The Transcriptional Response of Barley (*Hordeum vulgare* L.) to Boron Toxicity

By

Mahmood Hassan

This thesis is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The School of Agriculture and Wine Waite Agricultural Research Institute The University of Adelaide Australia

December 2007

TABLE OF CONTENTS

Abstract	i
Declaration	ii
Acknowledgement	i
Abbreviations	v
Chapter 1. Literature review	1
1.1. Barley and mineral stress	1
1.1.1 The barley crop	1
1.1.2 <i>Hordeum</i> species and their relationship with wheat	2
1.1.3. Mineral stress	2
1.2. B toxicity and tolerance	3
1.2.1. Natural toxic occurrence of B	3
1.2.2. B toxicity	4
1.2.3. Symptoms of B toxicity	5
1.2.4. Mechanism of tolerance to B toxicity	5
1.3. B chemistry and B complexes	6
1.4. Functional roles of B in plants	8
1.4.1. Role in the cell wall	9
1.4.2. Role in membrane structure and functions	9
1.5. B uptake and translocation	1
1.5.1. Passive B uptake	1
1.5.2. Active carrier mediated B uptake	1
1.5.3. The role of B transporters	1
1.5.4. The role of aquaporins	1
1.5.5. B re-translocation	1
1.6. Carbohydrate metabolism under B toxicity	1
1.7. Protein profile changes under B toxicity	1
1.8. Accumulation and partitioning of B under toxic conditions	1
1.9. B efficiency of crop cultivars under B deficiency and toxicity	1
1.10. Exclusion or efflux as a tolerance mechanism? The tolerance mechanism	
revisited	2
1.11. Genetics of tolerance to B toxicity	
1.11.1. B tolerance genes and QTL in wheat	

1.11.2. B tolerance QTL in barley	26
1.12. Breeding for B toxicity	26
1.13. Genomic approaches	27
1.14. Conclusion	28
1.15. Aims of the project	29
Chapter 2. General materials and methods	30
2.1. Seed germination	30
2.2. Hydroponic system	30
2.3. Nutrient solution	33
2.4. Growth chamber conditions	33
2.5. Leaf symptom score	33
2.6. ICP-MS analysis	34
2.7. Collection and preservation of plant materials for RNA isolation	34
2.8. RNA preparation and handling	35
2.8.1. Total RNA extraction	35
2.8.2. Total RNA cleanup	35
2.8.3. Poly (A) RNA isolation from total RNA	35
2.8.4. Spectrometric quantification of RNA	35
2.8.5. Electrophoresis of RNA on denaturing gel	35
2.8.6. Transferring RNA to nylon membrane by capillary blotting	36
2.9. cDNA synthesis	36
2.10. Agarose gel electrophoresis of DNA	36
2.11. Isolation and purification of DNA fragments from agarose gel	37
2.12. Ligation of DNA to cloning vectors	37
2.13. Introduction of ligated cDNA into <i>E. Coli</i> by electroporation	37
2.14. Colony picking and sub-culturing colonies	37
2.15. Restriction digestions of DNA	38
2.16. Labelling of DNA probes with ³² P	38
2.17. Southern hybridization	38
2.18. Stripping radio labelled probes from membranes	39

Chapter 3. Difference in gene expression between roots of B tolerant and B intolerantbarley grown at high and low B concentrations assayed using suppression subtractivehybridization (SSH)40

