
THE UNIVERSITY OF ADELAIDE

The Automated Synchronisation of

Independently Moving Cameras

Daniel William Pooley

School of Computer Science

The University of Adelaide

May 2008



TABLE OF CONTENTS

Abstract v

Declaration vii

Acknowledgements ix

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Examples xvii

List of Theorems xix

Notation xxi

Chapter 1: Introduction 1

1.1 Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Previous Work 7

2.1 Spatial Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Essential and Fundamental Matrices . . . . . . . . . . . . . . . . 9

2.1.2 Homography Matrices . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Robust Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Existing Synchronisation Methods . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 3: Synchronising a Pair of Moving Cameras 29

3.1 The Evolution of a Cost Function . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Handling Indices Between Integer Values by Interpolation . . . . . . . . . 33

3.3 Estimating the Frame Offset via an Exhaustive Search . . . . . . . . . . 37

3.4 Estimating Both Synchronisation Parameters via an Exhaustive Search . 39

3.5 Synthetic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i



3.5.1 Test Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.2 Initial Estimates of Synchronisation Parameters . . . . . . . . . . 46

3.5.3 Video Synchronisation Error . . . . . . . . . . . . . . . . . . . . . 47

3.6 Real Video Sequence Pair Tests . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 4: Synchrony Pairs 57

4.1 Finding Synchrony Pairs by Epipolar Line Interpolation . . . . . . . . . . 57

4.2 Searching Across a Subset of Frames and Moving Points . . . . . . . . . 59

4.3 Histogram Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Known Frame Rates . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Unknown Frame Rates . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Histogram Method Complexity . . . . . . . . . . . . . . . . . . . 67

4.4 Synthetic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Real Video Sequence Pair Tests . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 5: Robust Synchronisation 75

5.1 Efficient Robust Estimation with Random Sampling . . . . . . . . . . . . 76

5.2 Efficient Robust Estimation with Exhaustive Sampling . . . . . . . . . . 85

5.3 Robust Synchronisation Details . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Inlier Classification Function C . . . . . . . . . . . . . . . . . . . 89

5.3.2 Robust Estimation Function R . . . . . . . . . . . . . . . . . . . 92

5.3.3 Estimating Synchronisation From a Single Match . . . . . . . . . 92

5.3.4 Speed Parameter Functions P(ψ, μ) and T (ψ, μ), and Probability

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Synthetic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Real Video Sequence Pair Tests . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Chapter 6: Estimating A Projective Transformation With Moving Scene

Points 117

6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 A Constraint For Moving Scene Point Correspondences . . . . . . . . . . 118

6.2.1 Plücker Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.2 The Ray Projection Matrix . . . . . . . . . . . . . . . . . . . . . 121

6.2.3 Ray Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.4 The Moving Point Constraint . . . . . . . . . . . . . . . . . . . . 123

6.3 Estimation of the Ray Transformation Matrix . . . . . . . . . . . . . . . 123

6.3.1 Applying The Three Stationary Scene Point Constraints . . . . . 128

ii



6.3.2 Applying The Moving Scene Point Constraints . . . . . . . . . . . 129

6.3.3 Recovering The Projective Transformation G . . . . . . . . . . . . 134

6.3.4 A Degenerate Camera Pair Motion . . . . . . . . . . . . . . . . . 135

6.4 Robustly Estimating a Projective Transformation . . . . . . . . . . . . . 137

6.4.1 A Robust Algorithm Template . . . . . . . . . . . . . . . . . . . . 138

6.4.2 Estimation and Evaluation with the Data Subset MC . . . . . . . 140

6.5 Real Video Sequence Pair Tests . . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 7: Conclusion 151

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Appendix A: Plücker Ray Theorems 155

Bibliography 165

iii



iv



Abstract

Computer vision is concerned with the recovery of useful scene or camera information

from a set of images. One classical problem is the estimation of the 3D scene structure

depicted in multiple photographs. Such estimation fundamentally requires determining

how the cameras are related in space. For a dynamic event recorded by multiple video

cameras, finding the temporal relationship between cameras has a similar importance.

Estimating such synchrony is key to a further analysis of the dynamic scene components.

Existing approaches to synchronisation involve using visual cues common to both videos,

and consider a discrete uniform range of synchronisation hypotheses. These prior methods

exploit known constraints which hold in the presence of synchrony, from which both a

temporal relationship, and an unchanging spatial relationship between the cameras can

be recovered.

This thesis presents methods that synchronise a pair of independently moving cam-

eras. The spatial configuration of cameras is assumed to be known, and a cost function

is developed to measure the quality of synchrony even for accuracies within a fraction of

a frame. A Histogram method is developed which changes the approach from a consid-

eration of multiple synchronisation hypotheses, to searching for seemingly synchronous

frame pairs independently. Such a strategy has increased efficiency in the case of unknown

frame rates. Further savings can be achieved by reducing the sampling rate of the search,

by only testing for synchrony across a small subset of frames. Two robust algorithms

are devised, using Bayesian inference to adaptively seek the sampling rate that minimises

total execution time. These algorithms have a general underlying premise, and should

be applicable to a wider class of robust estimation problems. A method is also devised

to robustly synchronise two moving cameras when their spatial relationship is unknown.

It is assumed that the motion of each camera has been estimated independently, so that

these motion estimates are unregistered. The algorithm recovers both a synchronisation

estimate, and a 3D transformation that spatially registers the two cameras.

v



vi



Declaration

This work contains no material which has been accepted for the award of any other

degree or diploma in any university or other tertiary institution and, to the best of my

knowledge and belief, contains no material previously published or written by another

person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being

made available for loan and photocopying, subject to the provisions of the Copyright Act

1968.

The author acknowledges that copyright of published works contained within this

thesis (as listed below) resides with the copyright holder/s of those works.

Daniel Pooley

October 9, 2008

D.W. Pooley, M.J. Brooks, A.J. van den Hengel and W. Chojnacki. A voting scheme

for estimating the synchrony of moving-camera videos. In International Conference on

Image Processing, Barcelona, Spain, September 15-19, 2003, volume 1, pages 413–416.

IEEE Computer Society Press.

D. Pooley, M. Brooks and A. van den Hengel. RATSAC: an adaptive method for accel-

erated robust estimation, and its application to video synchronisation. In Digital Image

Computing: Techniques and Applications, Adelaide, Australia, December 3-5, 2007. IEEE

Computer Society Press.

vii



viii



Acknowledgements

I would chiefly like to thank my supervisors Professor Michael Brooks and Associate

Professor Anton van den Hengel, for their support, guidance and motivation throughout

my candidature. In addition, thanks go to Professor Wojciech Chojnacki for his assistance

with a variety of mathematical queries, as well as to Dr. Darren Gawley, Dr. Chunhua

Shen, Dr. Thorsten Thormählen, Dr. John Bastian, and Mr. Rhys Hill for productive

theoretical discussions. I am also appreciative of the support provided by the Cooperative

Research Centre for Sensor Signal and Information Processing. Finally, special thanks go

to my family and friends, in recognition of their encouragement, moral support, and for

providing welcome distractions when most needed.

ix



x



LIST OF FIGURES

1.1 Time-stamping 3 video sequences . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Side-by-side display of synchronised video frames, cropped to a region of

interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The perspective projection of a scene point . . . . . . . . . . . . . . . . . 8

2.2 Visualisation of the epipolar constraint . . . . . . . . . . . . . . . . . . . 11

2.3 Visualisation of the epipolar constraint for projections of a moving scene

point in synchronous and asynchronous frame pairs . . . . . . . . . . . . 14

2.4 An application of the homography matrix; original images and the resulting

mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 An example of pixel-based synchrony with a synthetic scene of a bouncing

ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Key frames from a video sequence of a moving grey square (right), and

resulting space-time interest points (left) . . . . . . . . . . . . . . . . . . 25

3.1 Corresponding trajectories between a pair of video sequences, identified

prior to synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Two cases of epipolar errors for synchronous and asynchronous frame pairs 31

3.3 Epipolar Line Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 A Comparison of Interpolated Epipolar Errors . . . . . . . . . . . . . . . 37

3.5 Ranges of frames in each video sequence captured while both cameras

recorded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Frame ranges for different values of offset a (aend > 0) . . . . . . . . . . . 40

3.7 Line parameterisation (α, β). . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Spatial configuration for synthetic synchronisation tests . . . . . . . . . . 45

3.9 Proportions of tests in which each cost function achieved the best synchro-

nisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 VSE results for synthetic test cases synchronised by a search of the param-

eter space, using scene points with linear motion . . . . . . . . . . . . . . 52

3.11 VSE results for synthetic test cases synchronised by a search of the param-

eter space, using scene points with piecewise-linear motion . . . . . . . . 53

3.12 Approximately synchronous frames from the Lego robot sequences, syn-

chronised using a uniform search for the frame offset . . . . . . . . . . . 55

xi



4.1 Example synchrony pairs using epipolar line interpolation . . . . . . . . . 59

4.2 Example synchrony pair sets (left) and resulting 2D histograms (right) . 68

4.3 VSE results for synthetic test cases synchronised by a search for synchrony

pairs, with a known frame rate ratio and scene points with linear motion 71

4.4 VSE results for synthetic test cases synchronised by a search for synchrony

pairs, with an unknown frame rate ratio and scene points with linear motion 72

4.5 Synchrony pair set (top), and resulting 2D (bottom right) and section of

1D (bottom left) histograms for the Lego robot example . . . . . . . . . 73

5.1 Example synchrony pair sets from incorrectly matched trajectories . . . . 77

5.2 Effects of a misestimation of σ on a threshold test for Chi-squared distri-

butions of different order . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Line parameterisation (α′, β′). . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Relative positions of the moving cameras’ optical centres for the bouncing

balls example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Two examples of the gradient measure used to assist in ball detection . . 111

5.6 Side-by-side display of synchronised video frames, cropped to a region

around a match identified by RATSAC assuming a known frame rate ratio 114

5.7 A reconstruction of 3D ball trajectories, projected to virtual cameras, for

matches identified by CATSAC assuming an unknown frame rate ratio . 115

6.1 Two top-down views of degenerate camera pair motions for spatial regis-

tration using moving point correspondences . . . . . . . . . . . . . . . . 136

6.2 A trajectory pair visible in frames imin . . . imax in video 1, and jmin . . . jmax

in video 2, which can not be a match according to frame offset a . . . . . 139

6.3 A comparison of optical centre locations for two potential alignments of

the second camera in the bouncing balls example . . . . . . . . . . . . . 149

6.4 Baselines of approximately synchronous frame pairs for the bouncing balls

example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xii



LIST OF TABLES

3.1 Synthetic initial estimate performance for a single moving scene point . . 47

3.2 VSE measures for a single moving scene point . . . . . . . . . . . . . . . 49

3.3 Percentage of successful synchronisations for a single moving scene point 49

3.4 VSE measures for the synchronisation of the Lego robot sequences via a

search of the parameter space . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Synthetic initial estimate performance for synchrony pair searches using a

single moving scene point . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 VSE measures for the synchronisation of the Lego robot sequences via a

search for synchrony pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Correct and incorrect matches classified for synthetic test cases, by using

RATSAC followed by a minimisation of the robust cost function R . . . 104

5.2 Correct and incorrect matches classified for synthetic test cases, by using

CATSAC followed by a minimisation of the robust cost function R . . . 105

5.3 Median VSE measures for synthetic test cases, for both CATSAC and

RATSAC followed by a minimisation of the cost function R . . . . . . . 107

5.4 Percentages of synthetic tests for which CATSAC and RATSAC, followed

by a minimisation of R, achieve synchronisation with a VSE measure less

than 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Initial ψ choices, average times (seconds), and percentages of time saved

by using an adaptive speedup, for synthetic test cases with linear scene

point motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 VSE measures and matches identified for the bouncing balls example, for

both RATSAC and CATSAC, followed by a minimisation of R . . . . . . 112

5.7 Initial ψ choices, average times (seconds) and percentages of time saved by

using an adaptive speedup, for the bouncing balls example . . . . . . . . 113

6.1 Matches identified for the bouncing balls example, for a robust estimation

of both a and G, followed by a minimisation of R . . . . . . . . . . . . . 147

6.2 Synchronisation quality for the bouncing balls example, for a robust esti-

mation of both a and G, followed by a minimisation of R . . . . . . . . . 147

6.3 Spatial alignment quality for the bouncing balls example, for a robust

estimation of both a and G, followed by a minimisation of R . . . . . . . 148

xiii



xiv



LIST OF ALGORITHMS

3.1 Estimation of a with an Exhaustive Search . . . . . . . . . . . . . . . . . . . 41

3.2 Estimation of (α, β) with an Exhaustive Search . . . . . . . . . . . . . . . . 45

4.1 An Exhaustive Search for Synchrony Pairs . . . . . . . . . . . . . . . . . . . 60

5.1 Random Adaptive Trade-off Sample Consensus . . . . . . . . . . . . . . . . 84

5.2 Comprehensive Adaptive Trade-off Sample Consensus . . . . . . . . . . . . . 88

5.3 Accelerated Iteration for Estimating Synchronisation . . . . . . . . . . . . . 97

6.1 Robust Estimation of a and G . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xv



xvi



LIST OF EXAMPLES

3.1 Problematic Sum of Squares Example . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Problematic Residual Interpolation Example . . . . . . . . . . . . . . . . . . 34

4.1 Non-Synchronous Entries in the Synchrony Pair Set . . . . . . . . . . . . . . 61

6.1 A Case of Insufficient Stationary Correspondences . . . . . . . . . . . . . . . 119

6.2 Estimating Ĥ for Stationary Cameras . . . . . . . . . . . . . . . . . . . . . . 124

xvii



xviii



LIST OF THEOREMS

A.1 The null-space of a Plücker Matrix . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 Uniqueness up to Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.3 Duality Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.4 Ray Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.5 Ray Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.6 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.7 Projection to a Line Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.8 Ray Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.9 Ray Back-Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.10 Ray Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xix



xx



NOTATION

k A scalar (non-bold lower case).

K A random variable (non-bold upper case).

X An event (non-bold sans-serif upper case).

S A set (bold upper case).

v A vector (bold lower case).

A A matrix (bold sans-serif upper case).

A
� The transpose of matrix A.

A
−1 The inverse of matrix A.

[v]i The element i of vector v.

[A]i,j The element (i, j) of matrix A.

[A]i,∗ The row i of matrix A.

[A]∗,j The column j of matrix A.

Tr(A) The trace of matrix A.

Rank(A) The rank of matrix A.

‖A‖
F

The Frobenius norm of matrix A.

P (X) The probability of event X.

∼ Equality up to scale of two vectors or matrices.

≈ Approximate equality up to scale of two vectors or matrices.

xxi



1

Chapter 1

INTRODUCTION

Computer vision concerns the recovery of useful properties of a scene from images or

video sequences, such as the classical problem of reconstructing a 3D model. Consider

two cameras with known 3D locations, orientations, and internal properties, both viewing

a common stationary scene. The 3D location of a scene point can be determined if

its corresponding 2D locations in a pair of images recorded by the cameras have been

identified. Much attention has been given in recent years to the analysis of video sequences

depicting dynamic scenes. These scenes may contain multiple independently moving

objects, or other effects such as illumination which change over time. Analysis of a

dynamic scene viewed by multiple cameras requires knowing how the resulting video

sequences should be synchronised.

A set of video sequences is considered synchronised if their relationship in time is

known. Such synchronisation is readily available if every frame in each video sequence

has been accurately time-stamped by a common timekeeping device. Given the time-

stamp of a frame in one video sequence, the frames with the closest time-stamps in the

remaining video sequences can be located.

A simple example of where synchronisation can be applied is trajectory reconstruction.

Consider video sequences recorded by cameras viewing a moving scene point. Given a

pair of frames with the same time-stamp, the 3D location of the moving point can be

determined by the same means used for stationary scene points. If this is repeated for

many time-stamps, the path taken by the moving point through the scene is recovered.

1.1 Synchronisation

The task of determining synchrony is equivalent to determining a consistent set of time-

stamps for video sequences depicting the same dynamic scene. For simplicity, it is assumed

that time-stamps are represented with a single number, expressing the elapsed interval

since some point in time. One example of this is the Unix time-stamp, where time is

expressed as the number of milliseconds since 00:00:00 (UTC) on 1-1-1970.

If a video camera records at a fixed frame rate, the time difference between successive

frames remains constant. The function that assigns a time-stamp to each frame of the

resulting video sequence is therefore linear in the indices of the frames. Consequently,



2

t

f

t = a1 + b1f

t = a2 + b2f

t = a3 + b3f

Figure 1.1: Time-stamping 3 video sequences

the time-stamping of n video sequences can be described by n linear equations, where

the equation for video sequence i is given by

t = ai + bif, ∀i ∈ [1 . . . n].

Here, f is a frame index from video sequence i, and t is the resulting time-stamp for

frame f . The constant ai is the point in time that the camera started recording, and is

therefore the time-stamp for frame 0, while bi is the elapsed time between frames, or the

inverse of the camera’s frame rate. The time-stamping of 3 video sequences is illustrated

in figure 1.1.

A set of video sequences can be synchronised during recording with the use of spe-

cialised hardware, requiring a physical connection. A system designed for this purpose is

described in [35], in which cameras are given a global synchronisation signal to capture

images simultaneously. A time code is then associated with the set of resulting frames.

This thesis is concerned with the problem of automatically synchronising video se-

quences without specialised hardware, by analysing and processing the visual content of

the recorded frames. Typically, a 3D scene does not contain a visual cue that indicates

precise time. Thus, when using only visual information to synchronise video sequences,

the resulting time-stamps will not have a known correlation with real-world time. Both

the units of the time-stamps, effectively the real-world time between integer values of t,

and the real-world time corresponding to t = 0 will be unknown. For typical applications

of synchronisation, such as trajectory reconstruction, this does not matter. It makes little



3

difference how the time-stamps correlate with real-world time, as any choice still admits a

consistent set of time-stamps for the video frames. The correlation between time-stamps

and real-world time can be arbitrarily chosen. If n video sequences are to be synchronised,

a convenient choice is to choose t = 0 to correspond with the real-world time that camera

n started recording. Similarly, t can be chosen to measure time in units that equal the

real-world time between camera n recording successive frames. This defines

an = 0.0, bn = 1.0.

Now the time-stamps for video sequence n will be equal to its frame indices. In effect,

camera n is now being used not only to record visual information, but also as a time-

keeping device by which the remaining video sequences will be time-stamped. Since the

alignment between time and frame indices for video sequence n is now specified, time-

stamps need only be found for the remaining video sequences. Synchronising n video

sequences, without establishing a correspondence with real-world time, therefore only

requires the estimation of n− 1 linear relations.

In the specific case of a pair of video sequences, synchronisation may be expressed in

terms of just a single linear equation. If the frame indices from the first and second video

sequences are denoted f and f ′ respectively, then

t = a1 + b1f,

t = a2 + b2f
′.

By combining these equations to eliminate t, the relationship between frame indices is

f ′ = (a1 − a2)b
−1
2 + b1b

−1
2 f.

By a simplification of these terms,

a = (a1 − a2)b
−1
2 ,

b = b1b
−1
2 ,

The linear relation describing synchronisation for a pair of video sequences, which de-

scribes a line of synchrony in the space of (f, f ′), is given by

f ′ = a + bf. (1.1)

Given (a, b), equation 1.1 defines frame pairs (f, f ′) which have the same time-stamp, and

are therefore assumed to be synchronous. Note a faster derivation can be obtained by

choosing a2 = 0 and b2 = 1 as described above, in which case (a, b) are simply given by

(a1, b1). The parameter a is the frame offset, specifying which frame the second camera

captured as the first camera started recording; and b is the frame rate ratio of the two

cameras. Note that a can positive, negative, or zero. Conversely, b is assumed to be

positive, since a negative b value indicates that the frames in one of the video sequences

are in reverse order.



4

Figure 1.2: Side-by-side display of synchronised video frames, cropped to a region of
interest



5

Synchronisation is illustrated visually in figure 1.2. Cropped frame regions from video

sequences with different frame rates are displayed side by side such that their vertical

positions correlate with their estimated time-stamps.

1.2 Outline

Chapter 2 provides an overview of existing synchronisation methods, and explains the re-

quired underlying camera geometry and estimation algorithms. A description is also given

as to how the approach of this thesis differs from previous methods. The fundamental

component for achieving the accurate synchronisation of independently moving cameras

is presented in chapter 3. A cost function is developed which uses corresponding trajec-

tories of moving scene points, and the performance of synchronisation via an exhaustive

search across the parameter space is assessed. In chapter 4, a method is introduced which

searches for potentially synchronous frame pairs, and uses histogram methods to achieve

an initial estimate of synchronisation with greater efficiency. These histogram methods

are employed to achieve robust synchronisation in chapter 5, with new robust algorithms

that seek a trade-off between efficiency and reliability. Chapter 6 investigates the possi-

bility of using moving scene points to achieve both synchronisation, and combine scene

reconstructions from two cameras. Finally, a summary of contributions and scope for

further improvements is provided in chapter 7.



6



7

Chapter 2

PREVIOUS WORK

As shown in section 1.1, the temporal relationship between two video sequences

recorded by cameras with constant frame rates can be described by a single line with

parameters (a, b). The estimation of these parameters via an analysis of the video frames

has been previously examined in the literature, under a variety of different constraints

and using different visual cues. This chapter will describe a number of existing methods,

and provide explanations as to how the corresponding visual cues can offer a means for

achieving synchronisation.

All existing methods have one common requirement. The visual cue used to synchro-

nise the video sequences must indicate some change over time, and this change must be

observable to both cameras. Clearly, two video sequences exhibiting no common change

over time cannot be synchronised. A suitable visual cue will provide a means of deter-

mining whether or not a pair of frames appear to be synchronous.

Many current approaches make use of well-known spatial constraints that relate cor-

responding locations in synchronous frames. An overview of these constraints and their

relevance to automated synchronisation is given in section 2.1. A description of existing

synchronisation algorithms, and the circumstances in which they can be applied, is then

presented in section 2.2

2.1 Spatial Constraints

The formation of an image recorded by a camera is typically modelled by perspective

projection, which mathematically represents the use of a pinhole camera. A detailed

description is given in [14]. The advantage of this model is its elegant simplicity, in which

the projection is described by a linear relationship.

A scene point can be represented by a 4 × 1 vector. If this vector is termed q, the

Euclidean 3D coordinates of the point are given by ( [q]1
[q]4

,
[q]2
[q]4

,
[q]3
[q]4

). Note this representation

is scale-invariant, as any two such vectors equal up to scale will represent the same 3D

scene point. A pinhole camera projects this scene point to a 2D point in an image, where

p = Mq

describes the resulting image point location. The vector p has size 3×1, and specifies 2D

Euclidean coordinates given by ( [p]1
[p]3

,
[p]2
[p]3

). The 3 × 4 projection matrix M encapsulates



8

(u0, v0)

y

x

z

(0, 0, 0)

t

πR

(0,0)

q

p

Figure 2.1: The perspective projection of a scene point

the properties of the camera, and can be expressed as

M ∼ K [R | − Rt] ,

where t is the 3D location of the camera’s optical centre and R is a 3× 3 rotation matrix

specifying the orientation of the camera with respect to the coordinate system of the

3D scene. The calibration matrix K is an upper-triangular 3 × 3 matrix specifying the

internal camera settings, or intrinsic parameters.

The process of perspective projection is illustrated in figure 2.1, which displays both

the 3D and 2D coordinate systems. A ray in space joining the scene point q with the

camera’s optical centre is shown. The resulting 2D location p is the image of q, and is

determined by the point at which this ray intersects the retinal plane πR. The ray in

space passing through the optical centre and perpendicular to the retinal plane is called

the optical axis, and the distance between the optical centre and the retinal plane is

defined as the focal length. Increasing or decreasing the focal length corresponds to the

camera zooming in or out respectively.

Geometrically, the matrix K describes a transformation relating the coordinate system

of the image to the coordinate system of the retinal plane, and is given as

K =

⎡
⎣ fu s u0

0 fv v0

0 0 1

⎤
⎦ .

The location (u0, v0) is called the principal point, and specifies in image coordinates where

the optical axis intersects the retinal plane. The magnitudes of the scalars fu and fv are



9

ratios of the camera’s focal length with the width and height of the pixels respectively.

A negative value for fu or fv denotes a reflection of the horizontal or vertical axis for the

image coordinate space. Alternatively, they can both be assumed to be positive, though

the reflection of an image axis must then be included in the rotation matrix R. The skew

parameter s determines how ‘rectangular’ the pixel locations are on the retinal plane.

An ideal camera should have a skew of 0, and |fu| = |fv|, as otherwise the image is a

non-Euclidean distortion of what was projected onto the retinal plane.

2.1.1 Essential and Fundamental Matrices

The epipolar constraint is a simple matrix equation that projections of a scene point into

two cameras must satisfy. It also describes some aspects of the spatial geometry relating

these cameras.

In the case of known intrinsic parameters, image points can be expressed in the coordi-

nate system of the retinal plane. The epipolar constraint can now be derived algebraically

as follows. The projection of a scene point q into two cameras is given by

p ∼ R [I | − t] q,

p′ ∼ R
′ [I | − t′] q,

where ∼ denotes equality up to scale for a pair of matrices or vectors. Note that both

R and R
′ are rotation matrices, so R

� = R
−1, and similarly for R

′. The right hand sides

can therefore be simplified by correcting for the rotations, giving

R
�p ∼ [I | − t] q,

R
′�p′ ∼ [I | − t′] q.

The optical centre of the second camera can be expressed in terms of the relative trans-

lation between the cameras. If ∅ denotes the zero matrix, then the second projection can

be re-expressed as
R

′�p′ ∼ [I |tΔ − t] q where tΔ = t− t′,

∼ [I | − t] q + [∅ |tΔ] q.

Note that the first term is a scalar multiple of the rotation-adjusted first projection, and

that the second can be simplified due to the presence of the zero matrix, leading to

R
′�p′ ∼ kR

�p + [q]4tΔ

for some non-zero scalar k. Both sides of this equation can be pre-multiplied by a matrix

[tΔ]×, which is an anti-symmetric matrix such that [tΔ]×u equates to the cross product

tΔ × u. This leads to

[tΔ]×R
′�p′ ∼ k[tΔ]×R

�p + [q]4[tΔ]×tΔ.



10

The rightmost term disappears, since tΔ × tΔ = 0. Pre-multiplying by p�R gives

p�
R[tΔ]×R

′�p′ ∼ p�
R[tΔ]×R

�p.

Since [tΔ]× is an anti-symmetric matrix, the right hand side equates to 0, leaving the

constraint

p�
Ep′ = 0, where E = R[tΔ]×R

′�.

This expression for the epipolar constraint was first introduced by Longuet-Higgins [31],

along with the linear algebra eight-point algorithm for estimating E from eight corre-

sponding image point pairs. Note that the scale of E can not be recovered from these

point matches, since E and kE will satisfy the same epipolar constraints for any non-zero

scalar k. A method is also given for recovering the relative rotation and translation be-

tween the cameras, and subsequently the scene point locations. The matrix E, called the

essential matrix, has 5 degrees of freedom; 3 for rotation, and 2 to describe the direction

(but not the magnitude) of relative translation between cameras. Since only the direction

of the relative translation is available, the distance between the cameras is unknown. As

this distance is undefined, it reflects the fact that the scale of a scene can not be deter-

mined from image correspondences alone. Additionally, the world coordinate system is

also not defined by the essential matrix. A recovered reconstruction of scene features is

therefore only unique up to a translation, rotation and scale. It is demonstrated in [27]

that it is both necessary and sufficient for an essential matrix to be rank 2 with a pair of

equal non-zero singular values.

Similarly to the calibrated case, an analogous constraint arises when the intrinsic

parameters are unknown. If the relative translation and rotation between two cameras

are encapsulated by an essential matrix E, and the cameras have calibration matrices K

and K
′, then the projections of a scene point p and p′ satisfy

p�
Fp′ = 0, where F ∼ K

−�
EK

′−1.

The matrix F is called the fundamental matrix, and was introduced by Faugeras [16] and

Hartley et. al. [26]. It is noted by both that projection matrices cannot be recovered

uniquely, since a projection matrix pair (M,M′) yield the same epipolar geometry as

(MH,M′
H), for any full rank 4 × 4 matrix H. Algorithms are given in each paper

for recovering projection matrices and scene points up to this ambiguity, using a set

of image correspondences. If certain assumptions about the calibration matrix hold,

the 4 × 4 ambiguity can be partly resolved. Hartley demonstrates that a single focal

length parameter for each projection matrix can be recovered from F if the other intrinsic

parameters are known [22]. An alternative method is given by Newsam et. al. [36],

along with a complete classification of degenerate camera configurations. It is shown by

Faugeras et. al. [17] that if the intrinsic parameters of a moving camera remain constant,

they can all be estimated from at least two unique fundamental matrices relating pairs of



11

l′

t t′

q

p

l

e e′

p′

Figure 2.2: Visualisation of the epipolar constraint

images. Once the intrinsic parameters are known, as in the essential matrix case, a scene

reconstruction can be chosen which is unique up to translation, rotation, and scale.

The geometry corresponding to the epipolar constraint is illustrated in figure 2.2. An

image point p′ in the second (right) camera is mapped to a corresponding epipolar line

l in the image of the first (left) camera, given by l = Fp′. The algebraic form of the

epipolar constraint therefore specifies that the image point p must lie along this line.

Additionally, all epipolar lines in the first camera must pass through the epipole e, which

specifies the projection of the second camera’s optical centre. Similarly, the point p in

the first camera has a corresponding epipolar line l′, given by F
�p, which passes through

both p′ and e′.

Estimation of the fundamental matrix from corresponding image points is a crucial

step in the reconstruction of a scene from two uncalibrated cameras, and hence has been

extensively studied by the computer vision community. In [25], Hartley adapts the 8-

point algorithm to the fundamental matrix case, by adding a prior step in which the

feature points in each image are transformed so that their centroid is at the origin, and

their average distance from the centroid is
√

2. This often improves the quality of F,

estimated by minimising the sum of squared algebraic errors, given by

m∑
i=1

(p�
i Fp′

i)
2, where ‖F‖

F
= 1. (2.1)

The operator ‖.‖
F

denotes the Frobenius norm of a matrix, and m is the total number



12

of image correspondences. As in the essential matrix case, this minimisation can be

solved by linear algebra methods. This is possible since each summand in equation 2.1

is the square of a term which is linear in the unknown elements of F. The normalising

transformations typically remove an order of magnitude difference in the scales of the

elements of the image point vectors. It is noted in [25] that such a normalisation will

reduce the condition number of the quadratic form associated with equation 2.1. An

alternative justification for the improvement in quality is given by Chojnacki et. al

[8], in which image point locations are considered to be instances of random variables.

The normalisation and estimation can then be equated to minimising a cost function

in which each squared residual is scaled by the inverse of its variance. A fundamental

matrix estimate then has a higher associated cost if it indicates the residuals have a lower

variance.

Further clarification comes from considering equation 2.1 for image points that have

not been normalised. Suppose that, for the true fundamental matrix, the sum of squared

algebraic errors is slightly more than m. On average, each squared sum is slightly more

than 1. A 3×3 matrix F with [F]3,3 = 1, and 0 elsewhere, unconditionally yields a sum of

m. Such a matrix is degenerate, and specifies all epipolar lines to be the line at infinity.

In a sense, this could be considered the worst possible solution, yet it admits a lower

algebraic error than the truth. In contrast, a prior normalisation typically downscales

the coordinates, and also the error in image point measurements, such that each squared

summand is much smaller than 1 for the true F. Accordingly, their sum will be much

smaller than m.

An estimation of the fundamental matrix with linear algebra methods is advantageous

due to its speed, yet the cost function given in equation 2.1 has no meaningful geometric

interpretation. An initial estimate of the fundamental matrix minimising equation 2.1

can typically be refined by using iterative methods to minimise a cost function consisting

of the squared sum of non-linear expressions.

Given a fundamental matrix F and a pair of points from the left and right images

(p,p′), F maps the point p′ to its corresponding epipolar line in the frame of point p.

The orthogonal distance from p to the epipolar line is given by

EORTH(p,p′,F) =
|p�Fp′|√

[Fp′]21 + [Fp′]22
.

Similarly, the distance from point p′ to its corresponding epipolar line is computed as

EORTH(p′, p,F�). The symmetric epipolar error is defined as the square root of the sum

of the squares of these two distances:

ESYMM(p,p′,F) =

√
EORTH(p,p′,F)2 + EORTH(p′, p,F�)2.

One of the earliest fundamental matrix papers by Faugeras [17] suggests improving a

fundamental matrix estimate by minimising the sum of squared symmetric epipolar errors.



13

Hartley and Zisserman propose the so-called Gold Standard method for improving an

estimate of the fundamental matrix [21]. This equates to finding F by minimising the

cost function
m∑

i=1

d(pi, p̂i)
2 + d(p′

i, p̂
′
i)

2,

where p̂�
i Fp̂′

i = 0, ∀i, Rank(F) = 2.

The image points pi and p′
i represent the measured image feature locations. The image

point pair p̂i and p̂′
i are the assumed true point locations, and are included as parameters

in the minimisation. The function d(.) measures the 2D Euclidean distance between two

points. The minimum of this function equates to a maximum likelihood solution, under

the assumption that every image point is perturbed with uniform Gaussian noise. Due to

the constraints on this cost function, the unknowns are often parameterised by a pair of

projection matrices (in which the first is prescribed and fixed) and a set of scene points.

Another distance that measures conformity to the epipolar constraint is the Sampson

error, which provides a first-order approximation to reprojection error [21]. Sampson

error is defined as

ESAMP(p,p′,F) =
|p�Fp′|√

[Fp′]21 + [Fp′]22 + [F�p]21 + [F�p]22

. (2.2)

This expression for Sampson error in the fundamental matrix case is suggested by Luong

and Faugeras [33], and is experimentally compared to symmetric epipolar error.

The epipolar constraint has particular relevance to automated synchronisation since it

also applies to moving scene points. Consider such a moving point, projecting to locations

pi in frame i of the first camera, and p′
j in frame j of the second camera. Given frame

offset a, and frame rate ratio b, these frames are synchronous if j = a + bi. In this case,

these image points are projections of the same scene location. The epipolar constraint

therefore specifies that

p�
i Fp′

j = 0, if j = a + bi,

Conversely, in asynchronous frames the image features are generated by the projections

of different scene locations, and in general will not satisfy the epipolar constraint, as

illustrated in figure 2.3. By extension, just as measures of epipolar error can be used to

assess the quality of a fundamental matrix, epipolar errors of moving points provide a

means of assessing an estimate of synchronisation parameters.

2.1.2 Homography Matrices

A 3× 3 homography matrix is a transformation that relates two projections of a planar

scene. Representing the plane by a 4×1 vector π, a scene point q lies on this plane if and

only if π�q = 0. The space of scene points satisfying this equation can be represented by



14

(j 	=a+bi)

t t′

pi

e e′

p′a+bi

p′j

scene point motion

Figure 2.3: Visualisation of the epipolar constraint for projections of a moving scene point
in synchronous and asynchronous frame pairs

a 4×3 matrix N. The columns of N span the left null-space of π, which can be considered

a 4×1 matrix. Specifically, N
�π = 0, where 0 is the zero-vector. Note that N must have

rank 3, since π�q = 0 only imposes one linear constraint on the 4 × 1 vector q. Any

scene point q lying on the plane can be expressed as a linear combination of the columns

of N. For such a q, there exists a 3× 1 vector k such that q = Nk. The projection of q

into two cameras represented by projection matrices M and M
′ is therefore given by

p ∼MNk,

p′ ∼M
′
Nk.

Note that since M,M′ and N are all rank 3, both MN and M
′
N are full-rank 3 × 3

matrices. Consequently, the vector k, which defines the scene point on the plane, can be

eliminated from these equations, leading to

p′ ∼ Hp,

where H = M
′
N(MN)−1.

(2.3)

The homography matrix, denoted here as H, relates corresponding image locations ex-

actly. If H is known, a feature location in one image can be mapped to it’s precise

corresponding location in the other image, as shown by the relation in equation 2.3. Note

that H is defined only by the projection matrices and the null-space of π. Consequently,

this relation holds only for the projections of scene points lying on the plane.



15

Figure 2.4: An application of the homography matrix; original images and the resulting
mosaic

Two images of a non-planar scene can also be related by a homography matrix, pro-

viding the optical centres of the two projection matrices are coincident. In this situation,

the two projections of a scene point q are given by

p ∼ KR [I| − t] q,

p′ ∼ K
′
R

′ [I| − t] q.

By applying the inverse of the calibration and rotation matrices to the image point

locations and equating, this leads to

p′ ∼ Hp, where H = K
′
R

′
R

�
K

−1. (2.4)

A homography matrix with this form, comprising the rotation and calibration matrices

for the two projections, is equal to the homography matrix obtained by assuming that

the scene lies on the plane at infinity. Note however that in the case of coincident optical

centres, this relation holds for any pair of corresponding image locations, not just those

associated with scene points on a particular plane.

Since a homography matrix uniquely relates corresponding image points, it can be

used to combine multiple images of a scene taken by cameras that observe (or approxi-

mately observe) the constraints mentioned above. Such a mosaic is depicted in figure 2.4,

combining two images recorded by a rotating camera.

A homography matrix can be estimated from corresponding image points. As with

the fundamental matrix, a linear algebra estimation is possible, though in this case it

requires a minimum of four image point correspondences. A homography matrix esti-

mated this way can be subsequently improved by an iterative minimisation with more

sophisticated error measures. One such error is the distance between an image point and

it’s transformed matching location. Specifically, such a measure is given by the Euclidean

distance between p′ and Hp in one image, or p and H
−1p′ in the other image. The sum of



16

these squared distances gives a symmetric error. Additionally, there exist Sampson and

Gold Standard errors, analogous to the fundamental matrix case. The Gold Standard

error is used to improve initial homography matrix estimates and generate mosaics in [3].

Further details on all these error measures can be found in [21].

Since the homography matrix relates noise-free image points exactly, other forms

of estimation are also possible. In [61], just two pairs of corner features are used to

estimate a homography matrix. Each corner can be considered the intersection of two

lines. Two corner pairs therefore provide four corresponding line pairs, which are sufficient

to uniquely compute a homography matrix. It is also possible to compute an estimate

that minimises the sum of squared differences in intensities, for all corresponding pixel

locations, rather than just a sparse set of features. Such an approach is used in [45].

Homography matrices can also be used to recover the calibration matrices of a non-

translating camera. A homography matrix relating two images recorded by such a camera

comprises calibration matrices and a relative rotation, as shown in equation 2.4. Since

a rotation matrix is known to be orthogonal, this places a constraint on the intrinsic

parameters. Hartley shows how to recover the unchanging intrinsic parameters of a

purely rotating camera [24], from at least two unique homography matrices. Under

a single additional constraint on the intrinsic parameters (such as zero skew), only one

homography matrix is needed. The case of varying intrinsic parameters is examined by de

Agapito et. al., using both non-linear [13] and linear [12] optimisations. In the non-linear

case, not all intrinsic parameters can be assumed to vary. This provides constraints which

ensure the estimation is over-determined. The linear case requires the stricter constraint

that some intrinsic parameters are known. At a minimum, the skew is assumed to be 0.

If additional constraints are available, such as known principal points or aspect ratios,

less homography matrices are needed to estimate the remaining intrinsic parameters for

each image. Note that once the intrinsics parameters of a rotating camera are known,

the relative rotation between images can be recovered.

As is the case with fundamental matrices, a homography matrix places constraints

on the locations of the projections of moving scene points. If cameras are relatively

close together, or viewing an approximately planar scene, a moving point will project to

locations related by the associated homography matrix in synchronous frames. Generally,

this constraint will not be satisfied for image locations in asynchronous frames.

2.1.3 Robust Estimation

Feature-based estimation of a spatial transformation is typically initialised by choosing

conspicuous locations in each image, such as those obtained with a Harris corner detec-

tor [20]. A tentative list of correspondences can be established by examining the pixel

intensities around each point, and comparing via some measure of similarity. A number

of such correlation measures are compared in [42]. In the case of a video sequence, corre-

spondences can be found using the assumption that the displacement of a feature is small



17

between successive frames. One such tracking method is described in [48]. Given image

point p in one frame, the corresponding location p′ in the next frame is sought that min-

imises a measure of difference between pixel regions around p and p′. The location p′ is

found by an iterative minimisation using image gradient information. The Scale Invariant

Feature Transform (SIFT) [32] can be used to locate features in images at varying scales.

An image is transformed by Gaussian smoothing with multiple standard deviations. For

some pre-chosen k, an ‘intensity’ value at (x, y, σ) is defined as the difference between

Gaussian convolutions of the image, at point (x, y), with standard deviations of σ and kσ.

