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ABSTRACT 

 

The occurrence of Boron (B) toxicity in Australian soils is recognised as a limiting factor for 

cereal productivity. A number of loci conferring tolerance to B toxicity have been identified 

in barley and chromosomally mapped. However, a lack of knowledge relating to the 

physiological and molecular events that occur under B toxicity and the molecular basis for B 

stress tolerance has been a bottleneck in harnessing available genetic diversity in barley and 

wheat. The recent advances in functional genomics provided an opportunity to examine B 

stress in barley in more detail. The aim of this project was to analyse genes differentially 

expressed under B stress in tolerant and intolerant barley to identify candidate genes involved 

in B toxicity tolerance. Two experimental approaches, Suppression Subtractive Hybridization 

(SSH) and microarray were adopted.  

Firstly, SSH was performed to examine gene expression in roots of selected tolerant and 

intolerant doubled haploid lines from a Clipper (B intolerant) X Sahara 3771 (B tolerant) 

mapping population, grown under moderate B stress. The SSH experiment aimed to 

investigate the early transcriptional response of B tolerant barley lines to B stress in order to 

identify the basis for B toxicity tolerance in roots.  

Differential screening of the subtracted library generated from B treated plants identified a 

total of 111 non-redundant clones up-regulated in bulked tolerant lines. On the other hand 94 

clones were differentially expressed under non-treated conditions. Among the clones 

identified from subtracted library generated from B treated plants, metabolism was the largest 

functional category, representing 21% of the clones. The largest functional category in the 

subtracted library generated from non treated plants was cellular transport, representing 19% 

of the clones. Based on sequence similarity, about 170 transcripts identified in this experiment 

were assigned to chromosomal segments (bins) on the three homoeologous genomes of bread 

wheat. In total, 36 clones from the subtracted library generated from B treated plants were 

analysed as candidates. Nine were genetically mapped within the region of B tolerance QTL 

on three chromosomes (2H, 4H and 6H). The genes mapped to 4H and 6H QTL have the 

highest association with these loci in the Clipper X Sahara 3771 doubled haploid mapping 

population. A 4H B tolerance QTL candidate gene was identified as a B transporter gene with 

similarity to the Arabidopsis BOR1 gene. Genes identified to be differentially expressed in the 

tolerant lines from SSH suggest activation of a diverse defence response in the roots of barley 

plants under B stress. Data from SSH experiment indicate that cell wall-plasma membrane-
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cytoskeleton continuum constitute the first action site against B toxicity and the influence of 

toxic B on K+ uptake could be the key initiating factor.  

In the second approach, the Affymetrix 22K Barley1 GeneChipTM was used to investigate B 

stress adaptation processes in barley. Gene expression was profiled in leaves of Sahara 3771 

and Clipper plants grown under various B concentrations. The results show that the two 

genotypes respond differently to B toxicity. The B intolerance of Clipper is expressed through 

the induction of a high number of probe sets (2310) even at a low B concent

In contrast, Sahara 3771 responded to a high B concentration (2000 

induction of only a few hundred (266) probe sets. In Sahara 3771 no change in the expression 

level of any probe  sets showed 

differential expression in Sahara 3771 under three levels of B treatment (500, 1000 and 2000 

-regulated and about 70% were up-regulated in Sahara 

3771 in response to B treatment. Most of the probe sets (59%) up-regulated in Sahara 3771 

did not respond to B treatment in Clipper. These genes are either salt stress responsive or 

related to plant defense and thus could play a key role in protecting barley plants from the 

toxic effects of B.  

Two differentially expressed probe sets annotated as B transporters were identified between 

Sahara 3771 and Clipper under control condition. These two B transporter probe sets did not 

respond to B treatment but showed opposing expression patterns in the two varieties. One of 

these probe sets (Contig21126_at) is similar to the B transporter gene isolated from the SSH 

experiment that maps to the 4H tolerance locus. The map location and expression of this B 

transporter gene suggest that it could be the borate anion efflux transporter predicted by the 

proposed efflux model of B tolerance in Sahara 3771 barley. The other B transporter gene 

(Contig14139_at) showed over expression in Clipper under control condition and could be 

contributing to high B accumulation in Clipper which needs further investigation.  

