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Chapter 7 

Tracking Multiple Targets in Wireless Sensor Networks  
 

This chapter addresses the problem of tracking multiple targets under measurement origin 

uncertainty in wireless sensor networks. By adopting the particle’s representation of the 

probability density function of the target state, a multiple target tracking algorithm have 

been developed in this chapter. This algorithm is a hybrid of Particle filter (PF) and joint 

probabilistic data association filter (JPDAF), named as PF-JPDAF tracking algorithm. PF-

JPDAF combines the advantage of PF being applicable to the general nonlinear systems 

with the ability of JPDAF that can effectively tackle the challenging data association 

problem when tracking multiple targets. Extensive simulations have been conducted to 

evaluate the performance of PF-JPDAF. 

 

7.1 Introduction 

Multiple target tracking is one of the typical applications of wireless sensor networks in 

which a large number of sensor nodes collaboratively sense, process and infer the states of 

multiple targets [1]. For centralized systems (e.g. radar, sonar…etc.), there are many 

multiple target tracking strategies have been proposed and the related techniques are well-

established [27], [47]. However, wireless sensor networks’ unique characteristics, 

especially their highly distributed nature and limited resources pose significant challenges 

in developing algorithms for the multiple target tracking applications in wireless sensor 

networks [1], [18]. The multiple target tracking algorithms developed for wireless sensor 

networks need to consider the interplay between information processing and sensor 

network architecture (networking), and efficiently coordinate sensor nodes to take sensing 

action, acquire the data, and process the information to achieve the distributive estimation 

of multiple targets states under the measurement origin uncertainty due to the presence of 

multiple targets and clutter.  

In multiple target tracking, data association is a fundamental problem and it involves 

finding the correct correspondence between measurements and targets. This chapter 

develops PF-JPDAF algorithm to tackle the data association problem under the 
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measurement origin uncertainty. In PF-JPDAF, a joint measurement-target association 

vector which consists of all possible measurement and target pairs (components) is 

introduced. All components in this joint measurement-target association vector are then 

calculated according to their corresponding probabilities. These weighted components are 

used in the measurement update step in the recursive Bayesian estimation to update the 

target state estimate.  

This chapter is organized as follows. Section 7.2 starts with a brief review of multiple 

target tracking techniques reported in the literature. It must be stated here that this review is 

focused on Particle filter based multiple target tracking algorithms for target tracking in 

wireless sensor networks. A full review of the multiple target tracking techniques is beyond 

the scope of this thesis. Section 7.3 formulates the multiple target tracking problem for the 

development of PF-JPDAF tracking algorithm in wireless sensor networks. Section 7.4 

details the derivation and development of PF-JPDAF tracking algorithm. Section 7.5 

presents the simulation results of PF-JPDAF tracking algorithm. Section 7.6 summarizes 

the whole chapter. 

 

7.2 Multiple Target Tracking in Wireless Sensor Networks  

This section provides a brief review of multiple target tracking techniques with the focus 

on the Particle filter (PF) based approaches. It includes several multiple target tracking 

strategies commonly adopted in the literature, as well as the related works of developing PF 

based multiple target tracking algorithms for wireless sensor networks.  

 

7.2.1 Review of Multiple Target Tracking Techniques 

In multiple target tracking, the aim is to recursively estimate, at each time step, the 

probability density function of the target state for each of the targets upon the receipt of 

new measurements. However, the measurements obtained at a sensing node may consist of 

both the measurements originating from targets and clutter alike. Therefore, the multiple 

target tracking algorithms need to identify which measurements should be associated with 

which targets. However, in a practical environment as the number of targets and the clutter 

rate both increase, the identification of the origins of the measurements quickly becomes 

more difficult and complex.  