3.1. Introduction	40
3.1.1. Experimental strategy	41
3.2. Materials and methods	43
3.2.1. Suppression subtractive hybridization	43
3.2.2. An over-view of the experimental procedures	43
3.2.3. Plant materials	47
3.2.4. RNA extraction	48
3.2.5. Poly(A)+ RNA isolation	49
3.2.6. Subtractive hybridisation and library construction	49
3.2.7. Construction of macroarrays (dot-blots)	50
3.2.8. Southern blot hybridisation for differential screening	50
3.2.9. Quantification of spot intensities	51
3.2.10. Sequence analysis	51
3.2.11. Southern blot hybridisation for mapping candidates	51
3.2.12. cDNA preparation for qPCR analysis	51
3.3. Library constructions and differential screening	52
3.3.1. Library construction	52
3.3.2. Differential screening for genes up-regulated by B treatment in	
the tolerant bulk	52
3.3.3. Differential screening for genes over-expressed in the tolerant	
bulk under control conditions	54
3.4. Results	55
3.4.1. Verification of the selected C x S DH lines	55
3.4.2. Expression profiles from the differential screening for genes	
up-regulated by B treatment in the tolerant bulk	56
3.4.3. Expression profiles from the differential screening for genes	
over-expressed in the tolerant bulk under control condition	59
3.4.4. BLAST search	59
3.4.5. Functional categories of the clones	61
3.4.6. In silico comparative mapping of the clones to wheat deletion	
bins	66
3.4.6.1. Clones bin mapped to wheat homoeologous	
chromosomal group 1	67
3.4.6.2. Clones bin mapped to wheat homoeologous	
chromosomal group 2	67
3.4.6.3. Clones bin mapped to wheat homoeologous	

chromosomal group 3	67
3.4.6.4. Clones bin mapped to wheat homoeologous	
chromosomal group 4	67
3.4.6.5. Clones bin mapped to wheat homoeologous	
chromosomal group 5	68
3.4.6.6. Clones bin mapped to wheat homoeologous	
chromosomal group 6	68
3.4.6.7. Clones bin mapped to wheat homoeologous	
chromosomal group 7	68
3.4.7. Short listing clones for further analysis	77
3.4.8. Chromosomal mapping of the candidates using wheat-barley	
chromosome addition lines by Southern blot analysis	81
3.4.9. Genetic mapping of candidates using mapping populations by	
Southern blot analysis	83
3.4.9.1. Candidates mapped onto 4H QTL	83
3.4.9.2. Candidates mapped onto 2H QTL	85
3.4.9.3. Candidates mapped onto 6H QTL	85
3.4.10. Expression analysis by qPCR	87
3.4.10. 1. Expression of a candidate mapped onto 2H QTL	88
3.4.10.2. Expression of candidates mapped onto 6H QTL	89
3.4.10.3. Expression of candidates mapped onto 4H QTL	90
Chapter 4. Discussion (SSH)	95
4.1. Introduction	95
4.2. The 4H and 6H B tolerance locus candidates for B exclusion	96
4.3. Further SSH clones with potential involvement in B toxicity tolerance	98
4.3.1. Enhanced respiration and meeting energy demand for B efflux	98
4.3. 2. K ⁺ ion homeostasis	99
4.3.3. Carbohydrate metabolism	101
4.3.4. Cell wall synthesis	102
4.3.5. Osmoregulation	103
4.3.6. Detoxification of cellular environment (ROS scavenging,	
detoxification and repairing stress damages)	104
4.3.7. Sequestration as a possible B tolerance mechanism	105
4.3.8. A hint of lignifications	107
4.3.9. Stress perception and cellular signalling under B stress	107

4.3.10. Involvement of the Ubiquitin(Ub)/proteasome pathway	108
4.3.11. Involvement of transcription factors	109
4.4. Summary	110
Chapter 5: Expression profiling of B tolerant and intolerant barley using	
GeneChip TM Barley Genome Array	112
5.1. Introduction	112
5.2. Experimental strategy	113
5.3. Methods and materials	114
5.3.1. GeneChip TM Barley Genome Array (Affymetrix 22K Barley1	
GeneChip TM)	114
5.3.2. Plant materials	115
5.3.3. RNA extraction and processing	115
5.3.4. Microarray hybridisation	116
5.3.5. Statistical analysis of microarray data	116
5.3.6. Probe set annotations	116
5.3.7. Microarray expression validation by Real-Time qPCR	116
5.4. Results	119
5.4.1. Development of leaf symptoms due to B stress in Clipper	
and Sahara	119
5.4.2. The transcriptional responses of Clipper and Sahara barley to	
B treatment	122
5.4.3. Real-Time, qPCR validation of microarray expression results	125
5.4.4. Down-regulated transcripts in Sahara	128
5.4.5. Up-regulated transcripts in Sahara	129
5.4.5.1. Up-regulated in Sahara, no change in Clipper	129
5.4.5.2. Up-regulated both in Sahara and Clipper	132
5.4.5.3. Up-regulated in Sahara and down-regulated in Clipper	132
5.4.6. Expression difference between Clipper and Sahara control	
Plants	134
Chapter 6. Discussion (Microarray)	140
6.1. Introduction	140
6.2. Is the differential expression of transcripts enabling the Sahara plant to	
overcome B stress?	140
6.2.1. Down-regulated transcripts in Sahara	140

