
 
 
 

 
 

         
 

       Copyright © 2008 IEEE. Reprinted from  
Proceedings of the International Conference on Network Protocols, 

2008:pp.308-317 
 

This material is posted here with permission of the IEEE. Such 
permission of the IEEE does not in any way imply IEEE endorsement of 

any of the University of Adelaide's products or services.  Internal or 
personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or 
for creating new collective works for resale or redistribution must be 
obtained from the IEEE by writing to pubs-permissions@ieee.org. 

 
By choosing to view this document, you agree to all provisions of the 

copyright laws protecting it. 
 
 



Where’s Waldo? Practical Searches for Stability in
iBGP

Ashley Flavel∗ Matthew Roughan∗ Nigel Bean∗ Aman Shaikh†
∗School of Mathematical Sciences, University of Adelaide †AT&T Labs — Research

Abstract—What does a child’s search of a large, complex
cartoon for the eponymous character (Waldo) have to do with In-
ternet routing? Network operators also search complex datasets,
but Waldo is the least of their worries. Routing oscillation is a
much greater concern. Networks can be designed to avoid routing
oscillation, but the approaches so far proposed unnecessarily
reduce the configuration flexibility. More importantly, apparently
minor changes to a configuration can lead to instability. Verifi-
cation of network stability is therefore an important task, but
unlike the child’s search, this problem is NP hard. Until now, no
practical method was available for large networks. In this paper,
we present an efficient algorithm for proving stability of iBGP,
or finding the potential oscillatory modes, and demonstrate its
efficacy by applying it to the iBGP configuration of a large Tier-2
AS.

I. INTRODUCTION

BGP routing oscillation degrades network performance, but

is surprisingly difficult to diagnose. With the appropriate

measurement infrastructure, and given sufficient time, we

can detect oscillations that have been occurring, but this is

unsatisfactory. For a start, detection doesn’t tell you how to fix

the problem. More importantly, performance degradation will

have already occurred by the time the problem is detected (if

it ever is, given the infrastructure and analysis requirements).

Inside a network, where an operator has complete control

over BGP routing, oscillation should never occur. Oscillation

should be prevented, not fixed after the fact.

Until now, the only viable approach to prevention was

to follow a set of guidelines proposed by Griffin and Wil-

fong [1]. These guidelines specify sufficient, but not necessary

conditions for iBGP (BGP used within a network) stability.

Therefore, they unnecessarily restrict configuration flexibility,

and in practice are violated often. Even when they are not

intentionally violated, configuration changes or failures can

lead to violations, resulting in oscillations and instability.

When the guidelines for preventing oscillations are violated,

further analysis is required. However, the search for potential

oscillations is NP-hard [1] which makes it extremely difficult

to analyze large service provider networks due to scale and

dynamism involved. In this paper, we present an algorithm

to detect potential BGP route oscillations inside a network

based on iBGP and IGP configurations. The algorithm creates

a directed graph of routers based on the notion of a “reliance”.

A router is said to be reliant on another when the latter’s BGP

route selection can impact the former’s selection. When more

than one router in a reliance graph form a strongly connected

component [2], the routers’ decisions in this component are

dependent on one-another and consequently there is the pos-

sibility for route oscillation. In large networks, where route-

reflection [3] is often used, the reliance graph allows us to

prove that such strongly connected components can only be

present in a subset of route-reflectors. We then use an algebraic

approach [4] to prove or disprove the oscillatory properties of

each strongly connected component.

Our approach leads to a significant reduction in the number

of routers that require further analysis since the number of

route-reflectors tend to be much less compared to the overall

size of a network. This in turn makes the algorithm extremely

scalable, allowing an operator to not only detect potential

oscillations in a network design and proposed changes to it,

but also perform detection as the network undergoes changes.

We demonstrate the efficacy of our algorithm by employing it

on a topology derived from a large Tier 2 provider. When an

oscillation is actually detected, our algorithm also pinpoints

the exact set of routers that cause the problem, allowing an

operator to more easily fix it. Finally, the algorithm leads us

to recommend a change in the BGP route selection process

that can eliminate the potential for oscillations altogether.

The remainder of the paper is organized as follows. We

provide background information in Section II. In Section III,

we formalize the notion of stability. In Sections IV and V,

we present the reliance graph theory for detection of potential

oscillations and the subset of routers where they are likely

to occur. Section VI then uses the algebraic approach to

prove if an oscillation will actually occur. Through most of

the paper we assume the final tie-breaking step in the BGP

route selection process is based on router-ID. This step is

directly incorporated into our reliance graph theory. However,

BGP also allows the use of the “oldest-route” as the tie-

break. Unfortunately, route selection becomes dependent on

the timing of messages in BGP, leading to more complicated

stability problems. We present a modified algebra in Sec-

tion VII to show that despite this complication, the oldest-route

tie-break is more appealing because it reduces the likelihood

of oscillations. In Section VIII, we demonstrate the efficacy

of our algorithm in the Tier 2 AS. Finally, we present related

work in Section IX, and conclude in Section X.

II. BACKGROUND

A. Border Gateway Protocol (BGP)

The Border Gateway Protocol (BGP) [5] is the de-facto stan-

dard used in the Internet to exchange reachability information

between Autonomous Systems (ASes). Each router learns of

available routes from neighboring routers and independently
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selects its best route by considering attributes attached to

routes (see Fig. 1). Only the selected route is propagated

to neighboring routers. Inbound and outbound filters are also

applied to routes to enforce a local policy (see [6] for details).