Local extrema in this space exhibiting the appearance of a well-defined corner in (x, y)

are chosen as features. Rather than using a small surrounding window of intensities to

describe a feature, a distribution of the gradient magnitudes and orientations within a

small window is used. Orientation is measured relative to the orientation of the gradient

at the feature location. A normalised distribution of these gradient measures provides

a description of the feature which is invariant to both rotation, and certain changes in

illumination, of the original image. Such a description facilitates the identification of

correspondences in images which differ by these properties.

The feature-based estimation strategies outlined in the previous sections assume that

all the correspondences contributing to the estimation are correct, yet establishing such

correspondences is an error-prone process. Features arising from different scene points

may have a locally similar visual appearance, and be matched incorrectly as a conse-

quence. Since such mismatches can significantly reduce the quality of the final estimate,

there is a need for robust methods, which can identify such incorrect correspondences.

An underlying model, such as a fundamental matrix or homography matrix, can then be

computed using only the correct data. The estimation will therefore be robust, in the

sense that it is unaffected by the incorrect data.

In [18], Fischler and Bolles introduce a strategy called Random Sample Consensus

(RANSAC), which can be applied to a large variety of parameter estimation problems.

The set of measured data consists of inliers, those which approximately fit the model

to be estimated, and outliers, erroneous data samples which are only present due to

errors in gathering the data. When dealing with image correspondences, an incorrect

correspondence qualifies as an outlier. RANSAC achieves robustness by considering many

estimates of the unknown parameters, assessing each individually, and selecting the one

for which the most data are classified as inliers. Each iteration requires selecting a small

random subset of the data, and using this subset to estimate the underlying model. The

size of each subset is typically minimal, containing the smallest possible number of datum

from which a candidate model estimate can be computed. In the context of homography

matrix estimation, each datum would be a pair of corresponding image points, and four

such pairs would be chosen at random for each subset. Given an over-estimate of the

proportion of outliers in the data, the number of iterations is chosen such that there is a

high probability that at least one of the randomly selected data subsets consists entirely

of inliers. It is expected that such a subset should produce a reasonable estimate of the



18

underlying model parameters. Each estimate of the parameters is assessed by counting

the number of data with an associated error less than some threshold, denoted here as

eth. If the error associated with datum i is denoted ei, and the total data set has size m,

RANSAC can be considered as a search for the parameters that minimises

m∑
i=1

{
0 : e2

i < eth

1 : e2
i ≥ eth

.

Upon completion, with the best estimate identified, this threshold test can be used to

distinguish between inliers and outliers. The data classified as inliers can then all be used

to generate a better estimate of the parameters. The threshold eth can be chosen using

prior knowledge of the distribution of inlying errors. For example, if the inlier errors are

assumed to have a Gaussian distribution with 0 mean and known standard deviation σ, a

threshold of ethr = 3.84σ2 should admit 95% of inliers. Note that erroneous data should

in general fail the threshold test, and be classified correctly as outliers. Those wrongly

classified as inliers should not significantly degrade the subsequent estimation, since their

low associated errors indicates that they are reasonably consistent with approximately

correct model parameters.

Rousseuw proposes the Least Median of Squares (LMedS) method [40], which is pro-

cedurally similar to RANSAC. Random subsets of the data are used to generate candidate

parameter estimates. It differs in that the estimates are assessed by measuring the median

squared residual, thereby searching for parameters which minimise

med
{
e2

i | i ∈ 1 . . . m
}

.

If inliers account for more than 50% of the data, then for approximately correct param-

eters, the median is a sample of the error measures associated with the inliers. Once

the best estimate is found, inliers and outliers can again be classified using a threshold

test. Unlike RANSAC, the threshold need not be chosen using prior knowledge of the

distributions, and can instead be derived from the median.

M-estimator Sample Consensus (MSAC) is introduced by Torr and Zisserman in [50].

Like RANSAC and LMedS, multiple iterations are performed, with each iteration estimat-

ing the model parameters from a small randomly chosen subset of data. Each estimated

model is assessed with the expression

m∑
i=1

{
e2

i : e2
i < eth

eth : e2
i ≥ eth

,

Note that every datum i with e2
i ≥ eth will yield a summand of the same value. The data

classified as inliers however, produce summands equal to their associated error terms

e2
i . Using this expression, two model estimates classifying the same number of inliers

will be ranked according to how well each fits its associated inlying data. Furthermore,

this expression may be subsequently minimised, refining the initial model estimate, and



19

possibly allowing data to be reclassified as inliers or outliers as appropriate. Torr and

Zisserman also present a method called MLESAC [51], which models the distribution of

errors associated with both inliers and outliers. Error terms for inliers are assumed to

have a zero-mean Gaussian distribution with known variance. The outliers are assumed

to have a uniform distribution, over the search range used to find candidate matching

image features. The overall distribution of the data can therefore be expressed as a linear

combination of these two distribution types, if the proportion of inliers is known. As with

the previous methods, estimates are produced using random subsets of the data. For each

estimate, the proportion of inliers is determined using Expectation Maximisation, which

defines the data distribution. The likelihood of the error terms is then computed and

used to assess the model estimate. In [49], Torr introduces Maximum a-posteriori Sample

Consensus (MAPSAC). Prior probability distributions can be assumed for the minimal

parameterisation of a ‘true’ correspondence (of which data are noisy estimates), the model

to be computed, and for inlier and outlier classification. A model estimate can then be

assessed by the posterior, computed by weighting the likelihood (such as that used in

MLESAC) by the prior terms. If the prior probability distributions indicate that a model

estimate, its associated inlier classifications, or ‘true’ correspondences are unlikely, the

posterior will specify the model estimate is of lower quality.

Even if a set of data used for a robust estimation contains a high proportion of

inliers, the probability of a randomly chosen subset containing no outliers will typically

be small. The majority of iterations during a robust estimation will therefore produce

model parameters of unacceptable quality. Additionally, since the random subsets are

typically chosen to be of minimal size, the model parameters are usually generated by fast

linear algebra methods to precisely fit the data subset. For a large data set, evaluating the

model and classifying the data will dominate the time required to execute each iteration.

Most of the execution time in the above methods is therefore spent evaluating poor

parameter estimates. Chum et. al. have introduced a number of strategies to decrease

this cost. The Td,d test [10] quickly identifies those model estimates which are likely to

be of poor quality. Such models can then be ignored without requiring a full evaluation.

RANSAC is modified so that each model estimate is first assessed using a small random

subset of the data of size d, and discarded if any are classified as outliers. Using such a

strategy, the majority of poor estimates can be identified quickly. An application-specific

test is described in [11], in which a fundamental matrix estimate generated by seven

randomly chosen correspondences is ignored if it corresponds to a configuration where

not all seven scene points lie in front of both cameras. Speedup can also be achieved by

using an alternative sampling strategy called PROSAC [9], by associating a measure of

quality with each datum (such as a correlation measure in the case of matches). Random

samples are initially drawn from a set containing only the ‘best’ data. This set is grown

over time if no parameter estimate satisfying the termination condition is found. Since

the better data are more likely to be inliers, a suitable parameter estimate can often be

found with far fewer iterations.



20

Just as sets of image correspondences may be contaminated with mismatches, a set

of visual cues used for synchronisation may also be mismatched between video sequences.

Robust methods can be used to classify such outlying data, while obtaining an initial

estimate of the synchronisation parameters (a, b). Once the outlying data is classified, it

can be ignored, permitting the video sequences to be accurately synchronised with just

the inlying visual cues.

2.2 Existing Synchronisation Methods

In [39], Reid and Zisserman examine a notorious goal scored by England during extra

time of the 1966 World Cup final. This task involves determining the path of the soccer

ball throughout the scene, which requires analysing frames recorded simultaneously by

different video cameras. A soccer pitch is approximately planar, so a homography matrix

relating the images of this plane in any two frames can be computed from corresponding

stationary features, such as the intersection of line markings. Moving features on the

ground, in this case the points on players’ shadows, should also be related by this ho-

mography matrix if the frames are synchronous. The video sequences are synchronised

by searching for a frame offset such that the moving point correspondences are best re-

lated by the computed homography matrices. Note that this method requires the careful

selection of both stationary and moving corresponding points on the ground plane only.

Stein presents a fully automatic synchronisation algorithm [43] for a pair of cameras

observing objects that move close to the ground plane. The cameras are stationary,

so the homography matrix relating the views of the ground plane remains unchanged

over time. The centroids of moving objects in each frame are identified with background

subtraction methods, and a 1D search is then conducted to find the frame offset. For each

estimate, a list of all pairs of centroids in approximately synchronous frames is made. The

homography matrix is estimated from these matches using robust methods. The quality

of both spatial and temporal parameters is measured by computing the 2D distance

between the centroid locations in one camera, and the hypothesised matching centroids

from the other camera, transformed by the homography matrix. The 20th percentile of

the sorted list of these errors provides the measure of quality. So through a search of

the frame offset, and a repeated random sampling of hypothesised matches, this method

seeks to minimise the function

Percentile20

({
d(ph,i,Hp′

k,j) | ∀i, j, h, k, where |a + bi− j| < t
})

,

where t is the threshold for assuming approximate synchrony. The vector ph,i represents

the location of centroid h in frame i of the first video sequence. The vector p′
k,j is the

location of centroid k in frame j of the second video sequence. The function d(. . . ) maps

the vectors ph,i and p′
k,j to Euclidean points and measures the distance between them.

The advantage of this method is that no stationary matches are required. Moving objects,



21

however, are still approximately constrained to the ground plane, and the cameras must

remain stationary to facilitate background subtraction.

A featureless synchronisation method using homography matrices is described by

Caspi and Irani [6]. Their method differs from the previous ones in that it assumes

that the entire frames, not just the ground plane images, are related by a homography

matrix. This requires that either the entire scene is approximately planar, or that the

optical centres of the cameras are almost coincident. The method seeks to find a ho-

mography matrix and synchronisation parameters which minimise the sum of squared

differences between corresponding pixels in synchronous frames, measured as∑
x′,y′,i

(
I ′
a+bi(x

′, y′)− Ii(NEuc(H[x′, y′, 1]T ))
)2

. (2.5)

The function NEuc maps a projective point to the corresponding Euclidean point, by

dividing the first two elements of the projective point by the third. The terms Ik(x, y) and

I ′
k(x, y) refer to the pixel value at location (x, y), in frame k of the first and second video

sequences respectively. The synchronisation parameters which minimise the expression

given in equation 2.5 are found using Gauss-Newton minimisation in a coarse-to-fine

sampling of the data. Unlike previous methods, this strategy not only makes use of

moving objects, but other changes in the scene such as illumination. The constraint of

a single homography relationship between the sequences requires that the cameras either

remain stationary or move rigidly as a pair such as two fixed cameras mounted on a

moving rig. This method is illustrated in figure 2.5, which depicts selected frames from

two video sequences of a bouncing ball. Note that the difference image for the overlapping

image regions is dark for the synchronous frames, indicating similar pixel intensities. The

difference image for the asynchronous frames has brighter regions, due to the motion of

the ball and its shadow.

Rather than using scene changes, video sequences can also be synchronised by using

constraints on the motion of cameras, as shown in a paper by Caspi and Irani [5]. Two

video cameras are rigidly held together, and moved while recording. Since the optical

centres are close together, it can be assumed that all pairs of synchronous frames are

related by the same homography matrix. For each frame, the fundamental matrix or

homography matrix describing the camera motion to the next frame in the same video

sequence is computed. A search is then made for a frame offset such that synchronous

frames have transformations to their successors that are most consistent with the fact

that the cameras are related by an unchanging homography matrix. Once the best frame

offset is found, the homography matrix relating the two cameras can be estimated, even

in the case where the cameras view nothing in common.

Caspi et. al. present a feature based synchronisation method [7]. Moving image

features are detected and tracked independently in each video sequence, providing a set of

2D trajectories associated with each camera. A set of hypothesised matching trajectories

is constructed, consisting of all possible trajectory pairs. Alternatively, a smaller set may



22

Camera 1, frame i Camera 2, frame a + bi

Camera 1, frame i + k Camera 2, overlapping region

Absolute difference between

synchronous frames

Absolute difference between

asynchronous frames

Figure 2.5: An example of pixel-based synchrony with a synthetic scene of a bouncing
ball



23

be used by assuming that corresponding trajectories have similar properties such as colour

and shape. Robust estimation is used to achieve synchronisation by repeatedly choosing

a trajectory pair at random. For each pair, a search is conducted to find the frame

offset. Each frame offset value specifies a set of image point correspondences, drawn from

the trajectory pair at synchronous frames. These are used to compute a fundamental

matrix or homography matrix. As is the case in [6], this requires that the cameras

remain stationary, or move consistently together such that the spatial relationship remains

unchanged over time. This is similar to the method used by Stein in [43], but differs in

that whole trajectories are considered as correspondences, rather than independently

matching points in each frame pair. This reduces the number of potential matches,

thereby reducing the number of iterations required for the robust estimation. It is noted

that a typical pair of recording cameras will not capture frames at precisely the same

times. For frame i in the first video sequence, the synchronous frame index in the second

video sequence, computed as a+ bi, will not be an integer. To resolve this, tracked image

features are linearly interpolated to define their locations ‘between frames’. This allows

the computation of error terms, such as epipolar errors, in the case where a+ bi is not an

integer. It also permits the frame offset to be refined, synchronising the video sequences

to an accuracy within a fraction of a frame.

Wolf and Zomet propose a strategy in [59] that does not require corresponding fea-

tures between the video sequences, nor estimation of the spatial transformation relating

the cameras. Features moving through the image are identified and tracked in each video

sequence. It is assumed that each 3D feature observed by one camera can be expressed

as a linear combination of 3D features observed by the other camera. The coefficients

of the linear combination for each scene point remain unchanged over time. Note this is

equivalent to the case where each camera observes possibly differing features on the same

set of rigidly moving objects. Each camera is described by an orthographic projection

matrix, which remains constant over time. Given a frame offset a, a matrix M is con-

structed from the set of image points in both video sequences. Each pair of rows in M

contains the image locations for one of the tracked features from either video sequence.

Each column of M contains the set of image points for frame i in the first video sequence,

and the synchronous frame a + bi in the second video sequence. An upper bound on the

rank of M can be assumed, and a search is conducted to find the frame offset for which

the associated matrix M best conforms to this rank constraint.

A similar rank constraint is used by Tresadern and Reid to synchronise a pair of sta-

tionary cameras [52]. Moving scene features are tracked in each sequence, and correspon-

dences are established between the resulting 2D trajectories. Assuming affine projection,

image correspondences for a pair of frames can be arranged in a matrix that is known to

have rank 3 if the frames are synchronous. For each frame in the first video sequence, a

search is conducted to find a corresponding frame from the second video sequence such

that this rank constraint is best satisfied. This search provides a number of frame in-

dex pairs (f, f ′), a subset of which are presumed to be synchronous. RANSAC is used



24

to robustly obtain the synchronisation parameters (a, b) that approximately relate the

majority of these frame pairs. The synchronisation estimate is then refined, by seeking

a new set of hypothesised synchronous frame pairs, using image point interpolation to

approximate the projection of a moving scene point for times between integer frame index

values.

The typical linear constraint relating synchronous frame indices is relaxed in a paper

by Rao et. al. [38]. Assuming stationary cameras, moving scene features are identified

and tracked independently in each video sequence. Once corresponding trajectories are

identified, each pair of hypothesised synchronous frames has an associated error. This

error is given by the minimum cost associated with an algebraic estimation of the funda-

mental matrix relating the cameras. These errors therefore define a surface in the space

of the frame indices of the two video sequences, E(f, f ′). A path of low errors through

this surface is identified, comprising a set of hypothesised synchronous frame pairs. Each

such pair is required to be adjacent to another pair on the path, but no specific underlying

temporal model is assumed, permitting a non-linear synchrony of the video sequences.

This algorithm can therefore be used even for video sequences depicting different scenes,

providing they share similar motion patterns. The path of synchronous frames is iden-

tified in a coarse-to-fine manner, at first using only a low sampling of frames from each

video sequence.

A correspondence free synchronisation strategy is proposed by Yan and Pollefeys [60].

Each video sequence is uniformly sampled for space-time interest points. Such points are

analogous to Harris corners, but exhibit a corner-like appearance in the 3D volume of

pixel values indexed by image location and time. A common event generating a space

time interest point is a sudden change in disparity of a corner feature. Figure 2.6 depicts

such an event, for a camera observing a moving grey square. The resulting 3D volume

of grey pixels is shown by key images and a wire-frame. The change in disparity half

way through the sequence generates 3D corners in this volume. If a pair of stationary

cameras both observe a sudden change in direction of a moving scene point, we expect a

space-time interest point to be generated in each of the pair of synchronous frames. The

distribution of these features within each video sequence is estimated, and a histogram

over time is built. A search is performed for a frame offset which best correlates the two

histograms.

The case of a pair of independently moving cameras is examined in by Tuytelaars

and Van Gool [55]. Their method assumes scaled orthographic projection, and uses 5

corresponding pairs of trajectories tracked in the video sequences. Each trajectory pair

corresponds to a scene point, and it is assumed that these scene points exhibit non-rigid

motion over time. Four of the scene points define the world coordinate system at each

instance in time, essentially providing a projection matrix for each frame of the video

sequences. The fifth scene point then provides a cue for synchronisation. A 1D search is

conducted for a frame offset such that the images of the fifth scene point in synchronous

frames back-project to intersecting rays in 3D space.



25

Space-time

interest points

time

y

x

Figure 2.6: Key frames from a video sequence of a moving grey square (right), and
resulting space-time interest points (left)

Carceroni et. al. consider the case of an arbitrary number of stationary cameras [4].

Moving scene points are tracked in each video sequence, and their locations for times in

between frames are approximated by a linear interpolation. For each moving scene point

feature in frame i of the first video sequence, the corresponding epipolar line in every other

camera is computed. The intersection of this epipolar line with a 2D trajectory defines

a hypothesised frame index j, possibly synchronous with i. In the case of more than two

cameras, such frame pairs can be combined to produce a set of vectors, where each vector

has the form (f1, f2, . . . , fk). The frame indices f1 to fk denote a set of frames, one per

camera, which are hypothesised to all have been recorded at the same time. RANSAC is

used to robustly estimate the synchronisation parameters relating each camera with the

first.

Two papers by Wedge et. al. describe methods for synchronising a pair of stationary

cameras, using a visual cue provided by the vertical motion of a single moving object.

In [58], each video sequence is divided into sub-sequences. Synchronisation is estimated

for each sub-sequence pair independently, by finding a frame offset such that the ver-

tical direction of the object’s motion is consistent in synchronous frames. Consensus

using a histogram approach determines a constrained range for the frame offset that will

synchronise the entire video sequences. For each integer frame offset in this range, the fun-

damental matrix relating the cameras is estimated from moving image correspondences

in synchronous frames. The frame offset for which an estimated fundamental matrix has

the lowest associated algebraic error is determined. This initial estimate is then refined

by using image point interpolation to approximate the location of a moving image fea-



26

ture between frames, and performing a binary search to determine a frame offset between

integer values. In [57], a different approach is used. The fundamental matrix F relating

a pair of stationary cameras is estimated from stationary scene point correspondences.

A frame i is chosen from the first video sequence in which the moving object exhibits

significant vertical motion. The location of the moving object in this frame, denoted pi,

is mapped to its corresponding epipolar line in the second camera, given by Fpi. A frame

j is sought from the second camera, such that the moving point location p′
j lies along

this line. Such a j is found by initially choosing a frame in which the vertical direction

of the moving object matches that of frame i. The distance between Fpi and p′
j is used

to iteratively predict a more accurate value for j. Linear point interpolation is used to

identify a hypothesised synchronous (i, j) frame pair where j may lie between integer

values. This process is repeated to find many such frame pairs, and the synchronisation

parameters are estimated using linear least squares. This is similar to the method used

by Carceroni [4], but is only suitable for simple 3D motions since every such frame pair

(i, j) is assumed to be approximately correct.

Lei and Yang present an algorithm for the synchronisation of three independently

moving cameras in [30]. Corresponding point and line features are determined between

the video sequences, and then tracked independently in each. At least a subset of these

features are presumed to be projections of moving scene features. A uniform search is

conducted over frame offsets relating the second and third cameras with the first. Each

combination of frame offsets sampled represents a hypothesised synchronisation of the

three cameras, and defines a set of synchronous frame triplets. The spatial geometry

relating each such triplet of frames is estimated from the point and line correspondences.

A synchronisation estimate can then be assessed based on the consistency of the spatial

relationships with their associated point and line correspondences.

Serrat describes a method for the synchronisation of a pair of cameras with indepen-

dent but restricted motion [41]. Specifically, the paths of the cameras through the scene

are assumed to be almost coincident, and with similar orientations. The synchrony of

a pair of frames is assessed using a pixel-based method, similar to that in [6]. A ho-

mography is estimated that minimises the sum of squared pixel intensity differences for

corresponding image locations. Note that this method differs from that of [6] in that a

unique homography is estimated for each pair of frames. While the cameras may there-

fore move independently, this independence is limited. Synchronisation is determined by

considering a number of frames from the first video sequence. For each such frame i,

a corresponding frame j is sought from the second video that exhibits a low associated

difference in pixel values. Similarly to [38], no specific linear synchronisation model is as-

sumed. This permits the synchronisation of two video sequences, recorded with cameras

undergoing similar motions through the scene, possibly at different times. This method

does not specifically seek to establish a correspondence in time between the cameras, but

rather determine which frames were recorded while the cameras were at approximately

coincident locations.



27

2.3 Problem Formulation

The focus of this thesis is this synchronisation of independently moving cameras. As

described in section 2.2, the synchronisation of more than two video sequences has been

examined for both stationary [4] and moving [30] cameras. Here, only a pair of cameras

will be considered. This is justified by observing that any scheme for synchronising a pair

of cameras can be trivially extended to three cameras or more, by combining pair-wise

synchrony to achieve a globally consistent timestamping of all video sequences. An initial

estimate of the global synchrony can then be refined by considering corresponding visual

cues from every camera pair.

Two of the methods summarised in section 2.2 address the problem of synchronising

independently moving cameras under particular constraints. In [55], a scaled orthographic

projection is assumed. This equates to assuming that the rays in space projecting a

3D scene to an image are parallel, and such an assumption is therefore unsuitable for

some camera motions. The pixel-based method in [41] assumes that camera motions are

approximately coincident. Conversely, this thesis will allow full perspective projection,

as described in section 2.1. The only constraint assumed on the camera motion is that a

moving object must be observable to both cameras for some period of time. This amounts

to assuming that the video sequences have some overlap in time, and that the moving

object is observable in both sequences for some subset of synchronous frames.

A similar assumption of fully independent motion is also used in [30], where spatial

transformations relating synchronous frames are estimated from tracked corresponding

features. A different approach will be used here. The transformations relating syn-

chronous frames do not provide a complete spatial description of the cameras. The

precise motions of the cameras, described by associating a projection matrix with every

frame, can not be recovered from such transformations alone. A complete spatial descrip-

tion is necessary for many applications, such as the recovery of the 3D motion of features

through the scene. While the method in [30] does not preclude a full spatial registration

of the cameras, the estimation of many transformations relating synchronous frames is

redundant if a complete spatial description of the cameras can be estimated.

This thesis will demonstrate that, in the case where the cameras are spatially regis-

tered, an accurate and efficient synchronisation can be realised, based on visual cues from

moving objects. The underlying methods used to achieve this are described in chapters

3 and 4. It will also be shown that such an estimation can be robust, much like the

stationary camera cases described in [43] and [7]. Chapter 5 will show how to achieve

a fast robust recovery of synchronisation, while identifying corresponding projections of

moving scene points in the camera pair. Finally, chapter 6 will describe a means for

using moving scene points to assist in determining how the motions for each camera are

related in space. It will therefore be shown that moving scene points provide a visual cue

that enables both the robust estimation of synchrony, and a spatial registration of the

cameras.



28



29

Chapter 3

SYNCHRONISING A PAIR OF MOVING

CAMERAS

Automatic video synchronisation has previously been analysed assuming certain scene

or camera constraints. In particular, the majority of previous methods place strong

constraints on the motion of cameras. They must either be stationary, or move rigidly

as a pair. In this chapter, we consider the situation where a pair of cameras move

independently as they record images of a scene consisting of both static and dynamic

objects. It is assumed that a subset of the dynamic objects are visible to both cameras

at the same time, for a significant number of frames. These objects provide a visual cue

which can be used to estimate the frame offset, and optionally the frame rate ratio.

Since the cameras have independent motion, pixel based methods such as the one

described in [6] are inappropriate as there is no simple spatial transformation that relates

corresponding pixels in synchronous frames. Instead, we use a feature-based method that

makes use of image points (such as corners) tracked throughout each video sequence.

In [43, 7], both the synchronisation parameters and a spatial transformation are es-

timated using information from only the moving objects. For independently moving

cameras, any two frames from the same video sequence have different timestamps, so the

images of a moving scene feature in these frames are projections of different 3D locations.

Accordingly, the moving objects place no constraints on the spatial transformations be-

tween frames from the same video sequence. To recover an estimate of both temporal

and spatial parameters, information from stationary scene objects must also be used.

We therefore assume that the images of stationary scene features have been identified

and tracked in each video sequence. Furthermore, it is assumed that sufficient stationary

scene correspondences have been established between the video sequences, permitting the

computation of the fundamental matrix associated with any pair of frames.

In this chapter it is also assumed that extended tracks for moving scene points have

been correctly associated between the video sequences, but not matched at a point-to-

point level. This level of matching is illustrated in figure 3.1.

3.1 The Evolution of a Cost Function

In a pair of synchronous frames, the projections onto the images of a moving scene point

originate from a common 3D location. These image points will therefore be related by

the fundamental matrix which also relates projections of the stationary scene features. In



30

Figure 3.1: Corresponding trajectories between a pair of video sequences, identified prior
to synchronisation

asynchronous frames, these points will in general not conform to this epipolar constraint.

The epipolar errors associated with such a pair of image points therefore provide a means

by which the quality of the synchronisation parameters can be measured.

Figure 3.2 shows two examples of epipolar error measurement. In each example, the

squared Sampson error of the projections of a moving scene point has been measured

for every possible frame pair. The horizontal axes specify the frame indices for the two

cameras, and the Sampson error is measured along the vertical axis. It can be assumed

that this error measure will be low for approximately synchronous frames, and that such

frame pairs have the linear relationship defined by the synchronisation parameters (a, b)

described in section 1.1. Synchronising a pair of video sequences requires finding a long

straight valley in the surface described by the epipolar errors. Note that the second

‘valley’ in figure 3.2(b) is indicative of the fact that, although synchronous frames have

low epipolar error, not all frame pairs with low epipolar error are necessarily synchronous.

Now suppose that video sequences 1 and 2 have n and n′ frames, respectively, and

exhibit corresponding moving scene points, numbered from 1 to m. Let point h project to

locations (ph,0, ph,1, . . . ,ph,n) in the frames of video sequence 1 and (p′
h,0, p

′
h,1, . . . ,p

′
h,n′)

in the frames of video sequence 2. Frames i and j from the first and second video

sequences have associated projection matrices Mi and M
′
j, which can be used to generate

a fundamental matrix relating the two views, as shown in section 2.1.1. Fi,j denotes

the fundamental matrix mapping an image point in frame j of video sequence 2 to its

corresponding epipolar line in frame i of video sequence 1.



31

ESAMP

f

f ′

f

f ′

ESAMP

(a) (b)

Figure 3.2: Two cases of epipolar errors for synchronous and asynchronous frame pairs

A simple cost function can be obtained by computing the sum of squared symmetric

epipolar errors, obtained by considering each of the m moving scene points, and their

images in each frame of the first video sequence. The function is given by

SSIMPLE(a, b) =
m∑

h=1

n−1∑
i=0

ESYMM(ph,i, p
′
h,a+bi,Fi,a+bi)

2.

Although we expect this function to be low for accurate synchronisation estimates of (a, b),

there are some issues that must still be addressed. Note that certain epipolar errors may

not be measurable. Image points may be occluded in certain frames, and for some values

of frame index i in the first video sequence, a + bi may lie outside the range of [0, n′− 1].

The simplest solution is to ignore these cases by setting the corresponding epipolar error

to 0. A side-effect of this is that the cost function may reward synchronisation parameters

that lead to a smaller overlap in time. This problem is illustrated by a simple case in

example 3.1.

The solution we use to counter the problem of unmeasurable epipolar errors is to

compute the average of squared epipolar errors, rather than the sum. Note that in the

case of example 3.1, if the average of squared epipolar errors is used, the cost function

equates to (ka)2, which is parabolic and therefore does not suffer from local maxima.

Another problem arises from the fact that, for a frame rate ratio b > 1, some frames

in the second video sequence may be skipped altogether. These skipped frames contain

important image point information, which should ideally be included in the cost function.

It therefore makes more sense to measure epipolar errors for every frame in both video

sequences.

To account for immeasurable epipolar errors, and using the average of squared epipo-

lar errors, the following notation is used. A function measuring epipolar error is denoted



32

Example 3.1 (Problematic Sum of Squares Example) Consider the sce-

nario where a = 0.0, b = 1.0, n = n′. We examine the case where a single

moving point generates epipolar errors that are equal for every frame of the first

video sequence, and that increase linearly as the offset estimate differs from the

truth. A point moving vertically at constant speed in front of two rectified sta-

tionary cameras can have this effect. Now, for an integer estimate of a,

SSIMPLE(a, 1) =
n−1∑

i=0,a+i∈[0..n−1]

(ka)2.

Although this equation appears to be parabolic, note that as a differs from 0, fewer

epipolar distances are measurable. For an integer estimate of a ∈ [−n+1, n−1],

the number of measurable epipolar distances is (n−|a|). It therefore follows that

SSIMPLE(a, 1) =(n− |a|)(ka)2

=nk2a2 − sign(a)k2a3, a ∈ [−n + 1, n− 1].

SSIMPLE

a
n− 1−n + 1

The cost function is therefore piecewise cubic, not quadratic. It has local maxima

at a = ±2n
3
. This means that an estimate a > 2n

3
is considered better than the

estimate a = 2n
3
, despite the facts that all measurable epipolar errors are higher,

and the synchronisation estimate is worse.



33

EIDENT, where IDENT specifies the type of epipolar distance measured. The list of inputs

to function EIDENT is denoted ζ. Note this generalisation is used since epipolar error

measures developed in later sections use differing inputs. We define EIDENT
� as the cor-

responding function which equates to EIDENT if the epipolar error is measurable, and 0

otherwise. Specifically,

EIDENT
�(ζ) =

{
EIDENT(ζ) : EIDENT(ζ) is defined

0 : otherwise

The function W specifies how many epipolar errors are measurable, for all m moving

scene points, and every frame in the two video sequences. Note that the value of W
will not only depend on how many frames each moving scene point is visible in, but

also on the synchronisation parameters (a, b). The cost function to assess the quality

of synchronisation parameters (a, b), by computing the average of measurable epipolar

errors, where DIST is one of {ORTH, SYMM, SAMP}, is

SDIST(a, b) =
1

W(a, b)

m∑
h=1

n−1∑
i=0

EDIST
�(ph,i, p

′
h,a+bi,Fi,a+bi)

2 +

1

W(a, b)

m∑
h=1

n′−1∑
j=0

EDIST
�(p′

h,j, ph,a′+b′j,F
�
a′+b′j,j)

2,

where a′ = −ab−1, b′ = b−1.

(3.1)

Note that (a′, b′) are the parameters that give the inverse of the line defined by (a, b).

3.2 Handling Indices Between Integer Values by Interpolation

Consider the cost functions defined by 3.1. One significant problem still remains. Image

points and fundamental matrices are only defined for integer frame indices. Given an

integer frame index i, and general synchronisation parameters (a, b), the value of a + bi

is not necessarily an integer. Methods for measuring epipolar distances for such values of

a + bi are therefore required.

A simple solution is to linearly interpolate the epipolar distances as measured in the

two closest frames. We therefore define

EDIST−RI(p,p′
0,F0, p

′
1,F1, q) = (1− q)EDIST(p,p′

0,F0) + qEDIST(p,p′
1,F1)

to be the function that linearly interpolates between two epipolar distances, where DIST

is one of {ORTH, SYMM, SAMP}. The function that counts the number of measurable

interpolated epipolar errors, for all scene points and all frames in the two video sequences,



34

is denoted WI. The corresponding cost function to assess synchronisation parameters is

SDIST−RI(a, b) =
1

WI(a, b)

m∑
h=1

n−1∑
i=0

EDIST−RI
�(ph,i, p′

h,�a+bi�,Fi,�a+bi�,

p′
h,�a+bi�+1,Fi,�a+bi�+1,

a + bi− �a + bi�)2 +

1

WI(a, b)

m∑
h=1

n′−1∑
j=0

EDIST−RI
�(p′

h,j, ph,�a′+b′j�,F
�
�a′+b′j�,j,

ph,�a′+b′j�+1,F
�
�a′+b′j�+1,j,

a′ + b′j − �a′ + b′j�)2,

where a′ = −ab−1, b′ = b−1.

Note that an epipolar distance associated with a particular moving scene point may now

be measured in frame i from the first video sequence, where a + bi is not an integer.

This requires that a + bi is within the range [0, n′], and the moving scene point has been

tracked in the two frames from the second video sequence with indices closest to a + bi.

This method of residual interpolation has a serious potential drawback, however. In

certain circumstances, the cost function may be locally flat, limiting the accuracy of the

synchronisation. A simple case demonstrating this possibility is presented in example 3.2.

Example 3.2 (Problematic Residual Interpolation Example) Consider

the spatial configuration described in example 3.1. A point moves vertically at

constant speed in front of two rectified stationary cameras, with equal frame

rate. As a result, epipolar error measures EORTH increase linearly as the offset

estimate differs from the truth. Since the cameras are rectified, epipolar lines

are horizontal. Symmetric and Sampson errors therefore also increase linearly

as the offset changes.

Assuming the true frame offset is given by a = 0.5, then the epipolar errors for

candidate offset estimates â = 0 and â = 1 are equal. If a cost function using

an interpolation of residuals is used, the function is flat between these estimates

if WI (the number of measurable errors) is unchanged. Otherwise, the minimum

will occur at whichever of these two estimates has a higher value of WI.

In this case, achieving synchronisation to within a fraction of a frame is impos-

sible via an interpolation of residuals, regardless of how many scene points with

this class of motion are tracked.

Another possibility is to interpolate the information used in computing the epipolar

errors, rather than interpolating the errors themselves. This approach is used in [7], where

image points are linearly interpolated to approximate their locations between integer

frame indices. Such a strategy is insufficient for independently moving cameras, since



35

fundamental matrices also change between frames. A simple alternative is to interpolate

epipolar lines.

Consider frame i in video sequence 1, where k = a + bi for some estimate of (a, b) is

not an integer. The two integer frame indices closest to k in video sequence 2 are given

by �k� and �k�+ 1. The images of moving point h in these frames map to epipolar lines

in frame i of video sequence 1, given by

lh,i,�k� = Fi,�k�p
′
h,�k�,

lh,i,�k�+1 = Fi,�k�+1p
′
h,�k�+1.

Since we wish to measure the epipolar distance for a value of k between two integers,

we will use a line that in some sense lies between the lines lh,i,�k� and lh,i,�k�+1. Such a

line can be obtained by performing a linear interpolation, thereby producing another line

which passes through the point at which lh,i,�k� and lh,i,�k�+1 intersect.

The line vectors lh,i,�k� and lh,i,�k�+1 have a scale-invariant representation. If one of

these vectors is multiplied by a non-zero scalar, it still represents the same line in 2D space,

yet the result of a linear interpolation to estimate a line between integer frame indices

will be different. To account for this ambiguity, each epipolar line is first normalised so

that the sum of the squares of its first two coordinates is 1. The first two elements of the

resulting vector then equate to sin θ and cos θ, where θ represents the line’s orientation.

We denote this normalisation function as NL, defined as

NL(l) =
l√

[l]21 + [l]22

An interpolation of the lines NL(lh,i,�k�) and NL(lh,i,�k�+1) is denoted l̂h,i,k. This interpo-

lated line will have an orientation defined by an interpolation of two points on the unit

circle that describe the orientations of lh,i,�k� and lh,i,�k�+1. This is illustrated in figure 3.3,

where the two epipolar lines and interpolated line have orientations denoted by θh,i,�k�,

θh,i,�k�+1, and θ̂h,i,k respectively. It should also be noted that |p�NL(l)| is the orthogonal

distance from point p to line l.

The orientation of a line vector is not unique. For line vector l, the orientation is

given by θ, where the first two elements of NL(l) are sin θ and cos θ respectively. Note

that NL(−l) represents the same line in 2D space, but has an orientation that differs

from that of NL(l) by ±π. Because of this ambiguity, there are two different possible

interpolations of the lines lh,i,�k� and lh,i,�k�+1. Negating one of these lines will change

which of the angles between the pair the interpolated line will pass through. If lh,i,�k�

and lh,i,�k�+1 are precisely parallel, scaling one of them by −1 will change whether the

interpolation lies between or outside the pair.

Since the epipolar lines lh,i,�k� and lh,i,�k�+1 are generated by a tracked moving point in

consecutive frames, it is reasonable to assume that they should have similar orientations.

Prior to computing the interpolation, one of the line vectors is negated if this reduces the

difference in their orientations. This equates to negating one of lh,i,�k� and lh,i,�k�+1 if the



36

(cos θh,i,�k�+1, sinθh,i,�k�+1)

(cos θ̂h,i,k, sinθ̂h,i,k)

(cos θh,i,�k�, sinθh,i,�k�)

l̂h,i,k

lh,i,�k�+1

lh,i,�k�

Figure 3.3: Epipolar Line Interpolation

inner product of their first two elements is negative.

The function to interpolate two lines is therefore defined as

IL(l0, l1, k) =

{
(1− k)NL(l0) + kNL(l1) : [l0]1[l1]1 + [l0]2[l1]2 > 0

(1− k)NL(l0)− kNL(l1) : otherwise
(3.2)

Note that it would also be possible to interpolate two lines l0 and l1 by a linear

interpolation of their orientations θ0 and θ1. Such a method however, does not uniquely

define a line when l0 and l1 are parallel. The case of parallel lines would then have to be

handled separately. For this reason, a linear interpolation of the normalised line vectors

is preferable. Once an interpolated epipolar line is computed, the epipolar error in the

corresponding frame can be measured, given by

EORTH−LI(p,p′
0,F0, p

′
1,F1, k) = p�NL(IL(F0p

′
0,F1p

′
1, k)).

The resulting synchronisation cost function is

SORTH−LI(a, b) =
1

WI(a, b)

m∑
h=1

n−1∑
i=0

EORTH−LI
�(ph,i, p′

h,�a+bi�,Fi,�a+bi�,

p′
h,�a+bi�+1,Fi,�a+bi�+1,

a + bi− �a + bi�)2 +

1

WI(a, b)

m∑
h=1

n′−1∑
j=0

EORTH−LI
�(p′

h,j, ph,�a′+b′j�,F
�
�a′+b′j�,j,

ph,�a′+b′j�+1,F
�
�a′+b′j�+1,j,

a′ + b′j − �a′ + b′j�)2,

where a′ = −ab−1, b′ = b−1.

To highlight the difference between EORTH−LI and EORTH−RI, a noiseless synthetic

case is illustrated in figure 3.4. Errors are measured for k which varies between the



37

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

EORTH−TRUTH

EORTH−LI

EORTH−RI

k

EORTH
2

Figure 3.4: A Comparison of Interpolated Epipolar Errors

integer frame indices 0 and 1 from the first video sequence. Interpolated epipolar errors

are measured in a frame from the second video sequence. These errors are compared

against the true epipolar errors EORTH−TRUTH calculated from the known trajectories of

the moving cameras and scene points. Note that EORTH−RI appears approximately linear,

whereas EORTH−LI is almost indistinguishable from EORTH−TRUTH, with a minimum value

at approximately the same value of k. This demonstrates that, compared with EORTH−RI,

EORTH−LI can yield epipolar errors between integer frame indices which are closer to the

true errors EORTH−TRUTH.

3.3 Estimating the Frame Offset via an Exhaustive Search

In this section it is assumed that the frame rates of the cameras, or optionally just their

ratio, are known. An initial estimate of the frame offset a can be found with a discrete

uniform sampling over a constrained range of values. For each sample value of a, some

cost function SCOST is evaluated. The value with the smallest associated cost is then used

as the initial estimate of a, which can subsequently be refined by minimising the selected

cost function with a minimiser such as Levenberg-Marquardt. An exhaustive search is

necessary since the cost is a function of scene point and camera motions, which may be

arbitrarily complex and give rise to multiple local minima.

