
Profiling
Appendix A

A.1 Generating view-specific textures

Chapter 5 described two algorithms for back-projecting the reference images onto
the hypothesised surface. The first algorithm relied only on OpenGL’s fixed-pipe
functionality, but had to overcome the graphics hardware’s clipping limitations by pre-
processing the scene-graph on the cpu. In contrast, the programmable pipe version
has better scope for manipulating vertex attributes within the graphics hardware and
therefore does not require pre-processing. The disadvantage of this approach is an
increased overhead in the graphics pipe to combine points in world and texture spaces
into a single OpenGL vertex, and a more involved back-face culling process that is
compelled to test each fragment rather than culling an entire triangle at once.

The fixed-pipe algorithm requires significantly more pre-processing for each
instance of the hypothesised geometry, while the programmable pipe-line algorithm
is able to compile the geometry into display lists on the graphics hardware. In
contrast to the programmable pipe’s approach—where all triangles are sent to the
graphics pipe-line—the fixed-pipe algorithm’s pre-processing step can eliminate a large
number of back-facing triangles from further consideration. Consequently, the fixed-
pipe algorithm generates less spurious fragments (ie. ones that do not contribute to
the texture) and is therefore an advantage to graphics hardware with slow fragment
processors.

We profiled the execution time of both the fixed-pipe and programmable-pipe
algorithms in a variety of scene-configurations to determine the relative benefits of
moving the scene pre-processing from the cpu into the vertex-shader. The algorithms’
execution time is a function of four quantities:

! the total number of surface triangles;

! the number of triangles that face toward a reference camera;

163

! the number of front-facing triangles that must be clipped against the reference
camera’s imaging plane; and

! the number of fragments generated by the rasteriser.

The experiments were designed to test the trade-off of pre-processing in software
versus in-hardware processing by varying the number of input triangles; the number of
front-facing triangles; and the number of triangles that are clipped by the imaging plane.
Each test measured the time taken to back-project a single reference image onto the
hypothesised surface; the total execution time including the process of accumulating
all view-specific textures and measuring their consistency is left for the next section.
In each test, a reference image was back-projected onto a given hypothesised scene
configuration 1000 times; the performance is described in terms of the number of view-
specific textures generated per second. The tests were run on a machine with an Intel
Core 2 Quad cpu clocked at 2.4GHz and an nVidia GeForce 8800GT clocked at 600Mhz
with memory bandwidth of 57.6 GB/second. Although the fill rate is an important
factor in both algorithm’s performance, only 512�512 textures were generated. As will be
shown later, neither algorithm is fill-rate limited, and therefore fill-rate will only affect
scale and not relative performance.

A.1.1 Triangle scalability

The overhead related to the algorithms’ per-triangle processing was tested by back-
projecting a reference image onto a tessellated mesh. The mesh is built by dividing
a plane into n triangle strips, where strip comprised 2n triangles. All triangle strips
were front-facing so that both algorithms were compelled to send the same number
of vertices to the graphics pipe, although the fixed-pipe algorithm was still required to
check the orientation of each triangle. The test configuration is illustrated in Figure
A.1(a). The time taken to back-project the reference image onto the surface was
measured over 1000 iterations and illustrated in Figure A.2 against the number triangle
strips in the hypothesised surface.

The results show that the programmable pipe-line version is more efficient than
the fixed-pipe version for a sufficiently complicated scene, but not as efficient for scenes
with less than 4(4�2) triangles. The 32 triangle barrier seems to indicate the saturation
point where both presentation, vertex and fragment shaders units are full. The graph
suggests that the load balance of the fixed-pipe is better until this point by occupying
all three stages. The programmable pipe, in contrast, hardly uses the cpu to present the

164 Profiling—Appendix A

data to the pipe since the algorithm is able to use compiled geometry; it is only until the
fragment processor is saturated that the overhead incurred by the increased per-vertex
processing is mitigated.

A.1.2 Back-facing culling

The back-face culling test determines the advantage of removing back-face triangles
before presenting the scene to the graphics hardware. Figure A.1(b) illustrates the scene
configuration, comprising 5, 000 triangles that projected entirely within the image of
the reference camera. Figure A.3 graphs the texture rate with an increasing proportion
of them facing backwards with respect to the reference camera. As expected, the fixed-
pipe’s rate increases monotonically because backwards facing triangles are not sent to
the graphics pipe. In contrast, the programmable pipe is unaffected by the number
of backwards facing triangles because the back-facing test is applied in the fragment
processor and fragments are textured irrespective of their orientation.

A.1.3 Image-plane clipping

The programmable pipe-line is able to use the OpenGL’s near plane to clip surface
triangles against the reference camera’s imaging plane, unlike the fixed pipe-line, which
must clip the triangles on the cpu. The overhead associated with modifying the
geometry stream was tested by incrementally moving a stack of 1000 quadrilaterals
towards a reference camera. As illustrated in Figure A.1(c), the stack was iteratively
moved towards the camera along the reference camera’s optical axis until the stack was
entirely behind the reference camera’s imaging plane. The stack’s position denotes three
clipping states: firstly, that the stack is not clipped because it is entirely in front of
the camera; secondly, the stack crosses the imaging plane and is therefore subject to
clipping; and, thirdly, that the stack is entirely behind the camera and is therefore not
rendered.