1. Highest Local Preference

2. Shortest AS Path Length

3. Lowest Origin Type

4. Lowest MED (Multi-Exit Discriminator)

5. Prefer Closest Egress (Lowest IGP Distance)

6. Tie Breaking (Lowest-Neighbor-ID)

Fig. 1. Summarized BGP Decision Process [5], omitting vendor dependent
steps.

After a router learns a route from a neighboring AS,

Internal BGP (iBGP) is used to propagate routes to all other

routers within the AS. The router which learns the route

directly from a neighboring AS is the egress router (for

traffic). It was originally conceived that iBGP would connect

all routers in a full mesh. However, scalability concerns

resulted in the introduction of a hierarchical configuration

known as route-reflection [3]. Although route-reflection can

have multiple hierarchical levels, in this paper we consider the

commonly used two-level hierarchy (though our ideas can be

extended to the more complex general case [7]). All routers

are either route-reflectors (RRs) or clients of RRs. Clients

propagate external routes (learned directly from neighboring

ASes) to their parent RR(s). RRs select the best route and

‘reflect’ routes differently depending on who they are learned

from. A RR’s best route is reflected as follows:

Source Reflect to:

another RR all clients

a client all iBGP neighbors

Scalability is achieved because the number of iBGP sessions

is reduced. This comes at a price: routers now learn only a

subset of potentially available routes. It has been shown that

this resection has more serious consequences than suboptimal

routing. It can also lead to persistent oscillation as a result

of the MED attribute [8] or purely as a result of the internal

topology [1]. The MED attribute is set by neighboring ASes,

so an AS has no control over its values, but an operator

can configure routers such that MEDs have no effect, and

hence avoid MED oscillation. Although our techniques are

extensible [7], in this paper we ignore MEDs and focus on

the oscillation resulting from an AS’s topology.

B. Best Path Selection

Routes learned externally which are discounted by steps 1-

4 of the BGP decision process are never chosen as the final

best route by any router in the network [9]. Therefore, we only

need to consider the routes that survive as equally good routes

after step 4. However, a router may not learn all of the globally

available routes. A change in the locally available routes can

result in a router changing its decision, and hence advertising

different routes to neighbors, changing their locally available

routes and so on. This is the crux of the oscillation issue we

are examining.

At each router, two local decision steps determine which

of the available routes are selected. Firstly, the route with the

lowest IGP distance to the egress router is selected. If multiple

routes have equal IGP distances, the tie is broken by selecting

the route with the lowest router-id (we consider the second tie-

break option of “oldest-route” later). Such decision steps are

topology based and are not timing dependent. Thus, given a

set of available routes, A, there is a strict preference of routes

a1 > a2 > a3 > ... > an. We define a ranking function λu for a

router u, such that if ak is preferred over aj at router u, then

λu(ak) > λu(aj).

C. Interior Gateway Protocol

Step 5 of the BGP decision process is to prefer the closest

border router, where shortest-path “distances” (these need

not be geographic distances) are calculated by the Interior

Gateway Protocol (IGP) — used for routing inside an AS.

The key issue is that IGP distances are often unrelated to the

iBGP topology. BGP sessions are routed, and so may extend

over multiple physical hops. A RR’s client may not be “close”

to the RR. There are even good reasons (e.g., redundancy) why

another RR’s client may be closer!

The complicated interaction between iBGP and IGP requires

us to make clear distinctions between the underlying IGP

network topology (which we term the physical topology) and

the logical iBGP signaling topology. In this paper we will

use Griffin and Wilfong’s terminology [1] in which an iBGP

configuration C is a pair C = (GP,GS) where GP is the physical

graph and GS is the signaling graph.

D. Physical Graph

The physical graph represents the physical topology of the

network. It is defined by the quartet GP = (V,B,EP, d). Each

node u ∈ V represents a router in the network. B ⊆ V is the

set of border (or egress) routers with physical connectivity to

external networks. The set of uni-directional edges between

routers is Ep, and d(e) is the IGP distance administratively

assigned to edge e = (u, v) ∈ EP. A path P is a sequence of

edges P = e1e2...en. The length of P is the sum of the distances

d(e) for all edges e of P, and the IGP is used to compute the

shortest paths.

E. Signaling Graph

The directed signaling graph GS = (V,AS) represents the

propagation of BGP routes between routers within V. An arc

in GS represents an iBGP session between two routers and is

overlaid on some path in GP.

The set of arcs AS is partitioned into three sets over, up,

and down. An arc (u, v) ∈ over represents a vanilla iBGP

session from router u to v. If (u, v) ∈ over, then (v,u) ∈ over.

An arc (u, v) ∈ down represents an arc from a RR u to one

of its clients v. Inversely, an arc (u, v) ∈ up represents an arc

from a client u to its RR v. An arc (u, v) ∈ down if and only

if (v,u) ∈ up. Arcs in up are acyclic — consistent with a

hierarchy rather than an arbitrary network design.

A valid signaling path S satisfies the following properties.

The path S can be split into sub paths S = PQR where P is

either empty or consists of a single arc p ∈ up, R is either
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empty or consists of a single arc r ∈ down and Q is either

empty or consists of a single arc q ∈ over.

F. Egress Instance

An egress instance [1] I = (C,X) can be defined as a pair

of configuration C and a set of border routers X ⊆ B. The

routers in X represent border routers each of which learns an

external BGP route to a particular prefix. Implicitly [9], X
represents routers that learn routes which are equally good for

the first four steps of the BGP decision process (i.e., all of the

steps before choosing closest egress). All other routes will be

eliminated by earlier steps in the decision process.

Note that although a border router may learn multiple

routes (to a prefix) it will only advertise its best route to

neighbors. It is irrelevant which route is advertised (assuming

we have already passed steps 1-4). Hence, there is a one-to-one

mapping from border routers X to available routes. We will

refer to a border router and its available route interchangeably.