There are numerous strategies which have been proposed in the literature for solving 

multiple target tracking problem. In the Multiple Hypothesis Tracking (MHT) algorithm 

[27], each measurement to target hypothesis associates past measurement with a target and 
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a new set of hypotheses is formed from the previous hypotheses when new measurements 

arrive. However, such exhaustive MHT is not feasible in practical systems since it requires 

the evaluation of an exponentially increasing number of measurements to target association 

hypotheses and consequently demanding significant computational resources. To reduce 

the number of association hypotheses to a manageable level, techniques such as pruning, 

gating, and clustering have been proposed in the literature [27]. In the joint probabilistic 

data association filter (JPDAF) [47], the infeasible association hypotheses are pruned away 

by a gating procedure at each time step, and then the remaining hypotheses are computed 

and combined in proportion to the corresponding hypotheses’ probabilities. The 

probabilistic Multiple Hypothesis Tracking (PMHT) algorithm [135]–[137] assumes that 

the individual measurement to target association hypothesis is statistically independent 

with respect to each other. By adopting this assumption, PMHT avoids enumerating all 

measurement to target association hypotheses and either pruning or gating procedure is 

needed.   

Recently, PF based approaches have been applied to the multiple target tracking problem. 

These approaches are able to perform well in general nonlinear and non-Gaussian systems. 

Vermaak et al. proposed a group of efficient algorithms to address the data association 

problem that arises due to unlabelled measurements and the dimensionality problem that 

arises due to the increased size of the state-space associated with multiple targets [48]. Hue 

et al. also developed a sequential Monte Carlo algorithm for multiple target tracking and 

data fusion [49]. Their algorithm is in spirit quite similar to the PMHT. However, instead 

of using EM to calculate the probabilities of the measurement to target associations as in 

PMHT, they adopted Gibbs sampling algorithm to compute the associations probabilities. 

Several authors combined PF with the Finite Set Statistics (FISST) approach to solve the 

problem of joint target initiation and estimation [141]–[143]. While this combination is 

theoretically advantageous, it demands intense computation in that a huge number of 

particles may be needed to explore different dimensional state spaces for target initiation. 

Doucet et al. applied the jump Markov system, a general framework in multiple target 

initiation and tracking [144]. Kreucher et al. developed a joint multi-target probability 

density (JMPD) filter, which simultaneously captures the uncertainty about target number, 

target state, and target identification [145]. This algorithm is based on a strategy in which 

the surveillance region is divided into a number of small cells. Ng et al. developed a 

measurement clustering algorithm to estimate the number of targets and accordingly 

execute the new target initiation, the disappeared target removal, or the persistent target 



 191 

state update in a recursive fashion [146]. They then combined the a Particle filter  

algorithm with an efficient 2-D data assignment algorithm to deal with the data association 

problem and estimate the state of the persistent target.  

 

7.2.2 PF-Based Multiple Target Tracking in Wireless Sensor Networks 

As detailed in Section 2.4.2 of Chapter 2, several PF based multiple target tracking 

algorithms have also been proposed for multiple target tracking in wireless sensor networks 

[19], [101], [103], [104]. Motivated by these works, this chapter develops PF-JPDAF 

multiple target tracking algorithm. Differ from the algorithm developed in [19], PF-JPDAF 

solves the data association problem explicitly, and thus can be applied into the occasions 

that multiple targets are closely spaced (however, not too closely spaced that the targets can 

be regarded as one “super target” as in [19]). Another deviation from the leader-based 

multiple target tracking algorithm proposed in [101], PF-JPDAF adopts hierarchical sensor 

network processing architecture. At each time step, the leader node activates several 

selected sensing nodes, collects their measurements and updates the estimate of target state. 

Target state estimation using the information from multiple sensing nodes should improve 

the tracking accuracy. Moreover, to reduce the computation burden of the leader node and 

facilitate distributive multiple target tracking in wireless sensor networks, the whole sensor 

field is partitioned into adjoining regions. When the targets move into different regions in 

which these targets are well separated, a single target tracking algorithm, such as the PF-

PDAF developed in Chapter 5, is switched over for each of the targets; only when the 

targets move in the same region, the multiple target tracking algorithm, PF-JPDAF is used 

(see the simulations in Section 7.5.2). Unlike MCMCDA algorithm developed in [103], 

[104], PF-JPDAF algorithm only uses the measurements acquired at the current time step 

for the target state estimation. Thus, PF-JPDAF only requires modest resources utilization 

when it is applied for on-line multiple target tracking in wireless sensor networks. 