6.2.2. Up-regulated transcripts in Sahara	142
6.3. Constitutively differentially expressed transcripts in relation to B toxicity	
tolerance	145
6.4. Summary	146
Chapter 7. General discussion	149
Bibliography	158
APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	
APPENDIX E	

LIST OF FIGURES

Figure A. Influx of B in Sahara 3771 and Schooner barley roots during short –term exposure to nutrient solution containing 5 mM B and efflux after removal of B	22
Figure B. Short-term influx of B to the roots of Halberd and WI*MMC wheat exposed to 1 mM B	22
Figure C. Efflux of B from wheat roots after removal of B	22
Figure 2.1. View of the hydroponic tanks from above showing the arrangement of plants	31
Figure 2.2. Photo of the plants growing in a hydroponic tank with the lid uncovered to show how the plants were grown	32
Figure 3.1. Flowchart of the steps involved in the suppression subtractive hybridization	44
Figure 3.2. Schematic presentation of the molecular events of the SSH	45
Figure 3.3. Autoradiograph of type F1 membrane hybridized with forward (i) and reverse (ii) subtracted ³² P labelled cDNA probes	53
Figure 3.4. Autoradiograph of type R1 membrane hybridized with forward (i) and reverse (ii) subtracted ³² P labelled cDNA probes	53
Figure 3.5. Autoradiograph of type F2 membrane hybridized with forward (i) and reverse (ii) subtracted ³² P labelled cDNA probes	54
Figure 3.6. Results of the verification of the individual lines of the bulks showing shoot B concentrations and leaf symptom scores	55
Figure 3.7. Mean shoot B concentration of the tolerant and intolerant bulks after growing the plants for two weeks at 1 mM B	56
Figure 3.8. Scatter plot of signal intensities of each spot on membrane F1 (a) and R1 (b)	57
Figure 3.9. Scatter plot of signal intensities of each spot on membrane F2	58
Figure 3.10. Distribution and overlap of the candidates producing known protein hits from the B treated and control library	60
Figure 3.11. Distribution of the clones (producing known protein hits) from the B treated library into functional categories	63
Figure 3.12. Distribution of the clones (producing known protein hits) from the control library into functional categories	65

Figure 3.13. Candidates from non-treated (blue font) and B treated (red font)

