
Computer algebra derives the slow manifold of

macroscale holistic discretisations in two dimensions

Tony MacKenzie∗ A. J. Roberts†

March 2009

Abstract

Recent developments in dynamical systems theory provides new
support for the discretisation of pdes and other microscale systems.
By systematically resolving subgrid microscale dynamics the new ap-
proach constructs asymptotically accurate, macroscale closures of the
microscale dynamics of the pde. Here we explore the methodology for
problems with two spatial dimensions. The algebraic detail is enor-
mous so we detail computer algebra procedures to handle the com-
plexity. However, only low order models can be constructed purely
algebraically; higher order models in 2D appear to require a mixed
numerical and algebraic approach that is also detailed. Being based
upon the computation of residuals, the procedures here may be simply
adapted to a wide class of reaction-diffusion equations.

Contents

1 Introduction 2
∗Department of Mathematics and Computing, University of Southern Queensland,

Toowoomba, Queensland 4352, Australia.
†Corresponding author: School of Mathematical Sciences, University of Adelaide,

South Australia 5005, Australia. mailto:anthony.roberts@adelaide.edu.au

1

mailto:anthony.roberts@adelaide.edu.au

1 Introduction 2

2 Construct the algebraic slow manifold 4
2.1 Initialisation . 4
2.2 Iteratively construct the slow manifold 6
2.3 Scrounge an extra order of evolution using solvability 8
2.4 Derive the finite difference form 10
2.5 Obtain the equivalent PDE at full coupling 12

3 Numerically construct the slow manifold 14
3.1 Initialisation . 14
3.2 Iteratively construct the slow manifold 16
3.3 LU decomposition . 20
3.4 LU back substitution . 22

References 23

1 Introduction

We extend the dynamical systems, holistic, approach to the macroscale dis-
crete modelling [6, 10, 9, e.g.] to two dimensional, homogeneous, nonlinear
reaction-diffusion equations. As a particular example, this report considers
in detail the real valued, two dimensional, Ginzburg–Landau equation

∂u

∂t
= ∇2u+ α(u− u3) . (1)

We choose this 2D real Ginzburg–Landau equation as a prototype pde be-
cause it is well studied and its dynamics well understood [3, 5, e.g.]. This
report details the construction by computer algebra of the macroscale dis-
crete model of its dynamics in two spatial dimensions. The general theoret-
ical support, the performance and the physical interpretation are detailed
elsewhere.

Place the discrete modelling of two dimensional, reaction-diffusion equations
within the purview of centre manifold theory by dividing the domain into
overlapping square elements and introducing special interelement coupling
conditions. In this initial study, divide the domain into a set of overlapping

Tony Roberts, March 28, 2009

1 Introduction 3

square elements. Define a grid of points (xi, yj) with, for simplicity, constant
spacing h. The i, jth element, Ei,j, is then centred upon (xi, yj) and of
width ∆x = ∆y = 2h . Define that vi,j(x, y, t) denotes the field in the
i, jth element and so evolves according to the Ginzburg–Landau pde (1).
Using the parameter γ to control the strength of the coupling, use coupling
conditions around the i, jth element of

vi,j(xi±1, y, t) = γvi±1,j(xi±1, y, t) + (1− γ)vi,j(xi, y, t), |y− yj| < h ,

(2)

vi,j(x, yj±1, t) = γvi,j±1(x, yj±1, t) + (1− γ)vi,j(x, yj, t), |x− xi| < h .

(3)

These are a natural extension to 2D of those established for 1D dynamics [9,
e.g.]. Then centre manifold theory [1, 2, 4, e.g.] assures us of the exis-
tence, relevance and approximation of a slow manifold, macroscale model
parametrised by a measure of the amplitude in each element and the cou-
pling strength γ.

Section 2 gives computer algebra that satisfies the pde (1) and ibcs (2)–(3)
to residuals of O

(
γ3 + α3

)
. The computer code gives subgrid fields, which

are too complex to record here. The corresponding evolution of the grid
values on the slow manifold are

u̇i,j =
γ

h2
δ2ui,j + α

(
ui,j − u3

i,j

)
−

γ2

12h2
δ4ui,j + αγ

(
1
12δ

2u3
i,j − 1

4u
2
i,jδ

2ui,j

)
+O

(
γ3 + α3

)
, (4)

where the centred difference operator applies in both spatial dimensions,

δ2ui,j = ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j ,

δ4ui,j = ui+2,j + ui−2,j + ui,j+2 + ui,j−2

− 4(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) + 12ui,j ,

This model is the extension to two spatial dimensions of the O
(
γ3 + α3

)
holistic model of the 1D Ginzburg–Landau equation [7].