 

7.3 Problem Formulation of Multiple Target Tracking in Wireless Sensor Networks  
      for the Development of PF-JPDAF Algorithm 

This section formulates the problem of tracking multiple targets for the development of PF-

JPDAF algorithm for wireless sensor networks. It describes the state-space model specified 

for the multiple target tracking in wireless sensor networks, defines the joint measurement 

to target association vector in the presence of multiple targets and clutter, and establishes 

the measurement likelihood in the presence of multiple targets.  
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7.3.1 State Space Model for Multiple target tracking 

Throughout this chapter, it is assumed that the number of targets is known and fixed during 

the whole period of the tracking task. The number of targets is denoted as T , and 

Tt ,...,1=  denotes one of the T  targets. The state vector of the t -th target at the k -th time 

step is designated as kt ,x . The joint state of  T  targets is the concatenation of the 

individual target state and designated as ( ) TtkTktkk ,...,1,...,,..., ,,,1 == xxxX . It is 

further assumed that the individual target evolves independently; therefore, the system 

model is composed of  T  partial equations with each corresponding to a target: 

 

( ) Ttktktktkt ,...,1, ,1,,, == − vxfx                                    (7.1) 
 

where kt ,f  can be nonlinear and non-Gaussian function. kt ,v  is the process noise which is 

assumed to be Gaussian with zero-mean and the known covariance matrix kt ,Q , i.e., 

( )ktkt N ,, ,0~ Qv . It is also assumed  kt ,v  is independent over different targets.  

As in the previous chapters, it is also assumed that each target evolves according to the 

near constant velocity (CV) model. Equation 7.1 then becomes 

 
Ttktktktkt ,...,1,1,,, =+= − vxAx                                   (7.2) 

 

where kt ,A  is the state transition matrix for the t -th target at the k -th time step and it 

remains the same as in Chapter 4 (refer to Equation 4.4). 

We assume that there are sN  sensing nodes within a sensor cluster participate in the 

tracking task at every time step. sNn ,...,1=  is denoted one of the sN  sensing nodes. The 

full set of measurements obtained at the n -th sensing node is designated as 

( ) n
k

n
kl

n
kj

n
k

n
k ljn

k
,...,1,,...,,...,

,,,1 == zzzZ .  n
kl  is the total number of measurements acquired 

by the n -th sensing node at the k -th time step. In general, n
kl  is a random variable itself. 

The measurements set n
kZ  is comprised of the measurements generated by the targets (the 

number is represented by n
kTl , ) and the measurements generated by the clutter (the number 

is represented by n
kCl , ). It is apparent that n

kC
n

kT
n
k lll ,, += . The measurements in n

kZ  are 

assumed to be independent of each other at the n -th sensing node, and independent of 
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those at the other sensing nodes. The cumulative measurements acquired at the n -th 

sensing node from the initial time step to the k -th time step is designated as 

( )n
k

nn
k ZZZ ,...,0:0 = .  At time step k , the concatenated measurements over all sN  sensing 

nodes that are involved in the tracking task is denoted as 

( ) s
N
k

n
kkk Nns ,...,1,,...,,...,1 == ZZZZ , and accordingly, the cumulative measurement 

over all sN  sensing nodes from the initial time step to the k -th time step is denoted as 

( )kk ZZZ ,...,0:0 = . 

For the target originating measurements, they have been defined in the previous chapters. 

We rewrite them as follows: 

 

( ) ( )n
k

n
kn

kkt

ktn
kj ljTt

S
,...,1,,...,12

,

,
, ∈∈+

−
= n

rρ
z              (7.3) 

 
where ktS ,  is the intensity of the acoustic signal generated by the t -th target at time step k .  

n
kn  is the measurement noise at the n -th sensing node and it is assumed to be Gaussian 

with zero mean and known covariance matrix n
kR , i.e. ( )n

k
n
k N Rn ,0~ .  It is also assumed 

that n
kn  is independent over different sensing nodes and also not correlated with the process 

noise kt ,v .  kt ,ρ  and n
kr  are the position coordinates of the t -th target and the n -th sensing 

node at time step k , respectively. It is assumed throughout this chapter that all sensing 

nodes are static.  

