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ABSTRACT

An image is a two-dimensional representation of the three-dimensional world. Re-
covering the information which is lost in the process of image formation is one of the
fundamental problems in Computer Vision. One approach to this problem involves
generating and evaluating a succession of surface hypotheses, with the best hypothesis
selected as the final estimate. The fitness of each hypothesis can be evaluated by
comparing the reference images against synthetic images of the hypothesised surface

rendered with the reference cameras.

An infinite number of surfaces can recreate any set of reference images, so many
approaches to the reconstruction problem recover the largest from this set of surfaces.
In contrast, the approach we present here accommodates prior structural information
about the scene, thereby reducing ambiguity and finding a reconstruction which reflects
the requirements of the user. The user describes structural information by defining a set
of primitives and relating them by parameterised transformations. The reconstruction
problem then becomes one of estimating the parameter values that transform the

primitives such that the hypothesised surface best recreates the reference images.

Two appearance-based likelihoods which measure the hypothesised surface against
the reference images are described. The first likelihood compares each reference image
against an image synthesised from the same viewpoint by rendering a projection of
a second image onto the surface. The second likelihood finds the ‘optimal’ surface
texture given the hypothesised scene configuration. Not only does this process max-
imise photo-consistency with respect to all reference images, but it prohibits incorrect
reconstructions by allowing the use of prior information about occlusion. The second

likelihood is able to reconstruct scenes in cases where the first is biased.
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Pr(X)
Pr(X|Y)
L(X|Y)

U(a,b)
N(u0)

x(p)

NOTATION

PROBABILITY

the probability of event X

the conditional probability of event X given Y
the likelihood that X given Y

uniform distribution in the range [a, b]

normal distribution with mean g and standard deviation ¢

IMAGES

the colour of the point p in the image x
the RGB channels of image x

the a-channel of image x

the i reference image

the set of reference images, Z = {r;}

the synthetic image of the hypothesised surface rendered by
camera t while using r, as the surface texture.

the view-specific texture associated with r;
the estimated surface texture

the set of surface textures, C = {t;}

GRrAPHICS P1PE

OpenGL pipe-line’s projection matrix
OpenGL pipe-line’s modelview matrix

OpenGL pipe-line’s texture matrix

paz



2~

“w v =

Tx vz
R, yz

xXyz

camera

illustration

GEOMETRY

Euclidean 3D points and vectors

matrix

row n of matrix M

a geometric primitive

the scene-graph

scene-graph parameter

the scene-graph parameter vector, ¥ = {p;}

an instance of the scene-graph parameterised by the vector ¥

triangle, t = {v,,v,,v,}

PrOJECTIVE GEOMETRY

homogeneous 3D point

4 x 4 translation matrix; subscript indicates free axes
4 x 4 rotation matrix; the subscript indicates free axes
4 x 4 scale matrix; the subscript indicates free axes
intrinsics matrix

extrinsics matrix

3 X 4 projection matrix to map 3p homogeneous points to 2D
homogeneous points, P = KE

4 x 4 projection matrix to map 30 homogeneous points to eye
co-ordinates

graphics projection matrix, P = KE

[LLUSTRATION

»— pixel colour
N—pixel—_

imaging plane, ﬁoptlcal axis & focal length

(this line is not usually shown)

. ®
optical centre —



“The time has come,” the Walrus said,

“«

To talk of many things.”
[ Lewis Carroll
= Through the Looking-Glass
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