	library mapped on deletion bins of wheat homeologous chromosomal group 1	6
Figure 3.14.	• Candidates from non-treated (blue font) and B treated (red font) library mapped on deletion bins of wheat homeologous chromosomal group 2	70
Figure 3.15.	• Candidates from non-treated (blue font) and B treated (red font) library mapped on deletion bins of wheat homeologous chromosomal group 3	7
Figure 3.16.	• Candidates from non-treated (blue font) and B treated (red font) library mapped on deletion bins of wheat homeologous chromosomal group 4	72
Figure 3.17.	• Candidates from non-treated (blue font) and B treated (red font) library mapped on deletion bins of wheat homeologous chromosomal group 5	7
Figure 3.18.	• Candidates from non-treated (blue font) and B treated (red font) library mapped on deletion bins of wheat homeologous chromosomal group 6	74
Figure 3.19.	• Candidates from non-treated (blue font) and B treated (red font) library mapped on deletion bins of wheat homeologous chromosomal group 7	7
Figure 3.20.	Decision tree used to shortlist initial candidates for further analysis	7
Figure 3.21.	Candidates genetically mapped on the 4H B tolerance QTL	8
Figure 3.22.	Candidates genetically mapped on the 2H B tolerance QTL	8
Figure 3.23.	Candidates genetically mapped on the 6H B tolerance QTL	8
Figure 3.24.	The precise map location of B4.2 on the 6H B tolerance QTL	8
Figure 3.25.	Accumulation of Tn1_2B7 (S-adenosylmethionine decarboxylase precursor) transcripts (normalized mRNA copy/ μ l) in bulked root RNA of the tolerant and intolerant lines without B and 200 μ M B treatment for 24 hours.	8
Figure 3.26.	• Accumulation of B4.2 (bromo-adjacent homology (BAH) domain- containing protein-like protein) transcripts (normalized mRNA copy/ μ l) in bulked root RNA of the tolerant and intolerant lines without B and 200 μ M B treatment for 24 hours	8
Figure 3.27.	• Accumulation of Tn1_2C4 (ATP/ADP carrier protein) transcripts (normalized mRNA copy/ μ l) in bulked root RNA of the tolerant and intolerant lines without B and 200 μ M B treatment for 24 hours.	9

Figure 3.28. Accumulation of Tn1_2A12 transcripts (normalized mRNA

	$copy/\mu l$) in bulked root RNA of the tolerant and intolerant lines without B and 200 μ M B treatment for 24 hours	91
Figure 3.29.	Accumulation of NMAP1D5 transcripts (normalized mRNA copy/ μ l)in bulked root RNA of the tolerant and intolerant lines without B and 200 μ M B treatment for 24 hours	92
Figure 3.30.	B concentrations in the shoots of Clipper and Sahara plants used to isolate RNA for qPCR analysis	92
Figure 3.31.	Accumulation of NMAP1D5 transcripts (normalized transcript copy/µl cDNA) in the Clipper and Sahara roots under non-treatment condition and different B treatments at different time-points	93
Figure 3.32.	Accumulation of NMAP1D5 transcripts (normalized transcript copy/µl cDNA) in the Clipper and Sahara shoots under non-treatment condition and different B treatments at different time-points	94
Figure 5.4.1.	Leaf symptom expression in Clipper barley grown at a range of B concentrations	120
Figure 5.4.2.	Leaf symptom expression in Sahara barley grown at a range of B concentrations	121
Figure 5.4.3.	Venn diagrams illustrating the number of probe sets differentially regulated by B	123
Figure 5.4.4.	Summary of sequence similarity searches of 286 probe sets differentially regulated by B in Sahara using BLASTx against the NCBI non-redundant (nr) database	124
Figure 5.4.5.	Responses of probe sets in Clipper that were seen to be up- or down- regulated in Sahara	125
Figure 5.4.6.	Comparison of microarray expression profile of selected probe sets with expression data obtained from real-time qPCR analysis	126
Figure 5.4.7.	Fold change categories and the category wise numbers of probe sets over-expressed in Sahara relative to their expression in Clipper	134
Figure 5.4.8.	Fold change categories and the category wise numbers of probe sets over-expressed in Clipper relative to their expression in Sahara	135
Figure 5.4.9.	RMA normalised expression (expressed as log base 2) in Clipper and Sahara plants under control condition and various B treatments of all three probe sets having sequence similarity with B transporters featured in the Affymetrix 22K Barley1 GeneChip TM (Contig21126_at, Contig14139_at and	
	Contig19634_at)	139

