α. By using the trigonometry identities, Equation 4.18 and 4.19 can
be simplified as,

rab (cos (αA1B1)−∆αA1sin (αA1B1))

+rbc (cos (αB1C1)− (∆αA1 + ∆αB1) sin (αB1C1))

+rcc (cos (αC1C3)− (∆αA1 + ∆αB1 + ∆αC1) sin (αC1C3))

−raacos (αA1A3)− rab (cos (αA3B3)−∆αA3sin (αA3B3))

−rbc (cos (αB3C3)− (∆αA3 + ∆αB3) sin (αB3C3)) = 0

(4.20)

rab (sin (αA1B1) + ∆αA1cos (αA1B1))

+rbc (sin (αB1C1) + (∆αA1 + ∆αB1) cos (αB1C1))

+rcc (sin (αC1C3) + (∆αA1 + ∆αB1 + ∆αC1) cos (αC1C3))

−raasin (αA1A3)− rab (sin (αA3B3) + ∆αA3cos (αA3B3))

−rbc (sin (αB3C3) + (∆αA3 + ∆αB3) cos (αB3C3)) = 0

(4.21)

and,

raacos (αA1A3) = rabcos (αA1B1) + rbccos (αB1C1) + rcccos (αC1C3)

−rabcos (αA3B3)− rbccos (αB3C3)

raasin (αA1A3) = rabsin (αA1B1) + rbcsin (αB1C1) + rccsin (αC1C3)

−rabsin (αA3B3)− rbcsin (αB3C3) (4.22)

Therefore, Equation 4.20 and 4.21 can be reduced to,

−rab∆αA1sin (αA1B1)− rbc (∆αA1 + ∆αB1) sin (αB1C1)

−rcc (∆αA1 + ∆αB1 + ∆αC1) sin (αC1C3)

+rab∆αA3sin (αA3C3) + rbc (∆αA3 + ∆αB3) sin (αB3C3) = 0

(4.23)

rab∆αA1cos (αA1B1) + rbc (∆αA1 + ∆αB1) cos (αB1C1)

+rcc (∆αA1 + ∆αB1 + ∆αC1) cos (αC1C3)

−rab∆αA3cos (αA3C3)− rbc (∆αA3 + ∆αB3) cos (αB3C3) = 0

(4.24)
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Similarly for loop 2,

ZA1B1 + ZB1C1 + ZC1C2 −
(
ZA1A2 + ZA2B2 + ZB2C2

)
= 0 (4.25)

Loop equations obtained from Equation 4.25 are,

−rab∆αA1sin (αA1B1)− rbc (∆αA1 + ∆αB1) sin (αB1C1)

−rcc (∆αA1 + ∆αB1 + ∆αC1) sin (αC1C2)

+rab∆αA2sin (αA2B2) + rbc (∆αA2 + ∆αB2) sin (αB2C2) = 0

(4.26)

rab∆αA1cos (αA1B1) + rbc (∆αA1 + ∆αB1) cos (αB1C1)

+rcc (∆αA1 + ∆αB1 + ∆αC1) cos (αC1C2)

−rab∆αA2cos (αA2B2)− rbc (∆αA2 + ∆αB2) cos (αB2C2) = 0

(4.27)

The three input angular displacements, ∆αAi
(i=1, 2, 3) are,

∆αAi
= −∆ukin

Ro

(4.28)

where ∆ukin (k = 1, 2, 3) are the input displacements caused by the three piezo-
actuators respectively, Ro is the distance shown in Figure 4.6. The negative sign
indicates that the direction of rotation is clockwise.

Table 4.2 exhibits all the parameters of the PRBM of the 3-RRR micro-motion stage.
By substituting all the parameters and the three input angular displacements from
Equation 4.28 into Equations 4.23, 4.24, 4.26 and 4.27, they can be solved together
with Equations 4.15 and 4.16 to obtain all the unknown angular displacements,
∆αBi

and ∆αCi
. These angular displacements are expressed in terms of the input

displacements of the three piezo-actuators, ∆ukin.


∆αB1

∆αB2

∆αB3

 = ΩB


∆u1in

∆u2in

∆u3in

 (4.29)
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i = 1 i = 2 i = 3

αAiBi
(rad) 2.391 0.297 -1.798

αBiCi
(rad) -2.321 1.867 -0.227

αC1C2 (rad) -0.452

αC1C3 (rad) -1.450

rab (mm) 49.0

rbc (mm) 27.0

rcc (mm) 19.7

Ro (mm) 5.1

Table 4.2: Parameters of the PRBM of the 3-RRR micro-motion stage


∆αC1

∆αC2

∆αC3

 = ΩC


∆u1in

∆u2in

∆u3in

 (4.30)

where ΩB and ΩC are 3x3 matrices.

By knowing all the unknown angular displacements of flexure hinges, the kine-
matics of the micro-motion stage can be derived easily to find the output dis-
placements and orientations (∆xo, ∆yo, ∆αo) of the end-effector when the input
displacements (∆u1in, ∆u2in, ∆u3in) are given. Since the 3-RRR compliant micro-
motion stage is almost configurationally invariant (as explained in Section 4.2), a
constant Jacobian matrix can be derived to relate the input displacements to the
output displacements as below,


∆xo

∆yo

∆αo

 = JPRBM,3RRR


∆u1in

∆u2in

∆u3in

 (4.31)

The Jacobian matrix of the PRBM is calculated as below,
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JPRBM,3RRR =


4.37 1.87 −6.24

4.68 −6.12 1.44

−288.73 −288.73 −288.73

 (4.32)

4.4 Concluding remarks

The PRBM method that models flexure hinges to have only one-DOF may intro-
duce some inaccuracies in the kinematic model. In order to compare the modelling
accuracy of the PRBM method to the kinetostatic model developed in this the-
sis, the kinematic models of a four-bar compliant mechanism and a 3-RRR micro-
motion stage were derived using the loop-closure theory and the PRBM method.
The loop-closure theory incorporates the complex number method to model the
kinematics of mechanisms. A loop equation was generated for each closed-loop
in the compliant structures. These loop equation were expressed in terms of its
real and imaginary parts, resulting in two equations per loop. Unknowns were
found by solving these equations simultaneously. Since the displacements were
in micro-scale, the small angle approximations of cosine and sine functions can be
adopted to simplify the modelling process. The kinematic results derived using
the PRBM method and the loop-closure theory in this chapter will be compared to
the kinetostatic model, FEA and experimental results presented in Chapters 5, 6
and 7 respectively. The results of these comparisons will highlight the advantage
of the kinetostatic model.
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