The average texture rate as the stack is translated towards the reference camera
is illustrated in Figure A.4. The results demonstrate that the performance of the
fixed pipe-line algorithm is significantly affected by clipping, unlike the performance
of the programmable pipe-line. The fixed pipe-line clearly indicates three levels of
performance, corresponding to events when the triangle stack begins to be clipped by
the reference camera’s imaging plane at z = −1 and when the stack is entirely behind

Section A.1—Generating view-specific textures 165

n

m

(a) Resolution test.

back-facing
triangles

front-facing
triangles

(b) Back-face culling test.

sweep
direction

area clipped by the
camera’s near-plane

(c) Clipping test.

Figure A.1: The three scenes designed to test the relative performance of the fixed- and
programmable-pipe back-projection algorithms.

the imaging plane at z = 1. As expected, the programmable pipe-line’s performance is
unaffected by clipping because all triangles are sent to the graphics pipe.

A.1.4 Conclusion

Figure A.2 illustrates that the programmable-pipe has a scales better than the fixed-
pipe algorithm. Although the programmable pipe must raster more fragments than
the fixed pipe and—as illustrated by Figures A.3 and A.4—is unaffected by clipping or
removing triangles from the input stream, it is consistently more efficient than the fixed-
pipe algorithm for a sufficient number of triangles. The constant texture rate in Figures
A.3 and A.4 in the case of the programmable pipe algorithm, and—after accounting for
the change in clipping state—in Figure A.4 for the fixed pipe-line, indicates that neither
algorithm is fill-rate limited. Accordingly, the change in texture resolution would affect
only the absolute performance of the two algorithms.

166 Profiling—Appendix A

2 4 4
0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 5 30 35 0 5 50

fixed pipe
programmable pipe

Te
xt

ur
es

 p
er

 se
co

nd

Mesh resolution

Figure A.2: The texture rate with respect to an increasing number of triangles.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
200

400

600

800

1000

1200

1400

fixed pipe
programmable pipe

Te
xt

ur
es

 p
er

 se
co

nd

Back-face:front-face ratio

Figure A.3: The texture rate with respect to an increasing proportion of back-facing triangles.

−2 −1 1 1 2
2000

2500

3000

3500

4000

4500

5000

.5 −1 −0.5 0 0.5 .5

fixed pipe
programmable pipe

Te
xt

ur
es

 p
er

 se
co

nd

Plane translation along the camera’s optical axis

Figure A.4: The texture rate with respect to incrementally clipped triangle stack.

Section A.1—Generating view-specific textures 167

scene configuration geometry

Figure A.5: The scene configuration for evaluating the texture rate with respect to variable
number of cameras and surface complexity.

A.2 Hypothesis evaluation rate

The performance results in Section A.1 only considers the problem of generating a
view-specific texture with respect to a single reference camera. Evaluating the surface-
based likelihood, however, requires generating a view-specific texture for each reference
camera, combining the textures into a composite texture, and evaluating the consistency
of all view-specific textures. A key component of the surface-based likelihood involves
identifying interior surfaces. The complexity of the algorithm described in Section 7.1.2
is squared with respect to the number of surface triangles. The image-based likelihood,
on the other hand, back-projects one reference image onto the hypothesised scene and
renders the result via a second reference camera. Because all image pairs must be
considered, the complexity of the image-based likelihood is squared in the number of
reference cameras.

The performance of both the surface-based and image-based likelihoods was
measured with respect to the scene complexity and number of reference cameras.
This test involved the scene configuration illustrated in Figure A.5, where a ring

168 Profiling—Appendix A

of reference cameras observed two concentric spheres. Because the surface-based
likelihood assumes that primitives are not self-intersecting, two spheres used to ensure
that the interior test must consider the intersection of two surfaces. The number of
triangles comprising each sphere is given by m = 8r(4 � r + 1), where r is the sphere’s
resolution.

The timing results were generated by evaluating an hypothesised configuration
over 1000 iterations using the surface-based and image-based likelihoods. Each evalu-
ation is executed to the point of returning the scalar likelihood for each hypothesised
surface, and the results are reported in terms of number of hypothesises evaluated per
second. The programmable pipe-line algorithm was used to generate the surface-based
likelihood. The three variations of likelihood functions used in the timing tests were:

! Figure A.6(a)—the surface-based likelihood with variable weight composition;

! Figure A.6(b)—the surface-based likelihood with constant weight composition;
and

! Figure A.6(d)–the image-based likelihood.

Figures A.6(a) and A.6(b) illustrate that the surface-based likelihood’s performance is,
as expected, dominated by the number of triangles in the hypothesised surface and
linear with respect to the number of reference cameras. In contrast, Figure A.6(d)
illustrates that the image-based likelihood’s performance is primarily affected by the
number of reference cameras.

The variable weight composition, described in Section 6.3, has a different com-
positing path to that of simply averaging the visible regions over the set of view-specific
textures. The difference in performance between the variable and fixed composition
paths is illustrated in Figure A.6(c). The results are, in general, what we expected: the
variable-weight implementation is slower than the constant-weight implementation,
but that this penalty is amortized as the surface’s complexity increases. Interestingly,
these results show that the constant-weight implementation is slower for a large number
of cameras and few triangles. This result is most likely to be an anomaly when the
system was particularly busy when testing the constant-weight implementation, thereby
skewing the results for this data subset.