LIST OF TABLES

Table 1.1. Critical tissue B concentration for B toxicity	
Table 2.1. Composition of the ACPFG cereal growth nutrient solu used to grow plants hydroponically	ution
Table 2.2. Scale used to score leaf symptoms in barley due to B to	oxicity 34
Table 3.1. Shoot B concentration (ppm) of the C X S DH lines us	ed for SSH 47
Table 3.2. Genetic make-up at different B tolerance loci of the bu	lks 48
Table 3.3. Summary of the sequence similarity searches using BL against the NCBI non-redundant (nr) database	ASTx 54
Table 3.4. Redundant clones from the B treated and non-treated li with their relative abundance	brary 61
Table 3.5. Percentage of clones from both the B treated and non- libraries that could be assigned to different wheat hom chromosomal groups	treated noeologous
Table 3.6. List of the short-listed initial candidates for further ana	lysis 80
Table 3.7. Results of chromosomal mapping of the short listed car using wheat-barley addition lines	ndidates 82
Table 5.1. Various B treatments for Sahara and Clipper plants	115
Table 5.2. Primer sequences of the probe sets subjected to validat real-time qPCR	ion test by 118
Table 5.3. Probe sets up-regulated (≥2 fold) in Sahara alone but n differentially regulated in Clipper by B treatments	ot 133
Table 5.4. Annotations of probe sets over-expressed in Sahara with change ratio of 16 and above their expression in Clipped	th a fold er 136
Table 5.5. Annotations of probe sets over-expressed in Clipper with change ratio of 16 and above their expression in Sahara	ith a fold a137

ABSTRACT

The occurrence of Boron (B) toxicity in Australian soils is recognised as a limiting factor for cereal productivity. A number of loci conferring tolerance to B toxicity have been identified in barley and chromosomally mapped. However, a lack of knowledge relating to the physiological and molecular events that occur under B toxicity and the molecular basis for B stress tolerance has been a bottleneck in harnessing available genetic diversity in barley and wheat. The recent advances in functional genomics provided an opportunity to examine B stress in barley in more detail. The aim of this project was to analyse genes differentially expressed under B stress in tolerant and intolerant barley to identify candidate genes involved in B toxicity tolerance. Two experimental approaches, Suppression Subtractive Hybridization (SSH) and microarray were adopted.

Firstly, SSH was performed to examine gene expression in roots of selected tolerant and intolerant doubled haploid lines from a Clipper (B intolerant) X Sahara 3771 (B tolerant) mapping population, grown under moderate B stress. The SSH experiment aimed to investigate the early transcriptional response of B tolerant barley lines to B stress in order to identify the basis for B toxicity tolerance in roots.

Differential screening of the subtracted library generated from B treated plants identified a total of 111 non-redundant clones up-regulated in bulked tolerant lines. On the other hand 94 clones were differentially expressed under non-treated conditions. Among the clones identified from subtracted library generated from B treated plants, metabolism was the largest functional category, representing 21% of the clones. The largest functional category in the subtracted library generated from non treated plants was cellular transport, representing 19% of the clones. Based on sequence similarity, about 170 transcripts identified in this experiment were assigned to chromosomal segments (bins) on the three homoeologous genomes of bread wheat. In total, 36 clones from the subtracted library generated from B treated plants were analysed as candidates. Nine were genetically mapped within the region of B tolerance QTL on three chromosomes (2H, 4H and 6H). The genes mapped to 4H and 6H QTL have the highest association with these loci in the Clipper X Sahara 3771 doubled haploid mapping population. A 4H B tolerance QTL candidate gene was identified as a B transporter gene with similarity to the Arabidopsis BOR1 gene. Genes identified to be differentially expressed in the tolerant lines from SSH suggest activation of a diverse defence response in the roots of barley plants under B stress. Data from SSH experiment indicate that cell wall-plasma membranecytoskeleton continuum constitute the first action site against B toxicity and the influence of toxic B on K^+ uptake could be the key initiating factor.

In the second approach, the Affymetrix 22K Barley1 GeneChipTM was used to investigate B stress adaptation processes in barley. Gene expression was profiled in leaves of Sahara 3771 and Clipper plants grown under various B concentrations. The results show that the two genotypes respond differently to B toxicity. The B intolerance of Clipper is expressed through the induction of a high number of probe sets (2310) even at a low B concentration of 100 μ M. In contrast, Sahara 3771 responded to a high B concentration (2000 μ M) through the induction of only a few hundred (266) probe sets. In Sahara 3771 no change in the expression level of any probe sets was observed at 100 μ M B. Altogether 286 probe sets showed differential expression in Sahara 3771 under three levels of B treatment (500, 1000 and 2000 μ M). About 30% of these were down-regulated and about 70% were up-regulated in Sahara 3771 did not respond to B treatment in Clipper. These genes are either salt stress responsive or related to plant defense and thus could play a key role in protecting barley plants from the toxic effects of B.