The clutter originated measurements are assumed to be independent and uniformly 

distributed over the observation space V  of a sensing node with the probability:  

  

( ) ( ) ( )n
kC

n
kj

n
kj

n
kj

n
k lj

V
pP ,,,,,0 ,...,11measurment originatedclutter   theis ∈== zzz  

 (7.4) 
                  

where the first subscript 0  in n
kP ,0  refers to the clutter and the superscript n  refers to the 

n -th sensing node. In the previous chapters, the assumption has already made that that all 

sensing nodes have the same observation space V .  
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In target tracking, it is commonly assumed that the number of clutter originated 

measurements in the observation space V  follows a Poisson probability mass function 

(pmf) given by [27] 

                            ( ) ( ) ( )
!

exp
,

,

,

n
kC

l
n

kC
n

F l
VVlP

n
kCλλ−=                                           (7.5) 

 
where λ  is the clutter rate which is defined as the number of clutter originated 

measurements per unit volume of the observation space V of a sensing node. 

The assumptions that have been made in both Section 4.2 of Chapter 4 and Section 5.2 

of Chapter 5 are retained throughout this chapter. In addition, some assumptions are made 

here for the derivation of PF-JPDAF tracking algorithm: each of the targets can generate at 

most one measurement at a sensing node at a particular time step, but may go undetected 

by a sensing node; part or all of the measurements may be due to the clutter. The above 

assumptions are commonly made in the literature and adopting these assumptions will not 

lead to the losing of the generality of the PF-JPDAF algorithm. 

 

7.3.2 Data Association and Measurement Likelihood 

In the presence of multiple targets and clutter, the measurements obtained at an individual 

sensing node are normally unlabelled and it is necessary to assign the measurements to 

their originating targets. Therefore, we introduce a joint measurement to target association 

vector for each of the sensing nodes participating in the tracking task. It is assumed that this 

joint measurement to target association vector is independent over each sensing node.  

At the k -th time step, for the n -th sensing node the joint measurement to target 

association vector is defined as 

 

n
kj

l

j

n
k

n
k

,
1
θθ

=
= I                                                          (7.6) 

 

where the individual component n
kj ,θ  is a measurement and target pair, and it is defined as  

 

{ }⎩
⎨
⎧

∈
=

tjTt
jn

kj  target from originated is t  measuremen if,...1
clutter  todue is t  measuremen if0

,θ         (7.7) 
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Note that in the above equations, the superscript n  refers to the n -th sensing node and the 

first subscript j  refers to one of the n
kl  measurements. 

For the n -th sensing node, the conditional probability density function of the above 

joint measurement to target association vector at time step k  can be expressed as 

 

( ) ( )
( ) ( )n

k
n

k
n
k

n
k

n
k

n
k

n
k

n
k

n
k

Pp
c

pp

θθ

θθ

1:0

1:0:0

,1

,

−

−

=

=

ZZ

ZZZ
                                  (7.8) 

 

where c  is the normalization constant. The conditioning on the total measurement number 
n
kl  is implicit in the measurement to target association vector n

kθ . ( )n
kP θ  is the prior 

probability of the joint measurement to target association vector and will be defined later. 

The first term in Equation 7.8, ( )n
k

n
k

n
kp 1:0, −ZZ θ  can be factorized as follows 
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( ) ( )∏∏

∏

∈
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j
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k
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,,
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ZzZZ θθ
                    (7.9) 

 

where { }{ }n
k

n
kj

n ljg ,...,1,0,0 ∈== θ  and { }{ }n
k

n
kj

n
t ljg ,...,1,0, ∈≠= θ  stand for the 

subsets of the measurement indices corresponding to the clutter originating measurements 

and the targets originating measurements acquired by the n -th sensing node, respectively. 

( )n
kj

n
kP ,,0 z  is the probability distribution of the clutter originating measurements and it has 

been defined in Equation 7.4. ( )n
k

n
kj

n
tp 1:0, −Zz  is the predictive likelihood and it can be 

computed by 

 
( ) ( ) ( ) kt

n
kkt

n
tkt

n
kj

n
t

n
k

n
kj

n
t dppp ,1:0,,,1:0, xZxxzZz ∫ −− =                   (7.10) 

 