III. DEFINING STABILITY

Griffin and Wilfong define an egress instance to be signaling
correct [1] if it is guaranteed to deterministically arrive at

a unique (predictable) routing. However, we need additional

terminology to describe all of the possible behaviors of egress

instances, and we do so by drawing on the dynamic systems

literature. We say a system is in equilibrium when it is in

a single-state, or it cycles through a subset of states such

that the cycle persists indefinitely in the absence of external

influences. We call a single-state equilibrium stable, and a

cycle oscillatory, by analogy to previous works (although in

dynamic systems stability would be otherwise defined). An

egress instance may have more than one possible equilibrium

cycles/states, and we characterize an egress instance as signal-
ing unstable if there is at least one oscillatory equilibrium, or

as signaling stable if only stable equilibria exist. A signaling

correct egress instance must be signaling stable, but if there

is more than one possible equilibrium, then the equilibrium

we reach for a particular egress instance is non-deterministic

and so a signaling stable instance is not necessarily signaling

correct.

Any configuration may have 2|B|−1 possible egress instances

(though in practice all of these will not occur). If all possible

egress instances are signaling correct/stable, then the configu-

ration C is signaling correct/stable.

A. Complexity of Determining Signaling Correctness

Griffin and Wilfong [1] construct a generalized configu-

ration G and demonstrate that determining if it is signaling

correct is NP-hard. However, they outline a sufficient condition

to ensure signaling correctness: A RR’s clients should be

closer (IGP distance wise) than all non-client routers. This

is a sufficient condition, not a necessary condition. Networks

violating this condition may be signaling stable or even

signaling correct.

IV. ROUTER RELIANCE GRAPH

A router can easily select its best route from a set of routes

A that it learns. In a RR topology, the set A is dynamic

and relies on other routers’ decisions. However, there are

many possible routes that the router would never choose in

equilibrium. For instance, a router that learns a route directly

from a neighboring AS will always have this route in A, and so

will never select any route that is worse. We can use this simple

fact to reduce the complexity of our problem dramatically. We

do so through the use of a router reliance graph that captures

only those reliances (or dependencies) that can influence the

decision of a router.
The reliance graph is calculated per egress instance I. The

vertices of the graph are routers, and if a router’s decision

is dependent on another router, then we say it is reliant and

create a directed edge in the reliance graph. In other words,

if ui is reliant on uj, we write ui � uj. The reliance graph

contains only a subset of arcs from the signaling graph AS.
Note that the arrow direction in figures and the notation

used for reliance parallels the information flow in the signaling

graph.

A. Reliance Rules for a Route Reflector Topology
In a two-level RR hierarchy the rules for constructing a

reliance graph for an egress instance I = (C,X) are:

1) a router in X, that is with a direct egress, will always

choose this egress, and so is not reliant on any other

router’s decisions;

2) a client router without a direct egress is reliant on the

decisions made by its parent RR(s); and

3) a route reflector u is reliant on

• its “best” client router

• any other RR v whose best client router is better

than u’s best client, from u’s perspective.

The recommendation of Griffin and Wilfong [1] amounts to

configuring one’s network such that a RR’s own clients (where

there is at least one) are always its best choice.
Formally, we define the best client egress router for RR

u � X as Λ(u) ∈ X, where best is with respect to rules 5 and

6 of the BGP decision process. If a RR u has no client in

X, then for convenience we define λv(Λ(u)) = −∞ ∀ v ∈ V
(recall V is the set of all routers). Now, there are three classes

of directed edges in the signaling graph and they all lead to

potential directed edges in the router reliance graph. Consider

the three cases for an arc (u, v):
1) up: a client u is reliant on its RR v iff u � X.

2) down: a RR u is reliant on its best client egress router

Λ(u) ∈ X, and on no other client.

3) over:

a) a RR u is reliant on another RR v iff

λu(Λ(v)) > λu(Λ(u)).

b) A client u with an over connection to another client

v is reliant on v iff u � X and v ∈ X.

Griffin and Wilfong’s condition is that for all u such that

λu(Λ(u)) > −∞ and for all v � u we need

λu(Λ(u)) > λu(Λ(v)).
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(a) λ3(1) > λ3(2), λ4(2) > λ4(1) (b) λ3(1) < λ3(2), λ4(2) > λ4(1) (c) λ3(1) < λ3(2), λ4(2) < λ4(1)

Fig. 2. A simple egress instance. The direct egress set X = {1, 2}, is indicated by large arrows. Black nodes are RRs, white nodes are client routers, dashed
lines represent iBGP sessions with no corresponding reliance, and solid lines indicate a reliance. Dash-dot lines indicate preferred clients, where these are not
direct clients. Dotted ellipses indicate co-reliance groups.

B. Co-reliance Groups

Oscillation in a network occurs when two routers ri and rj
alter their decision in response to each other’s change. Con-

sequently, by the design of the reliance graph, for oscillation

to occur there must be a path in the reliance graph from ri
to rj and from rj to ri. Formally, ri and rj must be strongly

connected1. We define a co-reliance group Dk to be a strongly

connected component of the reliance graph, and we denote

D(I) as the set of all co-reliance groups of an egress instance

I. According to graph theory, the co-reliance groups form a

partition of the routers [2], that is, each router is in exactly

one co-reliance group.

Let us consider an example RR topology — one satisfying

the sufficient condition of Griffin and Wilfong. Fig. 2(a) shows

such a RR hierarchy, black nodes denote RRs, and white nodes

denote client routers.

Suppose two egress routers (1 and 2) have equally good

routes through step 4 of the BGP decision process, and hence

1, 2 ∈ X. These routers will always egress via the direct

egress. Hence they do not rely on any other router decisions.