The density of the sampling is chosen so as to test sample values of a that are a

distance of min(1, b) apart. Such a change in offset is equivalent to shifting the video

sequence with the highest frame rate one frame forward in time. In some sense, such a



38

r

a

n′ − 1

f ′

b

1

n− 1
f

r′

Figure 3.5: Ranges of frames in each video sequence captured while both cameras recorded

sampling will synchronise the video sequences at the frame level.

Each candidate sample of a, along with the known frame rate ratio b, defines a hy-

pothesised temporal alignment of the video sequences. Accordingly, it defines a range of

frames in each video sequence that correspond to the period of time that both cameras

were recording. The lengths of these frame ranges are denoted (r, r′) for the first and

second video sequences, respectively, and are defined by the projection of the synchroni-

sation line within a rectangle bounded by (0, 0) and (n − 1, n′ − 1) onto each axis. An

example of this is illustrated in figure 3.5. The search for the frame offset a will be re-

stricted to values such that (r, r′) are above pre-chosen thresholds (rmin, r′min), indicating

the video sequences have a significant overlap in time. These thresholds allow the user

to make use of prior knowledge of the video sequences to constrain the search range of

a. For example, if we choose rmin = 1
2
n, and r′min = 1

2
n′, the search for offset a will be

restricted to values indicating that neither camera was recording for longer than twice

the time that both were recording. If the thresholds are both set to 0, every frame offset

indicating at least one frame of overlap will be tested.

The frame range sizes (r, r′) can be expressed in terms of parameters (a, b). A frame

offset of 0 indicates that the cameras started recording at the same point in time. We

define aend as the frame offset indicating that the cameras finished recording at the same

point in time, and compute it using the equation

aend = (n′ − 1)− b(n− 1). (3.3)

Each frame range size remains constant for frame offsets between 0 and aend, but they

decrease linearly for estimates of a outside of these values. Specifically, if aend > 0, the



39

formulae for (r, r′) are

r′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 : a < −b(n− 1)

a + b(n− 1) : −b(n− 1) ≤ a < 0

b(n− 1) : 0 ≤ a < aend

n′ − 1− a : aend ≤ a < n′ − 1

0 : a ≥ n′ − 1

, r =
r′

b

Note that (r, r′) have maximum values of (n − 1, b(n − 1)). The thresholds (rmin, r′min)

must be less than or equal to these values, or else the search range for a will be empty.

If aend ≤ 0, then (r, r′) are given by

r′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 : a < −b(n− 1)

a + b(n− 1) : −b(n− 1) ≤ a < aend

n′ − 1 : aend ≤ a < 0

n′ − 1− a : 0 ≤ a < n′ − 1

0 : a ≥ n′ − 1

, r =
r′

b

Analogously to the previous case, (r, r′) have maximum values of (n′−1
b

, n′− 1). The pair

(rmin, r′min) must be chosen to be less than or equal to these maxima.

Once appropriate (rmin, r′min) have been chosen, the range of a satisfying each of the

constraints (r ≥ rmin) and (r′ ≥ r′min) can be computed. The innermost of these two

ranges specifies the constrained search range for frame offset a. The process is illustrated

for (aend > 0) in figure 3.6. Specifically, the constrained range of frame offset a is

amin =max{brmin − b(n− 1), r′min − b(n− 1)},
amax =min{(n′ − 1)− brmin, (n′ − 1)− r′min}.

(3.4)

With a sample rate and search range now defined for offset a, the estimate that

minimises the cost function is found. The entire process is summarised in algorithm 3.1.

Once the initial estimate is available, it can be refined to achieve synchronisation with

accuracy to within a fraction of a frame, by using the chosen cost function SCOST with a

minimiser such as Levenberg-Marquardt.

3.4 Estimating Both Synchronisation Parameters via an Ex-

haustive Search

If the frame rates of the cameras are unknown, both (a, b) must be estimated. A uniform

discrete sampling over (a, b) is inappropriate, since b may theoretically increase without

bound. Choosing upper and lower bounds for the sampling is therefore problematic.

Furthermore, since b is a ratio, it makes sense to consider reciprocal values. If b̂ is one

value sampled, b̂−1 should be considered as well. A uniform sampling does not permit

this.



40

a

r′

r′min

b(n− 1)

r

a

r′min − b(n− 1)

−b(n− 1)

−b(n− 1) 0 aend

n′ − 1

n′ − 1

(n′ − 1)− r′min

b(rmin + 1− n) (n′ − 1)− brmin

0 aend

rmin

n− 1

(n′ − 1)− r′minr′min − b(n− 1)

amaxamin

(n′ − 1)− brminb(rmin + 1− n)

Figure 3.6: Frame ranges for different values of offset a (aend > 0)



41

Algorithm 3.1 (Estimation of a with an Exhaustive Search)

Compute aend as defined in equation 3.3

Choose

0 ≤ rmin ≤
{

n− 1 : aend > 0
n′−1

b
: otherwise

And

0 ≤ r′min ≤
{

b(n− 1) : aend > 0

n′ − 1 : otherwise

Compute (amin, amax) as defined in equation 3.4

â ← amin

âbest ← amin

while â ≤ amax do

if SCOST (â, b) < SCOST (âbest, b) then

âbest ← â

end if

â ← â + min(1, b)

end while

a ← âbest

An alternative parameterisation for the line defined by (a, b) is given by

α =
−a

b + 1
, β =

n + n′ − 2− a

b + 1
.

The parameter α specifies the intersection of the line defined by (a, b) with a line of

gradient−1 passing through the origin. Similarly, β defines the location of the intersection

with a line of gradient −1 passing through the point (n− 1, n′− 1). This is illustrated in

figure 3.7.

This parameterisation is convenient since it places simple bounds on the values of α

and β. The value of α must be in the range of (1 − n′, n − 1), and β must lie between

(0, n′ + n − 2). A uniform sampling over all integer values of (α, β) in these ranges

has another convenient property. The set of temporal alignments sampled is equivalent,

regardless of which video sequence is chosen to be the first, with frame index f , and which

is chosen to be the second. Furthermore, by defining β as shown in figure 3.7, a similar

equivalence occurs even if the order of frames in each video sequence is reversed.

Given values for α and β, the original parameters a and b can be recovered as

a = −α
n + n′ − 2

β − α
, b =

(n + n′ − 2)− (β − α)

β − α
. (3.5)

To fit the requirement of a positive frame rate ratio, we require (α ≤ β ≤ n+n′− 2+α).



42

f ′

f

a

b

1

n− 1 βα

n′ − 1

Figure 3.7: Line parameterisation (α, β).

From equation 3.5, it can be seen that a uniform search across integer values of α and

β will sample reciprocal frame rate ratios. Consider the expression for b in equation 3.5,

for some integer values of α and β. An estimate of synchronisation (α′, β′) for which

(β′ − α′) = (n + n′ − 2)− (β − α)

will equate to a frame rate ratio of b−1. Note that for integer values of α and β, there

exist integer values of α′ and β′ satisfying this relation.

As in the case for a known frame rate ratio, the frame ranges (r, r′) can be expressed

in terms of the synchronisation parameters. For α > 0,

r = β−α
g+α−β

r′.

r′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 : β < α

n′ − 1 : α ≤ β ≤ (n− 1)

n′ − 1 + g(n−1−β)
β−α

: (n− 1) < β ≤ (g − n−1
n′−1

α)

0 : β > (g − n−1
n′−1

α)

,

where g = n + n′ − 2.



43

Similarly, for α < 0,

r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 : β < (− n−1
n′−1

α)

n− 1− g(n−1−β)
g+α−β

: (− n−1
n′−1

α) ≤ β < (n− 1)

n− 1 : (n− 1) ≤ β ≤ (g + α)

0 : (g + α) < β

,

r′ = g+α−β
β−α

r,

where g = n + n′ − 2.

Finally, for α = 0,

r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 : β < 0
(n′−1)β

g−β
: 0 ≤ β < (n− 1)

n− 1 : n− 1 ≤ β ≤ g

0 : β > g

,

r′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 : β < 0

n′ − 1 : β ≤ (n− 1)
(n−1)(g−β)

β
: (n− 1) ≤ β ≤ g

0 : β > g

,

where g = n + n′ − 2.

Unlike the case for a known frame rate ratio, we can always choose any threshold rmin

in the range of [0, n− 1], and likewise any r′min in [0, n′− 1]. Since both parameters (a, b)

are unknown, an estimate can always be found that specifies the video sequences have

a complete overlap in time. Once these thresholds have been chosen, the corresponding

search ranges for α and β can be calculated.

For a positive α, some value of β can always be chosen such that r′ = (n′ − 1).

Consequently, the upper bound for α is only dependent on rmin. Similarly, the lower

bound for α is only dependent on r′min. For any value of α, the frame range sizes r and r′

attain their maximum at β = (n− 1). Consequently, the upper bound for α is the value

at which r = rmin for β = (n− 1). The lower bound for α is the value at which r′ = r′min

for β = (n− 1). This equates to a search range for α defined by

αmin = −(n− 1)(n′ − 1− r′min)

r′min + n− 1
,

αmax =
(n′ − 1)(n− 1− rmin)

rmin + n′ − 1
.

(3.6)

For every candidate value α̂ within this range, we need to compute the corresponding



44

search range of β. The lower bound of β is given by

βmin =

{
βmin−1 : α̂ ≥ 0

max{βmin−2, βmin−3} : α̂ < 0
,

where βmin−1 = α̂ + grmin
n′−1+rmin

,

βmin−2 = α̂ + g(rmin−α̂)
n′−1+rmin

,

βmin−3 = α̂− gα̂
n′−1−r′min

,

g = n + n′ − 2.

(3.7)

Similarly, the upper bound for β is

βmax =

{
βmax−1 : α̂ ≤ 0

min{βmax−2, βmax−3} : α̂ > 0
,

where βmax−1 = α̂ + g − r′ming

r′min+n−1
,

βmax−2 = α̂ + g − gα̂
n−1−rmin

,

βmax−3 = α̂ + g − g(α̂+r′min)
r′min+n−1

,

g = n + n′ − 2.

(3.8)

Having defined the ranges for both parameters that produce (r, r′) greater than or

equal to the minimum thresholds, the search to find the best estimates of α and β can

now be conducted. Note that the ranges for α and β admit frame rate ratios of 0 or

infinity if rmin = 0, or r′min = 0. This is reasonable since we are only searching for an

initial estimate of the parameters (a, b). Given synchronisation cost function SCOST (a, b),

we define SCOST ∗(α, β) as the corresponding cost function that assesses parameters in the

space of (α, β). The resulting search is summarised in algorithm 3.2.

As in the case of a known frame rate ratio, the initial estimate can be refined by

applying a minimiser such as Levenberg-Marquardt to the relevant cost function.

3.5 Synthetic Tests

This section presents a comparison of the cost functions described in section 3.1, and

assesses the performance of algorithms 3.1 and 3.2 which estimate synchronisation pa-

rameters via a uniform search of the parameter space.

3.5.1 Test Configurations

The algorithms are assessed for various synchronisation parameters. Cameras orbit a unit

sphere at different elevations, with optical centre paths shown in figure 3.8. The cameras

move along the illustrated trajectories at constant speed, maintaining a distance of 2.25

from the vertical axis of the sphere, and rotating so that the optical axis of each frame

intersects the centre of the sphere.



45

Algorithm 3.2 (Estimation of (α, β) with an Exhaustive Search)

Choose rmin such that 0 ≤ rmin ≤ n− 1

And r′min such that 0 ≤ r′min ≤ n′ − 1

Compute (αmin, αmax) as defined in equation 3.6

(α̂best, β̂best) ← (αmin, n− 1)

α̂ ← αmin

while α̂ ≤ αmax do

Compute (βmin, βmax) as defined in equations 3.7 and 3.8

β̂ ← βmin

while β̂ ≤ βmax do

if SCOST ∗(α̂, β̂) < SCOST ∗(α̂best, β̂best) then

(α̂best, β̂best) ← (α̂, β̂)

end if

β̂ ← β̂ + 1

end while

α̂ ← α̂ + 1

end while

(α, β) ← (α̂best, β̂best)

camera 1,

first frame

camera 1,

last frame

camera 2,

first frame
camera 2,

last frame

Figure 3.8: Spatial configuration for synthetic synchronisation tests



46

In each test, 100 stationary scene points are randomly chosen within the unit sphere.

These scene points are projected to each video frame, for an image size of 500 × 500,

and Gaussian noise is added to each resulting location. The standard deviation of the

noise is chosen such that the average squared distance to the true location is one pixel.

Linear trajectories are chosen at random for the moving scene points, each having a length

between 1 and 2. These moving scene points are also projected to the video frames, and

as with the projections of stationary scene points, Gaussian noise is added to each 2D

location.

The projection matrices are precomputed by forming an initial reconstruction of the

stationary point cloud using just 2 frames. This point cloud is used to estimate a larger

subset of projection matrices for both video sequences. The subset of projection matrices

and the 3D points are then refined using bundle adjustment with sparse methods as

described in [23]. Finally, the remaining projection matrices are computed, and Resection-

Intersection [54] is used, whereby the sets of projection matrices and 3D scene points are

iteratively refined.

Each of the temporal configurations is tested 1000 times, with new stationary and

moving scene points chosen randomly for each test.

3.5.2 Initial Estimates of Synchronisation Parameters

Algorithms 3.1 and 3.2 provide initial estimates of the synchronisation parameters, for

known and unknown frame rate ratios respectively. We begin by assessing their perfor-

mance across a variety of temporal configurations, using different cost functions defined

earlier. To assess initial estimates, errors are measured in the space of the parameters

over which the search is conducted. In the known frame rate ratio case, algorithm 3.1

returns an estimate of the frame offset, â. Denoting the true frame offset as ā, the error

measure used to rate the performance of this search is

Ea =
|â− ā|

min(b, 1)
.

Note that since algorithm 3.1 uniformly samples frame offsets distance min(b, 1) apart,

Ea measures the distance from the initial estimate to the true frame offset ā in units of

the sampling rate. The purpose of measuring this error for an initial estimate is not to

demonstrate a highly accurate level of synchronisation. Rather, a small Ea indicates that,

of all frame offsets values sampled during the search, the one with the lowest associated

error is adjacent, or at least nearby, to the sample closest to ā.

For an unknown frame rate ratio, algorithm 3.2 provides initial estimates α̂ and β̂.

Accordingly, the error measure used to assess the performance of this search is

Eα,β =

√
(α̂− ᾱ)2 + (β̂ − β̄)2,



47

Setup Percentage of tests where Ea < 2

n n′ ā b̄ SORTH−RI SSYMM−RI SSAMP−RI SORTH−LI

80 100 10.63 1.1875 99.6 99.5 99.6 99.5

80 100 42.3 1.1875 97.3 97.3 97.3 97.3

20 100 10.63 4.9375 99.3 99.4 99.4 99.3

Setup Percentage of tests where Eα,β < 2

n n′ ā b̄ SORTH−RI SSYMM−RI SSAMP−RI SORTH−LI

80 100 10.63 1.1875 97.8 97.7 97.6 97.7

80 100 42.3 1.1875 92.3 92.4 92.5 92.4

20 100 10.63 4.9375 98.9 99.0 98.9 99.0

Table 3.1: Synthetic initial estimate performance for a single moving scene point

where ᾱ, and β̄ are the true values of the parameters being estimated. Note that mea-

suring a 2D distance in the parameter space makes sense since algorithm 3.2 performs a

uniform search in α and β, sampling values at distance 1 apart in either parameter.

The results are given in table 3.1, for synchronisation estimates obtained using just a

single moving scene point. The percentages of tests are shown for which a search across

parameter space yields Ea < 2 and Eα,β < 2. This is the lowest integer value such that

a significant majority of tests (above 90%) satisfy the error threshold in all cases. Note

that for each temporal configuration, a similar percentage of tests achieve this threshold

regardless of the cost function used. This demonstrates that, out of all the synchronisation

parameters sampled by a uniform search, one of the closer samples to truth is typically

identified as the initial estimate.

3.5.3 Video Synchronisation Error

Each of the algorithms 3.1 and 3.2 provide an estimate of the synchronisation parameters,

denoted (â, b̂). Such estimates can subsequently be refined using Levenberg-Marquardt

and any of the previously used cost functions. The result is assessed by examining the

accuracy of the synchronisation for each frame in the two video sequences. The error in

synchronised frame indices is therefore computed as follows. For frame i in video sequence

1, (ā + b̄i) and (â + b̂i) are the true and estimated synchronous frame indices from video

sequence 2 respectively. The absolute difference between these two values, computed as

|(ā + b̄i)− (â + b̂i)|, measures how well frame i has been synchronised and is denoted the

frame synchronisation error. Similarly, frame j in video 2 has a frame synchronisation

error given by |(ā′ + b̄′j) − (â′ + b̂′j)|, where (ā′, b̄′) and (â′, b̂′) provide the inverse lines



48

of the true and estimated synchronisation parameters respectively. The quality of the

estimated synchronisation parameters is assessed by finding the maximum of these frame

synchronisation errors, for all frame indices (not just integers) within the period when

either the true or estimated parameters indicate that both cameras were recording. This

corresponds to a range of frames in video sequence 1 [imin, imax], and a range of frame

indices in video sequence 2 [jmin, jmax], given by

imin = max{0, min{−âb̂−1,−āb̄−1}},
imax = min{n− 1, max{(n′ − 1− â)b̂−1, (n′ − 1− ā)b̄−1}},
jmin = max{0, min{ā, â}},
jmax = min{n′ − 1, max{ā + b̄(n− 1), â + b̂(n′ − 1)}}.

Note that, since (â, b̂) and (ā, b̄) specify lines in the space of the frame indices of the two

cameras, the maximum frame synchronisation errors within these constraints will always

be found at the boundaries of the ranges. The maximum such error is denoted the video

synchronisation error (VSE), and is computed as

V SE(ā, b̄, â, b̂) = max{|(ā + b̄imin)− (â + b̂imin)|,
|(ā + b̄imax)− (â + b̂imax)|,
|(ā′ + b̄′jmin)− (â′ + b̂′jmin)|,
|(ā′ + b̄′jmax)− (â′ + b̂′jmax)|}.

This error therefore represents the worst case when trying to identify synchronous frame

pairs from the two video sequences.

The results are shown in table 3.2, for synchronisation parameters estimated using just

one moving scene point. Each entry corresponds to the median of VSE measures across

1000 tests, for a particular temporal configuration and cost function. Table 3.3 displays

the percentage of tests where the VSE measure was less than 0.5. For all frames captured

while both cameras were recording, a synchronisation estimate within this threshold will

correctly identify the closest synchronous frame from the other video sequence.

All cost functions exhibit a reasonable performance, often achieving synchronisation

accurate to within a fraction of a frame, with a greater than 60% probability of meeting the

criterion for success in all cases. Note that in all but one case, the cost function SORTH−LI

has the best median performance. Additionally, figure 3.9 shows the proportion of tests

for which each cost function achieved the best synchronisation estimate (lowest VSE

measure). It is clear that in all configurations, SORTH−LI achieved the best synchronisation

more frequently that the other cost functions. This affirms that epipolar line interpolation

can provide better synchronisation estimates than residual interpolation, even for a more

sophisticated measure such as Sampson error. For this reason, and the theoretical issues

illustrated in example 3.2, the remainder of this section will focus on the performance of

SORTH−LI.



49

Setup Median of VSE measures (Known b)

n n′ ā b̄ SORTH−RI SSYMM−RI SSAMP−RI SORTH−LI

80 100 10.63 1.1875 0.058 0.057 0.057 0.064

80 100 42.3 1.1875 0.103 0.101 0.102 0.096

20 100 10.63 4.9375 0.1 0.09 0.092 0.089

Setup Median of VSE Measures (Unknown b)

n n′ ā b̄ SORTH−RI SSYMM−RI SSAMP−RI SORTH−LI

80 100 10.63 1.1875 0.186 0.186 0.184 0.173

80 100 42.3 1.1875 0.3 0.3 0.3 0.284

20 100 10.63 4.9375 0.37 0.352 0.349 0.248

Table 3.2: VSE measures for a single moving scene point

Setup Percentage of tests where V SE < 0.5 (Known b)

n n′ ā b̄ SORTH−RI SSYMM−RI SSAMP−RI SORTH−LI

80 100 10.63 1.1875 92.5 92.8 92.7 92.2

80 100 42.3 1.1875 86.5 86.5 86.5 86.7

20 100 10.63 4.9375 91.3 91.7 91.7 91.8

Setup Percentage of tests where V SE < 0.5 (Unknown b)

n n′ ā b̄ SORTH−RI SSYMM−RI SSAMP−RI SORTH−LI

80 100 10.63 1.1875 75.8 75.8 76.6 74.4

80 100 42.3 1.1875 66.5 66.8 66.4 68.5

20 100 10.63 4.9375 62.1 62.9 62.8 70.4

Table 3.3: Percentage of successful synchronisations for a single moving scene point



50

21%

16%

17%

46%

21%

16%

26%

37%

18%

14%

17%

52%

20%

13%

16%

51%

19%

17%

20%

44%

17%

12%

14%

58%

b̄ = 4.9375

SSYMM−RI SSAMP−RI SORTH−LISORTH−RI

Known frame rate ratio Unknown frame rate ratio

n = 80

n′ = 100

n = 80

n′ = 100

n = 20

n′ = 100

ā = 10.63

b̄ = 1.1875

ā = 42.3

b̄ = 1.1875

ā = 10.63

Figure 3.9: Proportions of tests in which each cost function achieved the best synchroni-
sation



51

Figure 3.10 shows the VSE measures for SORTH−LI for various numbers of moving

scene points. Note that as m increases, the median VSE decreases, but with diminishing

returns. In all configurations, even for m = 5, the median VSE is below 5% of a frame

if b is known, and below 10% otherwise. The number of successful synchronisation tests

achieving a VSE less than 0.5 can also be seen to rapidly approach 100% as m increases.

These results also show that for given video sequence lengths (measured as the number

of frames), better synchronisation is possible if the video sequences have a larger overlap in

time. In this case, more frames provide visual cues to refine the synchronisation estimate.

It should be noted that the first case, with a = 10.63, b = 1.1875, and the third case, with

a = 10.63, b = 4.9375, have been devised to have identical points in time at which the

cameras start and stop recording. The decrease in performance for the third case must

therefore be due to the fact that less frames are present in the first video sequence, and

that a larger frame rate ratio produces less accurate epipolar line interpolations.

Note that the previous experiments all test a single class of scene point motion. Points

move linearly at constant speed. To demonstrate the applicability of these methods to

other scenarios, the tests are repeated for points with a piece-wise linear motion. At some

randomly chosen point in time when either camera is recording, the scene point changes

direction. The results are shown in figure 3.11. Note that the median VSE measures

are very similar to the linear motion case, but that the number of tests for which the

VSE is less than 0.5 increases in all cases where m = 1. Moving scene points have more

complicated motions, providing additional visual cues for synchronisation and helping to

avoid near-degenerate cases.

3.6 Real Video Sequence Pair Tests

Algorithms 3.1 and 3.2 were tested on a real video sequence pair, using the cost function

SORTH−LI. Two video sequences of a Lego robot were recorded by moving hand-held

cameras. Projection matrix estimates and moving point trajectories were obtained by

using the ICARUS software [19]. The two projection matrix sets were then registered by

manually identifying corresponding scene points, and robustly estimating a 4×4 projective

transformation to spatially align them. A manual estimate of synchronisation is provided

by identifying frame pairs depicting particular events. The average of frame offset values

specified by each such frame pair provides the manual synchronisation estimate.

Assuming the manual synchronisation provides truth, VSE measures are computed

for both known and unknown frame rate ratio searches. The results for the Lego robot

sequence are given in table 3.4. Results for the ‘initial’ step are the approximate esti-

mates given by the discrete parameter search. The ‘final’ results are for synchronisation

estimates after a post-search minimisation with Levenberg-Marquardt. Note that, for

the case where b is known, the initial synchronisation estimate has a VSE of precisely 0.

This is due to the manual estimate of the frame offset a equating to one of the values

sampled during the search, which coincidentally occurred due to the choice of minimum



52

0 2 4 6 8 10
70

75

80

85

90

95

100

0 2 4 6 8 10
65

70

75

80

85

90

95

100

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10
70

75

80

85

90

95

100

Known frame rate ratio
Unknown frame rate ratio

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

n = 20, n′ = 100, ā = 10.63, b̄ = 4.9375

mm

m

m

Median(V SE)

Median(V SE)

Median(V SE)

m

m

Percentage(V SE < 0.5)

Percentage(V SE < 0.5)

Percentage(V SE < 0.5)

n = 80, n′ = 100, ā = 10.63, b̄ = 1.1875

n = 80, n′ = 100, ā = 42.3, b̄ = 1.1875

Figure 3.10: VSE results for synthetic test cases synchronised by a search of the parameter
space, using scene points with linear motion



53

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10
75

80

85

90

95

100

0 2 4 6 8 10
70

75

80

85

90

95

100

0 2 4 6 8 10
65

70

75

80

85

90

95

100

Known frame rate ratio
Unknown frame rate ratio

n = 20, n′ = 100, ā = 10.63, b̄ = 4.9375

mm

m

m

Median(V SE)

Median(V SE)

Median(V SE)

m

m

Percentage(V SE < 0.5)

Percentage(V SE < 0.5)

Percentage(V SE < 0.5)

n = 80, n′ = 100, ā = 10.63, b̄ = 1.1875

n = 80, n′ = 100, ā = 42.3, b̄ = 1.1875

Figure 3.11: VSE results for synthetic test cases synchronised by a search of the parameter
space, using scene points with piecewise-linear motion



54

Setup: ā = −8.1, b̄ = 0.6, n = 201, n′ = 136

Method Step â b̂ VSE

b known initial -8.1 - 0

final -8.032 - 0.113

b unknown initial -8.887 0.606 1.158

final -8.214 0.601 0.362

Table 3.4: VSE measures for the synchronisation of the Lego robot sequences via a search
of the parameter space

frame range sizes (rmin, r′min), as described in section 3.3. In both cases, the low initial

VSE measures indicate that the parameter space search successfully returns a reasonable

approximate estimate of synchronisation. The final VSE measures are both within half

a frame, which is a reasonable limit for the accuracy of manual synchronisation.

Figure 3.12 shows two examples of side-by-side frames from the Lego sequences, syn-

chronised with a parameter search over just the offset a. The vertical placement of the

frames corresponds to how they are offset in time. The difference in image sizes for the

two cameras is due to the fact that the cameras have different frame rates. The images

are scaled such that the ratio of their heights matches the frame rate ratio b.

3.7 Conclusions

In this chapter, cost functions have been developed for the automatic synchronisation

of video sequences captured by cameras undergoing general motions. An average least-

squares approach is used to avoid incorrectly rewarding a smaller time overlap. An anal-

ysis of a regular search in parameter space has been performed, incorporating the notion

of minimum frame range sizes to restrict the extent of the search and avoid incorrect min-

ima at the extremities of the search space. Synthetic tests demonstrate that a strategy

of interpolating epipolar lines can often outperform a method which interpolates resid-

uals to assess the cost function for frame indices between integer values. Furthermore,

the resulting cost function can be employed in both a regular search across parameter

space, and a subsequent minimisation by Levenberg-Marquardt. This typically achieves

a synchronisation estimate accurate to within a small fraction of a frame, even when the

frame rate ratio is unknown. These results have also been affirmed with tests on a real

video sequence pair.



55

Figure 3.12: Approximately synchronous frames from the Lego robot sequences, synchro-
nised using a uniform search for the frame offset



56



57

Chapter 4

SYNCHRONY PAIRS

In chapter 3, cost functions were developed to assess an estimate of synchronisation

parameters (a, b) for independently moving cameras. Algorithms were devised to then

estimate (a, b) by an exhaustive search of the parameter space. When the frame rate

ratio b is known, the execution time for such an approach has quadratic complexity in

the number of frames. Assume for simplicity that the video sequences have equal frame

rates, and an equal number of frames, such that b = 1 and n = n′. Additionally, consider

a search for the frame offset a across all integer values indicating that both cameras

were recording simultaneously for at least one point in time. This requires setting the

constraints on frame ranges (rmin, r′min), as described in section 3.3, to 0. If each of the m

moving scene points is visible in every frame of both video sequences, the complexity is

O(mn2). Note that previous methods employing a uniform search for the frame offset and

using a cost function which is linear in the number of frames will have a similar complexity.

If the frame rate ratio is unknown, and again assuming n = n′ and rmin = r′min = 0, the

complexity is O(mn3). For lengthy video sequences, an algorithm with cubed complexity

can be prohibitively expensive.

In this chapter, we propose an alternative approach, using a search for frame pairs that

appear to be exactly synchronous. Each specifies a point in (f, f ′) space, which denote

a frame index from each video sequence. Such a point is termed a synchrony pair. The

line parameters a and b can then be chosen to best fit the set of these points. Excepting

degenerate cases, this approach has lower complexity than an exhaustive search of the

parameter space when b is unknown.

4.1 Finding Synchrony Pairs by Epipolar Line Interpolation

We now consider the case described in chapter 3, of moving video cameras viewing both

stationary and dynamic scene objects. It is assumed that the projections of moving scene

points have been tracked independently in each video sequence, and that the resulting

trajectories have been correctly identified as correspondences. Adopting the same nota-

tion as used in chapter 3, moving scene feature points are labelled with integers from 1

to m. The projection of moving scene point h has a 2D location denoted ph,i in frame

i of the first video sequence, and location p′
h,j in frame j of the second video sequence.

The epipolar geometry relating frames i and j from the first and second video sequences

respectively is given by the fundamental matrix Fi,j.



58

A pair of frame indices can be hypothesised as synchronous if the projections of a mov-

ing scene point exactly satisfy the epipolar constraint. Specifically, (i, j) is a synchrony

pair if, for moving scene point h,

p�
h,iFi,jp

′
h,j = 0.

Note that, in general, a pair of video cameras will not record frames simultaneously. Due

to such a temporal misalignment, as well as mismeasurements in image point locations,

and errors in the fundamental matrix estimates, it is highly unlikely that any pair of

integer frame indices will perfectly satisfy this constraint. To overcome this, we use the

epipolar line interpolation method described in section 3.2 to extend the search to frame

indices between integer values.

Given an integer frame index i from video sequence 1, and consecutive frames j and

j + 1 from video sequence 2, the epipolar lines generated by moving scene point h in

frame i of video sequence 1 are given by

lh,i,j = Fi,jp
′
h,j,

lh,i,j+1 = Fi,j+1p
′
h,j+1.

The function IL defined in equation 3.2 provides an estimate of the epipolar line between

integer frame indices (j, j+1). Assume there exists a hypothesised frame index k between

integer values (j, j+1) such that the corresponding interpolation precisely passes through

the point ph,i. The frame index pair (i, k) can be said to exhibit zero epipolar error for

moving scene point h, under the assumed model of epipolar line interpolation. Specifically,

(i, k) will be selected as a synchrony pair if

∃k ∈ [j, j + 1) such that p�
h,i IL(lh,i,j, lh,i,j+1, k − j) = 0. (4.1)

Two cases illustrating such synchrony pairs are shown in figure 4.1.

A scalar k satisfying equation 4.1 almost always exists, but not necessarily within the

required range [j, j + 1). An expansion of IL shows that the function to find a scalar

k such that an interpolation of the lines (l0, l1) passes through some known point p, is

given by

PI(p, l0, l1) =

⎧⎪⎨
⎪⎩

p�NL(l0)
p�(NL(l0)−NL(l1))

: [l0]1[l1]1 + [l0]2[l1]2 > 0

:
p�NL(l0)

p�(NL(l0)+NL(l1))
: otherwise

.

It follows that (i, k) is a synchrony pair if

k = j + PI(ph,i,Fi,jp
′
h,j,Fi,j+1p

′
h,j+1) ∈ [j, j + 1). (4.2)

This style of approach, searching for frame indices in which image points precisely satisfy

the epipolar constraint, is similar to the methods used in [4] and [57]. As described



59

lh,i,j+1

lh,i,j

ph,iIL(lh,i,j, lh,i,j+1, k − j)

lh,i,j+1

lh,i,j

ph,i

IL(lh,i,j, lh,i,j+1, k − j)

Figure 4.1: Example synchrony pairs using epipolar line interpolation

in chapter 2, these methods work by interpolating image points to approximate their

locations between frames. The alternative approach in this chapter, published earlier in

[37], is more general. An interpolation of epipolar lines can be applied in the case of

either stationary or independently moving cameras.

The test described by equation 4.2 can be performed for each moving scene point,

testing each frame i in video sequence 1 with every consecutive frame pair (j, j + 1) in

video sequence 2. A reciprocal search can also be conducted by considering every frame

j in video sequence 2 with every frame pair (i, i + 1) in video sequence 1. The procedure

outlining this exhaustive search for synchrony pairs is summarised in algorithm 4.1.

Once the set of synchrony pairs has been constructed, synchronisation parameters

a and b can be chosen such that the line given by equation 1.1 best fits the points in

the set. This is not a simple case of least-squares line fitting. We can expect exactly

synchronous frame pairs to exhibit zero epipolar error, but not all frame pairs exhibiting

zero epipolar error are necessarily synchronous. A simple counter-case is given in example

4.1. A method is needed for fitting line parameters (a, b) which is robust against a high

proportion of outliers.

4.2 Searching Across a Subset of Frames and Moving Points

The previous section describes a method for finding synchrony pairs via an exhaustive

search of possibly synchronous frame indices. In many cases, such a full search may

be unnecessary, and time constraints may require a faster solution. Note that if the

frame rate ratio is known, only one accurate synchrony pair is needed to define the

synchronisation parameters. When b is unknown, then two accurate synchrony pairs,

distant in frame index space, should be sufficient. Even when secondary lines or curves

are present, as is the case in example 4.1, a subset of these synchrony pairs may still

suffice. Note that such a subset may still contain erroneous synchrony pairs and therefore



60

Algorithm 4.1 (An Exhaustive Search for Synchrony Pairs)

Initialise the synchrony pair set to ∅ (empty set)

for h = 1 to m do

for i = 0 to n− 1 do

for j = 0 to n′ − 2 do

k = j + PI(ph,i,Fi,jp
′
h,j,Fi,j+1p

′
h,j+1)

if k ∈ [j, j + 1) then

add the frame pair (i, k) to the set of synchrony pairs

end if

end for

end for

for j = 0 to n′ − 1 do

for i = 0 to n− 2 do

k = i + PI(p
′
h,j,F

�
i,jph,i,F

�
i+1,jph,i+1)

if k ∈ [i, i + 1) then

add the frame pair (k, j) to the set of synchrony pairs

end if

end for

end for

end for



61

Example 4.1 (Non-Synchronous Entries in the Synchrony Pair Set)

Consider a pair of stationary cameras that record for the same period of time at

the same frame rate. The resulting configuration is

a = 0, b = 1, n = n′.

We denote the times at which the video sequences start and stop recording as 0

and tend respectively. A single moving scene point visible to both cameras moves

linearly in 3D space from location [x0, y0, z0, 1]� to [x1, y1, z1, 1]� for the first

half of the time period. During the second half, the point linearly returns to its

original location.

The moving scene point therefore has the same location at times t and tend−t. As

a result, the image point in frame i of video sequence 1 will have zero epipolar

error with frames i and (n′ − 1 − i) in the second camera. The resulting set

of synchrony pairs will form a cross as shown below. Linear least-squares line

fitting is inappropriate in this case.

f ′

f

n′ − 1

n− 1



62

still require a robust line-fitting process to estimate the parameters. The simplest means

to find a subset of synchrony pairs is to restrict the search to a subset of frames. This can

be achieved by only considering a small number of frames from the first video sequence.

For each such frame i, a search for synchrony pairs is conducted for every consecutive

(j, j+1) frame pair in video sequence 2. As with the full search, a reciprocal search can be

conducted considering only a small number of frames from the second video sequence. The

question then arises as to how to choose the subsets of frames. Two obvious possibilities

are a random sampling and a uniform sampling of frames from each video sequence.

In the random case, two sets are conceptually considered, each containing all possible

combinations of frame indices from one of the video sequences, and the moving scene

points which are visible in these frames. These sets are given as

S =
{
(i, h)|i ∈ [0, n− 1], h ∈ [1, m], ph,i is visible

}
,

S′ =
{
(j, h)|j ∈ [0, n′ − 1], h ∈ [1, m], p′

h,j is visible
}

.

Denoting SIZE(.) as the number of elements in a set, if a speedup factor of k is

required, then k−1SIZE(S) and k−1SIZE(S′) elements can be randomly selected from

S and S′ respectively. Since each element denotes a frame index from one video sequence,

and a moving scene point, a search for synchrony pairs can be conducted for this set

element, considering all frames of the other video sequence. This will reduce the total

execution time to a proportion of k−1 compared to the full search.

For a uniform search, each moving scene point is considered independently. For a

given scene point, if vh and v′
h denote the number of frames in the first and second video

sequences where the point is visible, then �k−1vh� and �k−1v′
h� such frames are uniformly

sampled, where �.� denotes the floor operator. For each frame sampled, a search for

synchrony pairs is conducted considering all consecutive frame pairs from the other video

sequence. Note that if all moving points are visible for the same ranges of frames in both

video sequences, the uniform sampling will yield the same frame subsets for each moving

scene point.

4.3 Histogram Methods

Given a set of hypothesised synchronous frame pairs, a robust method is required to iden-

tify the synchronisation parameters. Chapter 2 described previous methods, specifically

[52] and [4], which employ RANSAC to robustly estimate the synchronisation parame-

ters from such a set of frame index pairs. Another approach is to build a histogram of

the hypothesised synchronisation parameters, according to each synchrony pair found by

algorithm 4.1.

The histogram approach is attractive for a number of reasons. The RANSAC algo-

rithm is based on repeated random sampling of the data set. Conversely, for a set of

synchrony pairs obtained via an exhaustive search, the construction of a histogram is a

deterministic process with no random sampling. Furthermore, a set of synchrony pairs



63

may contain subsets which form multiple lines. Not all such lines will necessarily indicate

a negative frame rate ratio, like that depicted in example 4.1. In the case of a low number

of moving scene points, using RANSAC to estimate the synchronisation parameters may

wrongly identify such a line, since it could be consistent with a significant proportion

of the synchrony pairs. By building a histogram, such multiple lines will be associated

with distinct peaks. The most significant peak can then be chosen to provide the initial

synchronisation estimate.

4.3.1 Known Frame Rates

A synchrony pair (i, j) provides a hypothesised linear constraint on the synchronisation

parameters (a, b). For a known frame rate ratio b, (i, j) specifies a hypothesised value for

the frame offset, given by

â = j − bi.

A histogram built from these frame offset estimates should have peaks which correspond

to synchronisation parameters with many nearby synchrony pairs. The possible range of

a is given by [−b(n−1), n′−1], which will be partitioned into a number of histogram cells.

A count is maintained for each cell, denoting how many synchrony pairs specify a frame

offset within this cell’s range. Upon finding a synchrony pair (i, j), the hypothesised

frame offset â is determined, and mapped to a non-negative real number given by

Ha(â) = w−1
c [â + b(n− 1)],

where wc is the width of each cell. Note this function represents a 1D affine transfor-

mation of â, and maps the hypothesised frame offset to a real-valued cell index. The

corresponding cell to be incremented has an integer label given by �Ha�. When the

tallest histogram peak is identified, the centre of the corresponding histogram cell is used

to provide the initial estimate of the frame offset.

All that remains is to choose an appropriate cell width wc. The first natural case

to consider is that where wc = min(1, b), matching the sampling rate of the search

across parameter space used in chapter 3. From a theoretical analysis of the behaviour

of such a histogram, however, it emerges that this choice has undesirable properties.

Consider a case where b > 1, ā is the true frame offset, and the frame indices (i, j) are

synchronous. Due to mismeasurements in image point locations, and errors introduced

by the interpolation of epipolar lines, (i+ ierr, j) is wrongly identified as a synchrony pair,

for some small value ierr. The hypothesised offset according to this synchrony pair is

â = j − b(i + ierr) = ā− bierr,

Even if the synchrony pair is accurate to within a single frame, such that |ierr| ≤ 1, the

error in the offset estimate |ā− â|, and hence in the histogram cell index, can be as high

as b. Since b is theoretically unbounded, such a property is undesirable.



64

To choose an appropriate value for wc, we restrict the analysis to only those synchrony

pairs which are approximately correct. Specifically, the errors in such frame pairs are only

due to slight mismeasurements in image point locations, fundamental matrices, and the

epipolar line interpolations. Secondary sets of synchrony pairs, arising from complicated

camera or scene point motions, such as that depicted in example 4.1, are not considered.

Consider the case where frame pair (i, j) are synchronous, such that j = ā + bi, and

either i or j is an integer. Selecting integer frame i from the first video sequence, and

testing for synchrony between successive frames from the second video sequence, yields a

synchrony pair (i, j + jerr). In the case where j is an integer, the reciprocal search yields

a synchrony pair of the form (i + ierr, j). To form a well-defined peak on the histogram,

a significant number of such synchrony pairs should correspond to the correct histogram

cell.