In the above equation, ( )n
kkt

n
tp 1:0, −Zx  is the probability density function of the predicted 

state of the t -th target at the k -th time step and it is obtained from the prediction step of 

the Bayesian recursive equations (refer to Chapter 4 and repeated in Equation 7.15). 
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( )kt
n

kj
n
tp ,, xz  is the measurement likelihood of the j -th measurement at the n -th sensing 

node regarding the t -th target. It can be computed by  

 

( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −−−=

−

kt
n
k

n
kj

n
k

T
kt

n
k

n
kj

n
k

kt
n

kj
n
tp ,,

1
,,,, 2

1exp
2

1 xHzRxHz
R

xz
π

  (7.11) 

 

where n
kR  is the covariance matrix of the measurement noise at the n -th sensing node and 

n
kH  is the Jacobian matrix of the measurement function. In PF-JPDAF, Equations 7.10 and 

7.11 are calculated by particles. Details will be discussed in the next section. 

Substituting Equations 7.4 and 7.9 into Equation 7.8, the probability density function of 

the joint measurement to target association vector at time step k  becomes 

 

( ) ( ) ( ) ( )n
k

gj

n
k

n
kj

nln
k

n
k PpV

c
p

n
t

n
kj

n
kC θθ

θ∏
∈

−
−= 1:0,:0

,

, .1 ZzZ                      (7.12)                  

 

where ( )n
kP θ , the prior probability of the joint measurement to target association vector 

takes the following form [47] 

 

                                      ( ) ( ) ( ) ( ) n
t

n
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d
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t
d

n
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n
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k

n
kCn

k PPlP
l

l
P δδθ −

=

−= ∏ 1

1
,

, 1
!
!

                       (7.13)                            

 

where n
tδ  is the target detection indicator, and 1=n

tδ  indicates that the t -th target is being 

detected at the n -th sensing node. ( )n
kC

n
F lP ,  is the probability distribution of the number of 

clutter originated measurements and it has been defined in Equation 7.5. dP  denotes the 

probability of the target being detected or the detection rate. As in Chapter 5, in this chapter 

we still assume dP  is time invariant and takes the same value across all sensing nodes.  

Substituting Equations 7.5 and 7.13 into Equation 7.12, the conditional probability 

density function of the joint measurement to target association vector for the n -th sensing 

node at the k -th time step can now be written as  
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( ) ( ) ( ) ( ) ( )∏∏
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−
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n
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n
k pPP

c
p 1:0,

1

1
':0 11

, ZzZ δδλθ            (7.14) 

 

where 'c  is the normalization constant. 

Based on the above derived probability density function of the joint measurement to 

target association vector, next section will present the general JPDAF methodology in the 

context of wireless sensor networks and then develop the PF-JPDAF algorithm by adopting 

particles  to represent the probability density functions of  the target state.  

 

7.4 The Design of PF-JPDAF 

The JPDAF is the well-know methodology for multiple target tracking. The original 

formulation of JPDAF assumes linear and Gaussian systems [47]. Recently, several authors 

use particles to represent the probability density function of the target state, and thus extend 

the original JPDAF to the general nonlinear and non-Gaussian systems [48], [129]. We 

adopt a similar approach and further extends it to multiple target tracking in wireless sensor 

networks. The PF-JPDAF algorithm developed in this section takes into account the unique 

characteristics of wireless sensor networks, and incorporates the hierarchical sensor 

network architecture and sensing nodes selection scheme to achieve distributive tracking of 

multiple targets under measurement origin uncertainty in wireless sensor networks. This 

section starts with an introduction of the methodology of general JPDAF and then details 

the development of PF-JPDAF for the multiple target tracking in wireless sensor networks. 

 

7.4.1 General Methodology of JPDAF 

JPDAF does not manipulate the probability density function of the joint target 

state ( )kkp :0ZX , where ( ) TtkTktkk ,...,1,...,,..., ,,,1 == xxxX  directly. In contrast, it 

recursively updates the marginal probability density function of each individual target state, 

i.e. ( ) Ttp kkt ,...,1,:0, =Zx  through the recursive Bayesian estimation as follows: 

 
Prediction step: 

 
( ) ( ) ( ) Ttdppp ktkktktktkkt ,...,11,1:01,1,,1:0, == −−−−− ∫ xZxxxZx            (7.15) 
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Filtering step: 

 
( ) ( ) ( ) Ttppp kktktkkkt ,...,11:0,,:0, =∝ −ZxxZZx                      (7.16) 

 

In JPDAF, the prediction step is preformed independently for each of the T  targets. 