RRs 3, 4 � X, and hence rely on the decisions of 1 and 2,

respectively. This reliance is illustrated by an arrow in Fig.

2(a). RRs 5 and 6 rely only on the decisions made by 3 and 4,

and client routers 7 and 8 rely on RRs 5 and 6 respectively. In

this simple example, each router is part of its own co-reliance

group and thus there is a unique solution for router decisions

— hence the system is signaling correct.

In Fig. 2(a) we assumed that IGP distances are such that

λ3(1) > λ3(2) , i.e., that the RR 3’s client router 1 is preferred

over router 2. Likewise we assumed λ4(2) > λ4(1). Now

suppose that λ3(1) < λ3(2) (violating the sufficient condition

of Griffin and Wilfong). In this case, the decision at RR 3

is dependent on the decision made by RR 4. If RR 3 learns

of router 2, via RR 4, then it will prefer this egress point.

Otherwise it will prefer its client. Hence, there is an additional

1For any two vertices u and v in a strongly connected component of a
directed graph there exists a path from u to v, and the component is the
maximal such set containing these vertices.

reliance of 3 on 4, as shown in Fig. 2(b). However, each co-

reliance group still contains exactly one router and there is a

unique solution, so the system is again signaling correct.

If we further change the network (see Fig. 2(c)) such that

RRs 3 and 4 both prefer each others client router. That is,

λ3(1) < λ3(2) and λ4(2) < λ4(1), then this introduces a further

reliance between 4 and 3, and these two then form a single

co-reliance group D3. In this case, the equilibrium choice of

routes will depend on the timing of messages inside the co-

reliance class D3. As multiple solutions are possible, it is not

signaling correct. However, we will show that this system will

not oscillate and hence is signaling stable.

V. WHERE CAN AN OSCILLATION OCCUR?

Routing oscillations can only occur when the configuration

instance C is not signaling stable, and only within a co-reliance

group. So our search for an oscillation can be reduced to a

search for co-reliance groups. We can reduce this search still

further by eliminating singleton co-reliance groups. Note the

sufficient condition of Griffin and Wilfong ensures no routers

are strongly connected and hence all co-reliance groups are

singleton. Let us now examine where in a general RR topology

a non-singleton co-reliance group can occur. In the following

we define the downstream egress set E ⊆ V, as the union of

X and the parent RRs of X (thus X ⊆ E), and we use E to

denote its complement.

Theorem 5.1: For all u ∈ E and v ∈ E, u�� v.

Proof: Assume there exists a router u ∈ E and a router v ∈ E,

such that u� v. Consider the formal reliance rules for route-

reflection in Section IV-A:

1) If (u, v) ∈ over, then rule 3 applies. Since v has no

downstream egresses, u�� v.

2) (u, v) � up, since u ∈ E and v ∈ E.

3) If (u, v) ∈ down then as v � X, rule 2 implies u�� v.

Thus our assumption is false. �

Corollary 5.2: A co-reliance group cannot have routers in

both E and E.
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Theorem 5.3: A non-singleton co-reliance group D does

not exist in E.

Proof: Assume a co-reliance group D has routers

u1, ...,un ∈ E. Then there must exist a ui, uj, uk ∈ D
and ui � uj, uj � uk (ui,uk need not be distinct) such that

ui � uj and uj � uk. Once again we must consider when

reliances between these routers can exist.

1) If (ui,uj) ∈ over, since ui,uj ∈ E, rule 3 implies that

ui,uj have no reliance.

2) If (ui,uj) ∈ down, then as uj � X, rule 2 implies ui �
� uj.

3) If (ui,uj) ∈ up, then rule 1 implies that ui � uj since

ui � X.

a) If (uj,uk) ∈ over, then by 1), uj and uk have no

reliance.

b) If (uj,uk) ∈ down, then by 2) uj �� uk.

c) (uj,uk) � up, as we have a two level hierarchy.

Thus our assumption is false. �

Corollary 5.4: A non-singleton co-reliance group D must

be a subset of E.

These theorems show that non-singleton co-reliance groups

can only occur in the downstream egress set E. The direct

egress set X will typically have only a few routers in it. Even

a large network might only peer at a few dozen locations,

creating on the order of a few dozen routers in X. Each such

border router might have two RRs (for redundancy), but rarely

would they have substantially more. So E is likely to be much

smaller than the complete network. Hence we need to search

only a small portion of a network for potential oscillation. We

can restrict our search even further due to the following result.

Theorem 5.5: A non-singleton co-reliance group D con-

tains only RRs in E. So D ⊆ E\X.

Proof: By Corollary 5.4 all non-singleton co-reliance groups

are in E. All border routers in E are also in X and select their

direct external route. Hence they do not rely on any other

router. �

In any network the number of RRs must be an order of

magnitude smaller than the total number of routers (otherwise

there is little point to having a RR hierarchy). In addition, the

number of RRs in the downstream egress set is generally a

fraction of the total number of RRs (as all must have clients

with equally good routes through step 4). Thus the search

space for co-reliance groups can be dramatically reduced. To

locate strongly connected components there are standard graph

algorithms, and given the size of the problems (a few tens

of nodes) there are no performance problems on reasonably

designed networks. The actual size of these groups in practice

is very small — it is quite hard to construct reasonable network

designs for which the group size is larger than three.

A non-singleton co-reliance group is necessary for oscilla-

tion, but not sufficient — we need to perform further analysis

to classify the behavior of these groups, which we do in the

following sections.

