

Kinetostatic Modelling of Compliant Micro-motion Stages with Circular Flexure Hinges

Yuen Kuan Yong

School of Mechanical Engineering The University of Adelaide South Australia 5005 Australia

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering on the 16th March 2007

Contents

Ał	ostra	ct >	xiii
St	atem	ent of Originality	xv
Pu	blica	ations x	vii
Ac	knov	wledgements	xix
1	Intr	oduction	1
	1.1	Background and motivation	1
	1.2	Objectives and scope	5
	1.3	Organisation of thesis	7
2	Lite	rature Review	9
	2.1	Modelling of flexure hinges	10
		2.1.1 Gaps in current knowledge of the modelling of flexure hinges	16
	2.2	Modelling of compliant micro-motion stages	17
		2.2.1 Gaps in current knowledge of the kinetostatic modelling of	
		compliant micro-motion stages	29
	2.3	Summary	30
3	A S	cheme for Selecting Flexure Hinge Compliance Equations	33
	3.1	Modelling of circular flexure hinges using FEA	34
		3.1.1 Boundary conditions	35
		3.1.2 Applying forces and moments	35
		3.1.3 Nodal deformations of FEA flexure hinge model	37

	3.2	Exper	imental validation of the FEA model	38
		3.2.1	Experimental setup	40
		3.2.2	Experimentally determined flexure hinge compliances	43
		3.2.3	Experimental results and comparisons	45
	3.3	A sch	eme for selecting flexure hinge compliance equations	47
		3.3.1	A comparison of compliance results with FEA	49
		3.3.2	Empirical Δx - and Δy -compliance equations $\ldots \ldots \ldots$	56
	3.4	Concl	uding remarks	60
4	Kin	ematic	Modelling of Micro-motion Stages	
	usin	ig the F	PRBM and Loop-closure Theory	61
	4.1	PRBM	1 and loop-closure theory	61
		4.1.1	PRBM of compliant micro-motion stages	62
		4.1.2	Loop-closure theory	62
	4.2	Kinen	natic modelling of four-bar compliant mechanisms	64
	4.3	Kinen	natic modelling of 3-RRR compliant micro-motion stages	68
	4.4	Concl	uding remarks	73
5	Kin	etostati	ic Modelling of Micro-motion Stages	75
	5.1	Kinete	ostatic model of four-bar compliant mechanisms	77
		5.1.1	Derivation of the output compliance matrix, $\mathbf{C}_{o,\mathbf{F}_o}$	77
		5.1.2	Derivation of the compliance matrix, $C_{o,F_{\mathrm{in}}}$ and C_{in,F_o} $\ .$	93
		5.1.3	Derivation of the compliance matrix, $C_{in,F_{in}}$	96
		5.1.4	The Jacobian matrix of four-bar compliant mechanisms	96
		5.1.5	Case studies of the four-bar compliant mechanism	97
	5.2	Kineto	ostatic modelling of 3-RRR micro-motion stages	102
		5.2.1	Derivation of the output compliance matrix, $\mathbf{C}_{o,\mathbf{F}_o}$	102
		5.2.2	Derivation of the compliance matrix, $C_{o,F_{in}}$ and C_{in,F_o}	117
		5.2.3	Derivation of the compliance matrix, $C_{in,F_{in}}$	120
		5.2.4	The Jacobian matrix of 3-RRR micro-motion stages	121
		5.2.5	Case studies of the 3-RRR compliant micro-motion stage	122
	5.3	Concl	uding remarks	127
6	Fini	te Elen	nent Analysis	129
	6.1	FEA n	nodelling of micro-motion stages	129
		6.1.1	FEA modelling of the four-bar micro-motion stage	130
		6.1.2	FEA modelling of the 3-RRR micro-motion stage	138
	6.2	Concl	uding remarks	144