However, although low order accuracy models such as (4) can be constructed
algebraically, it appears that higher order models cannot. Thus Section 3

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 4

details computer algebra to numerically solve for the microscopic subgrid
scale field. Its application here to the discretisation of the Ginzburg–Landau
pde (1) serves as a proof of principle for applying the holistic method to
general pdes of two or more spatial dimensions.

2 Construct the algebraic slow manifold

Computer algebra code to generate analytic holistic discretisations of reaction-
diffusion pdes in 2D. Different pdes are analysed by changing the nonlinear
term. Higher order models are constructed by changing the order of ne-
glected terms. Unfortunately, analytic construction can only be carried out
to low order accuracy.

All code is written in the computer algebra package Reduce.1

2.1 Initialisation

Set some parameters to improve printing of the results.

.. casm2d //

% see cadsmmd2d.pdf for documentation
on div; off allfac; on revpri;
factor gam,h,x,y,alfa;

Subgrid variables The subgrid, intraelement, structures are functions of
intraelement microscale variables xi = (x− xi)/h and yi = (y− yj)/h.

.. casm2d //+

depend xi,x;
let df(xi,x)=>1/h;
depend yi,y;

1http://www.reduce-algebra.com

Tony Roberts, March 28, 2009

http://www.reduce-algebra.com

2 Construct the algebraic slow manifold 5

let df(yi,y)=>1/h;

Parametrise the slow manifold Parametrise the slow manifold, macroscale,
evolution by the evolving grid values u(i,j) = ui,j such that dui,j/dt = g.

.. casm2d //+

operator u;
depend u,t;
let df(u(~k,~m),t)=>sub({i=k,j=m},g);

The linear, slow subspace, approximation is that of piecewise constant fields
and no evolution.

.. casm2d //+

v:=u(i,j);
g:=0;

Set asymptotic truncation Here scale nonlinearity parameter α with
parameter γ so we truncate to residuals and errors of order O

(
α3 + γ3

)
.

.. casm2d //+

let gam^3=>0;
alpha:=alfa*gam;

General multinomial For the method of undetermined coefficients we set
up a general multinomial solution with unknown coefficients cc(m,n), up
to order o in the intraelement variables. Collect the unknown coefficients
in the set cs. Operator ugh makes it easier to equate coefficients of the
multinomial.

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 6

.. casm2d //+

o:=6;
operator cc;
vv:=for m:=0:o sum for n:=0:o-m sum cc(m,n)*xi^m*yi^n$
cs:=for m:=0:o join for n:=0:o-m collect cc(m,n)$
operator ugh;
linear ugh;
depend xi,xy; depend yi,xy;
let ugh(xi^~m*yi^~n,xy)=>z^(n-2+(m+n-4)*(m+n-3)/2);

2.2 Iteratively construct the slow manifold

Now start the iteration, repeating corrections until all residuals are zero.

.. casm2d //+

it:=0$
repeat begin

Compute residuals of governing equations Compute the residual of
the reaction-diffusion pde in the general i, jth element. Could easily change
the reaction term to any polynomial in the field v. Could also incorporate
advection terms into the microscale pde.

.. casm2d //+

de:=df(v,t)-df(v,x,2)-df(v,y,2)-alpha*(v-v^3);

Compute the residuals of the interelement coupling ibcss.

.. casm2d //+

bcr:=sub(xi=1,v)-sub(xi=0,v)
-gam*(sub({xi=0,i=i+1},v)-sub(xi=0,v));

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 7

bcl:=sub(xi=-1,v)-sub(xi=0,v)
-gam*(sub({xi=0,i=i-1},v)-sub(xi=0,v));

bct:=sub(yi=1,v)-sub(yi=0,v)
-gam*(sub({yi=0,j=j+1},v)-sub(yi=0,v));

bcb:=sub(yi=-1,v)-sub(yi=0,v)
-gam*(sub({yi=0,j=j-1},v)-sub(yi=0,v));

For information as to the progress of the iteration, print out the length of
the residuals: when this is five, then all residuals are probably zero.