Two differentially expressed probe sets annotated as B transporters were identified between Sahara 3771 and Clipper under control condition. These two B transporter probe sets did not respond to B treatment but showed opposing expression patterns in the two varieties. One of these probe sets (Contig21126_at) is similar to the B transporter gene isolated from the SSH experiment that maps to the 4H tolerance locus. The map location and expression of this B transporter gene suggest that it could be the borate anion efflux transporter predicted by the proposed efflux model of B tolerance in Sahara 3771 barley. The other B transporter gene (Contig14139_at) showed over expression in Clipper under control condition and could be contributing to high B accumulation in Clipper which needs further investigation.

Data from both experiments have indicated that B toxicity triggers oxidative stress and that jasmonate-based signaling plays a key role in B toxicity tolerance. SSH data indicate that Sahara 3771 which evolved in the harsh environment of Africa is more efficient in osmoregulation and ROS scavenging than Clipper. This trait is likely to give Sahara 3771 an edge over Clipper in tolerating toxic the effect of B. In addition to the efflux mechanism, which becomes less efficient with increasing B supply, Sahara 3771 appears to apply a number of other mechanisms for alleviating or withstanding toxic B induced stress to sustain growth. Some of these mechanisms are already known to be used by plants to cope with a number of stresses.

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I consent to this copy of my thesis, when deposited in University Library, being available for loan and photocopying.

Mahmood Hassan

December 2007

ACKNOWLEDGEMENT

This work was made possible with contributions and support from a number of people during the course of this study. I wish to thank and express my gratitude to the following people.

I wish to express my sincere gratitude and indebtness to my supervisors, Dr Ute Baumann, Dr. Tim Sutton and Dr Klaus Oldach for their continuous guidance and help throughout the study. I also thank my supervisors for their constructive criticisms and suggestions during the preparation of this dissertation.

I would particularly like to express my gratitude to Professor Peter Langridge, CEO, ACPFG, for his support in setting up my research goal and giving me the opportunity to conduct the research in his laboratory. I would like to express my appreciation to Peter for his valuable suggestions in the planning of the experimental strategies of this research. I would also like to profoundly thank him for his support and encouragement during the preparation of this thesis.

Thanks are also due to Professor Mark Tester, Federation fellow, ACPFG, for his valuable suggestions and advice in planning the design of the microarray experiment.

I would like to express my sincere thanks to the members of ACPFG who have helped me at different stages of this work. I would like to specially thank Dr Ursula Langridge for supplying all the seeds for this experiment. Sincere thanks are also due to Dr Juan Juttner for his initial help in setting up the hydroponic system. I am also thankful to Ms Margaret Pallotta for supplying mapping data and helping in my Southern hybridization mapping. Thanks are due to Mr Ben Lovell for helping me with DNA fingerprinting and Natalia Tikhomirov for printing dot blots for SSH. I would like to express my appreciation to Dr Julie Hayes and Dr Stephanie Agius for their encouragement during the study.

Finally, I express my gratitude to my wife Kalpona, whose immense sacrifice made this work possible. I sincerely thank her for her patience, understanding and encouragement and appreciation in carrying out this study. I also feel indebted to my children Adrian and Fahri for their sacrifice and patience throughout the study.

This study was financially supported by the Australian Centre for Plant Functional Genomics.