However, the filtering step cannot be performed independently for each target. This is 

because the measurement likelihood for the t -th target, ( ) Ttp ktk ,...,1,, =xZ  in 

Equation 7.16 cannot be computed independently and explicitly for each target due to the 

data association ambiguity (i.e. we do not know which measurement originated from which 

target). JPDAF tackles this problem by performing a soft assignment for each component 

(i.e. each measurement and target pair) in the joint measurement to target association 

vector according to the corresponding probabilities of these components. The complete 

procedure of the above soft assignment is detailed as follows. 

Similar to the single target tracking algorithms developed in the previous chapters, the 

multiple target tracking algorithm developed in this chapter also adopts the hierarchical 

sensor network architecture and sensor nodes clustering to achieve the distributive tracking 

of multiple targets. The following derivations assume the tracking task takes place in one 

sensor cluster; at every time step over the whole tracking period, the cluster leader activates 

a set of sN  sensing nodes (the number and individual sensing node of this set of sN  

sensing nodes may vary from time step to time step), collects measurements from these 

sensing nodes, solves data association problem and updates the estimate of each target state. 

It needs to emphasize here that the PF-JPDAF algorithm developed in this section is readily 

extendable to its distributive counterpart (i.e. the distributive PF-JPDAF) to track multiple 

targets move over a series of sensor clusters just as the distributive PF-PDAF developed in 

Chapter 6.    

At the k -th time step, the measurement likelihood for the t -th target, ( )ktkp ,xZ  in the 

filtering step (Equation 7.16) is factorized over sN  sensing nodes and can be written as 

follows:  

 

( ) ( ) ( ) Ttpp
s

n
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n

l

j
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n
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n
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n
tjktk ,...,1

1
,,,, =

⎥
⎥
⎦

⎤

⎢
⎢
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⎡
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=

xzxZ β              (7.17) 
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where ( )
k

n
tj ,β  is the probability that the j -th measurement obtained at the n -th sensing 

node is generated by the t -th target at the k -th time step. It is necessary to emphasize that 

( )kt
n

kj
n
tp ,, xz  in Equation 7.17 is the measurement likelihood of the j -th measurement at 

the n -th sensing node regarding the t -th target;  ( )ktkp ,xZ  is the mixture measurement 

likelihood for the t -th target that span over all sensing nodes and all measurements 

acquired by these sensing nodes. 

Now the task is to compute the association probability ( )
k

n
tj ,β , where sNn ,...,1=  ranges 

over all participating sensing nodes, n
klj ,...,1=  ranges over all  measurements obtained at 

the n -th sensing node, Tt ,...,1=  ranges over all targets. In JPDAF, the association 

probability ( )
k

n
tj ,β  is computed by summing over the marginal probabilities of the 

corresponding components (measurement and target pairs) as follows 

  
( ) ( )

( )
∑
∈

=
k

n
tj

n
k

n
k

n
kk

n
tj p

,
~

:0,
λθ

θβ Z                                             (7.18) 

 

where ( )
k

n
tj ,

~λ   is the set of all valid components (measurements and targets pairs) that are 

over all measurements n
klj ,...,1=  and all targets Tt ,...,1=  for the n -th sensing node 

during the k -th time step. The probability density function of the joint measurement to 

target association vector ( )n
k

n
kp :0Zθ  has been computed in Equation 7.14.  

To illustrate the above JPDAF strategy, Table 7.1 exemplifies a tracking scenario at one 

particular time step. It consists of two targets (T1 and T2) and three measurements (1, 2 

and 3). The first column of Table 7.1 is the index of all feasible components in the 

measurement to target association vector. In the second column, the numbers 1, 2 and 3 

refer to the measurements that are assigned to the target T1 or T2 and the number 0 means 

that there is no measurement assigned to a given target. The third column calculates each 

probability density function of the measurement to target association vector for the given 

measurements and targets pairs based on Equation 7.14, where ( )n
k

n
kjtj pg 1:0,, −= Zz  is the 

predictive measurement likelihood and will be derived in the next subsection.  