Section A.2—Hypothesis evaluation rate 169

mesh
resolution

number of
cameras

hypotheses
per second

(a) Surface-based likelihood with variable compo-
sition.

mesh
resolution

number of
cameras

hypotheses
per second

(b) Surface-based likelihood with constant com-
position.

mesh
resolution

number of
cameras

hypotheses
per second

(c) The variable-weight overhead.

mesh
resolution

hypotheses
per second

number of
cameras

(d) The image-based likelihood.

Figure A.6: The texture rates of the surface-based and image-based likelihoods.

170 Profiling—Appendix A

The Graphics Pipeline
Appendix B

Graphics hardware is very adept at generating synthetic images from a surface described
by a collection of triangles and operations upon them. In the pursuit of increasing
visual realism, the performance of graphics processors has rapidly improved to the point
where it easily outstrips the peak theoretical performance of many general-purpose
processors [40]. This dramatic increase in performance can be largely attributed to
its architecture as a very specialised pipe-lined simd machine.

Recognising that graphics hardware is an exceptionally powerful computational
resource, one of the the key motivations behind the development of the image- and
surface-likelihoods was to perform as much of their computation on graphics hardware
as possible. Although recent advances in graphics hardware continues to relax much of
its rigid pipe-line model, however, it is far from being a completely general processor.
Accordingly, the likelihoods had to be adapted to present the data in a manner
congruent to the graphics pipe. This Appendix describes the order of operations and
the limitations of the graphics pipe-line to give insight into some of the design decisions
underpinning the computation of the photo-consistency likelihoods.

B.1 OpenGL

OpenGL is an api for graphics hardware concerned with rendering planar facets into a
frame-buffer [50]. These facets are defined by a set of vertices which can be assembled
into points, lines, triangles, quadrilaterals, and convex polygons. It does not have a
mechanism for describing complex geometric objects, such as implicit surfaces. These
higher-level surfaces must instead be approximated by a triangular mesh.

A set of attributes is associated with each vertex in the graphics pipe-line. Vertices
are defined by setting graphics state-variables before ‘binding’ a vertex entity when
a vertex position is admitted. A vertex necessarily describes a point in the local co-

171

Pixels

Vertices Modelview
transformEvaluators

Vertex
arrays

Lighting

Texture
co-ordinate
generation

Pixel
operations

Texture
assembly

Texture
mapping

Fog
Rasterisation

Primitive
assembly

Back-face
culling

Viewport
mapping

Frustum
clipping

Clip planes Projection

Scissor
test

Alpha
test

Stencil
test

Depth
test Blending Logic

op
Colour
mask Framebuffer

Vertex shader

Fragment shader

Figure B.1: The OpenGL pipe.

ordinate system, but may also include other attributes such as a normal vector, texture
co-ordinates into multiple texture images, and a primary (and secondary) colour.

A stream of vertices are connected into a stream of facets. This geometry
stream is subject to a number of operations, including transformations, lighting,
texturing, blending, and pixel updates. The OpenGL’s pipe-line abstraction describes
the order of these graphics operations. The pipe-line is essentially a state-machine
which is configured by changing the state of its many variables through the gl api.
These variables affect the operation of the pipe-line itself, including defining the
projection system, the texture to apply to the vertices, and a manner by which the
rasterised triangles are blended with the frame-buffer. The abstract OpenGL pipe-line
is illustrated in Figure B.1 and is composed of three key stages:

! the vertex processor, which can manipulates per-vertex attributes, such as trans-
forming and lighting;

! the fragment processor, which computes colour for points on the surface; and,

! frame-buffer operations, which combines fragments with pixels in the frame-
buffer.

The remainder of this Section describes the operation of the fixed pipe-line. Since
OpenGL 2.0, the vertex and fragment processors have been programmable; small
programmes, or shaders can be executed per-vertex and per-fragment for more exacting

172 The Graphics Pipeline—Appendix B

v2 v2 v1

v1

v0

v0

v2

v1

v0

v2
v1

v0

v2
v1

v0 t0

v2
v1

v0

v2

v1

v0

v1

v2
v2

v0

v1

v2
v2

Figure B.2: The OpenGL vertex processor.

control over geometry attributes, although the input and output of the shaders is
controlled by non-programmable units.

B.1.1 The vertex processor

Vertices can be sent to the graphics pipe-line by the client machine, retrieved from the
vertex array or fabricated by nurbs evaluators. Either way, the input to the graphics
pipe is a stream of incoming vertices describing primitives such as points, lines and
triangles. The vertex processor maps vertices from their local co-ordinate space into
image (or ‘clip’) co-ordinates and perform computation on the vertex attributes prior
to rasterisation. Each incoming vertex is transformed by the 4 � 4 ‘model-view matrix’.
This maps vertices into the camera (or ‘eye’) space where the imaging plane is aligned
with the x/y axis. View-dependent lighting is applied to vertices in this space. Texture
co-ordinates can also be modified by the texture matrix, or generated as a function of
the vertices’ position in eye-space.