.. casm2d //+

write lengths:=length(de)+length(bcr)+length(bcl)
+length(bct)+length(bcb);

Add the as yet unknown corrections To find the desired update in
each iteration, first substitute the form of the update into the computed
residuals.

.. casm2d //+

deq:=de+gd-df(vv,x,2)-df(vv,y,2);
rbcr:=bcr+sub(xi=1,vv)-sub(xi=0,vv);
lbcl:=bcl+sub(xi=-1,vv)-sub(xi=0,vv);
tbct:=bct+sub(yi=1,vv)-sub(yi=0,vv);
bbcb:=bcb+sub(yi=-1,vv)-sub(yi=0,vv);

Solve for the corrections Then extract equate coefficients of each power
of the multinomial in the intraelement variables.

.. casm2d //+

eqns:=ugh(xi^2*yi^2*deq,xy);
eqns:=append(coeff(eqns,z),cc(0,0).

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 8

append(coeff(rbcr,yi),append(coeff(lbcl,yi),
append(coeff(tbct,xi),coeff(bbcb,xi)))));

sol:=solve(eqns,gd.cs);

Update Update the field and the evolution, assuming a solution was found
(not true for higher orders).

.. casm2d //+

v:=v+sub(sol,vv);
g:=g+sub(sol,gd);

Terminate End the iteration when all residuals are zero, or too many
iterations have been performed.

.. casm2d //+

showtime;
end until {de,bcr,bcl,bct,bcb}={0,0,0,0,0} or (it:=it+1)>10;

2.3 Scrounge an extra order of evolution using solvability

First define the linear integral operator inthat(a,xi) =
∫1

−1(1− |ξ|)adξ in
order to quickly apply the solvability condition.

.. casm2d //+

operator inthat;
linear inthat;
let { inthat(~a^~p,~b)=>0 when (a=b)and(not evenp(p))
, inthat(~a^~p,~b)=>2/(p+1)/(p+2) when (a=b)and evenp(p)
, inthat(~a,~b)=>0 when (a=b)
, inthat(1,~b)=>1

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 9

};

Set the requisite next order of truncation in the asymptotic expansion by
finding the highest order currently retained in coupling γ, then setting to
discard terms of two orders higher.

.. casm2d //+

o:=deg((1+gam)^9,gam)$
if o=1 then let gam^3=>0;
if o=2 then let gam^4=>0;

Compute exactly the same residuals of the pde and the interelement cou-
pling conditions.

.. casm2d //+

de:=df(v,t)-df(v,x,2)-df(v,y,2)-alpha*(v-v^3)$
bcr:=sub(xi=1,v)-sub(xi=0,v)

-gam*(sub({xi=0,i=i+1},v)-sub(xi=0,v))$
bcl:=sub(xi=-1,v)-sub(xi=0,v)

-gam*(sub({xi=0,i=i-1},v)-sub(xi=0,v))$
bct:=sub(yi=1,v)-sub(yi=0,v)

-gam*(sub({yi=0,j=j+1},v)-sub(yi=0,v))$
bcb:=sub(yi=-1,v)-sub(yi=0,v)

-gam*(sub({yi=0,j=j-1},v)-sub(yi=0,v))$

Compute the next correction to the evolution g by integrating the residual of
the pde over an element, and including the contributions from the boundary
coupling residuals.

.. casm2d //+

gd:=inthat(de,xi)$
gd:=inthat(gd,yi)$
gd:=gd+inthat(bcr+bcl,yi)/h^2+inthat(bct+bcb,xi)/h^2;
g:=g-gd$

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 10

showtime;

2.4 Derive the finite difference form

For some reason this code section appears to clash with the code for the
equivalent pde, so only do these sections conditionally via ‘if’ statements
like this.

.. casm2d //+

if 1 then begin
// finitediff ..
end;

Define linear finite difference operators in the two different spatial directions:
the spatial direction is indicated by the third letter in the operator name;
the first two letters are md = µδ or dd = δ2.

.. finitediff //

operator mdx; operator mdy;
operator ddx; operator ddy;

These operators only act on the macroscale grid values ui,j so make them
linear in the symbol u.

.. finitediff //+

linear mdx; linear mdy;
linear ddx; linear ddy;

These finite difference operators commute so define the cannonical form to
be that the operators in a factor must appear in the order mdx, mdy, ddx
and ddy. Insist on this order by the following commute rules.