Using Table 7.1, ( )
k

n
tj ,β  can be calculated as follows. For target T1 (note 1,0β  means 

there are no measurements assigned to target T1):  
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                                              (7.19) 

 

Similarly, for target T2: 

10742,3

13632,2

12922,1

118512,0

PPP

PPP

PPP
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++=

++=

++=

+++=

β

β

β

β

                                              (7.20) 

                 
 
               Table 7.1 The calculation of each component in the joint measurement 

                             to target association vector  

  Index Targets 
    T1     T2 ( )n

k
n
kp :0Zθ  

      1 0       0 ( ) 321 λdP−  

      2 0       1 ( ) 2
2,1 1 λdd PPg −  

      3 0       2 ( ) 2
2,2 1 λdd PPg −  

      4 0       3 ( ) 2
2,3 1 λdd PPg −  

      5 1       0 ( ) 2
1,1 1 λdd PPg −  

      6 1       2 λ2
2,21,1 dPgg  

      7 1       3 λ2
2,31,1 dPgg  

      8 2       0 ( ) 2
1,2 1 λdd PPg −  

      9 2       1 λ2
2,11,2 dPgg  

     10 2       3 λ2
2,31,2 dPgg  

     11 3       0 ( ) 2
1,3 1 λdd PPg −  

     12 3       1 λ2
2,11,3 dPgg  

     13 3       2 λ2
2,21,3 dPgg  

                 

The above process essentially enumerates all possible components (measurement and 

target pairs) in the joint measurement to target association vector for the purpose of 

computing the association probability ( )
k

n
tj ,β . However, the above process may lead to 

very heavy computation burden when the number of targets and measurements increases. 
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Hence, some pruning and gating techniques need to be applied. Refer to the next section 

for a discussion.  

 

7.4.2 The Implementation of PF-JPDAF 

In the original JPDAF, the Kalman filter is employed to obtain the one step in advance 

prediction (Equation 7.15) and to calculate the measurement likelihood (Equation 7.11). 

And the mixture likelihood as defined in Equation 7.17 is collapsed into a single Gaussian, 

so that the Kalman filter update is also obtained for the filtering step as defined in Equation 

7.16. In contrast to the original JPDAF, the PF-JPDAF uses particles’ representation 

instead of using Gaussian representation. More specifically, for each of the T  targets, the 

probability density function of the target state ( ) Ttp kkt ,...,1,:0, =Zx  is represented by a 

set of  N  particles with their weights, i.e.  { } Ttw N

i
i

kt
i

kt ,...,1,,
1,, =
=

x . 

Assuming the probability density function of each target state, 

( ) Ttp kkt ,...,1,1:01, =−− Zx  at the ( )1−k -th time step is already known and represented 

by a set of particles { } Ttw N

i
i

kt
i

kt ,...,1,,
11,1, =
=−− x , now the task is to compute 

( ) Ttp kkt ,...,1,:0, =Zx , the probability density function of each target state for the k -

th time step given the measurements obtained at the sN  sensing nodes. Similar to the 

generic PF algorithm, the transition prior is taken as the state proposal distribution and the 

T  sets of new particles for the states of the T  targets are generated from it: 

 
    ( )i

kt
i

kt
i

kt p 1,,, ~ −xxx ,  NiTt ,...,1;,...,1 ==                           (7.21) 
 

Note that other forms of the state proposal distribution can be developed, for example, the 

optimal proposal distribution discussed in Chapter 4. However, due to the data association 

ambiguity, such proposal distribution is not easy to construct; and even such proposal 

distribution is constructed, it might not directly lead to an improvement in the overall 

performance of the tracking algorithm. This issue will be discussed in Section 7.4.3. 