List of Abbreviations

- $(B[OH]_3)$ or $H_3BO_3 =$ boric acid
- (O_2) = superoxide
- µF =microfarrad
- $\mu g = microgram$
- $\mu M = micromole$
- 12-OPDA = 12-oxo-phytodienoic acid

13S-HPOT = 13(S)-hydroperoxy-9(Z),ll(E),15(Z)-octadecatrienoic acid; a-ketol, 12-oxo-13-hydroxy-9(Z),15(Z)-octadecadienoic acid

- 4CL = 4-coumarate:CoA ligase
- A9C = anthracene-9-carboxylic acid
- ABC = ATP binding cassette
- ACPFG = Australian Centre for Plant Functional Genomics
- ADP = adenosine diphosphate
- AE = anion exchanger
- AGRF = Australian Genome Research Facility
- AOC = allene oxide cyclase
- AOS = allene oxide synthase
- AQP9 = animal aquaporin9
- ATP = adenosine 5'-triphosphate
- $\mathbf{B} = \mathbf{boron}$
- $B[OH]_4 = borate$
- BAC = bacterial artificial chromosome
- BADH = betaine aldehyde dehydrogenase
- BLAST = Basic Local Alignment Search Tool
- BOR1= boron transporter 1
- $Br^{-} = bromine ion$

BSA = Bovine Serum Albumin

bZIP = Basic Leucine Zipper

C X S = Clipper X Sahara

C4H = cinnamate 4-hydroxylase

CA II = carbonic anhydrase II

 $Ca^{2+} = calcium ion$

CaMV = Cauliflower Mosaic Virus

cDNA = complementary DNA

CDS = coding sequence

CeSA 1= cellulose synthase A catalytic subunit 1

CeSA 3= cellulose synthase A catalytic subunit 3

CEV1= constitutive expression of VSP1 protein 1

CHCA = α -cyano-4-hydroxycinnamic acid

CHS = chalcone synthase

CIMMIT = International Maize and Wheat Improvement Center (Centro Internacional de Mejoramiento del Maíz y del Trigo)

- $Cl^{-} = chlorine ion$
- cM = centimorgan

cm = centimeter

CPRF2 = light-inducible protein CPRF-2

cRNA = complementary RNA

CS = Chinese Spring

Cyt = cytochrome

dATP = 2-deoxyadenosine 5'-triphophate

dCTP =2-deoxycytidine 5'-triphophate

DEPC =diethylpolycarbonate

dGTP = 2-deoxyguanosine5'-triphosphate

DH = doubled haploid

DHA = dehydroascorbate

DI = deionized

- DIDS = 4,4'-di-isothiocyanostilbene-2,2'-disulfonic acid
- DPC = diphenylamine-2carboxilic acid
- dTTP = 2-deoxythymidine 5'-triphophate

dw= dry weight

- ECM = extra-cellular matrix
- EDTA = ethylendiaminetetracacetic acid
- EST = expressed sequence tag
- FDR = false discovery rate
- fw = fresh weight
- GB = glycine betaine
- GDH = glutamate dehydrogenase
- GLP = germin-like protein
- GONST = golgi nucleotide sugar transporter
- GPI= glucosylphospatidyl-inositol
- GPX = glutathione peroxidise
- GRP94 =94-kDa glucose related protein
- GSH = reduced glutathione
- GST = glutathione S transferase
- H^+ = hydrogen ion/ proton
- $H_2O_2 = hydrogen peroxide$
- HAC1 = histone acetyltransferase HAC1
- $HAK = high-affinity K^+$ uptake systems
- HATS = high-affinity nitrate transport system
- HCO_3^- = bicarbonate ion
- $HgCl_2 = mercuric chloride$
- HIF = heterogeneous inbred families

HsBTR1= Homo sapiens bicarbonate transporter-related protein 1

- HSP = heat shock protein
- HVGI = TIGR Barley gene index
- I^{-} = iodine ion
- ICARDA = International Center for Agricultural Research in the Dry Areas

