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Abstract

This thesis presents a) a scheme for selecting the most suitable flexure hinge com-
pliance equations, and b) a simple methodology of deriving kinetostatic models of
micro-motion stages by incorporating the scheme mentioned above. There were
various flexure hinge equations previously derived using different methods to
predict the compliances of circular flexure hinges. However, some of the ana-
lytical/empirical compliance equations provide better accuracies than others de-
pending on the t/R ratios of circular flexure hinges. Flexure hinge compliance
equations derived previously using any particular method may not be accurate
for a large range of t/R ratios. There was no proper scheme developed on how to
select the most suitable and accurate hinge equation from the previously derived
formulations. Therefore, the accuracies and limitations of the previously derived
compliance equations of circular flexure hinges were investigated, and a scheme
to guide designers for selecting the most suitable hinge equation based on the t/R

ratios of circular flexure hinges is presented in this thesis.

This thesis also presents the derivation of kinetostatic models of planar micro-
motion stages. Kinetostatic models allow the fulfillment of both the kinematics
and the statics design criteria of micro-motion stages. A precise kinetostatic model
of compliant micro-motion stages will benefit researchers in at least the design and
optimisation phases where a good estimation of kinematics, workspace or stiffness
of micro-motion stages could be realised. The kinetostatic model is also an alter-
native method to the finite-element approach which uses commercially available
software. The modelling and meshing procedures using finite-element software
could be time consuming. The kinetostatic model of micro-motion stages was
developed based on the theory of the connection of serial and parallel springs.
The derivation of the kinetostatic model is simple and the model is expressed

xiii
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in closed-form equations. Material properties and link parameters are variables
in this model. Compliances of flexure hinges are also one of the variables in the
model. Therefore the most suitable flexure hinge equation can be selected based on
the scheme aforementioned in order to calculate the kinetostatics of micro-motion
stages accurately.

Planar micro-motion stages with topologies of a four-bar linkage and a 3-RRR
(revolute-revolute-revolute) structure were studied in this thesis. These micro-
motion stages are monolithic compliant mechanisms which consist of circular flex-
ure hinges. Circular flexure hinges are used in most of the micro-motion stages
which require high positioning accuracies. This is because circular flexure hinges
provide predominantly rotational motions about one axis and they have small par-
asitic motions about the other axes. The 3-RRR micro-motion stage studied in this
thesis has three-degrees-of-freedom (DOF). The 3-RRR stage consists of three RRR
linkages and each RRR linkage has three circular flexure hinges. A Pseudo-Rigid-
Body-Model (PRBM), a kinetostatic model and a two-dimensional finite-element-
analysis (FEA) model generated using ANSYS of micro-motion stages are pre-
sented and the results of these models were compared. Advantages of the kineto-
static model was highlighted through this comparison. Finally, experiments are
presented to verify the accuracy of the kinetostatic model of the 3-RRR micro-
motion stage.
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