After transformation, vertices are assembled into primitives which can be clipped

Section B.1—OpenGL 173

t0

Figure B.3: The OpenGL fragment+frame-buffer engine.

against the arbitrary planes in eye-space. Depending on the primitive’s type, this may
fabricate new vertices along the clipping planes; new vertex attributes are generated by
linear interpolation in this case. Vertices are then projected by a 4�4 projection matrix
into the clip co-ordinate space.

The clip co-ordinate space maps the space visible by the camera into a cube bound
by x = "1, y = "1 and z = "1, representing the camera’s frustum in clip-space. Primitives
are clipped against this cube which may, again, involve fabricating new vertices through
linear interpolation. Primitives that are within the cube and are not facing away from
the camera are mapped to device co-ordinates, the space that corresponds to the actual
frame-buffer rather than an abstract imaging space defined by the normalised clip-cube.

B.1.2 The fragment processor

With the primitive in device co-ordinates, the raster engine converts the projected facet
into a stream of fragments. A fragment corresponds to a point sample in the primitive’s
image space. At least one fragment is generated per pixel, although some anti-aliasing
approaches generate multiple samples per pixel. Associated with each fragment is a set
of attributes—such as position, colour and texture co-ordinates—generated by linearly
interpolating the facet’s vertex attributes.

The fragment processor is responsible for computing the fragment’s final colour
from its attributes. The fragment’s texture co-ordinates are used to find the point, or
texel, in the current texture stored in the texture assembly. The fragment’s texel is
combined with its base colour (a linear interpolation of the lit primary colour defined

174 The Graphics Pipeline—Appendix B

for each vertex) by the texture environment. The texel application can blend or replace
the fragment’s base colour with the texel’s colour. Fog can also be applied by modulating
the fragment’s colour as a function of the distance from the image plane.

B.1.3 Frame-buffer operations

Fragments leave the fragment processor as coloured point-samples and are subject to
a series of tests before being written to the frame-buffer. These per-fragment tests can
remove fragments based on their attributes or by testing the fragment’s attributes against
the corresponding attribute stored in the frame-buffer. Each pixel in the frame-buffer
stores a number of attributes synonymous with many of the fragment’s attributes. The
set of pixel attributes is often described as being a separate buffer; the ‘depth-buffer,’ for
example, stores the depth of the fragment last written to it.

Fragments are tested by a series of filters; only fragments that pass all tests are
written to the frame-buffer. It comprises two tests that can reject a fragment based solely
on its attributes: the scissor test, which accepts fragments that fall within a rectangular
region of the frame-buffer; and the α test, which accepts fragments whose α-channel
passes a Boolean condition.

Fragments are also subject to tests against the frame-buffer attributes associated
with the fragment’s position in the stencil- and depth-buffers. The stencil buffer is
an integer per pixel that can be incremented or decremented, depending on whether
the fragment succeeds or fails the stencil test. For example, the stencil test may reject
fragments if the corresponding stencil pixel is zero, but increment the stencil value in
this case. The depth-test is used to reject fragments that fail a comparison between the
fragment’s depth and its corresponding position in the depth-buffer. The test typically
rejects fragments that are further that previously rendered fragments, but other Boolean
tests for equality can also be used.

The fragments that are not deleted are written into the frame-buffer. This may
involve blending the fragment’s colour with the frame-buffer’s existing colour, replacing
the corresponding value in the depth-buffer and adjusting the stencil value. The blend
equation is of the form,

drgb = fssrgb ' fddrgb (B.1)

dα = f ′s sα ' f ′ddα (B.2)

Section B.1—OpenGL 175

where d and s are the source (the fragment) and destination (the frame-buffer) colours
respectively. The coefficients fs and fd control the weights applied to each colour, and
can be either the source or destination α-channel (or 1 − α), zero or one. The blend
operator, ', can either be addition, subtraction, minimum or maximum of the two
factors.

B.1.4 Summary

Graphics hardware is a powerful computation resource; their theoretical floating point
speed make an compelling argument for adapting computation to make use of them.
Some of the advantages of using graphics hardware include:

! it is highly optimised for 4-element vector arithmetic, including support for dot-
products and therefore 4 � 4 matrix multiplication;

! parallelism through pipe-line abstraction and vertex and fragment units;

! very high bandwidth between graphics processors and graphics memory (but
significantly less bandwidth from the system memory to graphics memory);

! support for triangle clipping to fabricate new vertices with linearly interpolated
vertex attributes along clipping planes;

! a host of per-pixel operations, including depth comparison, colour manipulation,
and arithmetic functions on fragment attributes.

Although much of the graphics pipe-line is programmable, it has a very spe-
cialised and unconventional programming model. For example, while fragments are
free to perform arbitrary texture reads, fragment testing is not programmable and
can only work with the fragment’s corresponding position in the frame-buffer. Other
disadvantages imposed by the graphics programming model include:

! Asymmetrical bandwidth between the graphics hardware and the processor.

! Communication between the system and graphics hardware is restricted to
graphics operations, such as transferring pixels between images and describing
triangle meshes.

! The hardware is free to re-sample and reinterpret pixel data, which can affect
precision and perform unexpected pixel replacements with texture filters.