Ideally, the cell width wc would be chosen by considering the distributions of the error

terms ierr and jerr, however these are dependent on the motions of both scene points

and cameras, and will typically be unknown until a frame offset estimate is available.

Instead, the cell width is determined by considering synchrony pairs accurate to within

a single frame. Assuming the true frame offset ā corresponds precisely with the centre of

a histogram cell, a synchrony pair of the form (i, j + jerr) with |jerr| < 1 is guaranteed to

increment this cell if wc ≥ 2. Similarly, a synchrony pair of the form (i + ierr, j) where

|ierr| < 1 will increment the correct cell if wc ≥ 2b. The proposed solution is to choose

the average of these values, yielding a cell width of b + 1.

A choice of wc = b + 1 has a correlation with the (α, β) parameterisation described in

section 3.4. If both b and β are known, the frame offset a is given by

a = (n + n′ − 2)− (b + 1)β. (4.3)

Note that integer values of β therefore specify values of the frame offset which are spaced

b+1 distance apart. Building a histogram of frame offset values with cell width wc = b+1

is therefore equivalent to building a histogram of β values with a cell width of 1. In this

case, a synchrony pair (i, j) provides a hypothesised estimate of β given by

β̂ =
(n + n′ − 2) + bi− j

b + 1
.

This parameterisation is preferred, since it has simpler properties. The range of β is

[0, n+n′−2], regardless of the frame rate ratio. Furthermore, if a synchrony pair provides

a candidate estimate β̂, the histogram cell to be incremented is given simply by �β̂�.
Additionally, we consider again the case of errors in the synchrony pairs. If frame

indices (i, j) are truly synchronous, but (i+ ierr, j) is found as a synchrony pair, then the

difference between hypothesised value β̂ and true value β̄ is∣∣∣β̂ − β̄
∣∣∣ =

b

b + 1
|ierr| ≤ |ierr| .



65

Similarly, if a synchrony pair (i, j + jerr) is found, then this difference will be∣∣∣β̂ − β̄
∣∣∣ =

1

b + 1
|jerr| ≤ |jerr| .

Note that the absolute difference between the hypothesised β̂ and true β̄ is never larger

than the frame index error terms ierr and jerr. Accordingly, for a synchrony pair such

that |ierr| < 1 or |jerr| < 1, either the correct cell, or one of its immediate neighbours,

will be incremented.

Once the histogram is constructed from the set of synchrony pairs, a measure is

computed for each cell. This measure is defined as the sum of the cell’s value and the

values of the two neighbouring cells. Such smoothing is used to counter the possibility

that the height of a peak may be reduced, simply due to the true value of β being close

to one of the histogram cell boundaries. The centre of the cell with the highest such

measure is used as the estimate for β, and the corresponding frame offset a is given by

equation 4.3. This estimate of the frame offset can then be refined using a minimiser such

as Levenberg-Marquardt to minimise SORTH−LI, the cost function introduced in section

3.2.

4.3.2 Unknown Frame Rates

If the frame rate ratio is unknown, a synchrony pair (i, j) specifies the single linear

constraint

((n + n′ − 2)− (i + j))α̂ + (i + j)β̂ − (n + n′ − 2)i = 0.

This constraint corresponds to a line in the space of α and β. Since any synchrony pair

found during the search is bounded by the first and last frames of the video sequences

(i ∈ [0, n− 1], j ∈ [0, n′− 1]), the gradient of this line in the space of (α, β) is guaranteed

to always be negative, 0, or infinite.

The space of (α, β) can be partitioned into a discrete grid, where each grid element

corresponds to a cell in a 2D histogram. The synchrony pair (i, j) defines a line of these

cells, each of which has its value incremented as a consequence. This is a form of the

Hough Transform for lines, a good survey of which can be found in [28].

The consequence of an error in a synchrony pair is similar to the 1D histogram case.

The correct synchronisation parameters are denoted (ᾱ, β̄), and frame indices (i, j) are

truly synchronous. If a noisy synchrony pair (i+ierr, j) is found, this specifies a 1D family

of candidate solutions (α̂, β̂), all of which satisfy

((n + n′ − 2)− (i + ierr + j))α̂ + (i + ierr + j)β̂ − (n + n′ − 2)(i + ierr) = 0. (4.4)

We define error value δα,β as

δα,β = min
(α̂,β̂)∈L

max
{
|α̂− ᾱ| ,

∣∣∣β̂ − β̄
∣∣∣} ,



66

where L denotes the (infinite) set of (α, β) points which satisfy equation 4.4. For (α̂, β̂)

satisfying the linear constraint in equation 4.4, the right hand side expression is minimal

at the point (α̂, β̂) where

δα,β = |α̂− ᾱ| =
∣∣∣β̂ − β̄

∣∣∣ .
Note that since the constraint on (α̂, β̂) specifies a line of negative gradient, α̂ − ᾱ and

β̂ − β̄ must both have the same sign. We therefore define scalar s as

s =

{
−1 : (α̂ < ᾱ) ∨ (β̂ < β̄)

1 : otherwise
,

where ∨ denotes the logical ‘or’ operator. Rearranging the expressions for δα,β gives

α̂ = sδα,β + ᾱ,

β̂ = sδα,β + β̄.

Substituting these expressions into the linear constraint on (α̂, β̂) given in equation 4.4,

and rearranging, gives

(gs)δα,β = ierr(g − (β̄ − ᾱ))− ((g − (i + j))ᾱ + (i + j)β̄ − gi),

where g = n + n′ − 2.

Note that the right-most term is the linear constraint specified by the true synchrony

pair (i, j) with true parameters (ᾱ, β̄), and therefore equates to 0. Therefore,

δα,β =
sierr(n + n′ − 2− (β̄ − ᾱ))

n + n′ − 2
=
|ierr| (n + n′ − 2− (β̄ − ᾱ))

n + n′ − 2
≤ |ierr| .

Note that s and ierr must have the same sign since δα,β, and all other terms in this

expression, are known to be non-negative. A similar argument applies if we consider a

noisy synchrony pair (i, j + jerr), and results in the expression

δα,β =
|jerr| (β̄ − ᾱ)

n + n′ − 2
≤ |jerr| .

Note that in both cases, δα,β is less than or equal to the error in one of the frame indices.

For a synchrony pair of the form (i+ ierr, j), with |ierr| < 1, or (i, j +jerr), with |jerr| < 1,

δα,β is also less than 1. This means there exists a point (α̂, β̂), satisfying equation 4.4,

for which both |α̂ − ᾱ| < 1 and |β̂ − β̄| < 1. The line of solutions specified by equation

4.4 is then guaranteed to pass through the correct histogram cell, or one of its immediate

neighbours.

To increment a line of cells, a straightforward line-drawing algorithm is used. This

requires iterating through a range of either α or β, and incrementing the corresponding

cell. For a synchrony pair (i, j), to fit the requirements of a positive frame rate ratio, the



67

constrained ranges are

α ∈ [−j, i], β ∈ [i, n + n′ − 2− j].

To ensure a continuous line of cells is incremented, the line drawing algorithm iterates

through the largest of these ranges. Assuming for simplicity that the number of cells

incremented is equal to the largest of these two ranges, and that synchrony pairs are uni-

formly distributed across the video sequences, the expected number of cells incremented

per synchrony pair is

1

(n− 1)(n′ − 1)

∫ n′−1

0

∫ n−1

0

max {i + j, n + n′ − 2− (i + j)} di dj

=
min{n− 1, n′ − 1}2

12 max{n− 1, n′ − 1} +
1

2
(n + n′ − 2) +

1

4
max{n− 1, n′ − 1}.

(4.5)

After completion, the centre of the histogram element with the most support within

a 3 × 3 window of cells is chosen for the initial estimate of (α, β). This estimate can

subsequently be refined using Levenberg-Marquardt to minimise the function SORTH−LI.

For illustrative purposes, some example synchrony pair sets along with the resulting

2D histograms are shown in figure 4.2. Note that in each case, a single prominent peak

is present.

4.3.3 Histogram Method Complexity

Assuming that all moving scene points are visible in all frames, a full search for synchrony

pairs requires mn(n′ − 1) + mn′(n − 1) steps, where each step tests for the existence

of a synchrony pair. Note the execution time complexity is therefore quadratic in the

number of frames. Incrementing a single cell in a 1D histogram has constant cost, and

can therefore be considered negligible. Consequently, finding an initial synchronisation

estimate in this way has complexity O(mnn′) for a known frame rate ratio.

The unknown frame rate ratio case is less straightforward. Finding a synchrony pair

causes a line of cells in the 2D histogram to be incremented. This incurs a cost which is

linear in the number of frames. If synchrony pairs are only found along the line defined by

the true parameters (a, b), the number of synchrony pairs found will be a linear function

of the number of frames. The associated complexity will then be quadratic in the number

of frames. Additional synchrony pairs forming secondary lines or curves may be present

due to variations in scene point or camera motions, as illustrated in example 4.1. It

is reasonable to assume that the frequency of such motions is low, since most natural

motions will not involve sweeping back and forth through the scene with high repetition.

There may also be regions in the space of frame indices (f, f ′) which exhibit a high

‘density’ of synchrony pairs. These will occur due to motions which are ill-conditioned

or degenerate for a particular moving scene point. Across these ranges of frames, this

moving point offers little benefit as a cue for synchronisation. Should efficiency be of



68

0 26 53 79
0

33

66

99

0 26 53 79
0

33

66

99

0 26 53 79
0

33

66

99

β α

β

β

α

α

f ′

f

f ′

f ′

f

f

Figure 4.2: Example synchrony pair sets (left) and resulting 2D histograms (right)



69

Setup Percentage of tests where Errβ < 2

n n′ ā b̄ Full Uniform Random

80 100 10.63 1.1875 99.9 99.1 98.9

80 100 42.3 1.1875 98.7 97.7 96.7

20 100 10.63 4.9375 100.0 99.9 99.6

Setup Percentage of tests where Errα,β < 2

n n′ ā b̄ Full Uniform Random

80 100 10.63 1.1875 96.9 91.1 90.3

80 100 42.3 1.1875 91.1 84.8 79.2

20 100 10.63 4.9375 98.5 93.3 89.2

Table 4.1: Synthetic initial estimate performance for synchrony pair searches using a
single moving scene point

particular concern, such degenerate cases could easily be detected by examining nearby

epipolar errors, and excluded from the histogram.

For typical cases, with well-defined natural motions, the complexity for an unknown

frame rate ratio is therefore also O(mnn′), the same as that for when b is known.

4.4 Synthetic Tests

To test the synchrony pair search and histogram methods, the same temporal and spatial

configurations used in chapter 3 are considered. True and estimated synchronisation

parameters are denoted (ᾱ, β̄) and (α̂, β̂) respectively. The quality of the initial estimate

is assessed by measuring its distance to truth in parameter space. In the case of an

unknown frame rate ratio, this equates to the term Eα,β defined in section 3.5.2, and is

defined as

Eα,β =

√
(α̂− ᾱ)2 + (β̂ − β̄)2.

For a known frame rate ratio (requiring just a 1D histogram), the distance in parameter

space is given by

Eβ = |β̂ − β̄|,

As noted in chapter 3, the purpose of such measurements is not to illustrate an accurate

synchronisation. Rather, here they indicate that the located peak of a histogram is

typically ‘close’ to the correct cell.



70

Table 4.1 shows the percentage of tests out of 1000 in which the initial estimate was

reasonably close in parameter space to the truth, for a single linear moving scene point.

For each temporal configuration used in the tests, the true frame offset and frame rate

ratio are denoted (ā, b̄). The threshold of 2 was found to be the lowest integer value such

that a significant majority of tests in all cases satisfy the threshold. A comparison of the

unknown frame rate ratio case with the results in table 3.1 shows that a full search for

synchrony pairs has a similar rate of success to a search of the parameter space. The

random and uniform subset searches are configured to only use one tenth of the available

basis frame and moving point pairs, yet still yield an approximately accurate histogram

peak in a significant majority of cases.

The quality of final synchronisation estimates for linear moving scene points are shown

in figures 4.3 and 4.4, for known and unknown frame rate ratios respectively. In each

case, three temporal configurations were tested 1000 times each, for different numbers

of moving scene points. For each case, the results of a full synchrony pair search are

compared to uniform and random subset searches configured to sample just 10% of all

possible (frame, point) pairs. Note that as m increases, the median Video Synchronisation

Errors (VSEs), as defined in section 3.5.3, become indistinguishable for the three methods.

For all three methods, and both a known and unknown frame rate ratio, the percentage of

tests achieving a VSE smaller than 0.5 approaches 100% as more moving scene points are

tracked. Recall that a VSE satisfying this threshold indicates that, for any frame from

either video sequence captured when both cameras were recording, the synchronisation

estimate will correctly identify the closest to synchronous frame from the other video

sequence. Given the level of speedup that can be achieved, the benefit of subset searches

is clear. Comparing with figure 3.10, it can be seen that for the full synchrony pair search,

median VSEs are similar to those obtained by a search across the parameter space. This

indicates that both search types return acceptable initial estimates that will tend to be

refined to a synchronisation estimate accurate to within a small fraction of a frame.

4.5 Real Video Sequence Pair Tests

The synchronisation of video sequences using histogram methods built from a full search

for synchrony pairs has been tested on the Lego robot sequences used in section 3.6. A

manual synchronisation estimate is assumed to provide truth. The resulting synchrony

pair set and histograms are shown in figure 4.5. Note that each histogram is dominated

by a single peak corresponding to the approximate synchronisation.

The synchronisation estimates and associated VSE measures are given in table 4.2,

where the estimated synchronisation is denoted (â, b̂). Initial results refer to the syn-

chronisation estimate provided by locating the histogram peak, for both a known and

unknown frame rate ratio. Final results are given by a subsequent Levenberg-Marquardt

minimisation of the cost function SORTH−LI developed in section 3.2. A comparison with

table 3.4 indicates that the histogram methods are slightly less accurate than a search



71

0 2 4 6 8 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 2 4 6 8 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6 8 10
80

85

90

95

100

0 2 4 6 8 10
88

90

92

94

96

98

100

 

 Full synchrony pair search
Uniform subset search (10%)
Random subset search (10%)

0 2 4 6 8 10
93

94

95

96

97

98

99

100

0 2 4 6 8 10
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

n = 20, n′ = 100, ā = 10.63, b̄ = 4.9375

mm

m

m

Median(V SE)

Median(V SE)

m

m

Median(V SE) Percentage(V SE < 0.5)

Percentage(V SE < 0.5)

Percentage(V SE < 0.5)

n = 80, n′ = 100, ā = 10.63, b̄ = 1.1875

n = 80, n′ = 100, ā = 42.3, b̄ = 1.1875

Figure 4.3: VSE results for synthetic test cases synchronised by a search for synchrony
pairs, with a known frame rate ratio and scene points with linear motion



72

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10
75

80

85

90

95

100

0 2 4 6 8 10
60

65

70

75

80

85

90

95

100

0 2 4 6 8 10
70

75

80

85

90

95

100

 

 Full synchrony pair search
Uniform subset search (10%)
Random subset search (10%)

0 2 4 6 8 10
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

n = 20, n′ = 100, ā = 10.63, b̄ = 4.9375

mm

m

m

Median(V SE)

Median(V SE)

m

m

Median(V SE) Percentage(V SE < 0.5)

Percentage(V SE < 0.5)

Percentage(V SE < 0.5)

n = 80, n′ = 100, ā = 10.63, b̄ = 1.1875

n = 80, n′ = 100, ā = 42.3, b̄ = 1.1875

Figure 4.4: VSE results for synthetic test cases synchronised by a search for synchrony
pairs, with an unknown frame rate ratio and scene points with linear motion



73

200 250
0

50

100

150

200

250

300

0 67 134 201
0

45

91

136

β

f

f ′

αβ

Figure 4.5: Synchrony pair set (top), and resulting 2D (bottom right) and section of 1D
(bottom left) histograms for the Lego robot example



74

Setup: ā = −8.1, b̄ = 0.6, n = 201, n′ = 136

Method Step â b̂ VSE

b known initial -8.2 - 0.166

final -8.032 - 0.113

b unknown initial -7.178 0.595 1.44

final -8.214 0.601 0.362

Table 4.2: VSE measures for the synchronisation of the Lego robot sequences via a search
for synchrony pairs

across the parameter space. The difference, however, is small, and may merely reflect

the fact that the two strategies sample the parameter space at different locations. Note

that the final estimates, for both known and unknown b are identical to those obtained

with a parameter space search. In this respect, the histogram based methods are equally

qualified to provide an initial estimate of synchronisation for this example.

4.6 Conclusions

The concept of using a linear interpolation of epipolar lines to identify synchrony pairs

has been introduced. This permits the identification of possibly synchronous frame pairs

in the case of independently moving cameras. Histogram methods have been developed

which enable the identification of approximate synchronisation estimates, even when the

set of synchrony pairs has a high proportion of members distant from the line of synchrony.

In the case of unknown frame rates, such a histogram technique is typically an order of

magnitude faster than a parameter space search, excepting degenerate or high-frequency

scene point motions. Further savings in time can be achieved by randomly or uniformly

sampling the frames in each video sequence during the synchrony pair search.

The performance of this approach has been assessed, and shown to be comparable

to a parameter space search, particularly as more moving scene points are used. The

applicability of these histogram methods to non-synthetic cases has been demonstrated

with the use of a real video sequence pair.



75

Chapter 5

ROBUST SYNCHRONISATION

Some of the feature-based synchronisation methods reviewed in chapter 2 make use

of robust methods so as to achieve synchronisation when matching features between the

video sequences are unavailable or contaminated with mismatches. In this chapter, the

algorithms described in chapter 4 are extended to include such robustness.

Previous methods robustly synchronise a pair of video sequences by performing an

exhaustive search for the frame offset, and attempting to robustly fit either a homography

matrix or fundamental matrix to a set of candidate matches. As mentioned in chapter

3, these methods are inappropriate in the case of synchronising independently moving

cameras by using moving scene points. Different pairs of frames will have differing spatial

relationships. Accordingly, as with chapters 3 and 4, it is assumed in this chapter that the

spatial relationship between the cameras has been determined in advance using stationary

scene features. An estimate of the fundamental matrix relating any pair of frames from the

two video sequences is therefore assumed to be available. The robust methods described

in this chapter are only used to estimate the synchronisation parameters.

Similarly to chapters 3 and 4, image features generated by the projections of mov-

ing scene points provide the visual cue used to estimate the synchronisation parameters.

It is assumed that the projections of a set of moving scene points have been identified,

and tracked independently in each video sequence. As a result, a set of 2D trajectories,

corresponding to moving scene features, is associated with each camera. A difficult case

will be considered for testing. Rather than being provided with a set of hypothesised

matching trajectory pairs, it is assumed that no useful correlation measure relating tra-

jectories is available. All possible pairs of trajectories must therefore be considered as

potential matches. In this situation, an additional complication arises. If two trajectories

in one video sequence are visible in overlapping ranges of frames, they must correspond

to different moving scene points, and should not both be matched to the same trajectory

from the other video sequence. Matches may therefore be mutually exclusive, in the sense

that identifying one trajectory pair as a match can preclude other trajectory pairs from

also being considered as matches. As described in section 2.2, a robust estimation of

synchrony from an exhaustive set of trajectory matches has previously been examined for

the stationary camera case [7].

It should be noted that the histogram methods employed in chapter 4 already exhibit

a form of robustness. Given a number of corresponding trajectories, the additional pres-

ence of a few mismatching trajectory pairs is unlikely to generate a higher peak on the



76

histogram. Incorrectly matched trajectories will rarely produce a linear set of synchrony

pairs, as illustrated by example in figure 5.1. Multiple mismatches are particularly un-

likely to have linear synchrony pair sets coincide. A difficulty arises in the case where no

prior matching information is available. A global histogram made from all possible pairs

of trajectories could contain peaks accumulated from mutually exclusive matches. This

can be a problem since the number of mismatches contributing to the histogram grows

quadratically as more moving scene points are tracked.

Another issue with building a global histogram arises from the accuracy of the result.

The recovered synchronisation estimate defined by the largest histogram peak is typically

only approximate. For the correct matches, their associated epipolar errors measured by

say, SORTH−LI as defined in section 3.2, may be uncharacteristically high. Therefore choos-

ing a means to distinguish between correct and incorrect matches becomes problematic,

particularly since the error measure associated with a corresponding pair of trajectories

will be dependent on properties of the underlying moving scene point.

For these reasons, a RANSAC-style approach is proposed. The following sections

present general algorithms for efficient robust estimation, considering both a random and

exhaustive sampling of hypothesised correspondences. Issues specific to synchronisation,

and the results of tests with both synthetic and real video sequence pairs follow.

5.1 Efficient Robust Estimation with Random Sampling

The following notation is used. The unknown parameters to be robustly estimated are

given by the vector θ. In the case of synchronisation, this vector will contain the frame

offset a, and the frame rate ratio b. Equivalently, the (α, β) parameterisation described

in section 3.4 may be used. If the frame rate ratio b is known, θ may only contain either

a or β. As described in section 2.1.3, data consistent with the model θ are termed inliers,

whereas the inconsistent data are termed outliers. The inlying and outlying data are

given by the set {xi|i ∈ [1 . . . nx]}. In the case of fundamental matrix estimation, each

xi would represent a hypothesised pair of matching image points. For synchronisation,

each xi is a pair of trajectories. Typical robust algorithms perform many iterations,

producing a candidate estimate of the unknown parameters on each. The parameter

estimate generated by iteration k of the robust algorithm is denoted θk. The function

R(θ) uses some robust statistic to measure the quality of a parameter estimate θ. We

seek a θ that minimises this measure. Outliers and inliers are determined by means of a

classification function C(θ, xi), which returns 1 if xi is an inlier according to the estimate

θ, and 0 otherwise. A robust estimation process seeks to both compute an estimate of

θ, and classify each xi as either an inlier or outlier. Accordingly, a single iteration of

the robust algorithm is considered a success if it yields an acceptable estimate of θ and

classification of the data. Otherwise, the iteration is considered a failure.

The robust algorithms described in section 2.1.3 repeatedly take random subsets of

potential matches, and use these to produce estimates of the unknown parameter vector



77

0 26 53 79
0

33

66

99

0 26 53 79
0

33

66

99

0 26 53 79
0

33

66

99

0 26 53 79
0

33

66

99

0 26 53 79
0

33

66

99

0 26 53 79
0

33

66

99

f ′

f

f ′

f

f ′

f

f ′

f

f ′

f

f ′

f

Figure 5.1: Example synchrony pair sets from incorrectly matched trajectories



78

θ. These subsets are of minimal size, choosing the smallest possible set of data nec-

essary to estimate θ. Each estimate is assessed using some robust cost measure. The

termination condition is typically derived by assuming a certain number of inliers exist,

and considering the probability of randomly selecting a subset of data consisting entirely

of inliers. The random subset size and assumed number of inliers are denoted c and μ

respectively. The probability of randomly selecting a subset consisting only of inliers is

denoted G(μ). In [40], G(μ) is approximated by (μn−1
x )c, though this expression is typi-

cally an overestimate. In [10] it is noted that a random subset should be chosen without

a repetition of elements, and that the correct expression is

G(μ) =
(nx − c)!μ!

(μ− c)!nx!
.

Note that the algorithms in chapters 3 and 4 can achieve synchronisation with just

a single pair of matching trajectories. In this case, where c = 1, these two forms for

G(μ) are equivalent. Whichever expression for G(μ) is assumed, the probability of never

choosing a subset containing no outliers in η iterations is given by

pf = (1− G(μ))η.

By choosing a low probability of failure, such as pf = 0.001, this expression can be

rearranged to solve for η. This specifies the number of iterations required such that, with

probability (1− pf ), a random subset consisting only of inliers is chosen on at least one

iteration. The number of iterations is given by

η =
log(pf )

log(1− G(μ))
.

For most vision-based problems, producing θ estimates is fast. Since the random

subsets are of the minimal size necessary for the estimation, linear algebra methods are

typically employed. The resulting θ will precisely fit each datum in the random subset,

so no minimisation of more sophisticated cost functions is necessary. Consequently, op-

timisations designed to speed up robust estimation have focused on reducing the time

needed to evaluate an estimate of θ. A particularly relevant example is the Td,d test

introduced by Chum and Matas [10]. This test is used to discard estimates of θ that

do not classify d randomly chosen data as inliers. There also exists a class of problems,

of which synchronisation is one, where computing θ itself is costly. Given even a single

pair of matching trajectories, recovering a synchronisation estimate typically has an al-

gorithmic complexity on the order of O(n2), where n is the number of frames in the video

sequences. For some problems, the cost of computing θ can be reduced at the expense of

the reliability of the result. Again, synchronisation is one such case. In section 4.2 it was

noted that a search for synchrony pairs need not be exhaustive. Performing the search

for only a uniform or random subset of frames may suffice. We therefore consider the

case where either estimation or evaluation can be accelerated by the use of some process



79

or test. In general, such a speedup process will be adjustable, permitting faster iterations

but increasing the probability that each will fail to correctly classify the data.

It is assumed that the speedup process is adjusted by varying a parameter ψ, which

is analogous to d in the Td,d test. For the robust synchronisation algorithms described

later in this chapter, ψ specifies how many frames in each video sequence are considered

in the search for synchrony pairs. Considering the adjustable nature of the speedup, the

natural question arises as to which value of ψ to choose, such that the robust estimation is

completed in the least possible time. It is assumed here that a lower ψ value will decrease

the average time required for each iteration, but also increase the probability that each

iteration will fail. The failure may occur even for an iteration on which a random subset

with no outliers is chosen. This could be because of an accelerated estimation, resulting

in a less accurate θ, or because of a test such as the Td,d test which causes an accurate

estimate of θ to be wrongly discarded. As a consequence, more iterations will be required

for lower values of ψ, to ensure the robust estimation succeeds with probability (1− pf ).

Two functions are of relevance when attempting to choose the optimal ψ. The first,

T (ψ, μ), specifies the average time required to compute θ using the random subset of

data, and evaluate the result. The second, P(ψ, μ), specifies the probability that an

iteration will succeed in yielding an acceptable θ estimate and data classification, given

a random subset which consists entirely of inliers. If the computation step is accelerated

by the speedup process, with ψ expressed as proportion such that 0 implies instantaneous

computation, and 1 is a full non-accelerated computation, then it is reasonable to assume

that

P(0, μ) = 0, P(1, μ) = 1.

The former is an obvious necessity, and the latter is consistent with typical robust meth-

ods, which assume an iteration will be considered a success for any random subset con-

sisting only of inliers. In this case, we can typically expect both P(ψ, μ) and T (ψ, μ) to

be monotonically increasing in ψ.

The probability of randomly selecting a subset of inliers, estimating θ successfully,

and correctly classifying the data, is given by (G(μ)P(ψ, μ)). Thus, the probability of

never achieving this in η iterations is

pf = (1− G(μ)P(ψ, μ))η.

Consequently, the required number of iterations to have the robust estimation succeed

with a probability of (1− pf ) for some ψ is

η =
log(pf )

log(1− G(μ)P(ψ, μ))
. (5.1)

For problems that admit faster θ estimations or evaluations, the number of iterations is of

little relevance. What matters is the total time required for the robust estimation to suc-

ceed with a probability of (1− pf ). Since partial iterations are typically an impossibility,



80

we should ideally choose the ψ which minimises the total time, given by

TTOTAL(ψ, μ, pf ) = T (ψ, μ)

⌈
log(pf )

log(1− G(μ)P(ψ, μ))

⌉
. (5.2)

Aside from the �.� (ceiling) operator, an approximation to this expression is used to find

the optimal d for the Td,d test in [10]. Indeed, the ceiling operator can be ignored if it

complicates the process of choosing ψ, since the time taken for a fractional iteration is

often irrelevant. In such a case, the minimum of TTOTAL is independent of pf . To cause

the robust algorithm to terminate in the least possible time, the ideal choice for ψ is given

by

ψ∗ = arg min
ψ

TTOTAL(ψ, μ, pf ). (5.3)

Equivalently, if the �.� operator is ignored, by rearranging equation 5.2 it can be seen

that ψ∗ is the value for which the robust estimation is most likely to succeed for any

specific period of time.

Rather than assuming a specific number of inliers, many implementations of robust

algorithms use an adaptive approach as described in [21]. Initially, μ is chosen to be

minimal, by choosing μ = c. If on iteration k, R(θk) is found to be the lowest error

encountered so far, the number of inliers μ can be reevaluated as

μ =
nx∑
i=1

C(θk, xi).

The revised value for μ then provides a different estimate for the required number of

iterations η. Such an approach is useful, since it no longer requires an a-priori assumption

regarding the true number of inliers. Additionally, if no iteration has succeeded once the

probability of failure is reached for the true number of inliers, more iterations will proceed.

A new algorithm will now be described, which aims to combine the benefits of an adaptive

μ with accelerated iterations.

An updated μ may have a considerable effect on the choice of ψ which minimises

equation 5.3. Accordingly, when a best-so-far θ is found, ψ∗ should be reevaluated. If

ψ∗ varies throughout the robust estimation, the termination condition can no longer be

directly determined using equation 5.1. Iterations use different values of ψ∗ and hence

have differing probabilities of success. Instead, it is necessary to maintain a history of

the ψ∗ values used for each iteration. It may appear that maintaining such a history

is unwieldy, since robust estimation can require a very large number of iterations. In

practice, this should not be a problem. A new value of ψ∗ is only chosen when a θk is

found that surpasses all before it, and such estimates will only be found infrequently.

When using a RANSAC cost, the number of such estimates is guaranteed to be less than

nx. A concise representation is therefore possible. Assume that nψ separate values for ψ∗

have been used, and that for each t between 1 and nψ, ψ∗=ψt was used for kt iterations.



81

After k iterations, the probability that all previous iterations failed is given by

F(μ) =

nψ∏
t=1

(1− G(μ)P(ψt, μ))kt , where

nψ∑
t=1

kt = k. (5.4)

Robust estimation may terminate when F(μ) is smaller than or equal to the required

probability of failure pf . Evaluating F(μ) is not necessary after every iteration. An accu-

mulated probability of failure for the previous iterations, denoted p̂f , can be maintained.

After an iteration yielding a best-so-far θ, F(μ) can be evaluated, and the result stored

in p̂f . For other iterations, it is sufficiently to multiply p̂f by the probability that the

current iteration failed.

In addition to altering the form of the termination condition, an adaptive μ also

warrants additional consideration of the equations used to choose ψ∗. Throughout most

of the robust estimation, μ will be an underestimate, which can have significant conse-

quences on the choice of ψ∗. This is particularly true in earlier iterations, when μ will

be low. While using an underestimate for μ is ideal for the termination condition, it is

unnecessarily pessimistic for choosing ψ∗.

To resolve this problem, it is convenient to consider the pessimistic μ as a lower

bound on the number of inliers. The true number of inliers is typically unknown before

a successful termination, and is therefore described by a random variable N , and a prior

discrete probability distribution P (N = q). For example, when estimating a fundamental

matrix from point correspondences, it may be appropriate to assume that each matching

pair of points is an inlier with a constant probability. The probabilities P (N = q) can

then be assumed to follow a binomial distribution. Since the lower bound is known

throughout the robust estimation, it is also convenient to denote nmax as the assumed

upper bound on the number of inliers. For many problems, it will be sufficient to assume

nmax = nx, although the synchronisation case described later requires a lower value.

Whenever μ is updated, a new ψ∗ is chosen seeking to minimise the time required for

the remaining iterations. Determining the expected time until termination is difficult,

since μ may change on later iterations. A simpler approach is to model the expected

remaining time required for the true number of inliers, according to the distribution

P (N = q), and assuming the new ψ∗ will be used for all remaining iterations. This time

can be computed by considering each possible number of inliers q in the range [μ, nmax].

If q is the true number of inliers, and the overall probability of failure is pf , then the

remaining iterations must only fail with probability

FREM(q) = min(1,F(q)−1pf ). (5.5)

The min operator is required since otherwise this expression may be greater than 1, if

the previous iterations already satisfy the overall probability of failure pf . The estimated

time for these iterations, for some choice of speedup ψ, is

TREM(ψ, q) = T (ψ, q)

⌈
log(FREM(q))

log(1− G(q)P(ψ, q))

⌉
.



82

The expected time until the termination condition is reached is therefore given by sum-

ming the TREM expressions for each q, and weighting each summand by the probability

that q is correct, given the observed lower bound μ. If the lower bound μ is considered

an instance of a random variable N ′, then the assumed optimal speedup ψ∗ is given by

ψ∗ = arg min
ψ

nmax∑
q=μ

P (N = q|N ′ = μ)TREM(ψ, q). (5.6)

Note that choosing this ψ∗ may result in suboptimal speedups since the true number

of inliers is unknown, though this is an unavoidable consequence of assuming a prior

distribution P (N = q). Also, once the probability of failure is reached for an assumed

number of inliers q, FREM(q) is 1, and the corresponding summand in equation 5.6 will

be 0. This means that once a sufficient number of iterations have passed, the speedup ψ∗

will be chosen without consideration of q values that would indicate a correct estimate

should already have been found with probability (1− pf ).

The probability terms P (N = q|N ′ = μ) can be determined using Bayesian inference,

and are given by

P (N = q|N ′ = μ) =
P (N ′ = μ|N = q)P (N = q)∑nmax

j=μ P (N ′ = μ|N = j)P (N = j)
. (5.7)

The conditional probabilities P (N ′ = μ|N = q) represent the probabilities of observing

the lower bound μ, given the history of ψ∗ values used in the preceding iterations, and as-

suming the data set contains q inliers. The form of these probabilities is problem specific,

and will typically require additional assumptions. The denominator has a constrained

range since it is assumed that P (N ′ = μ|N < μ) = 0, reflecting an assumption that no

iteration will classify more inliers than the true number.

If finding a reasonable form for the conditional probabilities is intractable, some simple

alternatives may be considered. One alternative is to choose a new speedup value under

the additional assumption that all previous iterations have failed. This requires defining

S, which describes the event that at least one of the previous iterations succeeded. The

complement of this, that no previous iterations have succeeded, is denoted ¬S. The

probability terms P (N = q|N ′ = μ) in equation 5.6 are replaced with

P (N = q|N ′ = μ ∩ ¬S).

As with the probability terms P (N = q|N ′ = μ), these can be determined using Bayesian

inference, which specifies

P (N = q|N ′ = μ ∩ ¬S) =
P (N ′ = μ ∩ ¬S|N = q)P (N = q)∑nmax

j=μ P (N ′ = μ ∩ ¬S|N = j)P (N = j)
. (5.8)

The assumption that previous iterations failed can be justified by noting that, for all

q > μ,

P (N ′ = μ ∩ ¬S|N = q) = P (N ′ = μ|N = q).



83

This equality is a simple consequence of the definition of event S. Under the hypothesis

that N = q, the fact that all previous iterations classified fewer inliers than this indicates

that those iterations have failed. Note that this equality means the numerators for the

probabilities given in equations 5.7 and 5.8 are identical for all q > μ. The only numerator

for which this equality does not hold is the case of q = μ.

Assuming that all previous iterations have failed, even for the case where q = μ, allows

for a simplification of the expression in equation 5.8. Using the definition of conditional

probability, P (A|B)P (B) = P (A ∩B), this expression can be modified to

P (N = q|N ′ = μ ∩ ¬S) =
P (N ′ = μ ∩ ¬S ∩N = q)∑nmax

j=μ P (N ′ = μ ∩ ¬S ∩N = j)

=
P (N ′ = μ|N = q ∩ ¬S)P (N = q ∩ ¬S)∑nmax

j=μ P (N ′ = μ|N = j ∩ ¬S)P (N = j ∩ ¬S)

=
P (N ′ = μ|N = q ∩ ¬S)P (¬S|N = q)P (N = q)∑nmax

j=μ P (N ′ = μ|N = j ∩ ¬S)P (¬S|N = j)P (N = j)
.

(5.9)

Some common probabilities in this expression can now be eliminated. An iteration is con-

sidered successful if it correctly classifies each datum xi as an inlier or outlier. The event

¬S indicates an assumption that this has never occurred. It is therefore assumed that

every iteration has either produced an inaccurate estimate of θ, or has wrongly discarded

an accurate estimate due to some speedup mechanism being employed. The observed

lower bound μ is therefore independent of the true number of inliers. Consequently,

P (N ′ = μ|N = q ∩ ¬S) has the same value for all q. Specifically,

P (N ′ = μ|N = q ∩ ¬S) = P (N ′ = μ|¬S).

Note that these terms then cancel in equation 5.9. Furthermore, P (¬S|N = q) is the

probability that all previous iterations failed, assuming there are q inliers. This proba-

bility is equal to F(q), defined in equation 5.4. Equation 5.9 can therefore be simplified

to

P (N = q|N ′ = μ ∩ ¬S) =
F(q)P (N = q)∑nmax

j=μ F(j)P (N = j)
. (5.10)

Note that using this formula will adjust the probability terms more in favour of lower

values of q as additional iterations are completed. This occurs because the assumption

that previous iterations failed, indicated by event ¬S, is less likely to occur for higher

hypothesised numbers of inliers. Such a trend is appropriate since μ is more likely to be

the correct number of inliers as the number of iterations increases.

Summarily, this approach is a means to periodically choose an appropriate trade-off

between the speed of an iteration, and the probability that it will successfully estimate θ



84

and correctly classify each datum xi. We term this process Random Adaptive Trade-off

Sample Consensus (RATSAC). Since the algorithm is based on the typical approach of

repeatedly sampling and evaluating subsets of matches, it can be used in tandem with

any of the robust cost functions described in section 2.1.3. A concise description of the

process is given in algorithm 5.1.

Algorithm 5.1 (Random Adaptive Trade-off Sample Consensus)

Choose a small probability of failure pf < 1

Choose an assumed upper bound on the number of inliers nmax

Number of inliers μ ← c

Accumulated probability of failure p̂f ← 1

Lowest error ε∗ ←∞
Best parameter estimate θbest ← 0

Iteration count k ← 0

Compute ψ∗ as described in equation 5.6

while p̂f > pf do

p̂f ← p̂f (1− G(μ)P(ψ∗, μ))

k ← k + 1

Record ψ to be used for this iteration

Choose c random samples from {xi}
Compute θk from the random subset, according to ψ∗ if applicable

Evaluate R(θk), according to ψ∗ if applicable

if R(θk) < ε∗ then

ε∗ ← R(θk)

θbest ← θk

if μ 	= ∑nx
i=1 C(θk, xi) then

μ ←∑nx
i=1 C(θk, xi)

if nmax < μ then nmax ← μ

p̂f ← F(μ) (equation 5.4)

Recompute ψ∗ for the new μ (equation 5.6)

end if

end if

end while

Return θ and {C(θbest, xi)|i ∈ [1 . . . nx]}



85

5.2 Efficient Robust Estimation with Exhaustive Sampling

A typical robust estimation algorithm repeatedly chooses small random subsets of data.

This approach is used because using all possible minimally sized data subsets to estimate

θ and classify the data is prohibitively expensive. If the minimal size c is low however,

an exhaustive sampling may be feasible. In such a case, every possible data subset of

size c can be used to estimate θ, and each can be evaluated. This definitely applies in

the case of synchronising video sequences recorded by independently moving cameras, as

just a single pair of corresponding trajectories is sufficient to estimate (a, b).

The natural progression from section 5.1 is to consider how such an exhaustive sam-

pling may benefit by adjusting a speedup parameter ψ. If it is assumed that there are

μ inliers, then the number of data subsets containing no outliers will be
(

μ

c

)
. The total

number of data subsets is
(

nx
c

)
. If every possible subset is used once to estimate and

evaluate θ, then the probability that all such iterations fail to correctly classify the data

is

pf = (1− P(ψ, μ))(
μ
c)

Consider the case where the estimation and evaluation of θ is deterministic for each data

subset. If μ is known, and assuming P(ψ, μ) and T (ψ, μ) are monotonically increasing in

ψ, then this expression can be solved to find the smallest ψ, and hence the fastest time,

such that an exhaustive sampling of data subsets succeeds with probability (1 − pf ).

A more interesting possibility presents itself if we assume that multiple iterations for

a data subset containing only inliers have independent probabilities of success. In this

case, multiple estimations of θ with the same data subset lowers the probability that all

iterations fail.

Assuming such independence, if every data subset is used to estimate and evaluate θ

for η iterations, the probability that all iterations fail is

pf = ((1− P(ψ, μ))η)(
μ
c) .