7	Exp	erimental Validation of the Kinetostatic and FEA Models	147
	7.1	Experimentally determined compliance matrix, C_{o,F_o}	. 148
		7.1.1 Discussion	. 149
	7.2	Experimentally determined compliance matrix, $C_{o,F_{in}}$. 152
		7.2.1 Discussion	. 152
	7.3	Experimentally determined Jacobian matrix	. 154
		7.3.1 Strain gauge calibrations	. 156
		7.3.2 Jacobian measurements	. 159
		7.3.3 Comparison of J_{exp} results	. 161
	7.4	Comparisons of analytical and FEA results with experimental resul	ts 162
		7.4.1 Discussion	. 166
	7.5	Concluding remarks	. 169
8	Con	nclusions and Future Work	171
	8.1	Objectives of the study	. 171
	8.2	Summary of the research work presented in this thesis	. 172
	8.3	Contributions	. 175
	8.4	Recommendations for future work	. 176
A	Sen	sor Calibration Using a Michelson Laser Interferometer	179
	A.1	Background	. 179
	A.2	Aim	. 180
	A.3	Experimental Setup	. 180
		A.3.1 dSPACE DS1104 controller board	. 180
		A.3.2 Sensor system - eddyNCDT3700	. 180
		A.3.3 Fibre-optic sensor	. 181
		A.3.4 Michelson laser interferometer	. 181
		A.3.5 Overall system setup	. 184
	A.4	Methods	. 184
		A.4.1 Eddy-current sensors	. 184
		A.4.2 Fibre-optic sensor	. 187
	A.5	Results	. 190
		A.5.1 Estimation of sensor resolutions	. 190
	A.6	Error analysis	. 193
		A.6.1 Measurement errors	. 193
		A.6.2 Temperature effects	. 194
	A.7	Summary	. 197

B	Mar	ufacturing Data of Eddy-current and Fibre-optic sensors	199
	B .1	Test reports of eddy-current sensors	199
	B.2	Calibration curves of the fibre-optic sensor	203
C	Circ	ular Flexure Hinge Compliance Equations	207
Bibliography 213			213

List of Figures

1.1	Compliant micro-motion stages and their topological diagrams	2
1.2	Prototype of the 3-RRR micro-motion stage	3
1.3	Circular flexure hinge	6
2.1	Flexure hinge (Handley, 2006)	18
3.1	FEA meshing techniques	35
3.2	Dimensions of a FEA flexure hinge model	35
3.3	Dimensions, forces, moments and deflections of flexure hinge	36
3.4	Method of applying forces/moments on the FEA flexure hinge model	
		37
3.5	Calculation of rotational motions from nodal deformations obtained	
	from FEA	39
3.6	Calculation of deformation along the y-direction of the flexure hinge	40
3.7	Δx -compliance measurement of flexure hinges	40
3.8	Experimental setup of the $\Delta \alpha_z$ -compliance measurement of flexure	
	hinges	41
3.9	Experimental setup of the Δy -compliance measurement of flexure	
	hinges	42
3.10	Schematic of the experimental setup	44
3.11	Equivalent forces/moment on a flexure hinge	45
3.12	Differences of various compliance equations, $\Delta \alpha_z/M_z$ compared to	
	FEA results	50
3.13	Differences of various compliance equations, $\Delta x/F_x$ compared to	
	FEA results	53