Data from both experiments have indicated that B toxicity triggers oxidative stress and that 

jasmonate-based signaling plays a key role in B toxicity tolerance. SSH data indicate that 

Sahara 3771 which evolved in the harsh environment of Africa is more efficient in 

osmoregulation and ROS scavenging than Clipper. This trait is likely to give Sahara 3771 an 

edge over Clipper in tolerating toxic the effect of B.  In addition to the efflux mechanism, 

which becomes less efficient with increasing B supply, Sahara 3771 appears to apply a 

number of other mechanisms for alleviating or withstanding toxic B induced stress to sustain 

growth. Some of these mechanisms are already known to be used by plants to cope with a 

number of stresses. 
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LIMMA = Linear Models for Microarray Data Package  

LOD = Log of the Odds 

LOX = lipoxygenase 

LRS = Likelihood Ratio Statistics 

M = mole 

MAPK = mitogen-activated protein kinase  

MAPKK = mitogen-activated protein kinase kinase 

MAPKKK = mitogen-activated protein kinase kinase kinase 

MDHA = monodehydroascorbate  

mg = milligram 

MgCl2 = magnesium chloride 

MIPS = Munich Information Center for Protein Sequences  

MIPs = major intrinsic proteins 

mM = millimole 
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MOPS = 3-(N-morpholino)propanesulfonic acid 

mRNA= messenger ribonucleic acid 

MRP = multidrug resistance-associated protein 

N = nitrogen 

Na+ = sodium ion 

Na2CO3 = sodium carbonate 

NaBC1 = sodium borate cotransporter 1 

NaCl = sodium chloride 

NaCl = sodium chloride 

NAD = nicotinamide adenine dinucleotide 

NADH = reduced form of nicotinamide adenine dinucleotide 

NADP = nicotinamide adenine dinucleotide phosphate 

NADPH = reduced form of nicotinamide adenine dinucleotide phosphate 

NADP-ME = NADP-malic enzyme  

NaHCO3 = sodium bicarbonate 

NCBI = National Center for Biotechnology Information 

NDH = NADH-quinone oxidoreductase 

NdhK = NADH-plastoquinone oxidoreductase subunit K 

ng = nanogram 

NHX = sodium/hydrogen exchanger  

NIL = near isogenic lines  

NIP = nodulin 26 like intrinsic protein 

NO3 = nitrate 

nr = non-redundant 

NRT = nitrate transporter  

O2 = Oxygen molecule 

OH- = hydroxyl ion 

P = probability 



 

x 

 

P32 = phosphorus-32 

PAL = phenylalanine ammonia-lyase 

PCR = polymerase chain reaction 

PEG = poly ethylene glycol 

Pfb = lipid permeability of boric acid  

PIP = plasma membrane intrinsic protein 

PIPES = piperazine-1-4-bis[2-ethanesulfonic acid]  

PO4
3   = phosphate ion 

ppm = parts per million 

PRR73 = pseudo-response regulator 73 

PS = photosystem   

PS1-A = photosystem I P700 apoprotein A1 

qPCR = quantitative polymerase chain reaction 

QTL = quantitative trait loci 

RAB1C= Ras-related protein Rab-35 

RAV2 = regulator of V-ATPase in vacuolar membrane protein 2 

RFLP = restriction fragment length polymorphism 

RG-II = rhamnogalacturonan- II 

RNA = ribonucleic acid 

ROS = reactive oxygen species  

rpm = revolutions per minute 

rRNA = ribosomal RNA 

RT = room temperature 

SAMDC = S- adenosylmethionine decarboxylase  

SARDI = South Australian Research and Development Institute 

SDS = sodium dodecyl sulfate 

SFP = single feature polymorphism 

SIP = small basic intrinsic protein 



 

xi 
 

SLC4 = solute carrier family 4 

SLC4A11= sodium bicarbonate transporter-like protein 11 

SNP = single nucleotide polymorphism 

SO4
2- = sulfate ion 

SOB = super-optimal broth 
 
SOD = superoxide dismutase 

SOS = salt overly sensitive 

SSC = sodium chloride/ sodium citrate 

SSH = Suppression Subtractive Hybridization  

t = metric ton 

TAE = Tris/acetate/EDTA 

TB = tolerant boron 

TC = tolerant control 

T-DNA = transferred DNA 

TIGR = The Institute for Genomic Research 

TIP = tonoplast intrinsic protein 

TM = trans-membrane 

TPX= thiol peroxidase 

Ub = ubiquitin 

UDP = uridine diphosphoglucose 

USPA =universal stress protein A 

UTR = untranslated region 

UV = ultra violet 

V = voltage  

V-ATPase = vacuolar type H+-ATPase 

VDAC = voltage-dependent anion-selective channel protein  

VSP = vegetative storage protein 

W/V = weight/volume 
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YNL275w = nonglycosylated anion transport protein from yeast 
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