! References to images are always by point-sampling—never by directly addressing
discrete pixels. Although this is not often a problem for images themselves,

176 The Graphics Pipeline—Appendix B

often images can represent arrays where imprecise look-ups are undesirable.
Furthermore, references to textures always succeed; texture references always
return a valid texel, even if that texel is fabricated by the texture unit.

! OpenGL imposes data-flow limitations. The fragment processor is unable to
write to texture memory, for example, and the fragment processor cannot repo-
sition fragments.

! There is somewhat limited scope for fragment testing; fragments that are not
removed by the fragment processor and fixed fragment-tests are always written
to the frame-buffer.

! The pipe-line ordering is fixed and only subsets of the graphics pipe are pro-
grammable.

Section B.1—OpenGL 177

-z

principal
point

skew

radial
distortion

world co-ordinates

+1

+1

-1

-1

camera
co-ordinates

-x

y

z

x

y

-x

y

optical axis

focal length
optical
centre

Figure B.4: The pin-hole camera model.

B.2 Camera model

The likelihoods described in Chapters 4—7 models the projection of the 3d scene onto
an image plane by a pin-hole camera, illustrated in B.4. The projection p′ of a 3d point
p in scene-space is given by

p′ = Pp, (B.3)

where P is a 3 � 4 ‘projection matrix’ [23]. The projection matrix can be decomposed
into

P = K [R 	 t] (B.4)

where K is the 3�3 intrinsincs matrix, which describes the perspective mapping induced
by the camera’s lens relative to the imaging plane, R is a 3 � 3 rotation matrix and t is a
3 � 1 translation vector. The intrinsics matrix is given by

K =
���������

α f tan(ξ) u
0 f v
0 0 1

���������
(B.5)

178 The Graphics Pipeline—Appendix B

which describes the distance f between the imaging plane and optical centre, the
principal point [u, v]�, the angle ξ between the axes of the imaging plane and the aspect
ratio of the imaging frame.

Our pin-hole camera model uses the same co-ordinate frame as OpenGL. The
imaging frame in this case is defined by the square x = "1, y = "1 in camera co-
ordinates. The projection p′ = Pp = [x , y,w]� is within the image domain if 	 x

w 	 * 1 and
	 y
w 	 * 1. The focal length and principal point are expressed relative to this normalised

image frame. Accordingly, the prior U(−0.01, 0.01) on the principal point in the test
described in Section 4.5.3, for example, corresponds to an uncertainty of 1 in the
imaging plane.

179

Bibliography

[1] Agrawal, M., and Davis, L. A probabilistic framework for surface reconstruction from multiple
images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2001), Kauai, HI, USA (8-14 December 2001), IEEE Computer Society, pp. 470–
476. �13, �28, �82, �153

[2] Baillard, C., and Zisserman, A. A plane-sweep strategy for the 3D reconstruction of buildings
from multiple images. In Proceedings of the Nineteenth International Archives of Photogrammetry
and Remote Sensing (ISPRS 2000), Amsterdam, The Netherlands (16-23 July 2000), Gopher
Publishers, pp. 56–62. �7, �8

[3] Bar-Yehuda, R., and Gotsman, C. Time/space tradeoffs for polygon mesh rendering. Association
for Computing Machinery, Transaction on Graphics 15 (1996), 141–152. �37

[4] Blinn, J. Me and my (fake) shadow. Computer Graphics and Applications 8 (1988), 82–86. �29

[5] Blinn, J. F. Models of light reflection for computer synthesized pictures. Computer Graphics 11, 2
(1977), 192–198. �138

[6] Bonet, J. S. D., and Viola, P. A. Roxels: Responsibility weighted 3D volume reconstruction. In
Proceedings of the Seventh IEEE International Conference on Computer Vision (ICCV 1999), Kerkyra,
Corfu, Greece (20-25 September 1999), IEEE Computer Society, pp. 418–425. �13, �27, �82, �153

[7] Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Levy, B., Bischoff, S., and Roessl, C. Geometric
modeling based on polygonal meshes. Association for Computing Machinery Course Notes,
SIGGRAPH, San Diego, August 2007. �37

[8] Broadhurst, A., and Cipolla, R. A statistical consistency check for the space carving algorithm.
In Proceedings of the British Machine Vision Conference (BMVC 2000) (11-14 September 2000),
British Machine Vision Association, pp. 282–291. �7, �13, �22, �153

[9] Broadhurst, A., Drummond, T., and Cipolla, R. A probabilistic framework for space carving.
In Proceedings of the Eighth International Conference on Computer Vision (ICCV 2001), Vancouver,
BC, Canada (7-14 July 2001), IEEE Computer Society, pp. 388–393. �27, �153

[10] Chernoff, H., and Lehmann, E. L. The use of maximum likelihood estimates in χ2 tests for
goodness-of-fit. The Annals of Mathematical Statistics 25 (1954), 579–586. �150

[11] Collins, R. T. A space-sweep approach to true multi-image matching. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1996), San
Francisco, CA, USA (18-20 June 1996), IEEE Computer Society, pp. 358–363. �14

[12] Crow, F. Shadow algorithms for computer graphics. In Proceedings of the Fourth Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH 1977), San Jose, CA, USA (20-22 July
1977), ACM Press, pp. 242–248. �121