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 11

.. finitediff //+

let { mdy(mdx(~a,u),u)=>mdx(mdy(a,u),u)
, ddx(mdx(~a,u),u)=>mdx(ddx(a,u),u)
, ddy(mdx(~a,u),u)=>mdx(ddy(a,u),u)
, ddx(mdy(~a,u),u)=>mdy(ddx(a,u),u)
, ddy(mdy(~a,u),u)=>mdy(ddy(a,u),u)
, ddy(ddx(~a,u),u)=>ddx(ddy(a,u),u)

Also code the operator rule that µ2 = 1+ δ2/4 .

.. finitediff //+

, mdx(mdx(~a,u),u)=>ddx(a,u)+ddx(ddx(a,u),u)/4
, mdy(mdy(~a,u),u)=>ddy(a,u)+ddy(ddy(a,u),u)/4
};

Apply the transformation rule, step-by-step, that the spatial shift E±1 =

1± µδ+ δ2/2. First do this transformation on powers of variables.

.. finitediff //+

goo:=(g where {u(i,j)=>u
,u(i+~k,~j)^~p=>u(i+k-1,j)^p+mdx(u(i+k-1,j)^p,u)

+1/2*ddx(u(i+k-1,j)^p,u) when k>0
,u(i+~k,~j)^~p=>u(i+k+1,j)^p-mdx(u(i+k+1,j)^p,u)

+1/2*ddx(u(i+k+1,j)^p,u) when k<0
,u(~i,j+~k)^~p=>u(i,j+k-1)^p+mdy(u(i,j+k-1)^p,u)

+1/2*ddy(u(i,j+k-1)^p,u) when k>0
,u(~i,j+~k)^~p=>u(i,j+k+1)^p-mdy(u(i,j+k+1)^p,u)

+1/2*ddy(u(i,j+k+1)^p,u) when k<0
})$

Second do the same shift transformation on the simple variables to give the
operator form of the macroscale discrete model in goo.

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 12

.. finitediff //+

write goo:=(goo where {u(i,j)=>u
,u(i+~k,~j)=>u(i+k-1,j)+mdx(u(i+k-1,j),u)

+1/2*ddx(u(i+k-1,j),u) when k>0
,u(i+~k,~j)=>u(i+k+1,j)-mdx(u(i+k+1,j),u)

+1/2*ddx(u(i+k+1,j),u) when k<0
,u(~i,j+~k)=>u(i,j+k-1)+mdy(u(i,j+k-1),u)

+1/2*ddy(u(i,j+k-1),u) when k>0
,u(~i,j+~k)=>u(i,j+k+1)-mdy(u(i,j+k+1),u)

+1/2*ddy(u(i,j+k+1),u) when k<0
});

Finish with the compute time.

.. finitediff //+

showtime;

2.5 Obtain the equivalent PDE at full coupling

For some reason this code section appears to clash with the code in the
previous section, so only do these sections conditionally via ‘if’ statements
like this.

.. casm2d //+

if 0 then begin
// equivpde ..
end;

Print the right-hand side of the slow manifold discretisation dui,j/dt = gg
for full coupling.

Tony Roberts, March 28, 2009

2 Construct the algebraic slow manifold 13

.. equivpde //

write gg:=sub(gam=1,g);

Write the equivalent pde in terms of a symbol uu(p,q) to denote the deriva-
tive ∂p+qu/∂xp∂

q
y.

.. equivpde //+

operator uu;

Replace all grid shifts of u by derivatives of uu. Compute to order o which
hopefully is of high enough order to show everything of interest.

.. equivpde //+

o:=8$
gpde:=(gg where u(~k,~l)=> uu(0,0)
+(for q:=1:o sum uu(0,q)*(l-j)^q*h^q/factorial(q))
+(for p:=1:o sum uu(p,0)*(k-i)^p*h^p/factorial(p))
+(for p:=1:o sum for q:=1:o-p sum

uu(p,q)*(k-i)^p*(l-j)^q*h^(p+q)/factorial(p)/factorial(q))
)$

Write out the pde, omitting high powers of grid spacing h. This truncation
and the order o have to be changed together.

.. equivpde //+

write gpde:=(gpde where h^7=>0);

Finish with the compute time.

.. equivpde //+

showtime;

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 14

Give the overall grand final ‘end’ statement, then output all the code.