VI. ALGEBRAIC DESCRIPTION OF CO-RELIANCE GROUPS

We have shown that an oscillation can only occur within a

co-reliance group, and non-singleton co-reliance groups will

only ever exist between the parent RRs of direct egress routers

X. Consequently, every arc in the co-reliance group is an over
edge, and every node in the co-reliance group will know a

route learned from a client. A reliance on another RR implies

that the route learned from the RR is better than the client

route. Thus, if available, the route learned indirectly from

another RR is selected. By the rules of iBGP, if a RR learns

a route from another RR, it will not tell another RR about

this route. Given this, we can use an algebraic abstraction of

routing along the lines of [4], [10] to characterize this set

of rules, and analyze the behavior of co-reliance groups. We

create a set of labels for edges and nodes in the graph, though

we describe them with reference to nodes as the description

is simpler:

• direct (d): A node selects its direct downstream route.

• indirect (i): A node selects a route learned from another

node.

• null route (φ): No route is selected.

The null route, φ, is used for completeness. However, as

every node in the co-reliance group will have a downstream

egress, no equilibrium solution will ever include φ after a finite

time. We use these labels in a routing algebra in the same vain

as Sobrinho [4]. We define the labeling set of possible route

selections as defined above:

Σ = {d, i, φ},
with the preference relation:

i � d � φ,
that is, any route is always preferred over no route, and

the indirect route is preferred over a direct route because

of the construction of the co-reliance group. A node’s route

decision is made by applying this preference to the labels of

its incoming reliance arcs.

The other element of the algebra is a mapping function

⊕ which is applied when exporting a router’s best route to

neighboring routers. In iBGP, routes are exported to iBGP

neighbors, but we need not consider the whole signaling graph.

We only need to consider the information flow along the arcs

of the reliance graph, as these are the only information flows

that can affect a router’s decisions. We label outgoing arcs on

the reliance graph by applying the operator

⊕ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

d → i
i → φ
φ → φ

that is, a router won’t propagate an indirect route (so it uses

the null label φ), and a direct route becomes indirect after

propagation. A stable labeling is one in which no node has a

better available route than the current chosen route. However,

multiple stable labelings are possible.

As an example, consider the two node co-reliance group

(D3) shown in the example of Fig. 2(c). We represent the

two solutions of the co-reliance group in Fig. 3. Both nodes
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Fig. 3. Solutions for a two node co-reliance group, showing algebraic labels
on edges and nodes. In addition to the co-reliance group, we also explicitly
show the arcs from the direct egress set X, though in subsequent examples
we will omit these because every node in the co-reliance group implicitly has
such an edge available.

have direct routes available via clients, however, if they ever

learn of the other RR’s route, they will select this indirect

route. Message timing determines which solution is realized,

however, the system is guaranteed to settle to a solution and

hence will not persistently oscillate2.

We can use an algebraic representation to characterize

the behavior of a co-reliance group, for instance by simply

enumerating states. Most co-reliance groups will be small,

and so this is computationally tractable, but it is sometimes

useful, for larger groups, to be able to reduce it to a smaller

group with identical oscillatory properties, and hence reduce

the computational complexity.

A. Reducing the Size of Co-reliance Groups

We will discover that the complexity of oscillation detection

in an n-node co-reliance group is 2n. Hence a reduction in n
can significantly affect the computation time. We now present

one such reduction.

Theorem 6.1: An acyclic component can be reduced to

a single component with a multiple input/multiple output

(MIMO) function.

Proof: The decision of each node in an acyclic component will

be reliant only on its parents, and so will be a deterministic

function of their decisions. Repeat this process back up to the

input. Hence, the output of the acyclic component will be a

MIMO function of the inputs. �

More importantly, there is a simple algorithm (a breadth

first traversal) for computing the MIMO function for a given

input. This algorithm is linear in the number nodes n, so the

complexity for computing the full behavior of this component

will be 2m when there are m input edges, rather than 2n.

Consider the example shown in Fig. 4. Here the original

acyclic component consists of a single input/single output

three node configuration. We can replace the original com-

ponent by a function that flips the input edge label. Note that

we can represent the function by a node equivalent component

(a single node in this example).

As we prove the stability of co-reliance groups in turn,

we can imagine storing their reduced form in a library. Any

new co-reliance group that can be reduced to a form already

stored in the library does not require further enumeration. For

2We assume there is enough jitter in the system such that the probability
of nodes simultaneously changing decisions is small.

Fig. 4. A three node path is able to be replaced by a function (Output =
Input) or equivalently a single node.

Group Name State Machine
Graph Properties

Good No cycles

Asymptotically Good
• No oscillatory modes

• At least one cycle

• At least one sink

Naughty • At least one oscillatory mode

• At least one sink

Bad No sinks

Fig. 5. Properties of Oscillation Classes.

example, any odd-node path can be reduced to a single node

path as shown in Fig. 4.

B. Oscillation Detection

For a co-reliance group with no prior knowledge in the

library with or without reduction, we use a state-machine to

determine its oscillatory properties. Each state is a labeling

of nodes in the reliance graph. For example, idi represents

one possible labeling of three nodes (Node 0: i, Node 1: d,

Node 2: i). Each transition in the state machine represents a

node altering its decision as it has a better available route than

currently selected. Recall we assume there is enough jitter in

the system such that the probability of nodes simultaneously

changing decisions is small. The actual transition depends on

the timing of messages and any transition from a state has

a positive probability of occurring. As we are now dealing

with two graph structures, we refer to states and transitions

when considering the state-machine, and nodes and edges

when referring to the reliance graph.

There are two possible equilibria for the state machine. First,

a stable state is such that all nodes have selected their best

currently available route. Such a state is a sink in the state-

machine graph. Second, an oscillatory mode is a subset of

communicating states with no sink and no transitions out of

the subset. If we enter such a mode, then the state machine

oscillates persistently.