3.14	Differences of various compliance equations, $\Delta y/F_y$ compared to	
	FEA results	54
3.15	Flexure hinge models of Schotborgh <i>et al.</i> (2005)	55
3.16	The change of k_{hinge} with the height of the FEA model of Schotborgh	
	<i>et al.</i> (2005)	55
3.17	Differences of empirical equations, K_x	57
3.18	Differences of empirical equations, K_y	57
4.1	Micro-motion system	62
4.2	The PRBM of a circular flexure hinge	63
4.3	The PRBM of micro-motion stages	63
4.4	Complex plane	64
4.5	Single loop four-bar structure analysis	65
4.6	Piezo-actuator and compliant mechanism	67
4.7	Two-loop 3-RRR structure analysis	69
5.1	Four-bar compliant mechanism	78
5.2	Parallel spring model of the four-bar compliant mechanism $\ldots \ldots$	78
5.3	Compliances due to Hinge 1	79
5.4	$\Delta y^1_{o'}$ -displacement caused by the amplification of link with distance	
	$l_2 + l_3 + 2R_2$. Dashed lines represent initial position of the four-bar	
	compliant structure. The flexure hinge is drawn as a solid line and	
	the rigid link is drawn as a block	82
5.5	$\Delta x^1_{o'}$ -displacement caused by the amplification of link with distance	
	$l_2 + l_3 + 2R_2$. Dashed lines represent initial position of the four-bar	
	compliant structure. The flexure hinge is drawn as a solid line and	
	the rigid link is drawn as a block	84
5.6	Compliances due to Hinge 2	85
5.7	$\Delta y^2_{o'}$ -displacement caused by the amplification of link with distance	
	l_3 . Dashed lines represent initial position of the four-bar compliant	
	structure. The flexure hinge is drawn as a solid line and the rigid	
	link is drawn as a block	88
5.8	$\Delta x_{o'}^2$ -displacement caused by the amplification of link with distance	
	l_3 . Dashed lines represent initial position of the four-bar compliant	
	structure. The flexure hinge is drawn as a solid line and the rigid	
	link is drawn as a block	90
5.9	Calculation of compliances at Point <i>o</i> . Dashed lines represent initial	
	position of the four-bar compliant structure. The flexure hinge is	
	drawn as a solid line and the rigid link is drawn as a block $\ldots \ldots$	92

5.10	3-RRR compliant micro-motion stage	104
5.11	Parallel spring model of a 3-RRR micro-motion stage	105
5.12	Compliances due to Hinge 1	105
5.13	$\Delta y_{o'}^1$ -displacement caused by the amplification of link, l_1 . Dashed	
	lines represent initial position of the RRR structure. The flexure	
	hinge is drawn as a solid line and the rigid link is drawn as a block $\ .$	107
5.14	$\Delta x^1_{o'}$ -displacement caused by the amplification of link with distance	
	l_4 . Dashed lines represent initial position of the RRR structure. The	
	flexure hinge is drawn as a solid line and the rigid link is drawn as	
	a block.	109
5.15	Calculation of compliances at Point <i>o</i> . Dashed lines represent initial	
	position of the RRR structure. The flexure hinge is drawn as a solid	
	line and the rigid link is drawn as a block	115
(1	The ETA wordshed the form has severalized unions mation stars	101
0.1	ANEXC manifest of atmatiant defermentions of the four hermoniant	131
6.2	ANS IS results of structural deformations of the four-bar compliant	100
(2)	EEA model of the 2 BDB compliant minute motion store	133
6.3	FEA model of the 3-KKK compliant micro-motion stage	140
7.1	Experimental setup - the measurement of the compliances, $\mathbf{C}_{\mathbf{o},\mathbf{F_o}}$	150
7.2	Equivalent forces/moment on the end-effector of the 3-RRR micro-	
	motion stage when moments were applied via the loading rod	151
7.3	Histogram of the measurement data of $\mathbf{C}_{\mathbf{o},\mathbf{F}_{\mathbf{o}}}$	151
7.4	Experimental setup of the measurement of $C_{o,F_{\mathrm{in}}}$	153
7.5	Histogram of the measurement data of $C_{o,F_{\mathrm{in}}}$	154
7.6	Preload mechanism - compressive load on the piezo-actuator (Han-	
	dley, 2006).	155
7.7	Weights were hung at the input location of the micro-motion stage	
	using a pin	155
7.8	Closed-loop PI controller using strain gauge feedback (Handley,	
	2006)	156
7.9	Strain gauge calibration setup	157
7.10	Alignment of the fibre-optic sensor with the axis of the preload mech-	
	anism	158
7.11	Experimental setup of measuring the Jacobian of the 3-RRR micro-	
	motion stage	159
7.12	Schematic of the experimental setup to measure the Jacobian (Lu	
	<i>et al.</i> , 2004)	160
7.13	Histogram of the measurement data of J_{exp}	161