.. casm2d //+

end;

3 Numerically construct the slow manifold

Instead of trying to solve analytically for the subgrid scale structure, here
solve for the structure numerically.

3.1 Initialisation

Improve the format of printing.

.. ncsm2d //

% see cadsmmd2d.pdf for documentation
on div; off allfac; on revpri;
factor h,alfa,gam;

Load routines to do the LU decomposition, Section 3.3, and subsequent back
substitutions, Section 3.4.

.. ncsm2d //+

in "lu_decomp.red"$
in "lu_backsub.red"$

The subgrid, microscale, numerical resolution is improved by increasing n,
needs to be even. The subgrid grid step is dx = h/n and the number of
equations and unknowns is nn = N = (2n+ 1)2 + 1 .

.. ncsm2d //+

n:=2$

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 15

dx:=h/n$
nn:=(2*n+1)^2+1$

Define the matrices used to store the subgrid, and to represent and solve
the equations. The scope of matrices are global in Reduce.

.. ncsm2d //+

matrix eqns(nn,1);
matrix indx(nn,1);
matrix vv(nn,1);
matrix lu(nn,nn);
matrix v(2*n+1,2*n+1)$

Parametrise the slow manifold The slow manifold of the macroscale
discretisation is to be parametrised by the evolution of ui,j = u(i,j). The
evolution dui,j/dt = gi,j = g/h2 and unknown updates are stored in gd.

.. ncsm2d //+

operator u;
depend u,t;
let df(u(~k,~m),t)=>sub({i=k,j=m},(g+gd)/h^2);

Initialise with constant field in v = vi,j and no evolution g = 0. Also add in
the unknown update field ud.

.. ncsm2d //+

g:=0$
operator ud;
matrix vd(2*n+1,2*n+1)$
for ii:=1:(2*n+1) do for jj:=1:(2*n+1) do begin

v(ii,jj):=u(i,j)$
vd(ii,jj):=ud(ii,jj)$

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 16

end;
v:=v+vd$

Set asymptotic truncation Truncate the asymptotic expansion in pow-
ers of the coupling parameter γ = gam. Here scale the nonlinearity pa-
rameter α = a with γ to most easily control the truncation. Also ignore
the ‘updates’ when multiplied by the small parameter so that the equations
remain linear in the updates.

.. ncsm2d //+

let { gam^4=>0, ud(~i,~j)*gam=>0};
a:=alfa*gam;

3.2 Iteratively construct the slow manifold

Repetitively find updates to the subgrid microscale field until all residuals
are zero.

.. ncsm2d //+

iter:=0$
repeat begin
iter:=iter+1;

For convenience define the fields in the neighbouring elements.

.. ncsm2d //+

vr:=sub(i=i+1,v);
vl:=sub(i=i-1,v);
vt:=sub(j=j+1,v);
vb:=sub(j=j-1,v);

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 17

In the first iteration we find the equations and then the LU factorisation;
in later iterations we just find the residuals. First the amplitude condition
that ui,j is the field at he central point of each element.

.. ncsm2d //+

if iter=1 then eqns(1,1):=ud(n+1,n+1) else eqns(1,1):=0;

Then set the very corner of the subgrid field to zero as they are not used.

.. ncsm2d //+

if iter=1 then
<< eqns(2,1):=ud(1,1); eqns(3,1):=ud(1,2*n+1);
eqns(4,1):=ud(2*n+1,1); eqns(5,1):=ud(2*n+1,2*n+1) >>
else << eqns(2,1):=0; eqns(3,1):=0;
eqns(4,1):=0; eqns(5,1):=0 >>;

Now adjoin the residuals of the interelement coupling conditions, using
eq_count to count the number of equations.

.. ncsm2d //+

eq_count:=6;
for ll:=2:(2*n) do begin

eqns(eq_count,1):=v(2*n+1,ll)-v(n+1,ll)
-gam*(vr(n+1,ll)-v(n+1,ll));

eq_count:=eq_count+1;
eqns(eq_count,1):=v(1,ll)-v(n+1,ll)

-gam*(vl(n+1,ll)-v(n+1,ll));
eq_count:=eq_count+1;
eqns(eq_count,1):=v(ll,2*n+1)-v(ll,n+1)

-gam*(vt(ll,n+1)-v(ll,n+1));
eq_count:=eq_count+1;
eqns(eq_count,1):=v(ll,1)-v(ll,n+1)

-gam*(vb(ll,n+1)-v(ll,n+1));
eq_count:=eq_count+1;

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 18

end;

Adjoin the residuals of the interior subgrid equations which are a simple
centred difference approximation to the pde.