Note the change in notation from the previous section. Here η refers to the number of

iterations for each data subset, not the total number. Given a particular choice of pf ,ψ

and μ, the number of iterations required for each data subset is

η =
log(pf )(

μ

c

)
log(1− P(ψ, μ))

+ �P(ψ, μ)�

The addition of �P(ψ, μ)� is necessary since otherwise, for P(ψ, μ) = 1, the estimated



86

value for η is 0. The total time to perform �η� iterations for every data subset is

TTOTAL(ψ, μ, pf ) =

(
nx

c

)
T (ψ, μ)�η�

=

(
nx

c

)
T (ψ, μ)

⌈
log(pf )(

μ

c

)
log(1− P(ψ, μ))

+ �P(ψ, μ)�
⌉
.

Unlike RATSAC, where the use of �.� is often unnecessary, here it is critical. A ‘partial’

iteration for every data subset can have a considerable effect on the estimated total time.

If a constant μ is assumed, ψ can be chosen to minimise this expression.

The proposed algorithm proceeds in a breadth-first type strategy. Multiple sweeps

are performed, where each sweep consists of iterating over every possible data subset of

size c. Each is used to estimate θ and evaluate the result. The algorithm terminates at

the end of a sweep, once the accumulated probability that all iterations have failed is

smaller than pf . As is the case with RATSAC, additional considerations are needed for

an adaptive termination condition.

The number of inliers μ is reevaluated whenever a θ is found surpassing all estimates

evaluated before it, according to the robust cost measure R. The new μ however, is

only employed once the next sweep begins. This ensures that each data subset consisting

entirely of inliers has an equal probability of successfully estimating θ and classifying

the data. Consequently, it is only necessary to maintain the accumulated probability

that all previous iterations failed for a single data subset consisting only of inliers. This

probability is denoted p̂s. If nψ different values for ψ have been used, and kt sweeps have

been performed using a speedup of ψt,the accumulated probability of failure p̂s after k

sweeps is given by

p̂s = FS(μ) =

nψ∏
t=1

(1− P(ψ′
t, μ))k′

t , where

nψ∑
t=1

k′
t = k. (5.11)

Note that this expression for p̂s may not explicitly contain μ. Indeed, if the nature of the

speedup is such that the expression for P(ψ, μ) does not contain the number of inliers,

it is never necessary to recompute p̂s when a best-so-far solution is found. In this case,

maintaining a history of ψ values is unnecessary. The algorithm may terminate at the

end of a sweep when

p̂
(μc)
s ≤ pf .

As with RATSAC, a discrete probability distribution is used to describe the true

number of inliers, given by P (N = q), so that the speedup value ψ is not chosen solely

assuming a pessimistic value for μ. An optimal ψ is chosen that minimises the expected

time until the termination condition is reached for the true number of inliers. At any

stage of the robust estimation, the true number of inliers can be assumed to lie between

μ and nmax. For any q in this range, the required probability of failure for the remaining



87

iterations is

FREM(q) = min(1, pfFS(q)−(qc)). (5.12)

If the remaining iterations fail with probability FREM(q), then the overall probability of

failure, assuming q inliers, is pf . The time required for these iterations is

TREM(ψ, q) =

(
nx

c

)
T (ψ, q)

⌈
log(FREM(q))(

q

c

)
log(1− P(ψ, q))

+ �P(ψ, q)�
⌉
.

The expected time until the termination condition is reached for the true number of inliers

is computed by summing TREM for each q, and weighting each by the probability that

there are q inliers, given the observed lower bound μ. Specifically, the speedup value ψ∗

is chosen as

ψ∗ = arg min
ψ

nmax∑
q=μ

P (N = q|N ′ = μ)TREM(ψ, q) (5.13)

As with RATSAC, the probability weights can be modified to include an additional

assumption that all previous iterations failed. Assuming q inliers, the probability of

failure is given by

P (¬S|N = q) = FS(q)(
q
c).

Additionally, it is assumed again that P (N ′ = μ|N = q∩¬S) is the same value regardless

of q. Under these assumptions, the probability terms in equation 5.13 can be replaced

with

P (N = q|N ′ = μ ∩ ¬S) =
FS(q)(

q
c)P (N = q)∑nmax

j=μ FS(j)(
j
c)P (N = j)

. (5.14)

It should be noted that, unlike RATSAC, an exhaustive sampling can guarantee suc-

cess providing probability P(ψ, μ) reaches a certainty in the valid range of ψ. If pf = 0,

and functions P and T are monotonically increasing, the algorithm defaults to choosing

the smallest ψ∗ such that P(ψ, μ) = 1 and only performing one sweep.

Since the above method exhaustively samples all possible data subsets, it is termed

Comprehensive Adaptive Trade-off Sample Consensus (CATSAC). The full process is

listed in algorithm 5.2.

5.3 Robust Synchronisation Details

Before either RATSAC or CATSAC can be applied to the problem of synchronisation,

C(θ, xi), R(θ), P(ψ, μ) and T (ψ, μ) must first be defined, along with the assumed dis-

tribution for the number of inliers.

For simplicity of notation, it is assumed that each datum xi is a vector of length 2, such

that (h, h′) specifies a correspondence between trajectory h in the first video sequence, and

h′ in the second video sequence. The total number of moving points tracked through each



88

Algorithm 5.2 (Comprehensive Adaptive Trade-off Sample Consensus)

Choose a small probability of failure pf < 1

Choose an assumed upper bound on the number of inliers nmax

Number of inliers μ ← c

Accumulated probability of failure p̂s ← 1

Lowest error ε∗ ←∞
Best parameter estimate θbest ← 0

Compute ψ∗ as described in equation 5.13

μ̂ ← μ

Sweep count k ← 0

while p̂
(μc)
s > pf do

k ← k + 1

for each subset of size c do

Compute θ, with speedup ψ∗ if applicable

Evaluate R(θ), with speedup ψ∗ if applicable

if R(θ) < ε∗ then

ε∗ ← R(θ)

θbest ← θ

if μ 	= ∑nx
i=1 C(θ, xi) then

μ̂ ←∑nx
i=1 C(θ, xi)

end if

end if

end for

p̂s ← p̂s(1− P(ψ∗))

if μ̂ 	= μ then

μ ← μ̂

if nmax < μ then nmax ← μ

Recompute p̂s ← FS(μ) if necessary (equation 5.11)

Recompute ψ∗ (equation 5.13)

end if

end while

Return θ and {C(θbest, xi)|i ∈ [1 . . . nx]}



89

video sequence are denoted ṁ and ṁ′. It is assumed that no tentative correspondence

information is available, so all possible trajectory pairs are considered potential matches.

The size of the data set used for RATSAC or CATSAC is then ṁṁ′. The resulting set

of matches is denoted M .

Analogously to the notation used in chapter 3, the image point ph,i denotes the image

location associated with trajectory h, in frame i of the first video sequence. Similarly, p′
h′,j

is the image point associated with trajectory h′ in frame j of the second video sequence.

Fi,j is the fundamental matrix describing the epipolar geometry relating frames i and j

of the two video sequences. Additionally, we define visibility measures vh,i and v′
h′,j, such

that vh,i is 1 if trajectory h is visible in frame i of video sequence 1, and 0 otherwise.

Similarly, v′
h′,j is 1 if trajectory h′ is visible in frame j of video sequence 2, and 0 otherwise.

The terms vh and v′
h′ specify the numbers of frames in which trajectories h and h′ are

visible.

5.3.1 Inlier Classification Function C

A hypothesised matching pair of trajectories is assessed using the interpolated epipo-

lar error EORTH−LI developed in section 3.2. Adopting the notation from section 3.1,

EORTH−LI
� denotes an equivalent error which equates to 0 in the event that EORTH−LI is

unmeasurable. Given synchronisation estimate (a, b), the number of measurable epipolar

errors for all frames in both sequences, for trajectory pair (h, h′) is denoted Ẇ(a, b, h, h′).

A trajectory pair (h, h′) therefore has an average interpolated epipolar error given by

Ṡ(a, b, h, h′) =
1

Ẇ(a, b, h, h′)

n−1∑
i=0

EORTH−LI
�(ph,i, p′

h′,�a+bi�,Fi,�a+bi�,

p′
h′,�a+bi�+1,Fi,�a+bi�+1,

a + bi− �a + bi�)2 +

1

Ẇ(a, b, h, h′)

n′−1∑
j=0

EORTH−LI
�(p′

h′,j, ph,�a′+b′j�,F
�
�a′+b′j�,j,

ph,�a′+b′j�+1,F
�
�a′+b′j�+1,j,

a′ + b′j − �a′ + b′j�)2.

where a′ = −ab−1, b′ = b−1.

(5.15)

This cost represents the sample variance of the interpolated epipolar errors. Under the

assumption that such summands have a zero-mean Gaussian distribution, the expres-

sion Ẇ(a, b, h, h′)Ṡ(a, b, h, h′) has an order Ẇ(a, b, h, h′) Chi-squared distribution. As

explained in section 3.1, there are two causes for an epipolar error being unmeasurable.

A trajectory will typically not be tracked throughout an entire video sequence, so image

points ph,i and p′
h′,j may be undefined for certain frame indices i and j. Image points are

also undefined for frame indices beyond the boundaries of the video sequences. For frame

index i in video sequence 1, the supposedly synchronous frame a + bi in video sequence

2 may lie outside the range of [0, n′ − 1].



90

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w = 10

Proportion of inliers

w = 1

w = 600

w = 200

σ−σ̄
σ̄

Figure 5.2: Effects of a misestimation of σ on a threshold test for Chi-squared distributions
of different order

The simplest inlier classification test is a threshold. For an assumed standard deviation

σ, a threshold can be determined for Ṡ(a, b, h, h′) that admits a specific proportion of the

‘best’ inliers. Two issues arise here. First, the threshold is dependent on the order of the

distribution Ẇ(a, b, h, h′). Two matches with different numbers of measurable epipolar

errors will be assessed with different thresholds. Second, these orders can be high, well

into the hundreds even for video sequences with just a few seconds of footage. For such

high Ẇ values, the distributions associated with a sample variance are very narrow around

σ2. Since σ is rarely known to high precision, the effects of a slight misestimation are far

greater as the number of measurable epipolar errors increases.

Figure 5.3.1 illustrates the consequences of misestimating the standard deviation. The

horizontal axis gives the relative error in σ, where truth is given by σ̄. The vertical axis

shows the proportion of inliers that will actually be admitted when using a threshold

test designed to admit 95% of inliers. Curves are shown for Chi-squared distributions of

various orders, denoted w. Note the effect of under-estimating σ by as little as 10%. For

cases where w = 1, which applies in the case of say, fundamental matrix estimation, 92%

of inliers will be admitted instead of 95%. Robust estimation may still perform well in

such a case. For a higher w = 200, which could occur for synchronisation, the proportion

of inliers passing the threshold test will be just 30%. For an even higher w = 600, which

could arise from just 12 seconds of footage, only 2% of inliers will pass the threshold test.

A simple solution to the problem mentioned above is to use the same threshold for

every Ṡ(a, b, h, h′), regardless of the number of measurable summands. We choose this



91

threshold such that 95% of inliers will be admitted for the case where Ẇ(a, b, h, h′) = 1.

The threshold test is therefore

CT(a, b, h, h′) =

{
1 : Ṡ(a, b, h, h′) ≤ 3.84σ2

0 : otherwise

Note that if the assumed σ is greater than roughly 1
2
σ̄, at least 95% of inliers should

still be admitted for cases with high values of Ẇ . It may seem that allowing such

leniency is dangerous. If σ = σ̄, larger proportions of inliers will pass the threshold test

as Ẇ increases. Fortunately, this should not be accompanied with a significant risk of

admitting incorrect matches. For high values of Ẇ , an incorrect match is less likely to

pass the threshold test as the greater amount of visual information will tend to generate

a higher value for Ṡ(a, b, h, h′).

The inlier classification function does not consist of just a threshold test. To cover

the case where all possible pairs of trajectories are admitted as potential matches, care

must be taken to ensure that the set of inliers resulting from C(a, b, h, h′) does not con-

tain mutually exclusive matches. If two trajectories in one video sequence are visible in

overlapping ranges of frames, it is reasonable to assume that they should not both be

matched to the same trajectory from the other video sequence. For simplicity, preference

is always given to the match with the lowest associated error Ṡ(a, b, h, h′).

Given two trajectory pairs (h, h′) and (g, g′), the function L counts the number of

frames in the each video sequence in which these trajectory matches are both visible.

Specifically,

L(h, h′, g, g′) =
n−1∑
i=0

vh,ivg,i +
n′−1∑
j=0

v′
h′,jv

′
g′,j.

The exclusivity test that returns 0 if a trajectory pair (g, g′) should preclude (h, h′) from

being classified as an inlier, and 1 otherwise, is given by

D(a, b, h, h′, g, g′) =

⎧⎪⎪⎨
⎪⎪⎩

0 : ((h = g)∨ (h′ = g′)) ∧ (C(a, b, g, g′) = 1)∧(
Ṡ(a, b, h, h′) ≥ Ṡ(a, b, g, g′)

)
∧ (L(h, h′, g, g′) ≥ 0)

1 : otherwise

.

The symbol ∧ denotes the ‘and’ operator, and ∨ denotes the ‘exclusive or’ operator.

For (h, h′) to be classified as an inlier, D(a, b, h, h′, g, g′) must equate to 1 for all other

matches (g, g′) in the set M . The test to classify a hypothesised match (h, h′) as an inlier

or outlier is

C(a, b, h, h′) = CT(a, b, h, h′)
∏

(g,g)∈M

D(a, b, h, h′, g, g′).

Note that from the definition of D, the classification of (h, h′) may be dependent on the

classification of other matches with a lower associated error. Classification of matches

must therefore proceed in ascending order of Ṡ(a, b, h, h′).



92

5.3.2 Robust Estimation Function R

Following the approach of MSAC [50], an estimate of synchronisation parameters (a, b)

is assessed by how well it fits the set of matches classified as inliers, along with a penalty

term for the remaining matches. The sum of squared epipolar errors associated with

match (h, h′) is given by

ṠSUM(a, b, h, h′) = Ṡ(a, b, h, h′)Ẇ(a, b, h, h′).

The matches can be partitioned into inlier and outlier sets defined by the functions

MI and MO, where

MI(a, b) = {(h, h′) ∈M | C(a, b, h, h′) = 1} ,

MO(a, b) = {(h, h′) ∈M | C(a, b, h, h′) = 0} .

The sizes of these sets are given by functions NI(a, b) and NO(a, b) respectively. The

robust cost used to assess an estimate of (a, b) is defined as

R(a, b) = NI(a, b)

∑
(h,h′)∈MI(a,b) ṠSUM(a, b, h, h′)∑

(h,h′)∈MI(a,b) Ẇ(a, b, h, h′)
+ 3.84σ2NO(a, b). (5.16)

The robust cost is therefore the number of matches classified as inliers, multiplied by

their overall average epipolar error, with an additional penalty term equal to the number

of outliers multiplied by the threshold.

For two synchronisation estimates with an equal number of classified outliers, R will

be lower for the estimate with the lowest average interpolated epipolar error associated

with the data classified as inliers. Consequently, as well as providing a means to measure

the quality of parameter (a, b) during robust estimation sampling, R can also be subse-

quently minimised directly with a minimiser such as Levenberg-Marquardt, to improve

the synchronisation estimate and possibly reclassify the trajectory correspondences. For

a range of synchronisation parameters (a, b) in which the classification of matches is un-

changing, minimising R is equivalent to minimising the cost function SORTH−LI defined

in chapter 3.

5.3.3 Estimating Synchronisation From a Single Match

Before specifying the speedup functions T (ψ, μ) and P(ψ, μ), the process by which a

single match is used to estimate the synchronisation must first be described.

The estimation of synchronisation parameters (a, b) consists of a search for synchrony

pairs using a variation of the histogram methods described in chapter 4. This is followed

by a Levenberg-Marquardt minimisation to improve the estimate. Unlike in chapter 4, a

unique histogram is built for each trajectory pair (h, h′). It is therefore unnecessary to

use a histogram which covers the full range of frames from the two video sequences. Con-

sidering match (h, h′), where trajectory h is visible in frames [imin . . . imax], and trajectory



93

α′

f ′

n− 1

n′ − 1

k

kb

a

imin

f

imax

jmin

jmax

β′

Figure 5.3: Line parameterisation (α′, β′).

h′ in [jmin . . . jmax], the synchronisation can be parameterised by

α′ =
imin + jmin − a

b + 1
, β′ =

imax + jmax − a

b + 1
.

Note the similarity to the (α, β) parameterisation introduced in section 3.4. The value

of α′ specifies the intersection of line of synchrony with a line of gradient −1 passing

through point (imin, jmin). Similarly, β′ specifies the intersection with a line of gradient

−1 passing through (imax, jmax). This is illustrated in figure 5.3.

Since the line of synchrony must have a positive gradient (b ≥ 0), and any synchrony

pairs found for the trajectory pair (h, h′) will have frame indices bounded by (imin, imax)

and (jmin, jmax), α′ and β′ are constrained to the ranges

α′ ∈ [imin − (jmax − jmin), imax],

β′ ∈ [imin, imax + (jmax − jmin)].

When estimating synchronisation using a matching trajectory pair (h, h′), such a param-

eterisation permits smaller histograms. In the case where the frame rate ratio b of two

cameras is unknown, a 2D histogram is used, with each cell covering a range in parameter

space (α, β) of size 1. This yields a 2D histogram with (vh + v′
h′ − 2)2 cells. Similarly to

chapter 4, synchronisation can be parameterised by β′ if the frame rate ratio is known.

A 1D histogram with (vh + v′
h′ − 2) cells is used.

A search for synchrony pairs is performed, randomly sampling �ψ−1vh� and �ψ−1v′
h′�

frames from the first and second video sequences respectively. For each selected frame,



94

a test for a synchrony pair is conducted using all consecutive frame pairs from the other

video sequence. As in chapter 4, the histogram element with the most support within a

3 × 1 or 3 × 3 window provides the initial synchronisation estimate. Although uniform

sampling has been shown to have better performance for a single search, it is entirely de-

terministic, so there is no benefit to performing multiple iterations for the same trajectory

pair (h, h′).

A synchronisation estimate obtained using histogram methods is only approximate,

and therefore unsuitable for evaluating and classifying potential matches. This estimate

should therefore be refined, using a Levenberg-Marquardt minimisation with an appro-

priate cost function. The minimisation is performed using the (α, β) parameterisation,

though (a, b) is used in the following function definition to avoid an unwieldy subscript

notation.

Note that there is much redundancy in measuring every possible epipolar error asso-

ciated with a trajectory pair (h, h′) and a synchronisation estimate (a, b). Consecutive

frames are likely to have associated errors of the same order of magnitude, and only a

subset of errors are typically needed to find a superior estimate. To facilitate speedup, a

coarse sampling of the error measures is used. Given the initial synchronisation estimate

(α, β), the range of frames with measurable residuals in each video sequence can be com-

puted in closed-form. Subsets of frames are chosen from each video sequence, denoted

Vh,h′ and V ′
h,h′ , such that the chosen frame indices are evenly distributed across these

ranges. If the number of measurable residuals are wv and w′
v, then the size of the sets are

given by
SIZE(Vh,h′) = max(min(5, wv),

1
20wv),

SIZE(V ′
h,h′) = max(min(5, w′

v),
1
20w

′
v),

where SIZE(.) denotes the size of a set. This can be interpreted as typically choosing

one in 20 frames, which equates to a little more than one per second for standard video

camera frame rates. The max(.) and min(.) operators ensure that no fewer than 5

frames are chosen for each video sequence, unless fewer than this are available. Given the

synchronisation estimate (α, β), the number of measurable epipolar errors, for frames in

the sets Vh,h′ and V ′
h,h′ , is denoted W(a, b, h, h′). The synchronisation estimate is refined

by minimising the following cost function:

S(a, b, h, h′) =
1

W(a, b, h, h′)

∑
i∈Vh,h′

EORTH−LI
�(ph,i, p′

h′,�a+bi�,Fi,�a+bi�,

p′
h′,�a+bi�+1,Fi,�a+bi�+1,

a + bi− �a + bi�)2 +

1

W(a, b, h, h′)

∑
j∈V ′

h,h′

EORTH−LI
�(p′

h′,j, ph,�a′+b′j�,F
�
�a′+b′j�,j,

ph,�a′+b′j�+1,F
�
�a′+b′j�+1,j,

a′ + b′j − �a′ + b′j�)2.

where a′ = −ab−1, b′ = b−1.

(5.17)



95

Note that the sets of frame indices for which errors are measured do not change through-

out the minimisation. The majority of these should remain measurable if (h, h′) is a

true correspondence, and providing the initial (α, β) is reasonably accurate. For the ma-

jority of truly corresponding (h, h′), this minimisation typically terminates after several

iterations. The maximum number of iterations before termination is therefore set to 15.

After the coarse minimisation, three tests are used to determine if the synchronisation

estimate should be discarded, causing the robust algorithm RATSAC or CATSAC to

proceed to the next iteration. The first such test is a visibility constraint. We assume that

a correct match (h, h′) should generate a synchronisation estimate indicating a significant

overlap in time of the ranges of frames in which the trajectories are visible. If the number

of measurable residuals for the refined estimate are wv and w′
v, the estimate is discarded

if both

wv < 1
4vh, w′

v < 1
4v

′
h′ .

The motivation for this test is based on the observation that a synchronisation estimate

is more likely to have a low associated error ṠORTH−LI across a short range of frames.

The majority of poor synchronisation estimates are therefore expected to have few mea-

surable errors. This test detects such estimates quickly, and the corresponding iteration

of RATSAC or CATSAC can terminate without incurring the expense of assessing every

trajectory pair.

The second test is based on the quality of the epipolar error measures. If trajectory

pair (h, h′) are projections of the same moving scene point, it is reasonable to assume

that (h, h′) is classified as an inlier by an accurate synchronisation estimate. Accordingly,

the match (h, h′) must satisfy the threshold test CT. The synchronisation estimate is

therefore discarded if

Ṡ(a, b, h, h′) > 3.84σ2.

The third test involves a coarse sampling of measurable residuals for all matches, in

the same manner as that used for the single match minimisation. Given the refined (α, β)

values, subsets of frames Vh,h′ , V ′
h,h′ are chosen for every trajectory pair (h, h′). From the

coarse error estimates, defined by S(a, b, h, h′), inliers and outliers are classified. The

classification function equivalent to C, but using the coarse error measures S(a, b, h, h′),

is denoted C. The function to classify trajectory pairs as inliers or outliers, based on their

associated coarse S(a, b, h, h′) measures, is

C(a, b, h, h′) = CT(a, b, h, h′)
∏

(g,g)∈M

D(a, b, h, h′, g, g′),

where

D(a, b, h, h′, g, g′) =

⎧⎪⎨
⎪⎩

0 : ((h = g)∨ (h′ = g′)) ∧ (C(a, b, g, g′) = 1)∧(
S(a, b, h, h′) ≥ S(a, b, g, g′)

)
∧ (L(h, h′, g, g′) ≥ 0)

1 : otherwise

,



96

and

CT(a, b, h, h′) =

{
1 : S(a, b, h, h′) ≤ 3.84σ2

0 : otherwise
.

Based on the errors measured over a coarse sampling of frames, the set of trajectory

pairs can be tentatively partitioned into inlier and outlier sets, given by functions

MI(a, b) =
{
(h, h′) ∈M | C(a, b, h, h′) = 1

}
,

MO(a, b) =
{
(h, h′) ∈M | C(a, b, h, h′) = 0

}
.

The sizes of the sets defined by functions MI and MO(a, b) are given by the functions

N I(a, b) and NO(a, b) respectively. An approximation of the robust cost function R,

measured using only a coarse sampling of frames for each trajectory pair, is given by

R(a, b) = N I(a, b)

∑
(h,h′)∈MI(a,b) SSUM(a, b, h, h′)∑

(h,h′)∈MI(a,b)W(a, b, h, h′)
+ 3.84σ2N I(a, b),

where SSUM = S(a, b, h, h′)W(a, b, h, h′).

(5.18)

A full evaluation of the synchronisation parameters, using all measurable errors from

each match (h, h′) only proceeds if this coarse robust costR(a, b) is less than the minimum

robust cost found on all previous iterations. Note that performing this test enables

synchronisation estimates with a high associated robust cost to be detected quickly. Such

estimates can safely be discarded.

The process of estimating and evaluating a synchronisation estimate from a single

match (h, h′) is summarised in algorithm 5.3. Note this amounts to a single iteration of

either RATSAC or CATSAC.

5.3.4 Speed Parameter Functions P(ψ, μ) and T (ψ, μ), and Probability Dis-

tributions

The probability function P(ψ, μ) represents the probability that an evaluation of syn-

chronisation parameters succeeds for a correct match. This will be highly dependent on

the nature of synchrony pair sets that are generated by the motions of the cameras and

scene points. Assuming well-defined non-degenerate motions, it is assumed for simplicity

that the probability of success is given by

P(ψ, μ) = ψ
1

10 .

This function is therefore monotonically increasing, with P(0, μ) = 0, and P(1, μ) = 1

as desired. Furthermore, P(0.1, μ) � 0.8, indicating a high probability of success for a

random sampling rate of 0.1, as demonstrated in chapter 4.

Since the set of matches will contain exhaustive trajectory pairings, the probability

of each match being correct is unknown. The prior distribution for the number of inliers

P (N = q) is therefore assumed to be uniform. Choosing an appropriate nmax is more



97

Algorithm 5.3 (Accelerated Iteration for Estimating Synchronisation)

RATSAC or CATSAC specify a trajectory correspondence (h, h′)

RATSAC or CATSAC specify the lowest error found so far, ε∗

RATSAC or CATSAC specify speedup parameter ψ∗

Randomly select ψ∗�vh� frames from video sequence 1

Randomly select ψ∗�v′
h′� frames from video sequence 2

Search for synchrony pairs for each selected frame

if frame rate ratio b is known then

Build a 1D histogram from the synchrony pairs

Determine a from the tallest histogram peak

Compute coarse frame sets Vh,h′ and V ′
h,h′

Refine a by minimising S(a, b, h, h′) (equation 5.17)

else

Build a 2D histogram from the synchrony pairs

Determine (a, b) from the tallest histogram peak

Compute coarse frame sets Vh,h′ and V ′
h,h′

Refine (a, b) by minimising S(a, b, h, h′) (equation 5.17)

end if

Compute measurable error counts wv, w
′
v

if wv < 1

4
vh and w′

v < 1

4
v′

h′ then

Discard the estimate (proceed to next iteration)

end if

if Ṡ(a, b, h, h′) > 3.84σ2 (equation 5.15) then

Discard the estimate (proceed to next iteration)

end if

Compute coarse frame sets Vu,u′ and Vu,u′ for all matches (u, u′) ∈M

Compute coarse error S(a, b, u, u′) for all matches (u, u′) ∈M

if R(a, b) > ε∗ (equation 5.18) then

Discard the estimate (proceed to next iteration)

end if

Compute full robust cost R(a, b) (equation 5.16)



98

problematic. A choice of nmax = nx is clearly inappropriate due to the exhaustive nature

of the matches. Ideally, we should use the size of the largest subset of matches such

that no two trajectory pairs in the subset are mutually exclusive, and for which there

exists a line of synchrony (a, b) permitting each such match to have measurable associated

epipolar errors. Even without the latter condition, this is equivalent to the maximum

clique problem in graph theory, which is known to be NP-Complete. For simplicity, it is

initially assumed that nmax = min(ṁ, ṁ′). Even though this may be an underestimate,

it is a useful upper bound assuming long ‘unbroken’ trajectories. If a number of inliers

μ is classified during the execution of either RATSAC or CATSAC, such that μ > nmax,

nmax is increased accordingly. Mutually exclusive matches also complicate the probabil-

ity terms in equations 5.6 and 5.13 when choosing ψ∗. Accordingly, the assumption of

previous failure is used, as defined in equations 5.10 and 5.14.

The function T (ψ, μ) measures the time taken to estimate parameters (a, b) from a

single pair of matching trajectories, and evaluate the result. Since the units of time are

arbitrary, it is assumed that the evaluation of a single epipolar residual, or the search

between 2 frames for a single possible synchrony pair takes time 1. Estimating (a, b)

requires a reduced search for synchrony pairs, controlled by parameter ψ, a subsequent

coarse minimisation, and three tests to determine if the estimate should be discarded.

Consequently, the total time can be separated into

T (ψ, μ) = TSEARCH(ψ, μ) + THIST(ψ, μ) + TMIN + TTEST(ψ, μ) + TEVAL(ψ, μ)

The time required to search for synchrony pairs is TSEARCH. The time required to reset

the histogram to 0, add synchrony pairs to the histogram, and find the maximum after

the search is completed is given by THIST. The post-search minimisation, testing, and

evaluation times are given by TMIN, TTEST and TEVAL respectively.

A full search for synchrony pairs across all frames would require (2nn′− n− n′) units

of time. Since the trajectories may only be visible for a smaller ranges of frames, the

search need only be conducted over these intervals. For trajectories (h, h′) in the first

and second video sequences respectively, recall that the total number of frames in which

a point is visible are given by

vh =
n−1∑
i=0

vh,i, v′
h′ =

n′−1∑
j=0

v′
h′,j.

A full search for synchrony pairs within these ranges requires iterating over each frame,

and considering all successive pairs of frames from the other video sequence. This there-

fore takes vh(v
′
h′ − 1) + v′

h′(vh − 1) units of time. The average time taken to perform this

search can therefore be expressed as the expected value of this term, across all possible

trajectory pairs. Furthermore, each search is scaled by proportion ψ since only a random



99

subset of frames is selected. The expression TSEARCH is therefore

TSEARCH(ψ, μ) = 2ψ
1

nx

⎛
⎝ ∑

(h,h′)∈M

vh(v
′
h′ − 1) + v′

h′(vh − 1)

⎞
⎠ .

The time to initialise the histogram cells and find the peak after the search will be

dependent on the histogram size, and therefore whether or not the frame rate ratio is

known. The value ts represents the time required to perform these operations on a single

cell. The time required to increment a histogram cell is denoted ta. To measure the cost

of all additions to the histogram, the expected number of synchrony pairs must be known.

Note that this is typically unavailable, since it is a function of the scene point and camera

motions. For simplicity, it is assumed that correct matches yield an average of ni = 2

synchrony pairs per frame, and incorrect matches produce an average of no = 1 synchrony

pairs per frame. The expected number of synchrony pairs per frame is therefore

NS(μ) = n−1
x μni + (1− n−1

x μ)no.

For a known frame rate ratio, each synchrony pair requires incrementing just one cell.

The total cost for histogram operations is therefore given by

THIST(ψ, μ) =
ts

nx

⎛
⎝ ∑

(h,h′)∈M

vh + v′
h′ − 2

⎞
⎠+

taψ

nx

⎛
⎝ ∑

(h,h′)∈M

vh + v′
h′

⎞
⎠NS(μ).

For an unknown frame rate ratio, a line of cells must be incremented per synchrony pair.

It is assumed that each trajectory occupies a continuous range of frames, and that, for

a trajectory pair (h, h′), synchrony pairs are uniformly distributed across the ranges of

frames in which these trajectories are visible. By considering the (α′, β′) parameterisation

for the histogram, and according to equation 4.5 given in section 4.3.2, the average number

of cells incremented by a synchrony pair found for trajectory pair (h, h′) is

AC(h, h′) =
min{vh − 1, v′

h′ − 1}2

12 max{vh − 1, v′
h′ − 1} +

1

2
(vh + v′

h′ − 2) +
1

4
max{vh − 1, v′

h′ − 1}.

The associated histogram operation cost is therefore

THIST(ψ, μ) =
ts

nx

⎛
⎝ ∑

(h,h′)∈M

(vh + v′
h′ − 2)2

⎞
⎠+

taψ

nx

⎛
⎝ ∑

(h,h′)∈M

AC(h, h′)(vh + v′
h′)

⎞
⎠NS(μ).

The values for ts and ta need not be known to high accuracy, since the relative cost of

histogram operations is very small. For a known frame rate ratio, ts = 0.01 is assumed.

For an unknown frame rate ratio, a higher ts = 0.025 is used due to the additional cost

of evaluating whether a cell is a peak. For both cases, ta = 0.005 is assumed.

The time TMIN is dependent on the initial estimate of the synchronisation, as well as

the visibility of the trajectory pair used to estimate θ. An estimate of the synchroni-

sation defines a number of frames in each video sequence for which epipolar errors are



100

measurable. It is assumed that, over many iterations, these numbers of frames are uni-

formly distributed between (
⌊

1
4
vh

⌋
, vh) and (

⌊
1
4
v′

h′

⌋
, v′

h′). The expected number of frames

sampled in each video sequence per iteration of the minimisation are

sf =
1

nx

∑
(h,h′)∈M

(1 + vh −
⌊

1
4vh

⌋
)−1

vh∑
i=� 1

4
vh�

max(min(5, i), 1
20 i) ,

s′f =
1

nx

∑
(h,h′)∈M

(1 + v′
h′ −

⌊
1
4v′h′

⌋
)−1

v′

h′∑
j=� 1

4
v′

h′�
max(min(5, j), 1

20j).

Assuming the maximum of 15 iterations is typically realised, the time for the minimisation

step is

TMIN = 15(sf + s′f ).

The time TTEST specifies the required time to perform the measurability range test,

threshold test, and coarse robust cost test. The range test is assumed to be trivial since

ranges can be computed in closed-form. Just as (sf , s
′
f ) denote the expected number of

frames sampled for a low-coarse minimisation, (cf , c
′
f ) denote the expected number of

frames not sampled, and are given by

cf =− sf +

⎛
⎜⎝ 1

nx

∑
(h,h′)∈M

(1 + vh −
⌊

1
4vh

⌋
)−1

vh∑
i=� 1

4
vh�

i

⎞
⎟⎠ ,

c′f =− s′f +

⎛
⎜⎝ 1

nx

∑
(h,h′)∈M

(1 + v′
h′ −

⌊
1
4v′h′

⌋
)−1

v′

h′∑
j=� 1

4
v′

h′�
j

⎞
⎟⎠ .

The threshold test requires the evaluation of every measurable epipolar error for the match

being considered, and therefore takes an average time of cf +sf +c′f +s′f . The probability

that an incorrect match passes the threshold and range tests is denoted pt, and assigned

to 1
4

or 1
2

for known and unknown frame rate ratios respectively. It is expected that this

will usually be an over-estimate, and so this measure is conservative. The probability

that a correct match passes these tests must be at least P(ψ, μ) by definition, since a

successful iteration must satisfy the range and cost conditions. Even an unsuccessful

iteration for a correct match may pass these tests, due to the presence of a secondary

set of synchrony pairs. It is therefore assumed that the probability of a correct match

passing the tests is given by

P(ψ, μ) + (1− P(ψ, μ))pt.

The probability of a synchronisation estimate generated from any match passing these



101

tests is

NP(ψ, μ) = μn−1
x (P(ψ, μ) + (1− P(ψ, μ))pt) + (1− μn−1

x )pt.

If the synchronisation estimate passes the threshold test, the coarse robust cost test

is necessary, which requires a low sampling of epipolar errors from all matches. It seems

intuitive to consider the number of errors sampled to be nx(sf + s′f ), however this is

only appropriate if all matches occupy the same range of frames in each video sequence.

If the ranges of frames in which matches are visible are more distributed, the number

of measurable errors will typically be lower, for both coarse and non-coarse samplings.

To approximate this behaviour, the variables df and d′
f are introduced. These specify

the average number of matches per frame for which at least one trajectory is visible, for

the first and second video sequences respectively. Since all pairings of trajectories are

contained in the set of matches, df and d′
f are given by

df = SIZE ({i| ∃ vh,i = 1})−1
ṁ∑

h=1

ṁ′vh ,

d′
f = SIZE

(
{j| ∃ v′

h′,j = 1}
)−1

ṁ′∑
h′=1

ṁv′
h′ .

The expected number of errors measured in coarse sampling is assumed to be (sfdf+s′fd
′
f ).

Note that when all matches occupy the same range of frames, both df and d′
f equate to

ṁṁ′, yielding a sampling of size nx(sf +s′f ) as appropriate. For more distributed matches,

the sampling will be reduced as required. The total time for the testing step is therefore

TTEST(ψ, μ) = (cf + c′f + sf + s′f ) +NP(ψ, μ)(sfdf + s′fd
′
f ).

The final term, TEVAL, specifies the required time for a full evaluation of the robust cost

function R. Note that some of the epipolar errors associated with the synchronisation

estimate have already been evaluated in the previous step. Computing the remainder

requires an average time of (cfdf + c′fd
′
f ). The difficulty lies in determining how fre-

quently this is necessary. The probability that a synchronisation estimate passes both

the threshold test and the coarse robust cost test is needed.

It is assumed for simplicity that, regardless of ψ, all coarse robust cost measures R
are samples from the same distribution. It is also assumed for the purposes of timing

that a full evaluation of R would yield the same cost as the coarse sampling.

Consider the estimation and evaluation of k − 1 synchronisation parameter vectors,

only for those iterations which pass the measurability and threshold tests. On the next

such iteration, a full evaluation is only necessary if the coarse robust cost is lower than all

that preceded it. Assuming that all the costs for these iterations are randomly sampled

from the same distribution, this occurs with probability k−1. Over k such iterations, the



102

expected number of full evaluations required is given by

k∑
j=1

1

j
=

Γ′(k + 1)

Γ(k + 1)
+ γ, (5.19)

where the fractional term is the Digamma function, and γ is the Euler-Mascheroni con-

stant.

The probability that an iteration requires a full evaluation is therefore dependent on

the number of preceding iterations which passed both the range and threshold tests. This

number is denoted ξd.

The assumed total number of remaining iterations NR(ψ, μ) has a different form for

RATSAC and CATSAC. In the case of RATSAC, for the given inputs ψ and μ to function

T (ψ, μ), NR is given by

NR(ψ, μ) =

⌈
log(FREM(μ))

log(1− G(μ)P(ψ, μ))

⌉
,

for FREM as defined in equation 5.5. When using CATSAC, NR is given by

NR(ψ, μ) =

(
nx

c

)⌈
log(FREM(μ))(

μ

c

)
log(1− P(ψ, μ))

+ �P(ψ, μ)�
⌉
,

for FREM given in equation 5.12.

Given NR, the expected total number of iterations (both completed and remaining)

passing both threshold and range tests is

NT(ψ, μ) = NR(ψ, μ)NP(ψ, μ) + ξd.

According to equation 5.19, and the preceding assumptions, and rounding NT to the

nearest higher integer value, the expected number of remaining synchronisation estimates

requiring a full robust cost evaluation is given by

Γ′(�NT(ψ, μ)�+ 1)

Γ(�NT(ψ, μ)�+ 1)
− Γ′(ξd + 1)

Γ(ξd + 1)
.

This yields an average time for the evaluation step of

TEVAL(ψ, μ) = NR(ψ, μ)−1

(
Γ′(�NT(ψ, μ)�+ 1)

Γ(�NT(ψ, μ)�+ 1)
− Γ′(ξd + 1)

Γ(ξd + 1)

)
(cfdf + c′fd

′
f ).

This expression is derived under the assumption that coarse robust costs from syn-

chronisation estimates passing the threshold and range tests are drawn from the same

distribution. This is obviously incorrect, since different values of ψ may have been used

for different iterations. In practice however, it has convenient properties. The estimated

number of remaining iterations requiring full evaluations is expected to increase quickly



103

at first, then slow as more iterations are completed. Furthermore, in one sense this is a

conservative measure. Consider the case where a low value of ψ is chosen at the start

of the robust estimation. After some iterations have passed, a higher ψ value is chosen.

For this higher ψ value, the expression for TEVAL is too low. For the higher ψ value,

more iterations estimating synchronisation from a correct trajectory correspondence are

likely to require a full evaluation. In this case, the expression for TEVAL should bias the

algorithm in favour of choosing a higher ψ.

With the functions P(ψ) and T (ψ) now defined, it is possible to choose appropriate ψ

values for the robust estimation. Since ψ is neatly bounded, and represents a proportion of

frames to be sampled, an analysis of the gradient of the total time function is unnecessary

(and complicated, due to �.� and �.�). To find an approximate ψ minimising the total

execution time, a uniform discrete sampling is used. The candidate values for ψ are of

the form max(vh, v
′
h′)−1w, for all integers w such that ψ lies between 0 and 1. Such a

search is fast compared to an iteration of the robust estimation, and therefore causes no

significant decrease in speed.

5.4 Synthetic Tests

In testing RATSAC and CATSAC, the same camera configurations and temporal settings

as those in chapters 3 and 4 are employed. For each temporal configuration, RATSAC

and CATSAC are tested 1000 times using both linear and piece-wise linear moving scene

points, and assuming both a known and unknown frame rate ratio. In each test, 10

trajectories are present in each video sequence, though only 5 trajectories in each sequence

are projections of moving scene points viewed by both cameras. All possible pairs of

trajectories are considered as matches. Since all trajectories occupy the same range of

frames, no more than 10 matches, correct or incorrect, can be found in each test.