7.14	Side view of the experimental setup of measuring C_{o,F_o}
7.15	Small tilting angle (exaggerated in the diagram) of the end-effector . 167
A.1	Schematic of Michelson interferometer arrangement
A.2	Various types of fringes (Jenkins and White, 1981)
A.3	Intensity distribution of interference fringes
A.4	Attachment of sensor target and mirror on a motorised translation
	stage
A.5	Sensor calibration setup
A.6	Sensor output voltage versus displacement
A.7	Sensor output voltage versus displacement at the most linear region
	of eddy-current sensors
A.8	Sensitivity curves of eddy-current sensors
A.9	Sensitivity curve of fibre-optic sensor
A.10	Temperature effects on the eddy-current sensors
B.1	Eddy-current sensor, 3316
B.2	Eddy-current sensor, 3317
B.3	Eddy-current sensor, 3338
B.4	Fibre-optic sensor - near side
B.5	Fibre-optic sensor - far side

List of Tables

2.1	Differences between the experimentally determined compliances ($\Delta \alpha_z/M_z$)
	of Smith et al. (1997) and the analytical compliances of Paros and
	Weisbord (1965)
3.1	Weights applied on the three flexure hinges to measure the $\Delta \alpha_z$ -
	compliance
3.2	Weights applied on the three flexure hinges to measure the Δy -
	compliance
3.3	A comparison of FEA results to experimental results (this thesis) 46
3.4	A comparison of FEA results to the experimental results of Smith <i>et</i>
	al. (1997)
3.5	Comparisons of various compliance equations to experimental re-
	sults - First flexure hinge, $t = 0.5$ mm, $R = 3$ mm. Paros and Weisbord
	(1965) is referred as PW
3.6	Comparisons of various compliance equations to experimental re-
	sults - Second flexure hinge, $t = 0.7$ mm, $R = 1.87$ mm. Paros and
	Weisbord (1965) is referred as PW
3.7	Comparisons of various compliance equations to experimental re-
	sults - Third flexure hinge, $t = 0.84$ mm, $R = 1.1$ mm. Paros and Weis-
	bord (1965) is referred as PW
3.8	Coefficients of polynomial functions for K_r and K_r
3.9	Suggested compliance/stiffness equations for a particular t/B range
0.15	of circular flexure hinges. PW refers to Paros and Weisbord 59
4.1	Parameters of the PRBM of the four-bar compliant structure 66

4.2	Parameters of the PRBM of the 3-RRR micro-motion stage 72
5.2	Material properties, link lengths and flexure hinge dimensions of the four-bar compliant mechanism
5.3	Flexure hinge equations chosen for Cases 1 and 2 for the derivation of kinetostatics of the four-bar compliant mechanism
5.4	Case studies - Analytical matrices of the kinetostatic model of the
5.5	Material properties, link lengths and flexure hinge dimensions of
5.6	Flexure hinge equations chosen for Cases 1 and 2 for the derivation
5.7	Case studies - Analytical matrices of the kinetostatic model of the 3-RRR micro-motion stage
6.1	FEA compliance and Jacobian matrices of the four-bar compliant mechanism (with rigid-link deformations)
6.2	Analytical results of the four-bar compliant mechanism and their differences compared to FEA results
6.3	Analytical compliance results of the four-bar compliant mechanism and their differences compared to FEA results (links are modelled to have high stiffness in the FEA model)
0.4	stage
6.5	ences compared to FEA results
7.1	Average sensitivities of strain gauges
7.2	Sensitivities of the three eddy-current sensors (0 to 10V)
7.3	Differences between the two experimental Jacobian matrices 162
7.4	Comparison of analytical and FEA results of C_{o,F_o} with that of the experiments $\dots \dots \dots$
7.5	Comparison of analytical and FEA results of $C_{o,F_{in}}$ with that of the
7.6	Comparison of analytical and FEA Jacobians with the experimental Jacobian
A.1	Statistical values of each sensor calibration result
A.2	Summary of the calibration results of the sensors

Abstract

This thesis presents a) a scheme for selecting the most suitable flexure hinge compliance equations, and b) a simple methodology of deriving kinetostatic models of micro-motion stages by incorporating the scheme mentioned above. There were various flexure hinge equations previously derived using different methods to predict the compliances of circular flexure hinges. However, some of the analytical/empirical compliance equations provide better accuracies than others depending on the t/R ratios of circular flexure hinges. Flexure hinge compliance equations derived previously using any particular method may not be accurate for a large range of t/R ratios. There was no proper scheme developed on how to select the most suitable and accurate hinge equation from the previously derived formulations. Therefore, the accuracies and limitations of the previously derived compliance equations of circular flexure hinges were investigated, and a scheme to guide designers for selecting the most suitable hinge equation based on the t/Rratios of circular flexure hinges is presented in this thesis.