C. Oscillation Classes

We can partition co-reliance groups into four disjoint

categories describing their oscillation characteristics: Good,
Asymptotically Good, Naughty and Bad. Each class is

summarized in Fig. 5 and their relationship to signaling
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Fig. 6. Oscillation classes Venn diagram. More stable classes are to the left
and more oscillatory classes are to the right.

Fig. 7. Four node ‘Good’ state machine. Black states represent stable sink
states. White nodes represent transient states.

stable, correct and unstable is shown in Fig. 6. An egress

instance/configuration is classified as the most oscillatory class

across all its co-reliance groups.

A Good co-reliance group is one where every state can be

visited at most once. Thus, there must exist at least one sink

state which by definition is stable. By default, all singleton co-

reliance groups are classified as ‘Good’. A more interesting

example is a co-reliance group with four nodes {0, 1, 2, 3}.
We arrange them such that n is reliant on node n + 1 mod 4
(each node has exactly one inbound and outbound reliance). In

practice, this four node single cycle co-reliance group would

be reduced to its equivalent two node representation, however,

for demonstration purposes we examine it unreduced. In Fig. 7

we show the state-machine. It has 16 states. The state-machine

is acyclic with two sinks (didi and idid). This configuration

has similar properties to the Good Gadget [11], although it

is not signaling correct as multiple sinks exist and we cannot

determine which one of them the state machine will reach.

No sink nodes exist in a Bad co-reliance group. An infinite

number of transitions will occur given any message ordering.

An example of a ‘Bad’ co-reliance group is the three node

single cycle shown in Fig. 9(a). Fig. 8 shows all possible

labelings in the three node configuration and the transitions

between labelings. As there are outbound transitions from

every state, no state is stable and hence the configuration is

oscillatory with a cycle consisting of (idi, idd, iid, did, dii, ddi).
This configuration is similar to the Bad Gadget [11].

A Naughty co-reliance group has at least one sink.

However, it also has an oscillatory mode. The five

node configuration shown in Fig. 9(b) demonstrates an

Fig. 8. Three node ‘Bad’ state machine. No stable sink states.

example (state-machine omitted). There exists a sta-

ble state (ididi), however, there also exists a cycle

(diiid, ddiid, idiid, iddid, iidid, didid, diiid) from which exit is

impossible. Consequently, depending on the starting state and

the ordering of messages, the configuration may be oscillatory.

This configuration has similar properties to the Naughty Gad-
get [11]. This simple example demonstrates that if a network

is currently stable, it may not remain stable in the future!

An Asymptotically Good co-reliance group will settle on

a stable labeling after a finite time. Such a co-reliance group

has a state machine with a cycle in it. However, every cycle is

unlocked in that it has an ‘exit’ such that a sink is reachable.

For example, the co-reliance group in Fig. 9(c) (state-machine

omitted) has a cycle (diii, ddii, idii, iddi, iidi, didi). However,

there is a transition (diii, diid) which results in it eventually

escaping the cycle and reaching the sink (idid).

D. Reliances between Co-reliance Groups

So far we have investigated co-reliance groups in isolation.

However, co-reliance groups can be reliant on other co-reliance

groups containing RRs. By definition, if a co-reliance group

is affected by another co-reliance group the reverse cannot be

true. Hence any inbound edge to a co-reliance group is fixed.

An inbound edge from another RR can only be labeled φ
or i by the definition of the algebra. When an inbound edge

is labeled φ, no additional information is available in the

co-reliance group and thus is equivalent to the group being

considered in isolation. However, when it is labeled i, the

reliant node in the co-reliance group is fixed to be i. This

makes a number of states in the state machine inaccessible.

Let us now look at the impact on the oscillation classes of

co-reliance groups.

Theorem 6.2: If an inbound edge to a co-reliance group is

labeled i, then its state machine is a sub-graph of its state

machine when considered in isolation.

Proof: If an inbound reliance edge is connected to node uj
and is labeled i, node uj is fixed to select i (as no route can

be better than i). Consequently, only states in the isolated co-

reliance group state machine with uj labeled i are feasible.

Also, no new transitions between states are possible. Hence,

the state machine of the co-reliance group is a subgraph of

the isolated co-reliance group state machine. �

Corollary 6.3: If a co-reliance group is classified ‘Good’ in

isolation, then it will be classified as ‘Good’ with any inbound

edges.
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(a) ’Bad’ co-reliance group (b) ‘Naughty’ co-reliance group (c) ‘Asymptotically Good’ co-reliance group

Fig. 9. Example co-reliance groups for oscillation classes.

Proof: Suppose a node in a ‘Good’ co-reliance group (classi-

fied in isolation) has a reliance on a RR outside the co-reliance

group. If the inbound edge is φ, no additional information

enters the co-reliance group and is equivalent to the isolated

co-reliance group. If the inbound edge is i, by Theorem 6.2

the state machine of the new co-reliance group is a subgraph

of the state machine of the isolated co-reliance group. Since

no cycles exist in the original state machine, no cycles can

exist in the subgraph. Hence, it is also ‘Good’.�

The same cannot be said for other oscillation classes. A

subgraph of the state machine can result in an unlocked cycle

becoming an oscillatory mode or becoming acyclic, both of

which will alter the oscillation class. For example, an inbound

edge labeled i to node 3 in Fig. 9(c) will fix 3 to be labeled

i. The unlocked cycle in the figure now becomes locked.

Given an egress instance, we can now determine its oscil-

latory properties. If an egress instance contains all singleton

co-reliance groups, or all non-singleton co-reliance groups are

signaling stable, then the egress instance is signaling stable.