Tables 5.1 and 5.2 show the numbers of correct and incorrect matches identified by

RATSAC and CATSAC. The true synchronisation parameters for each case are denoted

(ā, b̄). These results were obtained by finding an initial synchronisation estimate with

the specified robust algorithm, and then refining the estimate via a direct minimisation

of the robust cost function R using Levenberg-Marquardt. A reclassification of matches

may have occurred at this stage.

The first point to note is that every case tested has a high probability of correctly

classifying the set of matches. The results suggest that a correct match was used to

generate an acceptable synchronisation estimate in all tests, since each resulted in a

correct classification of the 5 true matches. If a correct classification of true matches is

considered a measure for success, and given the total number of tests is 24, 000, then

these results clearly indicate that the probability of failure pf has been satisfied, thereby

validating the choice of the function P(ψ, μ).

For both algorithms and both types of scene point motion, the second setup with

a = 42.3 has a greater probability of including an incorrect match. This is to be expected,



104

Setup Percentage of tests with classified matches

n n′ ā b̄ 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 99.5 0.5

80 100 42.3 1.1875 100 98.3 1.7

20 100 10.63 4.9375 100 99.7 0.3

(a) Known frame rate ratio, linear scene point motion

Setup Percentage of tests with classified matches

n n′ ā b̄ 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 99.7 0.3

80 100 42.3 1.1875 100 98.1 1.9

20 100 10.63 4.9375 100 99.8 0.2

(b) Unknown frame rate ratio, linear scene point motion

Setup Percentage of tests with classified matches

n n′ ā b̄ 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 100 0

80 100 42.3 1.1875 100 99.5 0.5

20 100 10.63 4.9375 100 99.8 0.2

(c) Known frame rate ratio, piecewise-linear scene point motion

Setup Percentage of tests with classified matches

n n′ ā b̄ 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 100 0

80 100 42.3 1.1875 100 99.6 0.4

20 100 10.63 4.9375 100 100 0

(d) Unknown frame rate ratio, piecewise-linear scene point motion

Table 5.1: Correct and incorrect matches classified for synthetic test cases, by using
RATSAC followed by a minimisation of the robust cost function R



105

Setup Percentage of tests with classified matches

n n′ ā b̄ 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 99.7 0.3

80 100 42.3 1.1875 100 97.8 2.2

20 100 10.63 4.9375 100 99.6 0.4

(a) Known frame rate ratio, linear scene point motion

Setup Percentage of tests with classified matches

n n′ ā b̄ 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 99.8 0.2

80 100 42.3 1.1875 100 98.3 1.7

20 100 10.63 4.9375 100 99.7 0.3

(b) Unknown frame rate ratio, linear scene point motion

Setup Percentage of tests with classified matches

n n′ ā b̄ 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 99.9 0.1

80 100 42.3 1.1875 100 99.8 0.2

20 100 10.63 4.9375 100 99.9 0.1

(c) Known frame rate ratio, piecewise-linear scene point motion

Setup Percentage of tests with classified matches

n n′ ā b̄ 5 Correct 0 Incorrect 1 Incorrect

80 100 10.63 1.1875 100 100 0

80 100 42.3 1.1875 100 99.7 0.3

20 100 10.63 4.9375 100 99.9 0.1

(d) Unknown frame rate ratio, piecewise-linear scene point motion

Table 5.2: Correct and incorrect matches classified for synthetic test cases, by using
CATSAC followed by a minimisation of the robust cost function R



106

as the true synchronisation parameters indicate the video sequences have a smaller overlap

in time. An incorrect match is more likely to have a low associated error across a smaller

range of frames. Although the percentage of tests admitting a single incorrect match

may seem significant, (reaching 2.2% for one configuration), it should be noted that the

proportion of correct matches in each test is just 0.05. Even when all 5 correct matches

are properly classified, there are 25 possible pairings of the remaining trajectories which

would constitute incorrect matches. Additionally, it should be noted that the percentage

of tests admitting a single incorrect match is typically lower for piecewise-linear scene

point motions. Piecewise-linear motions should logically lead to a lower probability that

an incorrectly matched pair of trajectories has a low associated error, since it is less likely

that both linear pieces of the motion yield low epipolar errors for a correct synchronisation

of the video sequences.

These results clearly demonstrate the suitability of RATSAC, CATSAC, and the func-

tions C and R for classifying matches. However, they provide no explicit information

about the quality of the resulting synchronisation estimates. The median Video Syn-

chronisation Errors (VSEs), as described in section 3.5.3, are presented in table 5.3. As

expected, these follow the same trends as for non-robust estimation, with a lower median

VSE being attained for a known frame rate ratio, and for configurations where the video

sequences have a greater overlap in time. The results are of the same order of magnitude

to those obtained for m = 5 in chapter 3, thereby demonstrating that both RATSAC and

CATSAC, followed by a minimisation of R, typically achieve synchronisation to within a

small fraction of a frame.

To further analyse the quality of synchrony, the percentages of tests for which the

resulting VSE measure was less than 0.5 are listed in table 5.4. A justification for the

threshold of 0.5 is given in section 3.5.3. As with the median VSE measures, the results

in table 5.4 follow the same trends found in chapters 3 and 4. More tests satisfy the

VSE < 0.5 threshold if the frame rate ratio is known. Typically, this condition is also

satisfied more often for the piecewise-linear case. Piecewise-linear motions are less likely

to generate a near-degenerate case than linear motions, so each correct trajectory match

will typically provide more useful visual cues to refine the synchronisation estimate. Note

that there may be a correlation between the percentage of tests failing the synchronisation

threshold of (VSE < 0.5), and the percentage of tests that admitted a single incorrect

match. A comparison of tables 5.4, 5.1, and 5.2 shows this is not necessarily true. Some

tests wrongly admitting a single incorrect match still achieve a VSE below 0.5, and other

tests with no incorrect matches still do not achieve this fine an estimate of synchrony.

The former case can be attributed to incorrect matches that yield low epipolar errors

for true synchrony, and may in fact be degenerate matches. The latter case implies that

the epipolar error based cost function is reasonably flat around the true synchronisation

parameters for all of the identified correct matches. A better synchronisation estimate

could therefore be found if additional matching moving scene points are tracked in each

video sequence.



107

Setup RATSAC CATSAC

n n′ ā b̄ Known b Unknown b Known b Unknown b

80 100 10.63 1.1875 0.022 0.059 0.022 0.061

80 100 42.3 1.1875 0.035 0.099 0.033 0.103

20 100 10.63 4.9375 0.032 0.086 0.03 0.089

(a) Median VSE measures for linear scene point motions

Setup RATSAC CATSAC

n n′ ā b̄ Known b Unknown b Known b Unknown b

80 100 10.63 1.1875 0.022 0.058 0.022 0.058

80 100 42.3 1.1875 0.034 0.106 0.035 0.107

20 100 10.63 4.9375 0.032 0.093 0.032 0.095

(b) Median VSE measures for piecewise-linear scene point motions

Table 5.3: Median VSE measures for synthetic test cases, for both CATSAC and RATSAC
followed by a minimisation of the cost function R

Setup RATSAC CATSAC

n n′ ā b̄ Known b Unknown b Known b Unknown b

80 100 10.63 1.1875 99.9 99.9 100 99.8

80 100 42.3 1.1875 100 99 99.9 99

20 100 10.63 4.9375 100 99.5 100 99.7

(a) Linear scene point motions

Setup RATSAC CATSAC

n n′ ā b̄ Known b Unknown b Known b Unknown b

80 100 10.63 1.1875 100 100 100 100

80 100 42.3 1.1875 100 99.4 100 98.9

20 100 10.63 4.9375 100 99.9 100 99.9

(b) Piecewise-linear scene point motions

Table 5.4: Percentages of synthetic tests for which CATSAC and RATSAC, followed by
a minimisation of R, achieve synchronisation with a VSE measure less than 0.5



108

Setup RATSAC Timing (seconds) - Known b

n n′ ā b̄ Initial ψ Average time Average time (ψ = 1) Saving

80 100 10.63 1.1875 0.01 0.077 0.518 85.1%

80 100 42.3 1.1875 0.01 0.064 0.529 87.9%

20 100 10.63 4.9375 0.02 0.057 0.180 68.3%

Setup RATSAC Timing (seconds) - Unknown b

n n′ ā b̄ Initial ψ Average time Average time (ψ = 1) Saving

80 100 10.63 1.1875 0.01 0.141 0.673 79%

80 100 42.3 1.1875 0.01 0.132 0.673 80.4%

20 100 10.63 4.9375 0.03 0.088 0.257 65.8%

Setup CATSAC Timing (seconds) - Known b

n n′ ā b̄ Initial ψ Average time Average time (ψ = 1) Saving

80 100 10.63 1.1875 0.01 0.072 0.384 81.3%

80 100 42.3 1.1875 0.01 0.058 0.393 85.2%

20 100 10.63 4.9375 0.03 0.055 0.133 58.6%

Setup CATSAC Timing (seconds) - Unknown b

n n′ ā b̄ Initial ψ Average time Average time (ψ = 1) Saving

80 100 10.63 1.1875 0.03 0.141 0.5 71.8%

80 100 42.3 1.1875 0.03 0.134 0.501 73.2%

20 100 10.63 4.9375 0.06 0.057 0.191 70.1%

Table 5.5: Initial ψ choices, average times (seconds), and percentages of time saved by
using an adaptive speedup, for synthetic test cases with linear scene point motions

The final results presented in this section are concerned with the efficiency of RATSAC

and CATSAC. Table 5.5 presents the initial ψ chosen for each configuration, the average

time required to complete the robust estimation (the subsequent minimisation of R with

Levenberg-Marquardt is omitted from the timing), the average time required for ψ = 1,

and the percentage of time saved by choosing the an adaptive ψ. Results are presented

for linear scene point motions only, since the piecewise-linear times are similar enough to

be considered redundant.

The proportion of time saved is calculated as the difference in times, divided by the

time for ψ = 1. Note that all savings are high, indicating that choosing ψ according to

the cost functions T (ψ, μ) and P(ψ, μ) yields a considerable benefit. For a known frame

rate ratio, CATSAC is typically faster than RATSAC, yielding slightly lower times for

all cases. CATSAC is also faster for the third configuration when b is unknown. This is



109

Figure 5.4: Relative positions of the moving cameras’ optical centres for the bouncing
balls example

most likely due to the difference in ψ, which is greater for CATSAC than for RATSAC

in the case where the frame rate ratio is unknown. For both methods, greater ψ values

are chosen for the third configuration, where b = 4.9375. This can be attributed to the

shorter length of the first video sequence. Accordingly, the search for synchrony pairs is

faster, and does not dominate the total iteration time to as great an extent as it does in

the other two setups.

Although the time taken to achieve robust synchronisation may seem quite short, the

required computation will grow quadratically in both the number and length of tracked

moving scene points. Choosing optimal ψ values will reduce the time required to syn-

chronise longer video sequences with more moving objects.

5.5 Real Video Sequence Pair Tests

To assess the performance of RATSAC and CATSAC, two hand-held moving cameras

recorded footage of three bouncing balls. The independent camera motions and a sparse

set of scene points were estimated using the Voodoo camera tracker, which provides imple-

mentations of the methods described in [47] and [46]. The two sets of projection matrices

were registered, as with the Lego sequence in chapter 3, using a manual identification

of corresponding stationary scene points followed by the robust estimation of a 4 × 4

transformation. The optical centres of the registered projection matrices are shown in

figure 5.4.



110

The projections of moving scene points are defined by the centres of the bouncing

balls. These were determined by using a combination of gradient and colour measures.

The gradient measure was devised by considering the illumination of the balls, and their

reflectivity. Figure 5.5(a) depicts magnified images of the balls, which clearly show a

brighter region due to the nature of the reflection. Pixel brightness decreases away from

this region towards the ball images’ periphery. Figure 5.5(b) provides a visualisation of

the intensity gradient direction, by mapping this direction to a fully saturated hue colour.

Note that the gradient direction change is mostly slow and smooth within the ball pixels,

but more ‘chaotic’ elsewhere. The gradient measure used to detect balls in the images

is depicted in figure 5.5(c). This measure is the absolute difference between the gradient

direction for one pixel, and that of its immediate neighbour in the direction of steepest

intensity descent. By choosing the neighbouring pixel in this way, the measure is also low

at the ‘peak’ of the pixel intensities.

To locate the balls in each frame, a binary image was formed, marking pixels which

satisfy both a threshold on the gradient direction measure, and a set of lenient colour

based constraints. After morphology and hole-filling, connected components were identi-

fied, and filtered on the basis of aspect-ratio and size. Components were also discarded

if a significant proportion of their pixels failed to satisfy stricter colour constraints. To

determine the image point associated with a ball, the median of a components’ pixel

locations along each axis was assumed to approximate the projection of the ball’s centre.

To group component centres into trajectories in each video sequence, a primitive

tracker was constructed. A measure based on both distance and colour similarity be-

tween components in successive frames permits correlation based matching. The colour

similarity measure helps to avoid ball components from being incorrectly matched with

non-ball components that happen to satisfy the feature detection process. Due to oc-

clusions and intermittent failure of the tracker, 22 trajectories were found in the first

video sequence, and 19 in the second video sequence. Two of the trajectories in the

first video sequence do not represent ball locations, and instead correspond to stationary

scene regions which happen to satisfy the feature detection and tracking requirements.

The resulting set of matches has size 418 since all possible pairs of trajectories from the

two video sequences are included.

Both RATSAC and CATSAC were tested 1000 times for the bouncing ball video

sequences, for both known and unknown frame rate ratios. For each test, the initial

synchronisation estimate was refined by a minimisation of the robust cost function R
using Levenberg-Marquardt. As with the synthetic tests, this minimisation may cause

matches to be reclassified. The quality of the resulting matches and synchronisation

are shown in table 5.6. The median VSE measures are computed by comparing the

estimated synchronisation against a manual estimate, obtained by visually identifying

approximately synchronous frame pairs. For both methods, the median VSE measures

indicate synchrony close to one tenth of a frame for a known frame rate ratio, and under

one fifth for an unknown frame rate ratio. This is well within the range of the accuracy



111

(a) Cropped regions of frames around ball locations

(b) Image gradient direction mapped to hue

(c) Measure of difference in gradient direction

Figure 5.5: Two examples of the gradient measure used to assist in ball detection



112

Setup Percentage of tests VSE

with classified matches

Method b 19 Correct 20 Correct 0 Incorrect Median

RATSAC Known 100 0 100 0.116

RATSAC Unknown 100 0 100 0.175

CATSAC Known 100 0 100 0.116

CATSAC Unknown 99.9 0.1 100 0.175

Table 5.6: VSE measures and matches identified for the bouncing balls example, for both
RATSAC and CATSAC, followed by a minimisation of R

of a manual synchronisation. According to the manual synchronisation, there are 19

pairs of trajectories which should be classified as inliers. An additional trajectory pair

may also be considered a correct match, but would not be classified as an inlier by the

manual synchronisation estimate, which indicates that one trajectory begins just one

quarter of a frame in time after the other ends. Accordingly, it is expected that an

approximately correct synchronisation should yield either 19 or 20 correct matches. Note

that this occurred in all tests. Additionally, in every test, no incorrect match was wrongly

classified. This clearly demonstrates that both RATSAC and CATSAC, when used with

the robust cost function R, typically yield accurate classification of both correct and

incorrect matches in a real video sequence case.

An assessment of the speedups is provided in table 5.7. For both methods, the initial ψ

value is small, indicating a preference for a low-sampled synchrony pair search. Compared

with the synthetic tests, the proportions of time saved by using such a low sampling are

much lower. This is likely due to the shorter trajectory sizes, which causes evaluation to

dominate the average execution time per iteration. Unlike the synthetic tests, RATSAC

has a significantly lower average execution time. This can be explained by an analysis

of the ψ values chosen. For both methods, 0.0625 is chosen when the frame rate ratio

is unknown. Assuming this value is used throughout the entire process, and that 19

matches are classified before the associated termination condition is reached, RATSAC

will perform 198 iterations. CATSAC, by testing every match, is guaranteed to perform

at least a single sweep, and must therefore evaluate a minimum of 418 synchronisation

estimates. Note that this example alone should not imply a preference for the RATSAC

method, as evidenced by the faster CATSAC times during synthetic testing as shown in

table 5.5.

The quality of the synchronisation is further illustrated by figure 5.6, which shows

cropped regions of frames side-by-side, with their vertical placement determined by syn-

chronisation estimated with RATSAC for an unknown frame rate ratio. Figure 5.7 shows

a reconstruction of the 3D ball trajectories, for matches classified by CATSAC. The re-



113

Setup Timing (seconds)

Method b Initial ψ Average time Average time (ψ = 1) Saving

RATSAC Known 0.0417 0.064 0.078 17.9%

RATSAC Unknown 0.0625 0.085 0.136 37.5%

CATSAC Known 0.0625 0.117 0.204 42.6%

CATSAC Unknown 0.0625 0.139 0.321 56.7%

Table 5.7: Initial ψ choices, average times (seconds) and percentages of time saved by
using an adaptive speedup, for the bouncing balls example

constructions were obtained by assuming that the balls’ motion for each match can be

described by a 3D bezier curve parameterised by time. Such curves can then be estimated

using linear algebra methods, and further refined to minimise reprojection error, incor-

porating information from both video sequences. Each match was manually associated

with one of the three balls, and the resulting locations have been coloured accordingly to

aid in the visualisation of the 3D motions.

5.6 Conclusions

A framework for choosing an appropriate level of speedup for robust estimations has

been introduced. A trade-off is sought between the speed and reliability of each iteration,

such that the overall execution time is reduced. The benefits of an adaptive speedup

are combined with an adaptive termination condition, and Bayesian inference is used

to select a new speedup parameter whenever a superior model estimate is found. This

approach forms the basis for two new algorithms, RATSAC and CATSAC, which can be

used for random and exhaustive sampling of data subsets respectively. The underlying

premise is general enough to be applicable to a variety of speedup mechanisms and robust

estimation problems.

Specific instances of these algorithms have been devised for the robust synchronisation

of video sequences recorded by moving cameras, employing an accelerated search for

synchrony pairs. These algorithms have been tested on both a real video sequence pair,

and a set of synthetic cases which cover a variety of temporal configurations and scene

point motions.

The synthetic tests validate the approximate models for time and probability, and

demonstrate that a random sampling of frames for the synchrony pair search can result

in a hefty speedup. Tests on the bouncing balls example verify that both algorithms are

practically applicable. Furthermore, the accuracy of match classification and low VSE

measures in all test configurations establishes the suitability of the robust cost function R
in assessing a synchronisation estimate, and distinguishing between inliers and outliers.



114

Figure 5.6: Side-by-side display of synchronised video frames, cropped to a region around
a match identified by RATSAC assuming a known frame rate ratio



115

Figure 5.7: A reconstruction of 3D ball trajectories, projected to virtual cameras, for
matches identified by CATSAC assuming an unknown frame rate ratio



116



117

Chapter 6

ESTIMATING A PROJECTIVE

TRANSFORMATION WITH MOVING SCENE

POINTS

In previous chapters, methods have been presented to synchronise a pair of inde-

pendently moving cameras. These methods have assumed that all spatial information

concerning the motion of the cameras through space is known. We now consider the case

where the spatial information is incomplete. Specifically, the sets of projection matrices

describing the motion for each camera are uncorrelated.

6.1 Problem Formulation

Consider a scene consisting of both stationary and dynamic scene points, observed by two

independently moving video cameras. It is assumed for now that the video sequences are

perfectly synchronised such that the frame t in video 1 sequence has the same time-stamp

as frame t in video sequence 2. We define

x̄h as the stationary scene point h (h ∈ [1, s]) ,

ȳh,t as the moving scene point h at time t (h ∈ [1, m]),

P̄t as the projection matrix describing camera 1 at time t,

P̄
′
t as the projection matrix describing camera 2 at time t.

Image point information is also available, defined as

q̄h,t ∼ P̄tx̄h,

q̄′
h,t ∼ P̄

′
tx̄h,

p̄h,t ∼ P̄tȳh,t,

p̄′
h,t ∼ P̄

′
tȳh,t.

Consider each set of projection matrices distorted by an arbitrary projective transforma-

tion, such that

M̄t = P̄tN,

M̄
′
t = P̄

′
tN

′,

for some pair of full rank 4× 4 matrices (N,N′). The set of 3D stationary points is also

distorted by each of the transformations, defining



118

z̄j ∼ N
−1x̄h,

z̄′
j ∼ N

′−1x̄h.

Given noisy estimates of (q̄h,t, q̄
′
h,t), structure from motion algorithms such as those used

by ICARUS [19] and Voodoo [47], provide noisy estimates of the projection matrices and

3D scene points for each video sequence. Consequently,

zj ≈ z̄j,

z′
j ≈ z̄′

j,

Mt ≈ M̄t,

M
′
t ≈ M̄

′
t

are all available, where ≈ denotes approximate equality up to scale. Note this provides

two separate sets of 3D points, {zj} and {z′
j}. The unknown projective transformation

that can join these reconstructions together is denoted

H̄ ∼ N
−1

N
′.

We denote a noisy estimate of this matrix as H. An estimate of H can be found by

using corresponding 3D scene points from the two point sets, each of which supplies the

constraint that

zj ∼ Hz′
j.

A minimum of 5 such correspondences are needed. In this chapter, we consider the case

where there are insufficient stationary point correspondences to estimate H, and derive

constraints for projections of the moving scene points that can be used as an alternative.

Sufficient stationary 3D point correspondences may be unavailable due to the fact that

only a sparse set of features has been tracked in each video, or because of constraints in

the scene as illustrated in example 6.1.

6.2 A Constraint For Moving Scene Point Correspondences

At time t, a moving scene point projects to estimated image location pt in the first camera,

and p′
t in the second camera. Since projection matrix estimates Mt and M

′
t are known,

the rays in space that form these projections can be computed. We seek a projective

transformation H that distorts one of the rays such that the pair of rays intersect in 3D

space.

This introduces the question of how to best represent a ray in 3D space. One possibility

is to parameterise a ray by some pair of 3D points that it passes through. Suppose a ray

in space passes through the points p = [p1, p2, p3, 1]� and q = [q1, q2, q3, 1]�. The matrix

R =

[
p1 p2 p3 1

q1 q2 q3 1

]
(6.1)



119

Example 6.1 (A Case of Insufficient Stationary Correspondences)

Consider two moving cameras on opposite sides of a sports field. Each camera

can view objects behind the other camera (such as spectator stands), but the

only stationary 3D points visible to both cameras lie on the playing field. Planar

correspondences are insufficient to estimate a projective transformation.

camera 2
points visible to camera 2

points visible to camera 1

camera 1

points on plane
visible to both
cameras

is a simple representation of the ray. Unfortunately, the representation is far from unique.

Note that pre-multiplying R by any full-rank 2 × 2 matrix produces a matrix which

represents the same ray in space. This ambiguity introduces unnecessary complexity

when attempting to derive a constraint for moving scene points.

An alternative representation is the Plücker ray, which, for a given ray in 3D space, is

unique up to scale. The following sections describe this representation, and its applicabil-

ity to the problem described above. A number of theorems and proofs are also provided

in appendix A. While similar theorems are doubtless available elsewhere, they have been

included for completeness, and to assist readers unfamiliar with Plücker rays.

6.2.1 Plücker Rays

A ray in 3D space passing through distinct points p and q can be represented as a 4× 4

anti-symmetric matrix given by

R = pq� − qp�,

and is defined as the Plücker matrix. This can be seen to represent a ray in space, since

the set of planes along which the ray lies is equal to the left or right null-space of the

matrix, as described in theorem A.1.

The dual of the Plücker matrix can be formed in a similar way, using planes instead

of points. If a ray is defined by the intersection of the two planes (π1, π2), then the dual



120

Plücker matrix for this ray is given by

R
∗ = π1π

�
2 − π2π

�
1 .

By theorem A.2, for a given ray in 3D space, the Plücker matrix, and the dual Plücker

matrix, are unique up to a scale.

A Plücker matrix is anti-symmetric and has the form

R =

⎡
⎢⎢⎢⎣

0 r1 r2 r3

−r1 0 r4 −r5

−r2 −r4 0 r6

−r3 r5 −r6 0

⎤
⎥⎥⎥⎦ ,

and can therefore be parameterised using only the upper triangular elements. The order-

ing of the labels for these elements is irrelevant, but has been chosen here to be row-wise,

with the fifth negated for convenience in later equations. This is the same ordering as

that used in [21]. To facilitate a conversion between matrix and vector forms, VRay is

defined as the function such that

r = [r1, r2, r3, r4, r5, r6]
� = VRay(R).

Note that VRay is a linear function, so

VRay(R + R
′) = VRay(R) + VRay(R

′)

For convenience, an operator notation is also adopted, whereby

(p � q) = VRay(pq� − qp�).

This is similar to the notation used in [21], in which the ∧ operator defines the formation

of a ray from two points. Since ∧ denotes a logical ‘and’ operator, � is used here instead.

For points p = [p1, p2, p3, p4]
� and q = [q1, q2, q3, q4]

�, (p � q) expands to

(p � q) =
» ˛̨

˛̨ p1 p2

q1 q2

˛̨
˛̨ ,

˛̨
˛̨ p1 p3

q1 q3

˛̨
˛̨ ,

˛̨
˛̨ p1 p4

q1 q4

˛̨
˛̨ ,

˛̨
˛̨ p2 p3

q2 q3

˛̨
˛̨ ,−

˛̨
˛̨ p2 p4

q2 q4

˛̨
˛̨ ,

˛̨
˛̨ p3 p4

q3 q4

˛̨
˛̨ –�

For convenience, a matrix J is introduced, defined as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.



121

Note that pre-multiplying a vector by J will reverse the order of its elements. Given

Plücker ray vector r and dual r∗, theorem A.3 specifies that

r ∼ Jr∗

Additionally, theorem A.4 specifies that two rays r and r′ intersect if and only if

r�
Jr′ = 0. (6.2)

Furthermore, by theorem A.5, a vector r represents a valid ray in space if and only if

r�
Jr = 0.

Results equivalent to theorems A.1, A.2, A.3, A.4 and A.5 can all be found in [21]. The

equivalence between between equation 6.2 and the co-planarity of four scene points, as

used in the proofs for theorems A.4 and A.5, can also be found in [21].

6.2.2 The Ray Projection Matrix

A general ray in 3D space projects to a straight line in a 2D image. Given such a ray,

and a 3× 4 projection matrix, the resulting line in the image can be computed according

to theorem A.7. A corresponding expression for projecting a ray vector is made possible

by introducing a 6× 3 ray projection matrix. Given a 3× 4 projection matrix

M =

2
4 m�

1

m�

2

m�

3

3
5,

the corresponding ray projection matrix is given by

M̂ = J[(m2 � m3), (m3 � m1), (m1 � m2)].

This definition is the transpose of that used in [21] if J is omitted. The differing definition

is used since it permits a more elegant form of later equations. The ray projection matrix

can be used to project rays in 3D space to lines in an image, or to back-project from an

image point to recover the ray of projection. According to theorem A.8, a ray vector r

projects to a line in an image given by M̂
�
Jr. Theorem A.9 specifies that the ray of 3D

points projecting to image location p is given by M̂p. Similar proofs for theorems A.7

and A.8 are given in [21].

The ray projection matrix provides an elegant way of defining the fundamental matrix

relating two cameras. Given two projection matrices M and M
′, we denote the corre-

sponding ray projection matrices as M̂ and M̂
′
, and define p and p′ as corresponding

image points. The ray projection matrix M̂
′
maps an image point p′ in the second cam-

era to the ray in space that forms this projection. The matrix M̂
�
J then projects this



122

ray to a line in the first camera that passes through p. Combining these steps, we arrive

at the equation

p�
M̂

�
JM̂

′
p′ = 0.

The matrix M̂
�
JM̂

′
maps image point p′ to its corresponding epipolar line in the first

camera, and vice versa. This matrix must therefore be equal to the fundamental matrix

relating the two cameras. An equivalent expression can be found in [15].

6.2.3 Ray Transformation

A full-rank 4× 4 projective transformation H describes a distortion applied to 3D points

in the scene. For

H =

2
664

h�

1

h�

2

h�

3

h�

4

3
775,

the corresponding ray transformation matrix is given by

Ĥ =

2
66666664

(h1 � h2)�

(h1 � h3)�

(h1 � h4)�

(h2 � h3)�

(h4 � h2)�

(h3 � h4)�

3
77777775
.

This matrix applies the same distortion to rays that H applies to 3D points, as specified

by theorem A.10.

Not every 6×6 matrix Ĥ corresponds to a projective transformation that distorts ray

vectors. Every ray r satisfies the constraint that r�Jr = 0. Similarly, the transformed

rays must also satisfy this constraint. Therefore

r�
Ĥ

�
JĤr = 0 ∀r where r�

Jr = 0.

Therefore, both Ĥ
�
JĤ and J describe the same quadratic surface in 6D space. The space

of symmetric matrices representing this surface is kJ for any non-zero scalar k. Therefore,

the matrix Ĥ must satisfy the constraint that

Ĥ
�
JĤ ∼ J.

This equation imposes 20 quadratic constraints on the elements of Ĥ. Where [Ĥ]∗,u
denotes column u of matrix Ĥ, 18 of these constraints are given by

[Ĥ]�∗,u J [Ĥ]∗,v = 0, where u ≥ v, u + v 	= 7.

The remaining two constraints are given by

[Ĥ]�∗,1 J [Ĥ]∗,6 − [Ĥ]�∗,3 J [Ĥ]∗,4 = 0,

[Ĥ]�∗,2 J [Ĥ]∗,5 − [Ĥ]�∗,3 J [Ĥ]∗,4 = 0.



123

Together with scale invariance, this means that Ĥ has 15 degrees of freedom, the same

number as a 4× 4 projective transformation.

6.2.4 The Moving Point Constraint

Recalling the original problem, we have sets of projection matrices such that Mi describes

the first camera for frame i, and M
′
j describes the second camera for frame j. We seek

a 4× 4 projective transformation H that will spatially register the two sets of projection

matrices, and equivalently their associated scene reconstructions. The equivalent ray

projection matrices are denoted M̂i and M̂
′

j for the first and second video sequences

respectively. The 6 × 6 ray transformation equivalent to H is denoted Ĥ. Assuming

frame i from the first video sequence is exactly synchronous with frame j from the second

video sequence, and a moving scene point projects to locations p and p′ respectively, then

p�
M̂

�

i JĤM̂
′

jp
′ = 0, (6.3)

where the 3 × 3 matrix M̂
�

i JĤM̂
′

j is the fundamental matrix describing the epipolar

geometry relating the projection matrices MiH and M
′
j. This constraint can theoretically

be used to estimate the matrix Ĥ, and equivalently the 4 × 4 projective transformation

H that spatially registers the two video sequences.

Estimation of the 6×6 ray transformation matrix has been examined before by Bartoli

and Sturm in [2]. The 6×6 matrix is referred to as the line motion matrix, and is estimated

using corresponding pairs of rays in two 3D reconstructions. Note that the relation for

corresponding rays is (r′ ∼ Ĥr), which specifies five linear constraints on Ĥ per pair of

rays. The relation in equation 6.3 of (r�JĤr′ = 0) only specifies one linear constraint on

Ĥ per ray pair.

The correlation of equation 6.3 with the epipolar constraint is illustrated in example

6.2, which demonstrates that estimating the fundamental matrix relating a pair of sta-

tionary cameras is exactly equivalent to estimating a subset of the elements of the ray

transformation matrix Ĥ.

6.3 Estimation of the Ray Transformation Matrix

As illustrated in the previous section, a single moving scene point provides one constraint

on the ray transformation matrix per pair of synchronous frames. The associated algebraic

error measure for a point pair (p, p′) and ray projection matrix pair (M̂, M̂′) is

HALG(Ĥ, p, p′, M̂, M̂′) = p�
M̂

�
JĤM̂

′
p′.

Using the notation from chapter 5, it is assumed that a number of moving points have

been observed by both cameras, and the resulting trajectories have been identified as a

match. Specifically, a moving point projects to image location ph,i in frame i of the first



124

Example 6.2 (Estimating Ĥ for Stationary Cameras) If we consider the

case of two stationary cameras, and for simplicity define

Mi = M
′
j =

2
4 1 0 0 0

0 1 0 0

0 0 1 0

3
5 ∀i, j,

then the corresponding ray projection matrices are

M̂
�

i = M̂
′�

j =

2
4 0 0 1 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 1

3
5 ∀i, j.

We wish to find the projective transformation that registers the two cameras. If

the ray transformation Ĥ is defined as

Ĥ =

2
66666664

ĥ1,1 ĥ1,2 ĥ1,3 ĥ1,4 ĥ1,5 ĥ1,6

ĥ2,1 ĥ2,2 ĥ2,3 ĥ2,4 ĥ2,5 ĥ2,6

ĥ3,1 ĥ3,2 ĥ3,3 ĥ3,4 ĥ3,5 ĥ3,6

ĥ4,1 ĥ4,2 ĥ4,3 ĥ4,4 ĥ4,5 ĥ4,6

ĥ5,1 ĥ5,2 ĥ5,3 ĥ5,4 ĥ5,5 ĥ5,6

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 ĥ6,5 ĥ6,6

3
77777775
,

then the constraint described in equation 6.3 becomes

0 = p�

2
4 0 0 1 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 1

3
5J

2
66666664

ĥ1,1 ĥ1,2 ĥ1,3 ĥ1,4 ĥ1,5 ĥ1,6

ĥ2,1 ĥ2,2 ĥ2,3 ĥ2,4 ĥ2,5 ĥ2,6

ĥ3,1 ĥ3,2 ĥ3,3 ĥ3,4 ĥ3,5 ĥ3,6

ĥ4,1 ĥ4,2 ĥ4,3 ĥ4,4 ĥ4,5 ĥ4,6

ĥ5,1 ĥ5,2 ĥ5,3 ĥ5,4 ĥ5,5 ĥ5,6

ĥ6,1 ĥ6,2 ĥ6,3 ĥ6,4 ĥ6,5 ĥ6,6

3
77777775

2
66666664

0 0 0

0 0 0

1 0 0

0 0 0

0 −1 0

0 0 1

3
77777775
p′

= p�

2
64

ĥ4,3 −ĥ4,5 ĥ4,6

−ĥ2,3 ĥ2,5 −ĥ2,6

ĥ1,3 −ĥ1,5 ĥ1,6

3
75p′.



125

camera, and p′
h′,j in frame j of the second camera, where h and h′ uniquely identify the

trajectory in each video sequence. A set of trajectory pairs known, or assumed, to be

correspondences is denoted MC .

Proceeding in a similar fashion to fundamental matrix or homography estimation,

as described in chapter 2, we consider finding the 6 × 6 matrix Ĥ which minimises the

sum of squares of these HALG measures. Since frame pairs are unlikely to be exactly

synchronous, given synchronisation parameters (a, b) and frame i from the first video,

the frame from the second video with integer index closest to a + bi (denoted �a + bi�) is

used. The estimate Ĥ is therefore chosen to be the matrix that minimises the expression

RALG(Ĥ, a, b) =
∑

(h,h′)∈MC

n−1∑
i=0

HALG(Ĥ, ph,i, ph′,�a+bi�,Mi,M
′
�a+bi�)

2 +

∑
(h,h′)∈MC

n′−1∑
j=0

HALG(JĤ
�
J, p′

h′,j, ph,�a′+b′j�,M
′
j,M�a′+b′j�)

2

where a′ = ab−1, b′ = b−1,

and ‖Ĥ‖
F

= 1.

(6.4)

As in the case of the synchronisation cost functions presented in chapters 3 and 5, sum-

mands corresponding to out-of-bounds frame indices or occluded image points are as-

sumed to be 0.

Note that expressing RALG as a function of the elements of the 4 × 4 projective

transformation H yields a quartic function, and is therefore not amenable to linear algebra

methods. Conversely, the cost function is quadratic in the elements of the matrix Ĥ.

The cost function described by equation 6.4 is inappropriate for reliably estimating

Ĥ. The algebraic error has no meaningful geometric interpretation, since the projection

matrices, and equivalently 3D rays, differ from truth by unknown projective distortions.

Additionally, each projection matrix is only defined up to a single scale. Without a means

to specify an appropriate scale for each projection matrix, this ambiguity equates to only

defining each squared summand up to a positive scale. Estimating Ĥ in this fashion would

typically produce a result which does not satisfy

Ĥ
�
JĤ ∼ J. (6.5)

It is also unlikely that the matrix Ĥ minimising RALG will be ‘close’ to satisfying the

relation in equation 6.5, particularly for cases where few of the summands are measur-

able, since this relation specifies a high number of independent quadratic constraints.

Furthermore, the quadratic constraints arising from equation 6.5 are not positive definite

or semi-definite, so they have no equivalent linear form. The quadratic constraints need

to be included in the estimation process, to ensure that Ĥ satisfies equation 6.5, and

therefore corresponds exactly to some 4× 4 projective transformation H.



126

If synchronisation parameters (a, b) are known (or assumed), and the elements of Ĥ

are stored in vector h, the problem can be described as

h∗ = arg min
h

h�
Ah,

where h�h = 1,

h�
Ckh = 0, ∀k ∈ 1 . . . 20.

The matrix A is the quadratic form defined by RALG(Ĥ), and each Ck is a constraint

matrix arising from the relation given in equation 6.5.

Optimisation in the presence of multiple quadratic equality constraints is a difficult

problem, since it is known to be non-convex with a disconnected solution space. A

common strategy for dealing with such problems is to treat all quadratic terms of the

unknowns as independent variables. Each of the quadratic constraints in the original

problem becomes a linear constraint in the new parameterisation. Specifically, if we

denote X = hh�, the problem becomes

X∗ = arg min
X

Tr(AX),

where Tr(X) = 1,

T r(CkX) = 0, ∀k ∈ 1 . . . 20,

X�∅, X
� = X, Rank(X) = 1,

(6.6)

where Tr(.) denotes the trace of a matrix. Without the rank constraint, this amounts

to a semi-definite programming problem, an overview of which is given by Vandenberghe

and Boyd in [56]. Such problems are solvable in polynomial time using interior-point

methods such as that of Alizadeh [1]. In practise however, the optimal solution found

by this method will not satisfy the rank constraint. Although strategies to find a rank 1

solution have been investigated [34], finding the global minimum is not guaranteed. In

particular, note that the cost associated with a rank 1 solution will typically be higher

than the optimal cost of a solution with higher rank. Also note that the number of

unknowns has increased quadratically.

Because of these difficulties, it is natural to consider both reducing the number of

unknown parameters, and using only a minimally sized set of data. The former will

reduce the number of higher-order terms to be treated as independent variables. The

latter ensures that a rank 1 matrix X exists which minimises equation 6.6.

The number of unknown parameters in Ĥ can be reduced by using stationary scene

point correspondences to constrain the solution. It is therefore assumed that a set of

scene features have been viewed by both cameras, and that their projections have been

identified and tracked independently in each video sequence. As described in section

6.1, it is assumed that the locations of these scene features are known, but uncorrelated.

Specifically, zk is a 4×1 vector describing the location of stationary scene point k recovered

using image information from the first video sequence. Similarly, z′
k describes the location



127

of stationary scene point k, recovered using the second video sequence. We seek a ray

transformation matrix Ĥ, such that the corresponding 4 × 4 projective transformation

satisfies

zk ∼ Hz′
k ∀k

Corresponding scene points are assumed to occupy a region of the scene that has little

3D variation. Estimating a 4× 4 H from these matches alone is therefore ill-conditioned

at best, and degenerate at worst. A degenerate example is when moving cameras observe

a common area of a ground plane from different directions, as depicted in example 6.1.

It is assumed that three stationary scene point correspondences exist. Upon an initial

inspection, estimating a ray transformation when three stationary matches are available

may seem redundant. It was noted in sections 2.1.1 and 2.1.2 that methods have been

developed to recover the intrinsic parameters of a camera from fundamental matrices

and homography matrices. Similarly, the intrinsic parameters of a moving camera can

be determined from a set of projection matrices, assuming certain constraints. As an

example, a method to estimate intrinsic parameters common to every projection is given

in [53]. If the intrinsic parameters associated with each frame of a video sequence are

known, the projective distortion of a scene reconstruction can be removed. Two such

scene reconstructions will differ only by rotation, translation, and as single scale. A 4× 4

projective transformation H aligning these reconstructions can be described by seven

parameters. Since each scene point correspondence (zk, z
′
k) provides three constraints

on the elements of H, it could be computed from these stationary matches alone. If a

reliable transformation can be estimated, the two sequences can be spatially registered,

and synchronisation can be robustly estimated with the algorithms given in chapter 5.