This thesis also presents the derivation of kinetostatic models of planar micromotion stages. Kinetostatic models allow the fulfillment of both the kinematics and the statics design criteria of micro-motion stages. A precise kinetostatic model of compliant micro-motion stages will benefit researchers in at least the design and optimisation phases where a good estimation of kinematics, workspace or stiffness of micro-motion stages could be realised. The kinetostatic model is also an alternative method to the finite-element approach which uses commercially available software. The modelling and meshing procedures using finite-element software could be time consuming. The kinetostatic model of micro-motion stages was developed based on the theory of the connection of serial and parallel springs. The derivation of the kinetostatic model is simple and the model is expressed in closed-form equations. Material properties and link parameters are variables in this model. Compliances of flexure hinges are also one of the variables in the model. Therefore the most suitable flexure hinge equation can be selected based on the scheme aforementioned in order to calculate the kinetostatics of micro-motion stages accurately.

Planar micro-motion stages with topologies of a four-bar linkage and a 3-RRR (revolute-revolute-revolute) structure were studied in this thesis. These micromotion stages are monolithic compliant mechanisms which consist of circular flexure hinges. Circular flexure hinges are used in most of the micro-motion stages which require high positioning accuracies. This is because circular flexure hinges provide predominantly rotational motions about one axis and they have small parasitic motions about the other axes. The 3-RRR micro-motion stage studied in this thesis has three-degrees-of-freedom (DOF). The 3-RRR stage consists of three RRR linkages and each RRR linkage has three circular flexure hinges. A Pseudo-Rigid-Body-Model (PRBM), a kinetostatic model and a two-dimensional finite-elementanalysis (FEA) model generated using ANSYS of micro-motion stages are presented and the results of these models were compared. Advantages of the kinetostatic model was highlighted through this comparison. Finally, experiments are presented to verify the accuracy of the kinetostatic model of the 3-RRR micromotion stage.

Statement of Originality

To the best of my knowledge, except where otherwise referenced and cited, everything that is presented in this thesis is my own original work and has not been presented previously for the award of any other degree or diploma in any university. If accepted for the award of the degree of Doctor of Philosophy in Mechanical Engineering, I consent that this thesis be made available for loan and photocopying.

Yuen Kuan Yong

Date

Publications

Publications arising from this thesis

Yong, Y. K., Lu, T.-F. and Handley, D. C., 2003, 'Loop-closure theory in deriving linear and simple kinematic model for a 3 DOF parallel micromanipulator', *Proceedings of SPIE on Device and Process Technologies for MEMS, Microelectronics, and Photonics III, Perth, Australia*, vol. 5276, pp. 57-66

Yong, Y. K., Lu, T.-F. and Handley, D. C., 2007, 'Review of circular flexure hinge design equations and derivation of empirical formulations', *Accepted to be published in the Precision Engineering*

Yong, Y. K. and Lu, T.-F., 2007, 'The effect of the accuracies of flexure hinge equations on the output compliances of planar micro-motion stages', *Accepted to be published in the Mechanism and Machine Theory*

Yong, Y. K. and Lu, T.-F., 'Kinetostatic modelling of 3-RRR compliant micro-motion stages with flexure hinges', *Submitted to the Mechanism and Machine Theory*

Other publications related to compliant micro-motion stages

Handley, D. C., Lu, T.-F. and **Yong, Y. K.**, 'A simple and efficient modelling method for planar flexure hinge compliant mechanisms', *Accepted to be published in the Precision Engineering*