[13] Culbertson, W. B., Malzbender, T., and Slabaugh, G. G. Generalized voxel colouring. In
Proceedings of the International Workshop on Vision Algorithmsm Corfu, Greece (21-22 September
1999), vol. 1883 of Lecture Notes in Computer Science, Springer, pp. 100–115. �7, �18, �21, �25, �29,
�153

[14] Davy, J. R., Deldari, H., and Dew, P. M. Constructive solid geometry using algorithmic
skeletons. In Proceedings of the Fifth Eurographics Workshop on Programming Paradigms in Graphics,
Maastricht, The Netherlands (2-3 September 1995), Springer, pp. 69–84. �158

181

[15] Debevec, P. E., Taylor, C. J., and Malik, J. Modeling and rendering architecture from
photographs: A hybrid geometry- and image-based approach. Computer Graphics 30, Annual
Conference Series (1996), 11–20. �2, �7, �8, �12, �33, �151, �155, �159

[16] Dick, A. R., Torr, P., and Cipolla, R. Automatic 3D modelling of architecture. In Proceedings
of the British Machine Vision Conference (BMVC 2000) (11-14 September 2000), British Machine
Vision Association, pp. 372–381. �3

[17] Dick, A. R., Torr, P., Ruffle, S., and Cipolla, R. Combining single view recognition and
multiple view stereo for architectural scenes. In Proceedings of the Eighth International Conference
on Computer Vision (ICCV 2001), Vancouver, BC, Canada (7-14 July 2001), IEEE Computer Society,
pp. 268–274. �3

[18] Dyer, C. R. Image-based visualization from widely-separated views. In Proceedings of the DARPA
Image Understanding Workshop, Monterey, CA, USA (20-23 November 1998), Morgan Kaufmann,
pp. 101–105. �21, �29

[19] Eisert, P., Steinbach, E., and Girod, B. Multi-hypothesis volumetric reconstruction of 3D
objects from multiple calibrated camera views. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, Phoenix, AZ, USA (15-19 March 1999), IEEE Signal
Processing Society, pp. 3309–3512. �7, �19, �153

[20] Fischler, M. A., and Bolles, R. C. Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the Association for
Computing Machinery 24 (1981), 381–395. �2

[21] Gibson, S., Cook, J., Howard, T. L. J., and Hubbold, R. J. Icarus: Interactive reconstruction from
uncalibration image sequences. In Proceedings of the 29th Conference on Computer Graphics, San
Antonio, Texas, 2002 (21-26 July 2002), ACM Press / ACM SIGGRAPH / Addison Wesley Longman.
�68

[22] Habbecke, M., and Kobbelt, L. Iterative multi-view plane fitting. In Proceedings of the Eleventh
Conference on Vision, Modeling and Visualization (VMV 2006), Aachen, Germany (22-24 November
2006), IOS Press, pp. 73–80. �7, �8

[23] Hartley, R., and Zisserman, A. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2004. �178

[24] Heidmann, T. Real shadows real time. Iris Universe, 18 (1992), 28–31. �122

[25] Hornung, A., and Kobbelt, L. Robust and efficient photo-consistency estimation for volumetric
3D reconstruction. In Proceedings of the Nineth European Conference on Computer Vision (ECCV
2006), Graz, Austria (7-13 May 2006), Lecture Notes in Computer Science, Springer, pp. 179–190.
�12, �22, �153

[26] Isidoro, J., and Sclaroff, S. Stochastic mesh-based multiview reconstruction. In Proceedings of
the First International Symposium on 3D Data Processing Visualization and Transmission (19-21 June
2002), IEEE Computer Society, pp. 568–577. �7, �25, �152, �153

[27] Isidoro, J., and Sclaroff, S. Stochastic refinement of the visual hull to satisfy photometric
and silhouette consistency constraints. In Proceedings of the Nineth International Conference on
Computer Vision (ICCV 2003), Nice, France (14-17 October 2003), IEEE Computer Society, pp. 1335–
1342. �7, �8, �25, �153, �154

[28] Kutulakos, K. N. Approximate n-view stereo. In Proceedings of the Sixth European Conference on
Computer Vision (ECCV 2000), Dublin, Ireland (26 June - 1 July 2000), Lecture Notes in Computer
Science, Springer, pp. 67–83. �7, �22

[29] Kutulakos, K. N., and Seitz, S. M. A theory of shape by space carving. International Journal of
Computer Vision, Marr Prize Special Issue 38, 3 (2000), 199–218. �7, �13, �18, �20, �153, �155

182

[30] Laurentini, A. The visual hull concept for silhouette-based image understanding. IEEE
Transactions on Pattern Analysis and Machine Intelligence 16, 2 (1994), 150–162. �9, �155

[31] Li, M., Magnor, M., and Seidel, H. Hardware-accelerated visual hull reconstruction and
rendering. In Proceedings of the 29th Graphics Interface Conference, Halifax, Nova Scotia (11-13 June
2003), A K Peters, pp. 65–72. �11, �12

[32] Li, M., Magnor, M., and Seidel, H. Improved hardware-accelerated visual hull rendering. In
Proceedings of the Eigth Conference on Vision, Modeling and Visualization (VMV 2003), München,
Germany (19-21 November 2003), IOS Press, pp. 151–158. �12