Depending on the available constraints on the intrinsic camera parameters, there exist

camera motions which do not permit a Euclidean reconstruction to be realised. A num-

ber of these motion classes, denoted Critical Motion Sequences, are described in [44]. In

such degenerate cases, estimating a ray transformation matrix with both stationary and

moving point constraints allows the two reconstructions (and equivalent cameras) to be

spatially registered. Constraints on the intrinsic parameters for both cameras can then

be used to achieve a Euclidean reconstruction, which when combined may resolve the de-

generacy. Additionally, even in non-degenerate cases where Euclidean reconstructions are

achieved, moving point constraints may provide some benefit. The constraints on intrinsic

parameters may yield reconstructions which are a poor approximation to Euclidean, even

if they are aesthetically acceptable. Accordingly, the area of space occupied by moving

objects may be poorly registered. In this case, using the synchronisation algorithms from

previous chapters could fail due to uncharacteristically high epipolar errors.

The following section derives equations for estimating a 4× 4 transformation to spa-

tially register a pair of independently moving cameras. A projective transformation is

sought using only the three stationary scene point correspondences, and moving point

constraints.



128

6.3.1 Applying The Three Stationary Scene Point Constraints

Two scene point sets are available, each of size 3, with 3D point locations {zk} and {z′
k}

observed by the first and second cameras respectively. For each k, the scene points zk

and z′
k correspond with the same scene feature. We seek a 4×4 projective transformation

H that will spatially align the two cameras, such that

Hz′
k = zk ∀k ∈ 1, 2, 3.

To conveniently parameterise any matrix 4 × 4 matrix H satisfying the stationary

scene point correspondences, we introduce two 4× 4 transformations, Q and Q
′, defined

such that

Qz1 ∼ Q
′z′

1 ∼ e1,

Qz2 ∼ Q
′z′

2 ∼ e2,

Qz3 ∼ Q
′z′

3 ∼ e3.

(6.7)

The vectors ek are standard unit vectors with 1 at element k, and 0 elsewhere. The

4 × 1 vector describing the plane defined by the three scene points {zk} is denoted πz.

Similarly, the plane defined by the three scene points {z′
k} is denoted π′

z. A simple choice

for the matrices Q and Q
′, such that the relations in 6.7 are satisfied, is

Q
−1 = [z1, z2, z3, πz] ,

Q
′−1 = [z′

1, z
′
2, z

′
3, π

′
z] .

(6.8)

The first three columns of Q
−1 and Q

′−1 are chosen to ensure that the relations given by

equation 6.7 are satisfied. The choice for the fourth columns ensure that Q
−1 and Q

′−1

are non-singular.

Recalling that we require a 4× 4 matrix H satisfying

Hz′
k = zk ∀k ∈ 1, 2, 3,

it follows that

Hz′
k = zk

HQ
′−1

Q
′z′

k = Q
−1

Qzk

QHQ
′−1

Q
′z′

k = Qzk

G(Q′z′
k) = Qzk

∀k ∈ 1 . . . 3,

where G = QHQ
′−1.

Conceptually, if H correctly aligns the reconstructions described by {zk} and {z′
k}, then

G aligns the reconstructions given by {Qzk} and {Q′z′
k}. Furthermore, due to the choice



129

of Q and Q
′, the transformation G is constrained such that

Ge1 ∼ e1,

Ge2 ∼ e2,

Ge3 ∼ e3.

The matrix G is therefore known to have the form

G =

⎡
⎢⎢⎢⎣

d1 0 0 t1

0 d2 0 t2

0 0 d3 t3

0 0 0 d4

⎤
⎥⎥⎥⎦ (6.9)

For any full-rank G of this form, the corresponding H given by H = Q
−1

GQ
′ will precisely

relate the three stationary scene point correspondences.

6.3.2 Applying The Moving Scene Point Constraints

A matrix G, of the form described in equation 6.9, is only defined up to scale. Matri-

ces G and uG describe the same projective transformation, for any non-zero scalar u.

Accordingly, 6 pairs of moving scene point correspondences in synchronous frames are

needed to define G. For a matrix G given by equation 6.9, the corresponding 6 × 6 ray

transformation matrix is denoted Ĝ, and has the form

Ĝ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1 0 g2 0 g3 0

0 g4 g5 0 0 g6

0 0 g7 0 0 0

0 0 0 g8 g9 g10

0 0 0 0 g11 0

0 0 0 0 0 g12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

For the 4 × 4 projective transformations Q and Q
′ defined by equation 6.8, the corre-

sponding ray transformations are denoted Q̂ and Q̂
′
. Given synchronous frame pair (i, j)

and matching moving point trajectories (h, h′), a pair of image correspondences provide

the constraint

p�
h,i(M̂

�

i Q̂
�
)JĜ(Q̂

′
M̂

′

j)p
′
h′,j = 0.

Note that this constraint is linear in the 12 unknown elements of Ĝ. Six constraints

of this form from matching image points in synchronous frames are required. These

six constraints alone will not uniquely determine Ĝ. The remaining constraints are five

quadratic equations arising from the relation

Ĝ
�
JĜ ∼ J.



130

Additionally, three more quadratic constraints can be found by combining pairs of the

existing five, or by considering the equivalent relation

ĜJĜ
� ∼ J.

Although the extra three quadratic constraints are redundant, none are a linear combi-

nation of the previous five, and hence will prove useful later. The quadratic constraints

are
g1g12 − g7g8 = 0, g4g11 − g7g8 = 0,

g1g6 + g3g4 = 0, g1g10 + g2g8 = 0,

g4g9 + g5g8 = 0, g5g11 + g7g9 = 0,

g2g12 + g7g10 = 0, g3g12 + g6g11 = 0.

(6.10)

If the unknown elements of Ĝ are placed in vector g, and denoting 0 as the zero vector,

the problem equates to finding g such that

Ag = 0, g�
Cκg = 0, ∀κ ∈ 1 . . . 8. (6.11)

Each row of the 6× 12 matrix A specifies a linear constraint on g derived from a moving

point correspondence in a synchronous frame pair. Each 12×12 matrix Cκ is a quadratic

form equivalent to one of the quadratic constraints given in equation 6.10.

The constraints on vector g described by matrix A can be applied using linear algebra

methods. The linear space of solutions satisfying Ag = 0 can be found using a singu-

lar value decomposition of the matrix A. Assuming non-degeneracies, this restricts the

solution to

g = NAx, (6.12)

for a 12 × 6 matrix NA, the orthogonal columns of which span the right null-space of

matrix A. For any non-zero 6× 1 vector x, the corresponding vector g given by equation

6.12 will satisfy the linear relation Ag = 0. This reduces the problem described by

equation 6.11 to finding x such that

x�
Ĉκx = 0, ∀κ ∈ 1 . . . 8.

where Ĉκ = N
�
ACκNA.

(6.13)

As mentioned previously, solving simultaneous multivariate quadratics is a difficult

problem. To find a solution, the relinearisation method of Kipnis and Shamir [29] is

used. Relinearisation, proposed as a method for defeating quadratic based cryptosys-

tems, applies constraints to multiple higher order terms to find a solution. The specific

application of relinearisation to this problem is described below.

Initially, the matrix Y = xx� is considered. Treating the elements as independent

variables yields a problem of finding the 6× 6 matrix Y such that

Tr(YĈκ) = 0, ∀κ ∈ 1 . . . 8,

Rank(Y) = 1, Y
� = Y.

(6.14)



131

Note that a positive semi-definite constraint is unnecessary here. A symmetric matrix

with rank 1 is either positive or negative semi-definite, and a negative semi-definite rank

1 matrix still provides a solution since

Tr(YĈκ) = 0 ⇔ Tr(−YĈκ) = 0.

Additionally, note that given a rank 1 matrix Y satisfying equation 6.14, any non-zero

row or column of Y specifies a vector x satisfying equation 6.13. Since Y is symmetric,

it can be defined by its upper or lower triangular elements only. These elements can be

stored row-wise in a 21 × 1 vector y. Such conversions between symmetric matrix and

vector representations are used repeatedly during relinearisation.

To facilitate conversions between vector and matrix representations, we define index

mapping functions IR and IC. Given element j in the vector representation, the corre-

sponding (row,column) indices in the upper triangular part of a symmetric matrix is given

by (IR(j), IC(j)). Although the size of the symmetric matrix is technically required to

perform such a mapping, this can be determined by context, and is therefore not included

as an input to the functions. Similarly, the function IV maps a (row,column) index pair

from the symmetric matrix to its corresponding index in the vector representation.

Given these index mapping functions, each linear constraint Tr(YĈκ) = 0 corresponds

to a linear constraint on the vector y, given by

c�
κ y = 0, ∀κ ∈ 1 . . . 8,

where [cκ]ξ =

{
[Ĉκ]IR(ξ),IC(ξ) : IR(ξ) = IC(ξ)

[Ĉκ]IR(ξ),IC(ξ) + [Ĉκ]IC(ξ),IR(ξ) : IR(ξ) < IC(ξ)

From the eight linear constraints on y, we can produce a linear system

By = 0,

for an 8 × 21 matrix B, with row κ given by c�
κ . Note these linear constraints will not

produce a unique solution up to scale, since we require Y to have a rank of 1. The rank

constraint on Y can be expressed as a set of quadratic constraints. For a symmetric rank

1 matrix, the determinant of every 2× 2 sub-matrix obtained by selecting a pair of rows

and pair of columns equates to 0. For every (1 ≤ s ≤ t ≤ u ≤ v ≤ 6),

[Y]s,t[Y]u,v = [Y]s,v[Y]t,u,

[Y]s,t[Y]u,v = [Y]s,u[Y]t,v.

Considering all such quadruples of indices (s, t, u, v) produces 252 quadratic constraints,

each represented by a quadratic form Dκ, although some are redundant due to repeated

indices. Indeed, some of these quadratic forms will be the zero matrix. We therefore seek

a vector y such that

By = 0, y�
Dκy = 0, ∀κ ∈ 1 . . . 252. (6.15)



132

Note the similarity to the original problem of finding g satisfying equation 6.11. Each

element of a vector y satisfying the relations in equation 6.15 will equate to a quadratic

function of the elements of vector g. Proceeding in the same fashion as with the original

problem of identifying g, the right null-space of matrix B is computed using singular

value decomposition. The orthogonal vectors spanning this null-space define the columns

of matrix NB. This provides the relation

y = NBz,

Given the known 21× 13 matrix NB, this equation yields a vector y satisfying By = 0,

for any non-zero 13× 1 vector z. We therefore seek z such that

z�
D̂κz = 0, ∀κ ∈ 1 . . . 252.

where D̂κ = N
�
BDκNB.

Note that the problem of finding z satisfying these quadratics has a similar form to the

earlier problem of finding x satisfying equation 6.13. The difference is that both the size

of the unknown vector, and the size of the set of constraints, are larger.

The final step of relinearisation is to consider all quadratic terms of z as independent

variables. Defining the matrix V = zz�, the problem becomes one of finding V such that

Tr(VD̂κ) = 0, ∀κ ∈ 1 . . . 252,

where Rank(V) = 1, V
� = V.

Once again, a vector representation is considered, where the 91× 1 vector v contains

the upper triangular elements of the 13× 13 matrix V. Each of the constraints on V has

a corresponding vector constraint given by

d�
κ v = 0, ∀κ ∈ 1 . . . 252,

where [dκ]ξ =

{
[D̂κ]IR(ξ),IC(ξ) : IR(ξ) = IC(ξ)

[D̂κ]IR(ξ),IC(ξ) + [D̂κ]IC(ξ),IR(ξ) : IR(ξ) < IC(ξ)

The key to success in relinearisation is the increase in the number of constraints relative

to the size of the unknown vector. Under favourable circumstances, the set of linear

constraints on v is large enough to yield a solution without the consideration of the rank

constraint. Matrix Θ is defined as the 252 × 91 matrix with row κ given by d�
κ . We

therefore seek a vector v such that

Θv = 0. (6.16)

Although the number of constraints is greater than the size of v, the solution is under-

determined. Matrix Θ has been determined by random test cases to have a rank of

78. In [29], it is proposed to handle such a situation by also considering the quadratic

constraints on V derived from the fact that V is a rank 1 symmetric matrix. This requires

the formulation of even larger linear systems, and, for this particular problem, yields no



133

benefit. This may be related to the fact that the quadratic constraints in the original

problem given by equation 6.11 equate to 0, and that the solution g is only defined up to

scale. In fact, it should be noted that the above description of relinearisation is specific to

this case, and that extra considerations are required for a problem with non-zero constant

terms.

Although the process of relinearisation, as described in [29], has failed to solve the

original problem given in equation 6.11, the development of a new step in the process

provides a means for computing vector v. The means for determining vector v is now

described, specific to this problem. The right null-space of matrix Θ is spanned by

the orthogonal columns of the 91× 13 matrix N. The matrix N can be determined by a

singular value decomposition of Θ. A vector v satisfies the linear system given in equation

6.16, for v given by

v = Nw,

for any non-zero 13× 1 vector w. Note however, that the corresponding matrix V is not

necessarily rank 1. The inclusion of the rank constraint on V is made possible by the

fact that vector w is the same size as any row or column of matrix V. A single column

of the unknown matrix V can be expressed in terms of the vector w. For column u, the

relation is
[V]∗,u = Nuw,

where [Nu]ξ,∗ = [N]IV(ξ,u),∗,
(6.17)

where operators [M]∗,u and [M]v,∗ denote column u and row v of a matrix M. Equation

6.17 specifies that each column of V can be found by pre-multiplying w by a 13 × 13

matrix comprised of a subset of the rows of N. Furthermore, since we require V to be

rank 1, any two of these columns must be equal up to scale. Choosing a pair of such

columns, say (u, v),

Nuw ∼ Nvw.

In general, these matrices will be non-singular, so

N
−1
v Nuw ∼ w.

This tells us that the solution for w that defines a corresponding rank-1 matrix V is an

eigenvector of N
−1
v Nu, associated with a real eigenvalue. If this matrix has separate real

eigenvalues, the space of possible solutions (up to scale) is reduced to a finite set of odd

numbered size between 1 and 13. The set of solutions is known to be of odd size since

complex eigenvalues are only present as conjugate pairs for a matrix with real-valued

elements. Random testing has demonstrated that, in general, the set of eigenvectors

associated with real eigenvalues is the same up to scale, regardless of the choice of (u, v),

and that each such solution yields a rank-1 matrix V. It should be noted however, that

this may not occur for cases where the original problem of finding g is degenerate.



134

The presence of multiple solutions is to be expected since we are seeking the intersec-

tion of a linear space (the moving point constraints) with curved surfaces (the quadratic

constraints). A similar multiplicity can occur when computing a fundamental matrix

from a minimum of seven image point correspondences.

Each w solution can be used to find the corresponding solution g to the original

problem. Given w, v and hence V are known. The vector z is then given (up to scale)

by any row or column of V. Similarly, z defines y and Y, from which any row or column

defines x. Finally, g can be recovered from x by the linear relation given in equation

6.12.

To summarise, candidate solutions for the unknown elements of Ĝ can be computed

using 6 moving point correspondences, and by considering linear constraints on a reduced

set of quadratic and quartic functions of the elements of Ĝ, followed by an eigenvalue

decomposition of a 13× 13 matrix.

The increase in problem size during relinearisation should clarify why stationary point

matches are used to constrain the solution. If we consider the case where no stationary

point matches are used, 15 moving point correspondences are required to estimate a

projective transformation. An equivalent relinearisation process to the one described

above yields vectors x and y of sizes 21×1 and 231×1 respectively. Even assuming that

the constraints from relations

Ĥ
�
JĤ ∼ J, ĤJĤ

� ∼ J

form independent linear constraints on y, this still yields a vector z of size 191× 1. The

resulting size of vector v is 18336× 1. Computing the null-space of constraints on such a

large vector may be acceptable if it is only required once. However, even if relinearisation

can be used to determine a solution, the computational cost will simply be too high when

such estimations are an atomic component of an iterative robust algorithm.

6.3.3 Recovering The Projective Transformation G

Section 6.3.2 describes a means to compute the 6 × 6 ray transformation Ĝ using a set

of stationary and moving scene point correspondences associated with a pair of cameras.

Given Ĝ, the corresponding 4×4 projective transformation G can be determined in closed

form. Recalling that the form of G is

G =

⎡
⎢⎢⎢⎣

d1 0 0 t1

0 d2 0 t2

0 0 d3 t3

0 0 0 d4

⎤
⎥⎥⎥⎦ ,



135

and that every element of a ray transformation matrix can be expressed as a particular

quadratic equation of the elements in a 4× 4 transformation, it follows that

(d1d2, d1d3, d1d4, d2d3, d2d4, d3d4) = ±(g1, g4, g7, g8, g11, g12).

Note the ambiguity of sign is necessary since g is only defined up to scale, and the left

hand side consists of quadratic terms. Considering triplets of these vector elements leads

to multiple formulas for each d2
i , given by

d2
1(g8, g11, g12) = s(g1g4, g1g7, g4g7),

d2
2(g4, g7, g12) = s(g1g8, g1g11, g8g11),

d2
3(g1, g7, g11) = s(g4g8, g4g12, g8g12),

d2
4(g1, g4, g8) = s(g7g11, g7g12, g11g12),

where s = ±1.

The common ambiguity of sign, represented by s, can be resolved by noting that we

require each d2
i to be non-negative. Furthermore, we need not be concerned about 0

elements since a full rank G strictly requires that all of the above terms are non-zero.

Now given any d2
i term, we can solve for the diagonal of G by choosing any of

(d1, d2, d3, d4) = ±1√
d2
1

(sd2
1, g1, g4, g7),

(d1, d2, d3, d4) = ±1√
d2
2

(g1, sd
2
2, g8, g11),

(d1, d2, d3, d4) = ±1√
d2
3

(g4, g8, sd
2
3, g12),

(d1, d2, d3, d4) = ±1√
d2
4

(g7, g11, g12, sd
2
4).

The choice of sign in any of the above equations is arbitrary, since G and −G will generate

the same corresponding 6×6 matrix Ĝ. Given (d1, d2, d3, d4) and s, the remaining elements

can be computed using the relations

t1(d2,−d3) = s(g3, g6),

t2(d1,−d3) = s(g2, g10),

t3(d1,−d2) = s(g5, g9).

6.3.4 A Degenerate Camera Pair Motion

Not all pairs of independent camera motions are appropriate for using moving point

correspondences to achieve a spatial registration. In particular, consider the case where

the baselines connecting the optical centres of synchronous frame pairs have a common

point of intersection. Simple cases where this occurs can be two cameras with parallel

linear motions on opposite sides of a scene, as illustrated in figure 6.1.

Such camera motions do not permit a unique solution for registering the reconstruc-

tions. Consider the corresponding scene point triplets {Qzk}, {Q′z′
k} associated with the



136

(at infinity)

synchronous
Baselines of

frame pairs

synchronous
Baselines of

frame pairs

Common

Optical centres of first camera

Optical centres of second camera

intersection

Optical centres of Optical centres of
first camera second camera

intersection
Common

Figure 6.1: Two top-down views of degenerate camera pair motions for spatial registration
using moving point correspondences



137

first and second camera respectively, with Q and Q
′ as defined in section 6.3.1. By the

definition of Q and Q
′, these triplets have corresponding locations on the plane at infinity.

A matrix G is sought such that projection matrices sets {MiQ
−1} and {M′

jQ
′−1

G
−1} are

correctly aligned. The common point of baseline intersection for these aligned cameras

is denoted q. If G satisfies the set of moving point correspondence constraints, then so

does DG, where

D =

⎡
⎢⎢⎢⎣

1 0 0 kq1

0 1 0 kq2

0 0 1 kq3

0 0 0 1 + kq4

⎤
⎥⎥⎥⎦ ,

where q = [q1, q2, q3, q4]
�, for any kq4 	= −1.

The degeneracy arises from the fact that

Dx = x + [x]4kq.

Accordingly, transforming a 3D point vector by pre-multiplying by D will simply shift

it towards or away from point q. Since q denotes the intersection of baselines for all

synchronous frame pairs, it also lies on all epipolar planes associated with moving point

correspondences. The transformation D will therefore preserve the set of epipolar planes,

such that the constraints derived from moving point correspondences are still satisfied.

Furthermore, D preserves the locations of all points at the plane at infinity, so the sta-

tionary point correspondences also remain satisfied.

6.4 Robustly Estimating a Projective Transformation

Temporal and spatial registration requires a different approach here to that used in pre-

vious chapters. Since the synchronisation parameters are no longer the only unknown

variables, the histogram methods described in chapter 4 are no longer appropriate. In-

stead, a search across synchronisation parameter space is required, as used in most existing

synchronisation algorithms (see section 2.2 for details). It is assumed for the remainder

of this chapter that the pair of video sequences have known frame rates. Spatial and

temporal registration therefore requires the estimation of the 4 × 4 transformation G,

and a frame offset a. An extension to the unknown frame rate case is trivial, but incurs

an order of magnitude increase in time. It is also assumed that correct stationary scene

point correspondences are provided as input, allowing the estimation of Q and Q
′ as

described in section 6.3.1. Such correspondences could readily be determined in the case

of a ground plane using robust homography estimation. Should only a tentative set of

stationary scene point correspondences be available, the robust estimation could easily

be extended to also classify these correspondences as inliers and outliers. As with chap-

ter 5, all possible pairs of trajectories (h, h′) associated with moving scene features are



138

considered as candidate matches. The set of such pairs is denoted M . The description

of the robust estimation is restricted to cases where the frame rate ratio b ≥ 1. The case

of b < 1 is redundant, since an equivalent problem with b ≥ 1 can be defined simply by

alternating which of the video sequences is considered the first, and which is considered

the second, as shown in section 1.1.

6.4.1 A Robust Algorithm Template

The proposed algorithm consists of searching uniformly across a discrete set of frame

offset values. For each frame offset value a, a robust estimation of the 4 × 4 projective

transformation G is performed. This is achieved by repeatedly choosing a small number

c of trajectory pairs (h, h′) at random from the set M . The selected random subset of

trajectory pairs is denoted MC . Moving point correspondences for trajectory pairs (h, h′)

in synchronous frames are selected to compute G, by use of the relinearisation method

described in section 6.3.2. Note the relinearisation process can yield multiple solutions

for G on each iteration. Each such solution must be assessed independently.

In chapter 5, only one trajectory correspondence was used to estimate the synchronisa-

tion parameters on each iteration. Estimating both the frame offset a, and the projective

transformation G, however, may require choosing c > 1. This then warrants additional

consideration, since not all random subsets MC are appropriate. A particular value of

the frame offset a may not admit any synchronous frame pairs for a given trajectory

correspondence, as illustrated in figure 6.2.

Since all pairs of trajectories (h, h′) are included in the set of matches M , a randomly

chosen subset MC may contain trajectory correspondences which are mutually exclusive.

As described in chapter 5, two trajectories in the same video sequence, both visible for

at least one frame in common, must correspond to distinct moving scene features. These

two trajectories should therefore not both correspond to the same trajectory from the

other video sequence. If a randomly chosen subset MC contains such mutually exclusive

matches, it can be assumed to contain at least one outlier, and is therefore inappropriate

for estimating G. Such a subset MC should then be discarded.

The formula in [40] to compute a number of iterations for robust estimation is at best

an approximation, and only suitable for a large set of candidate matches. Since matches

in this chapter denote pairs of entire trajectories, the set may be too small for such an

approximation to be appropriate. This was not an issue in chapter 5 as only a single

trajectory correspondence (h, h′) was used to estimate synchronisation on each iteration.

As described in [10], the probability of randomly selecting c distinct correct matches

from a set of size nx, of which number μ are inliers is given by

(nx − c)!μ!

nx!(μ− c)!
.

Given an estimate of the frame offset a, a trajectory correspondence (h, h′) should only

be included in the data subset MC if the frame offset a indicates that these trajectories



139

k

f ′

n− 1

n′ − 1

imin

f

jmax

jmin

imax

a

kb

Figure 6.2: A trajectory pair visible in frames imin . . . imax in video 1, and jmin . . . jmax in
video 2, which can not be a match according to frame offset a

are visible for ranges of frames which overlap in time. Trajectory correspondences like

that shown in figure 6.2 should not be selected. Trajectory correspondences are selected

randomly from the set which have overlapping visibilities according to offset estimate a.

This set is denoted MV , and has size denoted Nv(a). Assuming all inliers are contained

in the set MV , the probability of randomly selecting c inliers is

Gv(a, μ) =
(Nv(a)− c)!μ!

Nv(a)!(μ− c)!
.

Similarly to chapter 5, the termination condition for the robust algorithm is based

on a chosen probability of failure pf . For each frame offset a, we require at least one

iteration to choose a subset MC consisting only of inliers with probability (1− pf ). The

number of iterations required to achieve this probability, for a particular frame offset a

and assuming μ inliers is

I(a, μ) =

{
0 : μ > Nv(a)

max(�ln(pf ) ln(1− Gv(a, μ))−1�, 1) : otherwise
.

The possibility of 0 iterations arises since, if it assumed μ trajectory correspondences are

inliers, a value for a such that SIZE(MV ) < μ is known to be incorrect. The max(.)

operator is necessary since if Nv(a) = μ, the ratio of logarithms equates to 0.

On each iteration, an estimate of G and a is used to classify every trajectory corre-

spondence as either an inlier or an outlier. If the number of classified inliers is greater

than that on all previous iterations, the assumed number of inliers μ is revised. This



140

provides an adaptive termination condition, similar to that described in chapter 5. This

requires an extra consideration as to how to iterate over frame offset values. The set of

frame offset values are constrained to lie between amin and amax, such that every value in

this range satisfies the minimum frame range size constraints rmin and r′min, as defined in

section 3.3. A breadth-first strategy is proposed. The algorithm iterates over candidate

values of a, performing one iteration of the robust estimation for each frame offset a that

has not yet been tested I(a, μ) times. This process is then repeated until the required

number of iterations I(a, μ) is achieved for each frame offset value. This breadth-first

approach is attractive since it should reduce the required execution time. If each frame

offset value was considered strictly in turn, a higher number of iterations would be re-

quired for those values distant from truth. Such values would typically not classify a high

number of inliers, and the assumed number of inliers μ would therefore remain low until

a frame offset close to truth was considered.

6.4.2 Estimation and Evaluation with the Data Subset MC

The data subset MC contains a total of c trajectory correspondences. These were chosen

based on a hypothesised estimate of the frame offset a. This section describes the process

by which G is estimated, and how the resulting parameters a and G are both refined by

a Levenberg-Marquardt minimisation.

From the data subset MC , a total of six image point correspondences from syn-

chronous frames are needed. The proposed method selects pairs of synchronous frames

uniformly, but with a random offset in time. Specifically, for each trajectory pair (h, h′) ∈
MC , a defines a range of frames in the first video (imin, imax), for which image points ph,i

and p′h′,	a+bi� are both visible. The operator �k� denotes the ‘closest’ integer to real value

k. If q correspondences are required from a trajectory pair (h, h′), then frames from the

first video are chosen to be q−1(imax − imin + 1) frames apart. This uniform sampling is

randomly offset between the first being equal to imin, and the last being equal to imax.

For each such frame i, the image point pair ph,i and p′h′,	a+bi� denote a correspondence to

be used as a moving point constraint.

Assuming smooth camera motions, the uniform sampling of frame indices ensures the

moving point constraints from any trajectory pair (h, h′) are well distributed in time.

This increases the probability that these constraints are independent, typically yielding

a better estimate of G. The random offset in the frame sampling is used to avoid any

two iterations of the robust estimation with the same set MC being deterministic. If a

selected set of moving point constraints is degenerate for the purposes of estimating G, a

subsequent iteration choosing moving point constraints from the same subset MC is then

less likely to be degenerate. Each moving point constraint is chosen by selecting a frame

from the first video sequence, and computing the closest to synchronous integer frame

index from the second video sequence. This is preferable to the reciprocal case of selecting

an integer frame index from the second video sequence, and rounding a real-valued frame



141

index from the first video sequence to the nearest integer. The preference is due to the

fact that b ≥ 1 specifies the second camera has a higher frame rate. Rounding to the

nearest integer frame index typically corresponds to a smaller shift in time for the second

camera.

The selected moving point correspondences are used to estimate the 4 × 4 transfor-

mation G to achieve a hypothesised spatial alignment. For convenience of notation, the

corresponding 6×6 ray transformation is given by the function RT (G). The fundamental

matrix relating a frame from the first video sequence with another from the second video

sequence can be expressed in terms of the ray transformation G, and the ray projection

matrix for each of the two frames. Specifically, for frames i and j from the first and

second video sequences respectively, the associated fundamental matrix is

F(G, i, j) = (M̂
�

i Q̂
�
)JRT (G)(Q̂

′
M̂

′

j),

where Q̂ and Q̂
′
are the ray transformation matrices corresponding to Q and Q

′ respec-

tively. Note that since the fundamental matrices relating frame pairs are defined, the

interpolated epipolar error function EORTH−LI, developed in chapter 3, can be used to

assess the quality of G and a. Using the notation from section 3.1, EORTH−LI
� denotes the

equivalent function, but equates an unmeasurable interpolated epipolar error to 0.

On each iteration of the robust estimation, the relinearisation process produces a

number of candidate estimates of G. Each estimate of G is refined, along with the frame

offset, by using Levenberg-Marquardt to minimise a cost function measuring the average

of squared EORTH−LI
� distances for all trajectory pairs (h, h′) in the randomly chosen

subset MC . As mentioned in section 5.3.3, epipolar errors in consecutive frames are

likely to be of the same order of magnitude for a given trajectory correspondence (h, h′).

Only a subset of such error measures are typically needed to refine a synchronisation

estimate.

The frame offset a defines a range of integer frame indices in each video sequence

for which trajectory pair (h, h′) is visible, and epipolar errors EORTH−LI are measurable.

The sizes of these frame ranges are denoted wh and w′
h′ for the first and second video

sequences respectively. For each match (h, h′) in MC , sets of frames Vh,h′ and V ′
h,h′ are

constructed, containing frame indices uniformly sampled from these ranges for the first

and second video sequence respectively. As with section 5.3.3, the sizes of these sets is

chosen as

SIZE(Vh,h′) = max(min(5, wh,h′), 1
20wh,h′),

SIZE(V ′
h,h′) = max(min(5, w′

h,h′), 1
20w

′
h,h′).

Unless there is very little overlapping visibility, these frame sets are large enough

to permit a refinement of both G and a. For a given frame offset a, the number of

measurable EORTH−LI measures for frames in sets Vh,h′ and V ′
h,h′ is denoted WG(a, h, h′).

The average squared EORTH−LI measure for trajectory correspondence (h, h′), using the



142

coarse sampling of frames in Vh,h′ and V ′
h,h′ , is given by

SG(a, h, h′,G) = 1
WG(a,h,h′)

∑
i∈Vh,h′

EORTH−LI
�(ph,i, p′

h′,�a+bi�,F(G, i, �a + bi�),
p′

h′,�a+bi�+1,F(G, i, �a + bi�+ 1),

a + bi− �a + bi�)2 +

1
WG(a,h,h′)

∑
j∈V ′

h,h′

EORTH−LI
�(p′

h′,j,ph,�a′+b′j�,F(G, �a′ + b′j�, j)�,

ph,�a′+b′j�+1,F(G, �a′ + b′j�+ 1, j)�,

a′ + b′j − �a′ + b′j�)2,

where a′ = −ab−1, b′ = b−1.

(6.18)

The sum of squared EORTH−LI measures for a particular trajectory correspondence (h, h′),

frame offset a, and frame sets Vh,h′ and V ′
h,h′ is given by

SG−SUM(a, h, h′,G) = SG(a, h, h′,G)WG(a, h, h′).

An initial estimate of projective transformation G and frame offset a is refined by minimis-

ing the average squared EORTH−LI measure for all trajectories in the randomly chosen set

MC , using the coarse sampling of frames contained in sets Vh,h′ and V ′
h,h′ . The function

to be minimised is

SG−TOTAL(a,G) =

∑
(h,h′)∈MC

SG−SUM(a,G, h, h′)∑
(h,h′)∈MC

WG(a, h, h′)
(6.19)

After the minimisation, the refined estimate of (a,G) is first assessed by computing an

average squared EORTH−LI measure across all frames, for each trajectory correspondence

(h, h′) ∈ MC . For frame offset a, the number of measurable EORTH−LI distances for

trajectory pair (h, h′) is denoted WG(a, h, h′). The average squared EORTH−LI measure for

(h, h′) is given by

SG(a,G, h, h′) = 1
WG(a,h,h′)

n−1∑
i=0

EORTH−LI
�(ph,i, p′

h′,�a+bi�,F(G, i, �a + bi�),
p′

h′,�a+bi�+1,F(G, i, �a + bi�+ 1),

a + bi− �a + bi�)2 +

1
WG(a,h,h′)

n′−1∑
j=0

EORTH−LI
�(p′

h′,j,ph,�a′+b′j�,F(G, �a′ + b′j�, j)�,

ph,�a′+b′j�+1,F(G, �a′ + b′j�+ 1, j)�,

a′ + b′j − �a′ + b′j�)2,

where a′ = −ab−1, b′ = b−1.

If the subset MC consists only of inliers, it is reasonable to assume that, for an approxi-

mately correct estimate of a and G, each trajectory pair (h, h′) in MC should be classified



143

as an inlier. As with chapter 5, for (h, h′) to be classified as an inlier, it is necessary (but

not sufficient) for SG(a, h, h′,G) to satisfy a threshold test. Analogously to chapter 5, the

threshold test is defined as

CG−T(a,G, h, h′) =

{
1 : SG(a,G, h, h′) ≤ 3.84σ2

0 : otherwise
,

for a pre-chosen standard deviation σ. The refined estimate of (a,G) is discarded if

CG−T(a,G, h, h′) = 0 for any trajectory pair (h, h′) in the data subset MC .

Trajectory correspondences in the set M can be classified as inliers or outliers by

means of a threshold test, and choosing the inliers such that none are mutually exclusive.

A pair of matches (h, h′) and (g, g′) can only be mutually exclusive if they are both visible

in at least one frame in either sequence. The number of frames in which both are visible

is given by

L(h, h′, g, g′) =
n−1∑
i=0

vh,ivg,i +
n′−1∑
j=0

v′
h′,jv

′
g′,j.

Note this is identical to the definition of L used in chapter 5. A trajectory pair (g, g′)

precludes (h, h′) from being an inlier if the function DG(a,G, h, h′, g, g′) equates to 0, for

DG given by

DG(a,G, h, h′, g, g′) =

⎧⎪⎨
⎪⎩

0 : ((h = g)∨ (h′ = g′)) ∧ (CG(a,G, g, g′) = 1)∧
(SG(a,G, h, h′) ≥ SG(a,G, g, g′)) ∧ (L(h, h′, g, g′) ≥ 0)

1 : otherwise

,

where ∨ and ∧ denote the logical operators ‘exclusive or’ and ’and’ respectively. The

classification function CG(a,G, h, h′) returns 1 if (h, h′) is considered an inlier according

to the estimates of (a,G), and 0 otherwise. The classification function is defined as

CG(a,G, h, h′) = CG−T(a,G, h, h′)
∏

(g,g)∈M

DG(a,G, h, h′, g, g′),

Note that, as discussed in chapter 5, the classification of a trajectory correspondence may

be dependent on the classification of other correspondences with lower associated error

measures. Correspondences must be classified in ascending order of SG.

On the basis of the classification function CG, the set of matches M can be partitioned

into inlier and outlier sets given by functions

MGI(a,G) = {(h, h′) ∈M | CG(a,G, h, h′) = 1} ,

MGO(a,G) = {(h, h′) ∈M | CG(a,G, h, h′) = 0} .

The number of elements in the inlier and outlier sets are given byNGI(a,G) andNGO(a,G)

respectively. The robust cost measure used to assess the refined estimate of (a,G) is given



144

by

RG(a,G) = NGI(a,G)

∑
(h,h′)∈MGI(a,G) SG−SUM(a,G, h, h′)∑

(h,h′)∈MGI(a,G)WG(a,G, h, h′)
+ 3.84σ2NGO(a,G),

where SG−SUM(a,G, h, h′) = SG(a,G, h, h′)WG(a,G, h, h′).

(6.20)

Note this is the equivalent function to R used in chapter 5 and therefore has the same

properties. Given two estimates of (a,G) with the same number of associated classified

inliers, preference is given to the one with the lowest average interpolated epipolar error.

The majority of iterations during the robust estimation will yield poor estimates of

(a,G). To reduce the expense of a full evaluation for poor estimates, a coarse sampling of

epipolar errors is measured for every trajectory pair (h, h′) in the total set of matches M .

This is achieved by defining coarse frame sets Vh,h′ and V ′
h,h′ for every (h, h′) ∈ M , and

measuring their associated coarse errors SG, as defined in equation 6.18. On the basis of

these error measures, trajectory correspondences can be classified as inliers or outliers,

using the function

CG(a,G, h, h′) = CG−T(a,G, h, h′)
∏

(g,g)∈M

DG(a,G, h, h′, g, g′),

where the function CG−T determines if a trajectory correspondence (h, h′) has an average

interpolated epipolar error satisfying a threshold test, for frames in the sets Vh,h′ and

V ′
h,h′ . This function is defined as

CG−T(a,G, h, h′) =

{
1 : SG(a,G, h, h′) ≤ 3.84σ2

0 : otherwise

Similarly, DG(a,G, h, h′, g, g′) determines if the trajectory correspondence (g, g′) precludes

(h, h′) from being classified as an inlier, based on their associated errors SG computed

using the coarse frame sets. The function DG is given by

DG(a,G, h, h′, g, g′) =

⎧⎪⎨
⎪⎩

0 : ((h = g)∨ (h′ = g′)) ∧ (CG(a,G, g, g′) = 1)∧(
SG(a,G, h, h′) ≥ SG(a,G, g, g′)

)
∧ (L(h, h′, g, g′) ≥ 0)

1 : otherwise

Using the coarse classifying function CG, inlier and outlier sets are given by

MGI(a,G) =
{
(h, h′) ∈M | CG(a,G, h, h′) = 1

}
,

MGO(a,G) =
{
(h, h′) ∈M | CG(a,G, h, h′) = 0

}
,

with the sizes of the sets given by NGI(a,G) and NGO(a,G) respectively. An approxima-

tion to the robust cost function RG as defined in equation 6.20, is therefore

RG(a,G) = NGI(a,G)

∑
(h,h′)∈MGI(a,G) SG−SUM(a,G, h, h′)∑

(h,h′)∈MGI(a,G)WG(a,G, h, h′)
+ 3.84σ2NGO(a,G),

where SG−SUM(a,G, h, h′) = SG(a,G, h, h′)WG(a,G, h, h′).



145

An estimate of (a,G) is first assessed by computing RG. A full evaluation of (a,G),

achieved by computing RG, only proceeds if RG(a,G) yields a smaller value than the

minimum of the robust costs RG for all previous iterations.

The robust estimation of G and a is summarised in algorithm 6.1. Once the robust

estimation is completed for all frame offset values a, the best solution found is refined

using a direct minimisation of the robust cost function RG with Levenberg-Marquardt.

6.5 Real Video Sequence Pair Tests

A robust estimation of both a and G was tested using the bouncing balls video sequences

described in chapter 5. Although the video sequences view a common area of the scene

with considerable 3D variation, this makes it a useful test case as a variety of stationary

scene point correspondences can be used to assess the resulting estimate of the spatial

alignment G.

Finding well-dispersed accurate stationary matches on the ground plane is difficult for

this video sequence pair, due to occlusions and camera motions which cause many areas

of the ground plane to only be visible for a limited number of frames. Consequently,

the reconstructed 3D scene point locations may be of low accuracy. For this reason,

two separate triplets of stationary matches are considered. The first, denoted in the

forthcoming results as GP, consists of three scene point correspondences on the ground

plane, although the area they cover is small compared to the region of the scene observable

to both cameras. The second case, denoted WP, consists of three stationary scene point

correspondences more widely dispersed over the scene, two of which are highly elevated

and visible across a wider range of frames in both video sequences.

For each triplet of stationary point correspondences, algorithm 6.1 was tested 100

times, with each test being followed by a minimisation of the robust cost function RG

using Levenberg-Marquardt. A refinement of a, G, and the match classification can occur

during the minimisation. The first and second video sequences have 305 and 298 frames

respectively. Minimum frame range sizes rmin and r′min were both set to 275, which

defines a range of frame offset values bounded by amin = −29 and amax = 23. This choice

for rmin and r′min reflects a prior assumption that the cameras started recording within

approximately one second. This may seem restrictive, but it is helpful for multiple tests

due to the computational cost of the relinearisation step.

The ball detection and tracking described in section 5.5 provides 22 trajectories in

the first video sequence, and 19 in the second video sequence. The set of matches M for

this example therefore has size 418. A manual estimate of synchrony for the bouncing

balls example admits 19 correct matches for the moving scene points, with an additional

correct match being admissible for a frame offset differing from the manual estimate by

one quarter of a frame. A successful classification of matches should therefore identify

either 19 or 20 of the correct matches as inliers, and classify the remaining trajectory

pairs as outliers.



