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ABSTRACT

This study aimed to determine whether rainfall megjihas driven differentiation in the
Australian perennial gras#ustrodanthonia caespitosa, resulting in local ecotypes
possessing characters, such as deep rootednessmones activity, that may be
particularly useful in reducing deep drainage falirsty mitigation, or whether the
species shows a plastic response in root growtkotb water distribution.Rainfall
regime varies within a given annual rainfall beeag&ze and ditribution of rainfall
event vary. This can have an important effect ahveater distribution, both spatially
and temporally. This study investigates the refetiop between rainfall regime and the
structure of root systems in local populations Afistrodanthonia caespitosa
(Gaudich.), Firstly, it examined a number of indiaeseful in quantifying variation in
small-scale rainfall regime, including seasonaspevent size, event frequency, and the
clustering of events, as well as how rainfall evelze may be changing over time
across Australia. The variation in soil water disttion that results from different
rainfall regimes is expected to interact with rdtribution in plants, either acting as a
selective force and driving genotypic differentati in response to soil water
availability, or through plasticity in root placente The relationship between rainfall
regime and root depth distribution was examinedAustrodanthonia caespitosa
(Gaudich.), or white-top wallaby grass, a perenmgigss common across southern

Australia.

Growth and reproductive traits of plants grown freeeds collected from across the

range of this species under a single rainfall regwere compared and correlated with
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the rainfall indices and soil type in order to efith possible abiotic explanations for
trait variability. Phenological characters werarid to be particularly variable between
ecotypes, but high local variation between ecotyqeggested factors operating on a
spatial scale smaller than the rainfall gradiente &esponsible for population

differentiation.

In order to investigate the interaction betweemfedi event size and root depth, an
experiment was conducted to investigate plant mspdo watering pulse size and
frequency, with plants grown under a range of ailed watering regimes, and root
depth distribution compared. The primary respanseoot growth was plastic, with

shallow roots being developed under small, freqasents, and deep roots developed
under large, infrequent waterings. Differencesveen ecotypes were less important,
and there was no interaction between ecotype andriwg treatment, indicating the

same degree of plasticity in all ecotypes.

Plants from a range of populations were grown urdeontrolled climate, first under
winter conditions, then under summer conditionghvaummer water withheld from

half the plants, in order to determine the respdnssummer watering and summer
drought. Plants that were watered over summer stioav strong growth response,
increasing shoot biomass significantly. This dffaas particularly strong in South
Australian populations, which was unexpected ag thiginate from a region with low,

unpredictable summer rainfall. Root depth was stodngly influenced by summer

watering treatment.

Finally, an evolutionary algorithm model was counsted in order to examine optimal

2-12



plant traits under a variety of rainfall regimeghe model highlighted the importance
of the interaction between rainfall regime and dgie in determining optimal root

placement. Variable root cost with depth was &smd to be an important trade-off to
be considered, with high root loss in the surfamié layers, due to high temperatures,
making a shallow rooted strategy less efficienttliaoot costs were equal throughout

the root system.

Overall, no ecotypes @&.caespitosa could be identified that had characters partidylar
suited to deep drainage reduction, as the drowigrtaint nature of the species, and the
dormancy during times of drought, may lead to laxerall water use. However, it may
be a useful native component in pasture systenmestalits strong growth response to
summer rainfall, a characteristic found to be patérly strong in a number of South

Australian ecotypes.
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