If all feasible egress instances in an iBGP configuration are

signaling stable, then the configuration is signaling stable.

VII. OLDEST-ROUTE TIE-BREAKER

The benefit often associated with the lowest-router-id tie-

breaker is the determinism associated with it. However, as we

have seen, even with the lowest-router id, an egress instance

can be non-deterministic. The solution the system will settle

on depends on message timing. For instance, for a two-node

co-reliance, that is, two RRs who each prefer the other’s client,

the stable states are di and id (see Fig. 3), and the solution that

is eventually chosen typically depends on which RR learns of

the other’s client first. In contrast, the oldest-route tie-breaker

was designed to restrict oscillation. We show here that this

indeed is the case.

All of the reliances we have currently considered are strong
reliances. That is, if a RR learns a route from one of its

reliances on another RR, it will select that route. This is

reflected in the algebra, i.e., i � d. However, when the oldest-

route tie-breaker is used, this is not always the case. Strong

reliances still exist when the IGP distance “breaks the tie”.

However, if the IGP distance is equal for multiple routes and

the oldest-route is the tie-breaker then the reliance is weak.

That is, if a route is learned from another node the weak

reliance implies the node may select the route learned from this

node. Such a configuration is not as simple to describe as the

Fig. 10. The state machine of the single cycle three node co-reliance group
with all ‘weak’ reliances. Four states are now stable.

Reliance

Node Label Weak Strong

d iw is
i∗ φ φ
φ φ φ

Fig. 11. Table showing the result of ⊕ for weak and strong reliances.

preference is now dependent on message timings. However,

when a reliance is weak, if a node ever selects its direct route,

it will never change its selection (as it is always available and

is the oldest).

Fig. 10 shows the state-machine for the three node oscil-

latory configuration from Fig. 9(a) with the new tie-break

rule such that all reliances are now weak. The state-machine

is dramatically simplified, as compared to the state-machine

shown in Fig. 8. Many of the state transitions have been

removed because they will never occur under the new tie-

break rule. The result is a state machine that now has four

stable sink states.

The new tie break rule still allows for strong reliances where

there is no tie in the IGP distances. Our approach to model

this new case is to introduce an extended algebra with strong

(is) and weak (iw) indirect routes. That is Σ = {d, is, iw, φ} with

the preference relation:

is � iw 
 d � φ,
where under the 
 operator, the oldest route is chosen. It would

perhaps be more elegant to include timing into the algebra

directly to resolve the 
 preference, but this complicates it

substantially, and we do not need this for the proof to follow.

The arcs in the reliance graph are now labeled weak or strong
and the mapping function ⊕ now depends on this labeling as

shown in Fig. 11.

1-4244-2507-5/08/$20.00 ©2008 IEEE 315

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 7, 2009 at 22:34 from IEEE Xplore.  Restrictions apply.



Theorem 7.1: A single cycle consisting of at least one weak

reliance will never oscillate.

Proof: Consider a single cycle of reliances r1 � r2 � · · ·�
rn � r1 such that at least one of these reliances is weak, that

is, ri
w� ri+1. At some point in time the information available

to ri will lead to a decision about its state, and that state

x ∈ {d, iw} because of the weak reliance. If the state x = d,

then by construction the direct route is always available, so ri
will continue to use x = d (as it will from now on be the oldest

available route). As soon as one node is fixed, it breaks the

cyclic dependence, and removes the possibility of oscillation.

If x = iw, then ri will transmit φ to ri−1, who will therefore

choose its direct route d, and subsequently ri−2 will receive is
or iw, and make the appropriate decision, again transmitting

this to its upstream neighbor. This will continue around the

cycle until we return to ri. When the cycle returns to ri there

are only two possibilities. Either ri receives iw, in which case,

the current state is stable, or ri receives φ, in which case it

changes it choice to d, and the situation reverts to the case

discussed above. �

It follows that a cycle of strong reliances is required for a co-

reliance group to oscillate. Consequently, we can essentially

discard all weak reliances in a co-reliance group to analyze

oscillatory properties! However, such weak reliances may

provide inbound edge labels with the same properties as in

Section VI-D.

Thus, if a co-reliance group contains no strong cycles, it is

signaling stable. Hence, in general the oldest-path tie-breaker,

although possibly less deterministic (as there are more stable

states), is likely to be less oscillatory than the lowest-router-id

tie-breaker.

VIII. DISCUSSION

We must remember we are trying to solve an NP-hard

problem. In the worst case, the problem is still exponential

in the number of routers. However, in practice, for most cases

the actual number of nodes we need to include in our analysis

is much smaller, and so the exponential complexity of the

problem becomes more manageable.

First, we do not need to calculate the entire reliance

graph for an egress instance; only the reliance graph of the

downstream egress set (from Corollary 5.4). We then restrict

our attention to individual co-reliance groups. These are often

smaller than the egress set because RRs are typically close

to their clients (with respect to IGP distances). The result

is that the sufficient condition of Griffin and Wilfong will

be true for many routers, and these routers will not belong

to a non-singleton co-reliance group. We can further reduce

the size of non-singleton groups by replacing common acyclic

components with a reduced component. Finally, we enumerate

the state-machine of the reduced component using standard

graph algorithms to detect sinks, and oscillatory modes.

Second, a large network has many potential egress instances,

|I| = 2|B| − 1, where |B| is the number of border routers, and

in principle we would need to analyze all of them to prove

network stability. However, we can restrict this enumeration

substantially by considering how networks are designed: im-

port policies on border routers prevent a number of egresses

ever being used in combination. For instance, an AS would

ignore routes learned from peers to its own customers. Also,

the structure of the network will lead to identical reliance

graphs for multiple egress instances.