146

Algorithm 6.1 (Robust Estimation of a and G)

Choose stationary matches, compute Q,Q′, and corresponding Q̂, Q̂
′

Choose a small probability of failure pf < 1, and random subset size c

Number of inliers μ ← c

Choose minimum frame range sizes rmin, r′min

Compute frame offset range amin, amax

Lowest error ε∗ ←∞
Iteration counts ka ← 0, ∀a ∈ {amin + k min(1, b) ≤ amax | k ∈ N}
while ∃ ka < I(a, μ) do

for each a ∈ {amin + k min(1, b) ≤ amax | k ∈ N , ka < I(a, μ)} do

Determine the set of usable matches MV

ka ← ka + 1

Randomly choose c correspondences from MV to produce subset MC

if MC contains conflicting matches then proceed to next iteration

Select 6 correspondences in synchronous frames from the subset MC

Compute estimates of G as described in section 6.3

for each estimate G do

â ← a

Refine (â,G) by minimising SG−TOTAL (equation 6.19)

if CG−T(â,G, h, h′) = 1 ∀(h, h) ∈MC then

if RG(â,G) < ε∗ then

ε ← RG(â,G)

if ε < ε∗ then

(a∗,G∗, ε∗) ← (â,G, ε)

μ ← max
(
μ,
∑

(h,h′)∈M CG(a∗,G∗, h, h′)
)

end if

end if

end if

end for

end for

end while

Return a∗,G∗ and {CG(a∗,G∗, h, h′)|(h, h′) ∈M}



147

Case Percentage of tests with classified matches

17 Correct 18 Correct 19 Correct 0 Incorrect

GP 0 4 96 100

WP 1 1 98 100

Table 6.1: Matches identified for the bouncing balls example, for a robust estimation of
both a and G, followed by a minimisation of R

Case Median VSE Maximum VSE

GP 0.1207 0.25

WP 0.1213 0.142

Table 6.2: Synchronisation quality for the bouncing balls example, for a robust estimation
of both a and G, followed by a minimisation of R

Results concerning the match classification are shown in table 6.1. In every test,

all incorrect matches were classified as outliers. Additionally, 19 correct matches were

classified as inliers in over 95% of tests for both cases. Note that the remaining tests still

identified a significant majority of the correct matches.

Measures of the synchronisation quality are shown in table 6.2. In each test, the re-

sulting frame offset a is compared to the manual synchronisation estimate. The quality of

the synchronisation in each test is determined by computing the Video Synchronisation

Error (VSE) defined in section 3.5.3, assuming the manual synchronisation estimate co-

incides with truth. The median and maximum VSE across 100 tests is given, for both the

GP and WP stationary point triplets. Note that every test produced a synchronisation

estimate which differs from the manual estimate by only a fraction of a frame. In the

GP case, the highest VSE is 0.25, which occurs in 4 of the 100 tests. This occurs due to

the presence of the single correct match which, for the manual synchronisation estimate,

has no measurable epipolar errors. In the 4 tests for which the VSE is 0.25, this match is

classified as an inlier. This classification did not occur in the WP case, as evidenced by

the lower VSE measures.

Neither synchronisation nor classification results explicitly provide a measure of qual-

ity for the spatial alignment. To assess the quality of the estimated transformation G,

manually identified stationary scene point matches were used. After each test, image

point locations from both video sequences were used to reconstruct a sparse set of 20 sta-

tionary scene features. A recovered scene point is then projected to each frame where an

estimate of the location of its image is available. The reprojection error, defined as the 2D

Euclidean distance between the measured and reprojected image locations, is computed.



148

Case Median RMS-RPE Maximum RMS-RPE

GP 16.8 41.6

WP 6.3 26.9

Table 6.3: Spatial alignment quality for the bouncing balls example, for a robust estima-
tion of both a and G, followed by a minimisation of R

The root-mean-squared reprojection error (RMS-RPE), for all 20 scene points, provides

a measure of quality by which the spatial alignment G can be assessed. Table 6.5 shows

the maximum and median RMS-RPE measures.

Even a casual comparison of these results shows that the two cases produce spatial

alignments of differing quality. In the WP case, an RMS-RPE of 6.3 is achieved in 98

of the tests. The maximum error of 26.9 occurs for the test which only classified 17

of the correct matches as inliers. While an error of 6.3 can be considered high, it still

suggests that an approximate spatial alignment has been achieved. This alignment is

illustrated in figure 6.3, which shows the optical centre locations for the second camera,

transformed according to two distinct spatial alignments. The blue path shows the optical

centre locations as determined by a projective transformation estimated from a cloud of

stationary scene point matches. This is the spatial alignment that was used to register

the cameras in chapter 5. The red path shows the optical centre locations as determined

by algorithm 6.1, followed by a minimisation of RG, using the WP triplet of stationary

matches. A comparison with figure 5.4 shows that both of the projective transformations

yield similar relative camera positions.

The GP case produces much worse spatial alignments. This may in part be due to

the smaller area between the triplet of stationary matches. A deeper analysis of this case

reveals another problem. The median error of 16.8 is obtained in 83 of the 100 tests.

The next most common result is an RMS-RPE of 38.4, which occurs in 13 of the tests.

These two results represent significantly different spatial alignments, but both admit the

classification of 19 correct matches, and accurate synchronisation. This indicates that

the GP case must be ill-conditioned for the purposes of estimating the spatial alignment.

A possible cause for the ill-conditioned nature of this example is depicted in figure 6.4,

which shows baselines of a sparse set of approximately synchronous frame pairs, where

the cameras are spatially registered with the projective transformation used in chapter

5. The baselines are only shown across the range in time during which the bouncing

balls were observed. Note that throughout much of this time, the baselines appear to

be roughly parallel, approximating the degeneracy described in section 6.3.4. This raises

the possibility that the WP case may also be poorly conditioned, but that the associated

stationary scene point constraints may simply be more ‘independent’ from the moving

point constraints.



149

Figure 6.3: A comparison of optical centre locations for two potential alignments of the
second camera in the bouncing balls example

Figure 6.4: Baselines of approximately synchronous frame pairs for the bouncing balls
example



150

It should also be noted that superior alignments could hypothetically be found with

an additional step. The projective transformation G is constrained to precisely relate

a triplet of stationary scene point matches. Better results may be achievable if this

constraint is relaxed, by minimising a cost function comprising a mixture of epipolar

errors for moving scene points, and reprojection errors for the three stationary scene

point correspondences.

6.6 Conclusions

A robust algorithm has been developed which uses moving point information to achieve

both temporal and spatial registration for a pair of cameras. This algorithm can be

employed in cases where two cameras observe the same dynamic scene, but where the

region of static scene structure in common has little 3D variation.

The algorithm uses an adaptation of relinearisation to compute a spatial alignment

from a minimal set of moving and stationary scene point constraints in the presence

of known or assumed synchrony. The synchronisation is achieved by repeatedly testing

across a set of hypothesised frame offsets. Efficiency is improved by terminating an

iteration early if the matches used to generate the model fail to classify a cost threshold,

or if a coarse evaluation using all matches suggests the estimate is inferior to one found

before it.

Tests on a real video pair demonstrate that this algorithm can indeed find approximate

spatial alignments. It has also been shown that, even in ill-conditioned spatial cases,

accurate synchronisation and match classification is still possible.



151

Chapter 7

CONCLUSION

Algorithms have been developed which can be applied to the problem of synchronis-

ing a pair of independently moving video cameras. It has been demonstrated that, with

appropriate numbers of moving scene points observable to both cameras, the resulting

synchronisation is typically accurate to within a small fraction of a frame. The contribu-

tions of each chapter towards this problem are given in section 7.1. Possible directions

for future work on this problem are given in section 7.2.

7.1 Summary of Contributions

In chapter 3, a new cost function to synchronise video sequences recorded by indepen-

dently moving cameras was introduced. Moving scene points observed by both cameras

provide the cue for synchronisation, with measurements for frame indices between integer

values made possible by a linear interpolation of epipolar lines. An empirical analysis

of this epipolar line interpolation demonstrated its superiority over interpolating resid-

uals from nearest frame pairs. Testing on synthetic and real video sequence examples

demonstrate the resulting cost function can be used to achieve accurate synchronisation

for both a known and unknown frame rate ratio.

Chapter 4 introduced the concept of synchrony pairs. By assuming a linear interpo-

lation of epipolar lines, a search can be made for pairs of frame indices for which the

projections of a moving scene point precisely satisfy the epipolar constraint. Histogram

methods were devised that could be used to efficiently obtain an approximate estimate

of synchronisation even when the frame rates of the cameras are unknown. Testing

demonstrated that this approach offers comparable synchronisation quality to search-

ing uniformly across the parameter space. It was also shown that a greater increase in

speed could be achieved by randomly or uniformly sampling frames to generate smaller

synchrony pair sets, typically without sacrificing the quality of synchronisation estimates.

The new robust algorithms RATSAC and CATSAC were presented in chapter 5.

These algorithms can be applied to problems that admit reducing the time required for

each iteration of the robust estimation, at the risk of obtaining a lower quality result.

Algorithms were devised for both an exhaustive and random sampling of data, where both

methods seek to find the best trade-off between the speed and reliability of the iterations.

A prior distribution regarding the number of inliers is required, and Bayesian inference is

used to determine how much to speed up the iterations, such that the robust estimation



152

can terminate in the least possible time. When applied to the robust synchronisation of

independently moving cameras, both algorithms yield accurate synchronisation, typically

within a fraction of a frame, for both a known and unknown frame rate ratio. Despite

considering an exhaustive pairing of moving point trajectories as matches, high accuracy

is achieved for inlier and outlier classification. By adaptively seeking the best speedup

values, a considerable reduction in execution time is possible. This reduction is diminished

however, for moving scene points tracked over shorter ranges of frames, as evidenced by

the real video sequence pair example.

Chapter 6 introduced the concept of using moving object cues to both achieve syn-

chronisation, and combine two reconstructions of a scene. This is useful in the case where

there is insufficient spatial overlap between the reconstructions to achieve an alignment

with stationary object information alone. The reconstructions are combined by finding a

projective transformation to spatially align the projection matrices associated with each

video sequence. Such transformations are found by using three stationary scene point

matches between the reconstructions, and six 3D ray pairs from moving scene point cor-

respondences, each of which should intersect when the cameras are both synchronised

and spatially aligned. The resulting set of linear and quadratic equations are solved

using an adaptation of the relinearisation method. This step then forms the core of a

robust algorithm, which repeatedly searches across a range of frame offset values to find

the best solution. Repeated testing on a real video sequence pair showed not only that

approximate spatial alignment is achievable, but also that synchronisation and correct

match classification can occur even when the spatial alignment is poor.

7.2 Future Work

The epipolar line interpolation method described in chapter 3 assumes that epipolar line

orientations are similar for successive frame pairs. Such an assumption typically holds,

but may be violated in cases where a moving scene point exhibits high disparity in the

video sequences, or moves close to the epipoles. In such circumstances, the interpolation

direction, and hence the associated epipolar error measure, will be incorrect. The possi-

bility of using more sophisticated methods to avoid such mistakes should be investigated.

Epipolar lines are also assumed to change linearly over the time between frames in

a video sequence. This assumption has been shown to permit video sequences to be

synchronised to within a fraction of a frame. Using a linear interpolation model may

reduce the accuracy of epipolar error measurements for frame indices between integer

values. The use of higher order models should be investigated, since they may permit an

even finer level of synchronisation.

Chapter 4 concerns the building of a histogram from synchrony pairs. In the case

where the frame rate ratio is unknown, each synchrony pair causes a line of cells in a

2D histogram to be incremented. An alternative approach would be to examine epipolar

errors around a synchrony pair, and use these errors to compute an estimate of the frame



153

rate ratio. Given such an estimate, only one cell need be incremented. Alternatively, if

the accuracy of the frame rate ratio estimate is known, a corresponding short line segment

of cells may be incremented.

Both the robust and non-robust methods presented in this thesis assume that moving

scene points have been reliably tracked in each video sequence. The tracking of stationary

scene point features can be enhanced by using known relations, such as the epipolar

constraint. In the case of moving scene points observed by independently moving cameras,

this type of enhancement is only possible if the video sequences recorded by the cameras

are synchronised, and the tracking of moving scene points is not performed independently

in each sequence. This therefore raises the possibility of devising an algorithm to achieve

both synchronisation, and a constrained tracking of moving scene points.

Some of the methods presented in later chapters may prove useful outside of the

problem of synchronisation. The RATSAC method combines an adjustable speedup with

an adaptive assumption concerning the number of inliers, and could be readily applied

to any robust estimation for which a constructive speedup mechanism exists. CATSAC

has similar wider applicability, but only for problems where an unknown model can be

estimated from a small number of matches. In chapter 6, the method of relinearisation

[29] was adapted to successfully solve systems of multivariate quadratic equations, which

are under-constrained in the sense that a plurality of solutions may exist. Through the

addition of a final step, the space of solutions is reduced to a finite set, where each solution

is defined up to scale. This may be of benefit to other computer vision problems which

involve small numbers of quadratic constraints.



154



155

Appendix A

PLÜCKER RAY THEOREMS

Theorem A.1 (The null-space of a Plücker Matrix) A ray described by

Plücker matrix R = pq� − qp� lies along plane π if and only if Rπ = 0.

Proof (i) If ray R lies along plane

π,

p�π = 0, q�π = 0.

Therefore,

Rπ = (pq� − qp�)π

= pq�π − qp�π

= 0p− 0q = 0. �

Proof (ii) If Rπ = 0,

pq�π = qp�π.

If q�π = u, and p�π = v,

then up = vq.

So either (u, v) = (0, 0), or p ∼ q.

If p ∼ q, R = ∅ and does not repre-

sent a ray in space.

Hence q�π = p�π = 0. �

Theorem A.2 (Uniqueness up to Scale) Given the Plücker matrix defined

by R = pq� − qp�, and Plücker matrix R
′ defined by any other distinct points

along the ray, R ∼ R
′.

Proof We choose two points along the ray as (u1p+v1q) and (u2p+v2q).

These 3D points are only different beyond a scale factor if (u1v2 	= u2v1).

R
′ =(u1p + v1q)(u2p + v2q)� − (u2p + v2q)(u1p + v1q)�

=(u1v2 − u2v1)pq� − (u1v2 − u2v1)qp�

=(u1v2 − u2v1)R ∼ R. �

And similarly for the dual.



156

Theorem A.3 (Duality Constraint) Given Plücker matrix R, and its dual

R
∗, with vector representations r = VRay(R), and r∗ = VRay(R

∗), then

r ∼ Jr∗.

Proof For some pair of points (p, q) on the ray, and some pair of planes

(π1, π2) intersecting along the ray,

R = pq� − qp� =

2
664

0 r1 r2 r3

−r1 0 r4 −r5

−r2 −r4 0 r6

−r3 r5 −r6 0

3
775,

R
∗ = π1π

�
2 − π2π

�
1 =

2
664

0 r∗
1

r∗
2

r∗
3

−r∗
1

0 r∗
4

−r∗
5

−r∗
2

−r∗
4

0 r∗
6

−r∗
3

r∗
5

−r∗
6

0

3
775

Since p�π1 = q�π1 = p�π2 = q�π2 = 0, RR
∗ = ∅. Expanding RR

∗

and equating it to the zero matrix, we find that

rir
∗
j = r∗7−ir7−j ∀i, j = 1 . . . 6.

Choosing some k ∈ 1 . . . 6 such that rk 	= 0,

r∗j =
r∗7−k

rk

r7−j ∀j ∈ 1 . . . 6

Therefore, r∗ ∼ Jr. �



157

Theorem A.4 (Ray Intersection) Two rays with vector representations r

and r′ intersect if and only if r�Jr′ = 0.

Proof We define 4 points in 3D space

p =[p1, p2, p3, p4]
�,

q =[q1, q2, q3, q4]
�,

p′ =[p′1, p
′
2, p

′
3, p

′
4]

�,

q′ =[q′1, q
′
2, q

′
3, q

′
4]

�.

The rays r and r′ are given by

r =(p � q) =
» ˛̨

˛̨ p1 p2

q1 q2

˛̨
˛̨ ,

˛̨
˛̨ p1 p3

q1 q3

˛̨
˛̨ ,

˛̨
˛̨ p1 p4

q1 q4

˛̨
˛̨ ,

˛̨
˛̨ p2 p3

q2 q3

˛̨
˛̨ ,−

˛̨
˛̨ p2 p4

q2 q4

˛̨
˛̨ ,

˛̨
˛̨ p3 p4

q3 q4

˛̨
˛̨ –�

,

r′ =(p′
� q′) =

» ˛̨
˛̨ p′

1
p′
2

q′
1

q′
2

˛̨
˛̨ ,

˛̨
˛̨ p′

1
p′
3

q′
1

q′
3

˛̨
˛̨ ,

˛̨
˛̨ p′

1
p′
4

q′
1

q′
4

˛̨
˛̨ ,

˛̨
˛̨ p′

2
p′
3

q′
2

q′
3

˛̨
˛̨ ,−

˛̨
˛̨ p′

2
p′
4

q′
2

q′
4

˛̨
˛̨ ,

˛̨
˛̨ p′

3
p′
4

q′
3

q′
4

˛̨
˛̨ –�

.

The rays intersect if and only if the 4 points are coplanar, or equivalently,

if |W| = 0, for matrix W defined as

W = [p, q, p′, q′]�,

|W| =p1

˛̨
˛̨
˛̨

q2 q3 q4

p′
2

p′
3

p′
4

q′
2

q′
3

q′
4

˛̨
˛̨
˛̨− p2

˛̨
˛̨
˛̨

q1 q3 q4

p′
1

p′
3

p′
4

q′
1

q′
3

q′
4

˛̨
˛̨
˛̨ + p3

˛̨
˛̨
˛̨

q1 q2 q4

p′
1

p′
2

p′
4

q′
1

q′
2

q′
4

˛̨
˛̨
˛̨− p4

˛̨
˛̨
˛̨

q1 q2 q3

p′
1

p′
2

p′
3

q′
1

q′
2

q′
3

˛̨
˛̨
˛̨

=p1q2r
′
6 + p1q3r

′
5 + p1q4r

′
4 − p2q1r

′
6 + p2q3r

′
3 − p2q4r

′
2

− p3q1r
′
5 − p3q2r

′
3 + p3q4r

′
1 − p4q1r

′
4 + p4q2r

′
2 − p4q3r

′
1

=(p3q4 − p4q3)r
′
1 + (p4q2 − p2q4)r

′
2 + (p2q3 − p3q2)r

′
3+

(p1q4 − p4q1)r
′
4 + (p1q3 − p3q1)r

′
5 + (p1q2 − p2q1)r

′
6

=r6r
′
1 + r5r

′
2 + r4r

′
3 + r3r

′
4 + r2r

′
5 + r1r

′
6

=r�
Jr′.

�



158

Theorem A.5 (Ray Constraint) A non-zero vector r ∈ �6 represents a ray

in 3D space if and only if r�Jr = 0.

Proof (i) r = (p � q) for some pair of points p and q along the ray.

See previous proof, with p = p′, and q = q′,

then |W| = r�Jr = 0. �

Proof (ii) Given vector r such that r�Jr = 0, we define R as the matrix

such that

VRay(R) = r.

We also define matrix R
′ such that

VRay(R
′) = Jr.

We need to show that either R or R
′ is a valid Plücker ray matrix. If so,

then R
′ ∼ R

∗.

RR
′ =

⎡
⎢⎢⎢⎣

0 r1 r2 r3

−r1 0 r4 −r5

−r2 −r4 0 r6

−r3 r5 −r6 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 r6 r5 r4

−r6 0 r3 −r2

−r5 −r3 0 r1

−r4 r2 −r1 0

⎤
⎥⎥⎥⎦ = ∅

We know that RR
′ = ∅, since the expansion of equations for non-leading

diagonal elements of the right hand side all cancel. The expressions for

the leading diagonal elements are all ±1
2
r�Jr = 0. Now choose any

non-zero element of r. The two columns of R
′ that this element appears

in are denoted π1 and π2.

Now Rπ1 = 0, Rπ2 = 0, and (π1π
�
2 − π2π

�
1 ) is a valid ray matrix.

R(π1π
�
2 − π2π

�
1 ) = ∅.

From the proof on the duality constraint,

r = J(π1 � π2) = (π1 � π2)
∗

�



159

Theorem A.6 (Inner Product) Given two Plücker rays, with vector repre-

sentations

r = (p � q), r′ = (a � b),

the inner product of these vectors is such that

r�r′ = a�(pq� − qp�)b.

Proof

r =
» ˛̨

˛̨ p1 p2

q1 q2

˛̨
˛̨ ,

˛̨
˛̨ p1 p3

q1 q3

˛̨
˛̨ ,

˛̨
˛̨ p1 p4

q1 q4

˛̨
˛̨ ,

˛̨
˛̨ p2 p3

q2 q3

˛̨
˛̨ ,−

˛̨
˛̨ p2 p4

q2 q4

˛̨
˛̨ ,

˛̨
˛̨ p3 p4

q3 q4

˛̨
˛̨ –�

=[r1, r2, r3, r4, r5, r6]
�

r′ =
» ˛̨

˛̨ a1 a2

b1 b2

˛̨
˛̨ ,

˛̨
˛̨ a1 a3

b1 b3

˛̨
˛̨ ,

˛̨
˛̨ a1 a4

b1 b4

˛̨
˛̨ ,

˛̨
˛̨ a2 a3

b2 b3

˛̨
˛̨ ,−

˛̨
˛̨ a2 a4

b2 b4

˛̨
˛̨ ,

˛̨
˛̨ a3 a4

b3 b4

˛̨
˛̨ –�

Let R = pq� − qp�, so that

r = VRay(R).

a�
Rb =

ˆ
a1 a2 a3 a4

˜
2
664

0 r1 r2 r3

−r1 0 r4 −r5

−r2 −r4 0 r6

−r3 r5 −r6 0

3
775

2
664

b1

b2

b3

b4

3
775

=
ˆ

a1 a2 a3 a4

˜
2
664

r1b2 + r2b3 + r3b4

−r1b1 + r4b3 − r5b4

−r2b1 − r4b2 + r6b4

−r3b1 + r5b2 − r6b3

3
775

=(a1b2 − a2b1)r1 + (a1b3 − a3b1)r2 + (a1b4 − a4b1)r3+

(a2b3 − a3b2)r4 + (a4b2 − a2b4)r5 + (a3b4 − a4b3)r6

=r1r
′
1 + r2r

′
2 + r3r

′
3 + r4r

′
4 + r5r

′
5 + r6r

′
6

=r�r′. �



160

Theorem A.7 (Projection to a Line Matrix) Given Plücker ray matrix R

and 3 × 4 projection matrix M, the image line l = [l1, l2, l3]
� describing the

projection of the ray is defined by

L =

2
4 0 l3 −l2

−l3 0 l1

l2 −l1 0

3
5 = MRM

�.

Proof Choose two 3D points along the ray, p′ and q′, such that R =

p′q′�−q′p′�. These 3D points project to image locations p and q defined

by
p = [p1, p2, p3]

� =Mp′,

q = [q1, q2, q3]
� =Mq′.

The image line l passing through points p and q such that

l�p = l�q = 0 is given by

l = [l1, l2, l3]
� =

»˛̨
˛̨ p2 p3

q2 q3

˛̨
˛̨ ,

˛̨
˛̨ p3 p1

q3 q1

˛̨
˛̨ ,

˛̨
˛̨ p1 p2

q1 q2

˛̨
˛̨–�

.

Now, expanding the equation for line matrix L,

L = MRM
�

= Mp′q′�
M

� −Mq′p′�
M

�

= pq� − qp�

=

2
4 0 (p1q2 − p2q1) (p1q3 − p3q1)

(p2q1 − p1q2) 0 (p2q3 − p3q2)

(p3q1 − p1q3) (p3q2 − p2q3) 0

3
5

=

2
4 0 l3 −l2

−l3 0 l1

l2 −l1 0

3
5 �



161

Theorem A.8 (Ray Projection) Given the ray projection matrix M̂, and

Plücker ray vector r, the projection of the ray to a line l in the camera described

by M̂ is given by

l = M̂
�
Jr.

Proof A ray in space is represented by the Plücker matrix R and the

Plücker vector r such that r = VRay(R). Define a 3 × 4 projection

matrix as

M =

2
4 m�

1

m�

2

m�

3

3
5.

Line l = [l1, l2, l3]
� in the image can be computed according to the for-

mula from the previous theorem:

2
4 0 l3 −l2

−l3 0 l1

l2 −l1 0

3
5 = MRM

�.

The elements of the line are therefore

l1 = m�
2 Rm3,

l2 = m�
3 Rm1,

l3 = m�
1 Rm2.

From the inner product theorem, this equates to

l1 = (m2 � m3)
�r,

l2 = (m3 � m1)
�r,

l3 = (m1 � m2)
�r.

Accordingly, the formula for line vector l is

l =

2
4 (m2 � m3)�

(m3 � m1)�

(m1 � m2)�

3
5r =

2
4 (m2 � m3)�

(m3 � m1)�

(m1 � m2)�

3
5JJr = M̂

�
Jr �



162

Theorem A.9 (Ray Back-Projection) Given a ray projection matrix M̂,

and an image location p = [x, y, 1]�, the set of 3D points projecting to this

image location form a ray in space defined by

r = M̂p.

Proof We define projection matrix

M =

2
4 m�

1

m�

2

m�

3

3
5.

as the 3× 4 projection matrix corresponding to M̂, and scene point q as

some 3D point such that

p ∼Mq.

This gives the constraints

(m�
1 − xm�

3 )q = 0, (m�
2 − ym�

3 )q = 0.

So, all points projecting to image location p lie on the planes described

by (m�
1 − xm�

3 ) and (m�
2 − ym�

3 ). The dual of the ray along which

points project to location p is given by

R
∗ = (m1 − xm3)(m2 − ym3)

� − (m2 − ym3)(m1 − xm3)
�

= (m1m2
� −m2m1

�)+

(m2m3
� −m3m2

�)x+

(m3m1
� −m1m3

�)y.

Using the vector representation for rays,

r∗ = VRay(R
∗)

= [(m2 � m3), (m3 � m1), (m1 � m2)]p

= JM̂p.

From the duality constraint, the ray in space r is given by

r = Jr∗ = M̂p. �



163

Theorem A.10 (Ray Transformation) Given projective transformation H,

and ray r passing through 3D points p and q, the ray r′ passing through Hp and

Hq is

r′ = [r′1, r
′
2, r

′
3, r

′
4, r

′
5, r

′
6]

� = Ĥr where

H =

2
664

h�

1

h�

2

h�

3

h�

4

3
775, Ĥ =

2
66666664

(h1 � h2)�

(h1 � h3)�

(h1 � h4)�

(h2 � h3)�

(h4 � h2)�

(h3 � h4)�

3
77777775
.

Proof We define two Plücker matrices R and R
′ such that r = VRay(R)

and r′ = VRay(R
′). Then,

R
′ = HpHq� −HqHp�

= Hpq�
H

� −Hqp�
H

�

= HRH
�.

For each element r′i, using the inner product theorem,

r′1 = h�
1 Rh2 = (h1 � h2)

�r

r′2 = h�
1 Rh3 = (h1 � h3)

�r

r′3 = h�
1 Rh4 = (h1 � h4)

�r

r′4 = h�
2 Rh3 = (h2 � h3)

�r

r′5 = h�
4 Rh2 = (h4 � h2)

�r

r′6 = h�
3 Rh4 = (h3 � h4)

�r

.

In vector form, this gives

r′ =

2
66666664

(h1 � h2)�

(h1 � h3)�

(h1 � h4)�

(h2 � h3)�

(h4 � h2)�

(h3 � h4)�

3
77777775
r = Ĥr. �



164



165

BIBLIOGRAPHY

[1] F. Alizadeh. Interior point methods in semidefinite programming with applications

to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.

[2] A. Bartoli and P. Sturm. The 3D line motion matrix and alignment of line reconstruc-

tions. In Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii,

December 8-14, 2001, volume 1, pages 287–292. IEEE Computer Society Press.

[3] D. Capel and A. Zisserman. Automated mosaicing with super-resolution zoom. In

Conference on Computer Vision and Pattern Recognition, Santa Barbara, California,

June 23-25, 1998, pages 885–891. IEEE Computer Society Press.

[4] R. Carceroni, F. Pádua, G. Santos, and K. Kutulakos. Linear sequence-to-sequence

alignment. In Conference on Computer Vision and Pattern Recognition, Washington

DC, June 27 - July 2, 2004, volume 1, pages 746–753. IEEE Computer Society Press.

[5] Y. Caspi and M. Irani. Alignment of non-overlapping sequences. In International

Conference on Computer Vision, Vancouver, July 7-14, 2001, volume 2, pages 76–83,

Los Alamitos, CA. IEEE Computer Society Press.

[6] Y. Caspi and M. Irani. A step towards sequence-to-sequence alignment. In Confer-

ence on Computer Vision and Pattern Recognition, Hilton Head Island, South Car-

olina, June 13-15, 2000, volume 2, pages 682–689. IEEE Computer Society Press.

[7] Y. Caspi, D. Simakov, and M. Irani. Feature-based sequence-to-sequence matching.

In ECCV Workshop on Vision and Modelling of Dynamic Scenes (VAMODS), 2002.

[8] W. Chojnacki, M.J. Brooks, A. van den Hengel, and D. Gawley. Revisiting hart-

ley’s normalised eight-point algorithm. IEEE Trans. Pattern Analysis and Machine

Intelligence, 25(9):1172–1177, September 2003.

[9] O. Chum and J. Matas. Matching with PROSAC - progressive sample consensus.

In Conference on Computer Vision and Pattern Recognition, San Diego, California,

June 20-26, 2005, volume 1, pages 220–226. IEEE Computer Society Press.

[10] O. Chum and J. Matas. Randomized RANSAC with Td,d test. In British Machine

Vision Conference, Cardiff, UK, 2002, pages 448–457. British Machine Vision Asso-

ciation.



166

[11] O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC ben-

efits from the oriented epipolar constraint. In International Conference on Pattern

Recognition, Cambridge, UK, August 23-26, 2004, pages 112–115. IEEE Computer

Society Press.

[12] L. de Agapito, R.I. Hartley, and E. Hayman. Linear calibration of a rotating and

zooming camera. In Conference on Computer Vision and Pattern Recognition, Fort

Collins, Colorado, June 23-25, 1999, pages 15–21. IEEE Computer Society Press.

[13] L. de Agapito, E. Hayman, and I. Reid. Self-calibration of a rotating camera with

varying intrinsic parameters. In British Machine Vision Conference, Southampton,

UK, 1998, pages 105–114. British Machine Vision Association.

[14] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT

Press, 1993.

[15] O. Faugeras and B. Mourrain. On the geometry and algebra of the point and line cor-

respondences between N images. In International Conference on Computer Vision,

Massachusetts, USA, June 20-23, 1995, pages 951–962. IEEE Computer Society

Press.

[16] O.D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo

rig? In European Conference on Computer Vision, Santa Margherita Ligure, Italy,

May 19-22, 1992, pages 563–578. Springer-Verlag.

[17] O.D. Faugeras, Q.-T. Luong, and S.J. Maybank. Camera self-calibration: Theory

and experiments. In European Conference on Computer Vision, Santa Margherita

Ligure, Italy, May 19-22, 1992, pages 321–334. Springer-Verlag.

[18] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Communi-

cations of the ACM, 24:381–395, 1981.

[19] S. Gibson, J. Cook, T.L.J. Howard, and R.J. Hubbold. Icarus: Interactive recon-

struction from uncalibrated image sequences. In ACM Siggraph 2002 Conference

Abstracts and Applications, San Antonio, Texas, July, 2002 Proceedings.

[20] C. Harris and M. Stephens. A combined corner and edge detector. In The Fourth

Alvey Vision Conference, Manchester, UK, 1988, pages 147–151.

[21] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge University Press, 2000.



167

[22] R.I. Hartley. Estimation of relative camera positions for uncalibrated cameras. In

European Conference on Computer Vision, Santa Margherita Ligure, Italy, May 19-

22, 1992, pages 579–587. Springer-Verlag.

[23] R.I. Hartley. Euclidean reconstruction from uncalibrated views. In Applications

of Invariance in Computer Vision, Second Joint European - US Workshop, Azores,

Portugal, October 9-14, 1993, pages 237–256. Springer-Verlag.

[24] R.I. Hartley. Self-calibration from multiple views with a rotating camera. In European

Conference on Computer Vision, Stockholme, Sweden, May 2-6, 1994, volume 1,

pages 471–478. Springer-Verlag.

[25] R.I. Hartley. In defence of the 8-point algorithm. IEEE Trans. Pattern Analysis and

Machine Intelligence, 19(6):580–593, June 1997.

[26] R.I. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Con-

ference on Computer Vision and Pattern Recognition, Urbana-Champaign, Illinois,

June 15-18, 1992, pages 761–764. IEEE Computer Society Press.

[27] T. Huang and O. Faugeras. Some properties of the e-matrix in two-view motion

estimation. IEEE Trans. Pattern Analysis and Machine Intelligence, 11(12):1310–

1312, December 1989.

[28] J. Illingworth and J. Kittler. A survey of the hough transform. Computer Vision,

Graphics, and Image Processing, 44:87–116, 1988.

[29] A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem. Lecture

Notes in Computer Science, 1666:19–30, 1999.

[30] C. Lei and Y. Yang. Tri-focal tensor-based multiple video synchronization with

subframe optimization. IEEE Transactions on Image Processing, 15(9):2473–2480,

2006.

[31] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two

projections. Nature, 293:133–135, September 1981.

[32] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, November 2004.

[33] Q.-T. Luong and O.D. Faugeras. The fundamental matrix: theory, algorithms, and

stability analysis. International Journal of Computer Vision, 17(1):43–75, January

1996.



168

[34] J. Moore and D. Jiang. A rank preserving flow algorithm for quadratic optimization

problems subject to quadratic equality constraints. In International Conference on

Acoustics, Speech, and Signal Processing, Munich, Germany, April 21-24, 1997,

volume 1, pages 67–70. IEEE Computer Society Press.

[35] P.J. Narayanan, P. Rander, and T. Kanade. Synchronous capture of image sequences

from multiple cameras. Technical report, The Robotics Institute, Carnegie Mellon

University, December 1995.

[36] G.N. Newsam, D.Q. Huynh, M.J. Brooks, and H.-P. Pan. Recovering unknown focal

lengths in self-calibration: An essentially linear algorithm and degenerate configu-

rations. In International Archives of Photogrammetry and Remote Sensing, Vienna,

Austria, July 9-19, 1996, volume 31-B3, pages 575–580.

[37] D.W. Pooley, M.J. Brooks, A.J. van den Hengel, and W. Chojnacki. A voting scheme

for estimating the synchrony of moving-camera videos. In International Conference

on Image Processing, Barcelona, Spain, September 14-17, 2003, volume 1, pages

413–416. IEEE Computer Society Press.

[38] C. Rao, A. Gritai, M. Shah, and T. Syeda-Mahmood. View-invariant alignment

and matching of video sequences. In International Conference on Computer Vision,

Nice, France, October 14-17, 2003, volume 2, pages 939–945. IEEE Computer Society

Press.

[39] I. Reid and A. Zisserman. Goal-directed video metrology. In European Conference

on Computer Vision, Cambridge, UK, April 14-18, 1996, volume 2, pages 647–658.

Springer-Verlag.

[40] P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. John

Wiley & Sons, Inc., 1987.

[41] J. Serrat, F. Diego, F. Lumbreras, and J. Álvarez. Synchronization of video sequences

from free-moving cameras. In Iberian Conference on Pattern Recognition and Image

Analysis, Girona, Spain, June 6-8, 2007, volume 2, pages 620–627. Springer-Verlag.

[42] P. Smith, D. Sinclair, R. Cipolla, and K. Wood. Effective corner matching. In

British Machine Vision Conference, Southampton, UK, 1998, pages 545–556. British

Machine Vision Association.

[43] G. P. Stein. Tracking from multiple view points: Self-calibration of space and time.

In DARPA Image Understanding Workshop, Monterey, CA, November, 1998, pages

1037–1042. Morgan Kauffman.



169

[44] P. Sturm. Critical motion sequences for monocular self-calibration and uncalibrated

euclidean reconstruction. In Conference on Computer Vision and Pattern Recogni-

tion, San Juan, Puerto Rico, June 17-19, 1997, pages 1100–1105. IEEE Computer

Society Press.

[45] R. Szeliski and S.B. Kang. Direct methods for visual scene reconstruction. In IEEE

Workshop on Representation of Visual Scenes, June 1995, pages 26–33.

[46] T. Thormählen, H. Broszio, and P. Mikulastik. Robust linear auto-calibration of a

moving camera from image sequences. In Asian Conference on Computer Vision,

Hyderabad, India, January 13-16, 2006, volume 2, pages 71–80. Springer-Verlag.

[47] T. Thormählen, H. Broszio, and A. Weissenfeld. Keyframe selection for camera mo-

tion and structure estimation from multiple views. In European Conference on Com-

puter Vision, Prague, Czech Republic, May 11-14, 2004, pages 523–535. Springer-

Verlag.

[48] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical

Report CMU-CS-91-132, Carnegie Mellon University, April 1991.

[49] P. Torr. Bayesian model estimation and selection for epipolar geometry and generic

manifold fitting. International Journal of Computer Vision, 50(1):35–61, 2002.

[50] P. Torr and A. Zisserman. Robust computation and parameterization of multiple

view relations. In International Conference on Computer Vision, Bombay, India,

January 4-7 1998, pages 727–732. IEEE Computer Society Press.

[51] P. Torr and A. Zisserman. MLESAC: a new robust estimator with application to

estimating image geomtry. Computer Vision and Image Understanding, 78:138–156,

2000.

[52] P. Tresadern and I. Reid. Synchronizing image sequences of non-rigid objects. In

British Machine Vision Conference, Norwich, UK, 2003, volume 2, pages 629–638.

British Machine Vision Association.

[53] B. Triggs. Autocalibration and the absolute quadric. In Conference on Computer

Vision and Pattern Recognition, San Juan, Puerto Rico, June 17-19, 1997, pages

609–614. IEEE Computer Society Press.

[54] B. Triggs, P. McLauchlan, R.I. Hartley, and A.W. Fitzgibbon. Bundle adjustment -

a modern synthesis. In International Workshop on Vision Algorithms, International

Conference on Computer Vision, Corfu, Greece, September 21-22, 1999, pages 298–

372. Springer-Verlag.



170

[55] T. Tuytelaars and L. Van Gool. Synchronizing video sequences. In Conference on

Computer Vision and Pattern Recognition, Washington DC, June 27 - July 2, 2004,

volume 1, pages 762–768. IEEE Computer Society Press.

[56] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–

95, 1996.

[57] D. Wedge, D. Huynh, and P. Kovesi. Motion guided video sequence synchronization.

In Asian Conference on Computer Vision, Hyderabad, India, January 13-16, 2006,

volume 2, pages 832–841. Springer-Verlag.

[58] D. Wedge, P. Kovesi, and D. Huynh. Trajectory based video sequence synchroniza-

tion. In Digital Image Computing: Techniques and Applications, Cairns, Australia,

December 6-8, 2005. IEEE Computer Society Press.

[59] L. Wolf and A. Zomet. Correspondence-free synchronization and reconstruction in

a non-rigid scene. In ECCV Workshop on Vision and Modelling of Dynamic Scenes

(VAMODS), 2002.

[60] J. Yan and M. Pollefeys. Video synchronisation via space-time interest point dis-

tribution. In Advanced Concepts for Intelligent Vision Systems, Brussels, Belgium,

August 31 - September 3, 2004.

[61] I. Zoghlami, O. Faugeras, and R. Deriche. Using geometric corners to build a 2D

mosaic from a set of images. In Conference on Computer Vision and Pattern Recog-

nition, San Juan, Puerto Rico, June 17-19, 1997, pages 420–425. IEEE Computer

Society Press.


	TITLE: The Automated Synchronisation of Independently Moving Cameras
	TABLE OF CONTENTS
	Abstract
	Declaration
	Acknowledgements
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	LIST OF EXAMPLES
	LIST OF THEOREMS
	NOTATION

	Chapter 1 INTRODUCTION
	Chapter 2 PREVIOUS WORK
	Chapter 3 SYNCHRONISING A PAIR OF MOVING CAMERAS
	Chapter 4 SYNCHRONY PAIRS
	Chapter 5 ROBUST SYNCHRONISATION
	Chapter 6 ESTIMATING A PROJECTIVE TRANSFORMATION WITH MOVING SCENE POINTS
	Chapter 7 CONCLUSION
	Appendix A PLUCKER RAY THEOREMS
	BIBLIOGRAPHY