Yong, Y. K., Lu, T.-F. and Minase, J. L., 2006, 'Trajectory following with a three-DOF micro-motion stage', *Australasian Conference on Robotics and Automation, ACRA, Dec. 6-8, Auckland, New Zealand*

Yong, Y. K., Lu, T.-F, Handley, D. C. and Hu, P., 2004, 'A study on the accuracy of kinematic modelling for a 3RRR compliant micro-motion stage with flexure

hinges', Journal of the Chinese Society of Mechanical Engineers, vol. 25, No. 5, pp. 457-464

Yong, Y. K., Lu, T.-F, Handley, D. C. and Hu, P., 2004, 'Kinematics of a 3RRR compliant micro-motion stage: Modelling accuracy improvement', *International Symposium on Precision Mechanical Measurements (ISPMM'2004), Aug.* 24-28, *Beijing, China*

Lu, T.-F, Handley, D. C., **Yong, Y. K.** and Eales, C., 2004, 'A three-DOF compliant micromotion stage with flexure hinges', *An International Journal of Industrial Robot*, vol. 31, No. 4, pp. 355-361

Lu, T.-F, Handley, D. C. and **Yong, Y. K.**, 2004, 'Position control of a 3DOF compliant micro-motion stage', *The Eighth International Conference on Control, Automation, Robotics and Vision, ICARCV 2004, Kunming, China*, pp. 1274-1278

Handley, D. C., Lu, T.-F and **Yong, Y. K.**, 2004, 'Workspace investigation of a 3DOF compliant micro-motion stage, *The Eighth International Conference on Control, Automation, Robotics and Vision, ICARCV 2004, Kunming, China*, pp. 1279-1284

Handley, D. C., Lu, T.-F, **Yong, Y. K.** and Zhang, W. J., 2003, 'A simple and efficient dynamic modeling method for compliant micropositioning mechanisms using flexure hinges', *Proceedings of SPIE on Device and Process Technologies for MEMS*, *Microelectronics, and Photonics III, Perth, Australia*, vol. 5276, pp. 67-76

Acknowledgements

Many people have contributed to make this Ph.D an interesting part of my life. Firstly, I would like to express my great gratitude to my parents who have been supportive and encouraging throughout my Ph.D candidature, and have been very enthusiastic about my Ph.D work.

I would also like to thank my supervisors, Dr. Tien-Fu Lu and Dr. Ley Chen for their supervisions and proof reading of my work. I express my sincerest thanks to Daniel Handley for his help with the experimental equipment; for helping me with the understanding of the research during my early candidature; and for the generosity of spending his precious time sharing his knowledge with me.

I would also like to thank Professor Colin Hansen for his great advice in various aspects of life, and to those unfortunate enough to share an office with me, in particular James Chartres, Danielle Moreau and Jayesh Minase, who tolerated my jokes and my grumpiness. I also owe many thanks to the electronics and instrumentation staff, George Osborne for his innovative ideas and awesome craftsmanship, Silvio De Ieso and Philip Schmidt for their help with the design and construction of the experimental circuitry. I would also like to thank the workshop staff, Richard Pateman, Bill Finch, David Osborne and Bob Dyer for their help with the construction of my experimental apparatus.

I would like to acknowledge the support of the Optics Group from the School of Chemistry and Physics and the use of its facilities. A special thank you to Professor Jesper Munch for his time and his precious advice during the setup of the Michelson laser interferometer experiment. This experiment would not be realised without his generosity of allowing me to access the laser interferometer facilities. I would also like to acknowledge Aidan Brooks who patiently explained to me the concept of laser interferometers. I would like to greatly thank Shu-Yen Lee for her useful tips and tricks about optics.

I must also mention Benson, Oliver and in particular Tina Petrohelos, who have given me a lot of laughters during the final stage of the completion of this thesis. They have made the process of completing this thesis much more delightful and unforgettable.

Finally, I would like to extend my great gratitude to my ex-housemates and friends, in particular Timothy Lau, who have given me many enjoyable weekends, who have distracted me from my work, and who have patiently shared my good and bad experiences during my stay in Adelaide.