We have implemented our reliance graph analysis on an

adapted3 topology of a large (about 500 routers) Tier 2 AS. We

found all current egress instances used over a 2 hour interval

(954 unique egress instances). The maximum number of bor-

der routers in an egress instance was 17. All combinations of

current egresses were analyzed. That is, if border routers A, B
and C were in an egress instance, then all 7 non-empty subsets

were also analyzed. This raised the number of egress instances

requiring analysis to 204, 621. We found the reliance graph

(of the downstream egress set) for all egress instances and

found 60, 304 egress instances violated the sufficient condition

of Griffin and Wilfong [1]. That is, there were reliances

between route-reflectors in the downstream egress set — all

such reliances were a result of equal IGP distances and the

lowest-router-id tie-break. However, none of these reliances

resulted in a non-singleton co-reliance group — hence the

current set of egress instances would not oscillate (even when

the sufficient condition of Griffin and Wilfong was violated).

This analysis took under 15 minutes to carry out. We leave

the complete results of this application including analyzing all

possible egress instances (based on import policies) to future

work due to space restrictions.

A. Dealing with Network Dynamics

Networks are dynamic systems changing on a regular basis.

However, such changes typically involve incremental changes

to the current network. The approach we present is highly

amenable to an incremental implementation that analyses only

those portions of the network that have changed. For instance,

a change to the IGP distance between a RR and client only

affects a subset of egress instances — those in which the client

has an external route. Further, many IGP changes will not

affect the reliance graph representation of the egress instance

and hence no re-evaluation is required. If the properties of

reliance graphs are stored in a library similar to that used to

keep co-reliance group properties, many new reliance graphs

need not be evaluated. Note that only the structure of the

reliance graph and its oscillatory nature is retained in the

library. The actual egress instance and the distances between

routers is irrelevant.

These features of our reliance graph representation make it

applicable to an online tool to detect oscillatory properties

in a network. Further, our technique pinpoints the exact
location of oscillation providing the network operator with

the ability to fix the problem quickly (and test their fixes do

not introduce further oscillation prior to implementation). The

same technique could be used for ‘what-if’ purposes such as

failure analysis or planned configuration changes.

3The route-reflector topology of the examined network had three levels and
used the oldest-route tie-break. We compressed the topology to two levels and
used the lowest-router-id tie-break for this analysis.
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B. Preventing Oscillation

The above approach — stability by design — allows net-

work operators great flexibility while ensuring stability. A

simple alternative highlighted through the algebraic approach

above would be to introduce an extension to the BGP protocol

by adding this rule prior to step 5: “a RR prefers its clients”.

This would shift the burden of ensuring stability onto the BGP

decision process from network design and configuration. It

may result in sub-optimal routing on some occasions, but so

does the RR hierarchy itself.

IX. RELATED WORK

iBGP has been shown to oscillate with ([8], [12], [13]) and

without ([1]) the MED attribute affecting the BGP decision

process. The oscillation resulting from the MED attribute

was first described by McPherson et al. [8]. This prompted

substantial investigation into its causes and conditions to avoid

it [11], [14]–[20]. However, even with the MED attribute

filtered, or compared AS-wide, it is possible that an iBGP

configuration can oscillate [1], but even where MEDs are

present, our techniques can be extended, by modifying the

reliance rules and extending the algebra [4].

Varadhan et al. [21] investigated the abstract preferences of

routes, finding that certain combinations of preferences across

ASes result in oscillation. They developed a concept of return
graphs with similar motivation to our reliance graph. However,

their work was focused on the abstract problem of stability

in path-vector protocols, while our work is focused on the

practical issue of determining iBGP stability.

Griffin and Sobrinho [10] outlined an algebraic representa-

tion of BGP between ASes. This work, together with earlier

work by Sobrinho [4] that described an algebraic represen-

tation of iBGP, prove general properties of the BGP. We do

not attempt to design an algebraic representation of iBGP as

a whole. Instead, as we are interested in oscillation, we use

a much simpler algebraic representation that captures exactly

what is needed to prove oscillatory properties of a co-reliance

group – and thus a configuration – without the complexities

of protocol idiosynchrocies.

Griffin and Wilfong [1] introduced a sufficient condition

to ensure stability of iBGP. This condition was algebraically

proven by Sobrinho [4]. Feamster and Rexford [9] demon-

strated how to find the selected routes given this sufficient

condition. In this paper, we consider the consequences when

the condition is violated. Although many networks are de-

signed to satisfy this condition, link failures, configuration

errors, the addition/deletion of routers or iBGP sessions can

increase the likelihood that the sufficient condition is violated.

Moreover, as this is not a necessary condition, our techniques

allow an operator to deviate from it. Our approach can discover

if a configuration will result in a signaling correct (or a

less restrictive definition of signaling stable) configuration and

hence stable routing, and can point to locations in the network

that are the causes of oscillation.

X. CONCLUSION AND FUTURE WORK

The interaction between IGP and iBGP is complex. In

this paper we have abstracted away the complex details,

analyzed the properties of the resulting reliance graph and

discovered locations where the unwanted network property

– an oscillation – can occur. The approach uses careful

algebraic modeling of the problem to reduce the computational

complexity dramatically.

For the purposes of this paper, we have analyzed the

oscillatory properties of an iBGP configuration. Further, we

believe our model of iBGP can be used for applications such

as determining the decisions of routers when the sufficient

condition for stability does not hold, identifying the influence

of route announcements from neighboring ASes, and other

what-if analyses within an AS [7]. Similar concepts might

also be extended to inter-AS relationships to predict the

propagation of routes. We plan to look at these in the future.
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