.. ncsm2d //+

for ii:=2:(2*n) do begin
for jj:=2:(2*n) do begin

eqns(eq_count,1):=h^2*(df(v(ii,jj),t)
-(v(ii+1,jj)+v(ii-1,jj)+v(ii,jj+1)
+v(ii,jj-1)-4*v(ii,jj))/(dx^2)
-a*v(ii,jj)+a*v(ii,jj)^3);
eq_count:=eq_count+1;

end;
end;

In the first iteration, the above residuals will incorporate the unknown up-
dates symbolically. Extract these unknowns and assign their coefficients to
the lu matrix. Then perform the LU decomposition for later use. Lastly
remove the symbolic unknowns.

.. ncsm2d //+

if iter=1 then begin
for ii:=1:nn do begin

temp:=coeff((-eqns(ii,1)+art*xx^nn where
{ud(~k,~m)=>xx^(k+(m-1)*(2*n+1)),
gd=>xx^nn,u(~k,~m)=>0}),xx);

for jj:=1:nn do
lu(ii,jj):=part(temp,jj+1);

end;
lu:=(lu where art=>0);
lu_decomp();
eqns:=(eqns where {ud(~i,~j)=>0});
gd:=0;

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 19

v:=(v where ud(~i,~j)=>0);
end;

Use the factorisation stored in lu to solve for the updates, and assign to the
relevant g and v.

.. ncsm2d //+

lu_backsub();
g:=g+eqns(nn,1);
for ii:=1:(2*n+1) do

for jj:=1:(2*n+1) do
v(ii,jj):=v(ii,jj)+eqns((jj-1)*(2*n+1)+ii,1);

Terminate the loop when all residuals are zero. Check if all the residuals
are zero to the specified order of error, by clearing zero_res if any residual
is non-zero.

.. ncsm2d //+

zero_res:=1;
for ii:=1:nn do if not(eqns(ii,1)=0) then zero_res:=0;
showtime;
end until zero_res;

Lastly, restore the factor of h2 in the evolution.

.. ncsm2d //+

g:=g/h^2;

Conditionally derive the finite difference form of the evolution.

.. ncsm2d //+

if 0 then begin
// finitediff ..

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 20

end;

Conditionally derive the equivalent pde for this model.

.. ncsm2d //+

if 1 then begin
// equivpde ..
end;

Give the grand final ‘end’ statement, then output all the code.

.. ncsm2d //+

end;

3.3 LU decomposition

This LU decomposition is adapted from Numerical recipes in Fortran 77 [8].
Requires matrices lu(n,n), indx(n,1) and eqns(n,1) to be predefined.
Matrices are global in scope in Reduce so we do not bother passing param-
eters.

.. lu_decomp //

% see cadsmmd2d.pdf for documentation, from Press et al.
procedure lu_decomp;
begin scalar n,np,i,j,k,imax,dd,aamax,dum,sum,tiny;

tiny:=1.0e-20;
n:=first(length(lu));
dd:=1;
for i:=1:n do begin
aamax:=abs(lu(i,1));
for j:=2:n do aamax:=max(aamax,abs(lu(i,j)));
vv(i,1):=1/aamax;

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 21

end;
for j:=1:n do begin
for i:=1:(j-1) do

lu(i,j):=lu(i,j)-(for k:=1:(i-1) sum lu(i,k)*lu(k,j));
aamax:=0;
for i:=j:n do begin

lu(i,j):=lu(i,j)-(for k:=1:(j-1) sum lu(i,k)*lu(k,j));
dum:=vv(i,1)*abs(lu(i,j));
if dum>=aamax then begin
imax:=i;
aamax:=dum;

end;
end;
if not(j=imax) then begin

for k:=1:n do begin
dum:=lu(imax,k);
lu(imax,k):=lu(j,k);
lu(j,k):=dum;

end;
dd:=-dd;
vv(imax,1):=vv(j,1);

end;
indx(j,1):=imax;
if lu(j,j)=0 then lu(j,j):=tiny;
if not(j=n) then begin

dum:=1/lu(j,j);
for i:=(j+1):n do lu(i,j):=lu(i,j)*dum;

end;
end;

end;
end;

Tony Roberts, March 28, 2009

3 Numerically construct the slow manifold 22

3.4 LU back substitution

This LU back substitution is adapted from Numerical recipes in Fortran 77 [8].
Requires matrices lu(n,n), indx(n,1) and eqns(n,1) to be predefined: the
first two must be obtained from procedure lu_decomp; and the last may be
algebraic. Matrices are global in scope in Reduce so we do not bother passing
parameters.