[33] Li, M., Magnor, M., and Seidel, H. Hardware-accelerated rendering of photo hulls. Computer
Graphics Forum 23, 3 (2004), 635–642. �30, �153

[34] Li, M., Schirmacher, H., Magnor, M., and Seidel, H. Combining stereo and visual hull
information for on-line reconstruction. In Proceedings of the IEEE Workshop on Multimedia and
Signal Processing and Rendering of Dynamic Scenes, St. Thomas, VI, USA (9-11 December 2002),
IEEE Signal Processing Society, pp. 9–12. �13

[35] Matusik, W., Buehler, C., and McMillan, L. Polyhedral visual hulls for real-time rendering.
In Proceedings of the Twelfth Eurographics Workshop on Rendering Techniques, London, UK (25-27
June 2001), Springer, pp. 115–126. �10

[36] Matusik, W., Buehler, C., Raskar, R., Gortler, S. J., and McMillan, L. Image-based visual
hulls. In Proceedings of the 27th Conference on Computer Graphics, New Orleans, Louisiana, USA
(23-28 July 2000), ACM Press / ACM SIGGRAPH / Addison Wesley Longman, pp. 369–374. �11

[37] Montenegro, A. A., Carvalho, P. C. P., and Velho, L. Space carving with a hand-held camera.
In Proceedings of the Symposium on Computer Graphics and Image Processing (SIBGRAPI / SIACG
2004), Curitiba, PR, Brasil (17-20 October 2004), IEEE Computer Society, pp. 396–403. �21, �153

[38] Neal, R. M. Probabilistic inference using markov chain monte carlo methods. Tech. Rep. CRG-
TR-93-1, University of Toronto, 1993. �35, �66

[39] O’Loughlin, J., and O’Sullivan, C. Real-time animation of objects modelled using constructive
solid geometry. In Proceedings of the Fifteenth Spring Conference on Computer Graphics (SCCV
1999), Budmerice, Slovakia (28 April - 1 May 1999), Comenius University, pp. 67–73. �121, �158

[40] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E., and
Purcell, T. J. A survey of general-purpose computation on graphics hardware. In Proceedings
of the European Conference on Computer Graphics, Dublin, Ireland (29 August - 2 September 2005),
Eurographics Association, pp. 21–51. �4, �37, �46, �171

[41] Phong, B. T. Illumination for computer generated pictures. Comm. ACM 18, 6 (June 1975), 311–317.
�162

[42] Piegl, L., and Tiller, W. The nurbs Book. Springer-Verlag, 1995. �156

[43] Ponce, J., Chelberg, D. M., and Mann, W. B. Analytical properties of generalized cylinders and
their projections. In Proceedings of the DARPA Image Understanding Workshop, Los Angeles, CA,
USA (February 1987), Morgan Kaufmann, pp. 340–350. �156

[44] Porter, T., and Duff, T. Compositing digital images. In Proceedings of the Eleventh Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH 1984), July, 1984 (July 1984), ACM
Press, pp. 253–259. �27

[45] Potmesil, M. Generating octree models of 3D objects from their silhouettes in a sequence of
images. Computer Vision, Graphics, and Image Processing 40, 1 (1987), 1–29. �10

[46] Prock, A. C., and Dyer, C. R. Towards real-time voxel coloring. In Proceedings of the DARPA
Image Understanding Workshop, Monterey, CA, USA (20-23 November 1998), Morgan Kaufmann,
pp. 315–321. �21, �29, �153

183

[47] Sainz, M., Bagherzadeh, N., and Susin, A. Carving 3D models from uncalibrated views. In
Proceedings of the Fifth IASTED International Conference on Computer Graphics and Imaging, Kauai,
HI, USA (12-14 August 2002), IASTED/ACTA Press, pp. 144–149. �153

[48] Sainz, M., Bagherzadeh, N., and Susin, A. Hardware accelerated voxel carving. In Proceedings
of the First Ibero-American Symposium in Computer Graphics (SIACG 2002), Guimarães, Portugal
(1-5 July 2002), Eurographics Portuguese Chapter, pp. 289–297. �29, �153

[49] Saito, H., and Kanade, T. Shape reconstruction in projective grid space from large number of
images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 1999), Ft. Collins, CO, USA (23-25 June 1999), IEEE Computer Society, pp. 49–54.
�20

[50] Segal, M., and Akeley, K. The OpenGL graphics system: A specification. Tech. rep., Silicon
Graphics Computer Systems, 1992. �47, �171

[51] Seitz, S., and Dyer, C. Photorealistic scene reconstruction by voxel coloring. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1997), San
Juan, Puerto Rico (17-19 June 1997), IEEE Computer Society, pp. 1067–1073. �7, �13, �14, �15, �20,
�153

[52] Seitz, S., and Dyer, C. Photorealistic scene reconstruction by voxel coloring. International Journal
of Computer Vision 25, 3 (November 1999), 151–173. �153

[53] Sivia, D. S. Data Analysis: A Bayesian Tutorial. Oxford University Press, 1996. �34

[54] Slabaugh, G., Culbertson, B., Malzbender, T., and Schafer, R. Improved voxel colouring via
volumetric optimization. Tech. Rep. 3, Center for Signal and Image Processing, Georgia Institute
of Technology, 2000. �7, �13, �24, �153