ICP-MS = Inductively Coupled Plasma Mass Spectrometry

- ITB = intolerant boron
- ITC = intolerant control
- JA = jasmonic acid
- JAFA = Joined Assembly of Function Annotations
- kDa = kiloDalton
- kg = kilogram
- K_m = Michaelis-Menten kinetics coefficient
- LB = Luria broth
- LIMMA = Linear Models for Microarray Data Package
- LOD = Log of the Odds
- LOX = lipoxygenase
- LRS = Likelihood Ratio Statistics
- M = mole
- MAPK = mitogen-activated protein kinase
- MAPKK = mitogen-activated protein kinase kinase
- MAPKKK = mitogen-activated protein kinase kinase kinase
- MDHA = monodehydroascorbate
- mg = milligram
- $MgCl_2 = magnesium chloride$
- MIPS = Munich Information Center for Protein Sequences
- MIPs = major intrinsic proteins
- mM = millimole

MOPS = 3-(N-morpholino)propanesulfonic acid

mRNA= messenger ribonucleic acid

MRP = multidrug resistance-associated protein

N = nitrogen

 $Na^+ = sodium ion$

 $Na_2CO_3 = sodium carbonate$

NaBC1 = sodium borate cotransporter 1

NaCl = sodium chloride

NaCl = sodium chloride

NAD = nicotinamide adenine dinucleotide

NADH = reduced form of nicotinamide adenine dinucleotide

NADP = nicotinamide adenine dinucleotide phosphate

NADPH = reduced form of nicotinamide adenine dinucleotide phosphate

NADP-ME = NADP-malic enzyme

 $NaHCO_3 = sodium bicarbonate$

NCBI = National Center for Biotechnology Information

NDH = NADH-quinone oxidoreductase

NdhK = NADH-plastoquinone oxidoreductase subunit K

ng = nanogram

NHX = sodium/hydrogen exchanger

NIL = near isogenic lines

NIP = nodulin 26 like intrinsic protein

 $NO_3 = nitrate$

nr = non-redundant

NRT = nitrate transporter

 $O_2 = Oxygen$ molecule

 $OH^{-} = hydroxyl ion$

P = probability

 $P^{32} = phosphorus-32$

- PAL = phenylalanine ammonia-lyase
- PCR = polymerase chain reaction
- PEG = poly ethylene glycol
- $Pf_b = lipid$ permeability of boric acid
- PIP = plasma membrane intrinsic protein
- PIPES = piperazine-1-4-bis[2-ethanesulfonic acid]

 PO_4^{3-} = phosphate ion

- ppm = parts per million
- PRR73 = pseudo-response regulator 73

PS = photosystem

- PS1-A = photosystem I P700 apoprotein A1
- qPCR = quantitative polymerase chain reaction
- QTL = quantitative trait loci
- RAB1C= Ras-related protein Rab-35
- RAV2 = regulator of V-ATPase in vacuolar membrane protein 2
- RFLP = restriction fragment length polymorphism
- RG-II = rhamnogalacturonan- II
- RNA = ribonucleic acid
- ROS = reactive oxygen species
- rpm = revolutions per minute
- rRNA = ribosomal RNA
- RT = room temperature
- SAMDC = *S* adenosylmethionine decarboxylase
- SARDI = South Australian Research and Development Institute
- SDS = sodium dodecyl sulfate
- SFP = single feature polymorphism
- SIP = small basic intrinsic protein

SLC4 = solute carrier family 4

SLC4A11= sodium bicarbonate transporter-like protein 11

SNP = single nucleotide polymorphism

 $SO_4^{2-} = sulfate ion$

SOB = super-optimal broth

SOD = superoxide dismutase

SOS = salt overly sensitive

SSC = sodium chloride/ sodium citrate

SSH = Suppression Subtractive Hybridization

t = metric ton

TAE = Tris/acetate/EDTA

TB = tolerant boron

TC = tolerant control

T-DNA = transferred DNA

TIGR = The Institute for Genomic Research

TIP = tonoplast intrinsic protein

TM = trans-membrane

TPX= thiol peroxidase

Ub = ubiquitin

UDP = uridine diphosphoglucose

USPA =universal stress protein A

UTR = untranslated region

UV = ultra violet

V = voltage

V-ATPase = vacuolar type H^+ -ATPase

VDAC = voltage-dependent anion-selective channel protein

VSP = vegetative storage protein

W/V = weight/volume

YNL275w = nonglycosylated anion transport protein from yeast