.. lu_backsub //

% see cadsmmd2d.pdf for documentation, from Press et al.
procedure lu_backsub;
begin scalar n,i,j,ii,ll,sum;

n:=first(length(lu));
ii:=0;
for i:=1:n do begin
ll:=indx(i,1);
sm:=eqns(ll,1);
eqns(ll,1):=eqns(i,1);
if not(ii=0) then

sm:=sm-(for j:=ii:(i-1) sum lu(i,j)*eqns(j,1))
else if not(sm=0) then ii:=i;
eqns(i,1):=sm;

end;
for i:=n step -1 until 1 do eqns(i,1):=(eqns(i,1)

-(for j:=(i+1):n sum lu(i,j)*eqns(j,1)))/lu(i,i);
end;
end;

Acknowledgement The Australian Research Council Discovery Project
grants DP0774311 and DP0988738 helped support this research.

Tony Roberts, March 28, 2009

References 23

References

[1] J. Carr. Applications of centre manifold theory, volume 35 of Applied
Math Sci. Springer-Verlag, 1981.

[2] J. Carr and R.G. Muncaster. The application of centre manifold theory
to amplitude expansions. II. infinite dimensional problems. J. Diff.
Eqns, 50:280–288, 1983.

[3] J.D. Gibbon. Weak and strong turbulence in the complex Ginzburg-
Landau equation. In G.R. Sell, C. Foais, and R. Temam, editors,
Turbulence in fluid flows–A dynamical systems approach, volume 55
of The IMA volumes in mathematics and its applications, pages 33–48.
Springer-Verlag, 1993.

[4] Y. A. Kuznetsov. Elements of applied bifurcation theory, volume 112 of
Applied Mathematical Sciences. Springer–Verlag, 1995.

[5] C.D. Levermore and M. Oliver. The complex Ginzburg-Landau equa-
tion as a model problem. In P. Deift, C.D. Levermore, and C.E. Wayne,
editors, Dynamical systems and probabilistic methods in partial differ-
ential equations, volume 35 of Lectures in Applied Mathematics, pages
141–190. American Mathematical Society, 1996.

[6] T. Mackenzie and A. J. Roberts. Holistic finite differences accu-
rately model the dynamics of the Kuramoto–Sivashinsky equation.
ANZIAM J., 42(E):C918–C935, 2000. http://anziamj.austms.org.
au/V42/CTAC99/Mack.

[7] Tony MacKenzie. Create accurate numerical models of complex spatio-
temporal dynamical systems with holistic discretisation. PhD thesis,
University of Southern Queensland, 2005.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical recipes in FORTRAN. The art of scientific comput-
ing. CUP, 2nd edition, 1992. http://www.library.cornell.edu/nr/
cbookfpdf.html.

Tony Roberts, March 28, 2009

http://anziamj.austms.org.au/V42/CTAC99/Mack
http://anziamj.austms.org.au/V42/CTAC99/Mack
http://www.library.cornell.edu/nr/cbookfpdf.html
http://www.library.cornell.edu/nr/cbookfpdf.html

References 24

[9] A. J. Roberts. A holistic finite difference approach models linear dy-
namics consistently. Mathematics of Computation, 72:247–262, 2002.
http://www.ams.org/mcom/2003-72-241/S0025-5718-02-01448-5.

[10] A.J. Roberts. Holistic discretisation ensures fidelity to Burgers’ equa-
tion. Applied Numerical Mathematics, 37:371–396, 2001.

Tony Roberts, March 28, 2009

http://www.ams.org/mcom/2003-72-241/S0025-5718-02-01448-5

	Introduction
	Construct the algebraic slow manifold
	Initialisation
	Iteratively construct the slow manifold
	Scrounge an extra order of evolution using solvability
	Derive the finite difference form
	Obtain the equivalent PDE at full coupling

	Numerically construct the slow manifold
	Initialisation
	Iteratively construct the slow manifold
	LU decomposition
	LU back substitution

	References