[55] Slabaugh, G., Malzbender, T., and Culbertson, W. Volumetric warping for voxel colouring on
an infinite domain. In Proceedings of the Second European Workshop on 3D Structure from Multiple
Images of Large Scale Enviroments, Dublin Ireland (1-2 July 2000), Lecture Notes on Computer
Science, Springer, pp. 109–123. �20, �153

[56] Smelyansky, V. N., Morris, R. D., Kuehnel, F. O., Maluf, D. A., and Cheeseman, P. Dramatic
improvements to feature-based stereo. In Proceedings of the Seventh European Conference
on Computer Vision (ECCV 2002), Copenhagen, Denmark (28-31 May 2002), Lecture Notes in
Computer Science, Springer, pp. 247–261. �7, �29, �148, �153

[57] Smith, A. R. A pixel is not a little square, a pixel is not a little square, a pixel is not a little square!
(and a voxel is not a little cube!). Tech. Rep. 6, Microsoft, 1995. �23

[58] Snow, D., Viola, P., and Zabih, R. Exact voxel occupancy with graph cuts. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2000),
Hilton Head, SC, USA (13-15 June 2000), IEEE Computer Society, pp. 345–353. �11

[59] Steinbach, E., Eisert, P., Girod, B., and Betz, A. 3D Object reconstruction using spatially
extended voxels and multi-hypothesis voxel coloring. In Proceedings of the Fifteenth International
Conference on Pattern Recognition (ICPR 2000), Barcelona, Spain (3-8 September 2000), IEEE
Computer Society, pp. 774–777. �22

[60] Steinbach, E., Girod, B., Eisert, P., and Betz, A. 3D reconstruction of real-world objects using
extended voxels. In Proceedings of the International Conference on Image Processing (ICIP 2000),
Vancouver, BC, Canada (10-13 September 2000), IEEE Computer Society, pp. 569–572. �22

[61] Stevens, M. R., Culbertson, W. B., and Malzbender, T. A histogram-based colour consistency
test for voxel colouring. In Proceedings of the Sixteenth International Conference on Pattern
Recognition (ICPR 2002) (11-15 August 2002), IEEE Computer Society, Quebec City, Canada, pp. 118–
121. �7, �13, �22, �24, �153

184

[62] Szeliski, R. Rapid octree construction from image sequences. Computer Vision and Image
Understanding 58, 1 (July 1993), 23–32. �10, �155

[63] Thormählen, T., Broszio, H., and Mikulastik, P. Robust linear auto-calibration of a moving
camera from image sequences. In Proceedings of the Seventh Asian Conference on Computer Vision,
Hyderabad, India (13-16 January 2006), Lecture Notes in Computer Science, Springer, pp. 71–80.
�140, �142

[64] Thormählen, T., Broszio, H., and Weissenfeld, A. Keyframe selection for camera motion
and structure estimation from multiple views. In Proceedings of the Eighth European Conference
on Computer Vision (ECCV 2004), Prague, Czechoslovakia (11-14 May 2004), Lecture Notes in
Computer Science, Springer, pp. 523–535. �140, �142

[65] Tran, S., and Davis, L. 3D surface reconstruction using graph cuts with surface constraints. In
Proceedings of the Nineth European Conference on Computer Vision (ECCV 2006), Graz, Austria
(7-13 May 2006), Lecture Notes in Computer Science, Springer, pp. 219–231. �13, �26, �153

[66] Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. Bundle adjustment – A modern
synthesis. In Vision Algorithms: Theory and Practice, W. Triggs, A. Zisserman, and R. Szeliski, Eds.,
Lecture Notes in Computer Science. Springer Verlag, 2000, pp. 298–375. �2

[67] Tsai, R. Y. An efficient and accurate camera calibration technique for 3D machine vision. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 1986), Miami, FL, USA (22-26 June 1986), IEEE Computer Society, pp. 364–374. �73, �135

[68] Vogiatzis, G., Torr, P., and Cippola, R. Multi-view stereo via volumetric graph-cuts. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), San Diego, CA, USA (June 20-26 2005), IEEE Computer Society, pp. 391–399. �7, �8,
�26, �153, �154

[69] William, S. A., Press, H., Flannery, B. P., and Vetterling, W. T. Numerical Recipes in C: The
Art of Scientific Computing. Cambridge University Press, 1993. �146

[70] Yang, R., and Pollefeys, M. Multi-resolution real-time stereo on commodity graphics hardware.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2003), Madison, WI, USA (16-22 June 2003), IEEE Computer Society, pp. 211–217. �30, �153

[71] Yang, R., Pollefeys, M., Yang, H., and Welch, G. A unified approach to real-time multi-
resolution. International Journal of Image and Graphics 6 (2004), 565–575. �29

[72] Yang, R., Welch, G., and Bishop, G. Real-time consensus-based scene reconstruction using
commodity graphics hardware. In Proceedings of the Tenth Pacific Conference on Computer Graphics
and Applications, Beijing, China (9-11 October 2002), ICCC Computer Society. �29, �153

185

	APPENDIX A Profiling
	APPENDIX B The Graphics Pipeline
	Bibliography