After the new particles are generated, the predictive likelihood in Equation 7.10 can be 

straightforwardly approximated by these particles: 

 

      ( ) ( )∑
=

− ≈
N

i

i
kt

n
kj

n
t

n
k

n
kj

n
t pp

1
,,1:0, xzZz , Tt ,...,1=                         (7.22) 
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where the measurement likelihood ( )i
kt

n
kj

n
tp ,, xz  can be expressed as  

 

( ) ( ) ( ) ( ) ⎥⎦
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⎡ −−−=

− i
kt

n
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n
kj

n
k

Ti
kt

n
k

n
kj

n
k

i
kt

n
kj

n
tp ,,

1
,,,, 2

1exp
2

1 xHzRxHz
R

xz
π

  (7.23) 

 
By substituting Equations 7.22, 7.23 into Equation 7.14, the conditional probability density 

function of the joint measurement to target association vector ( )n
k

n
kp :0Zθ  is obtained. In 

turn, by using Equation 7.18, the measurement to target association probabilities ( )
k

n
tj ,β  

can be computed. And finally, the measurement likelihoods for all T  targets can be 

calculated based on Equation 7.17; and according to these likelihoods, the new importance 

weights for each particles set (each particles set corresponds to one target) can then be 

obtained as follows 

 
( )i

ktkt
i

kt
i

kt pww ,1,, xZ−∝ ,   Tt ,...,1=                                   (7.24) 
 

Finally, for each of the T  targets, a new particle set { } Ttw N

i
i

kt
i

kt ...,1,,
1,, =
=

x   is obtained 

and then used to approximate the probability density function of the target state, 

i.e. ( ) Ttp kkt ...,1,:0, =zx  at the k -th time step. The complete PF-JPDAF is listed in 

Algorithm 7.1. 

 
Algorithm 7.1: PF-JPDAF for multiple target tracking in wireless sensor networks  

1.At the initial time step 0=k , for Tt ,...,1= , draw particles Ni ,...,1=   

   from the target’s prior state ( )0,0, ~ tt
i
t p xx . 

2. For ...,2,1=k , do the following: 

              2.1 For Tt ,...,1= , Ni ,...,1= , sample  ( )i
kt

i
kt

i
kt p 1,,, ~ −xxx .                                            

              2.2 For sNn ,...,1= , do  

•  For Tt ,...,1= , n
klj ,...,1=  and Ni ,...,1=  compute the predictive 

    measurement likelihood  
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     ( ) ( )∑
=

− ≈
N

i

i
kt

n
kj

n
t

n
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n
kj

n
t pp

1
,,1:0, xzZz  

 
• For Tt ,...,1= , n

klj ,...,1= , enumerate all valid measurement to target association pairs 

    at the n th sensing node to form the set ( )
k

n
kj ,

~λ .  

• For ( )
k

n
tj

n
k ,

~λθ ∈ , compute the conditional probabilities of the joint measurement 

    to target association vector 
 

         ( ) ( ) ( ) ( ) ( )∏∏
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−

−
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−=
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k
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n
k

n
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t
d
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n
k pPP

c
p 1:0,

1

1
':0 11 ZzZ δδ
λθ                   

        
• For Tt ,...,1= , n

klj ,...,1= , compute the association probability ( )
k

n
tj ,β  by summing 

   over the marginal probabilities of the corresponding components (measurement and  

   target pairs) in the joint measurement to target association vector 

 
     ( ) ( )

( )
∑
∈

=
k

n
tj

n
k

n
k

n
kk

n
tj p

,
~

:0,
λθ

θβ Z  

              2.3 For Tt ,...,1= , Ni ,...,1=  compute the measurement likelihood  
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              2.4 For Tt ,...,1= , Ni ,...,1=  compute and  normalize the particle weights 
 

      ( )i
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      ∑
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j
kt

i
kt

i
kt www
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,,,
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              2.5 Resampling: for Tt ,...,1= ,  Ni ,...,1=  
      Multiply/suppress samples i

kt ,x with high/low importance weights i
ktw ,

~   to obtain N  

      random samples approximately distributed according to ( )kktp :0, Zx ; 

      Set 1
,,

~ −== Nww i
kt

i
kk . 

 

In the above PF-JPDAF tracking algorithm, it is required to enumerate all valid 

measurement and target pairs. However, the number of valid measurement and target pairs 

increases exponentially with the increase of the number of targets in the sensor field. 

Therefore, it is necessary to reduce the number of such measurement and target pairs to a 
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feasible level. Gating is a popular approach to achieve this reduction [47]. For each target a 

validation region is constructed and only the measurements that fall within this validation 

region are considered as possible candidates to be associated with the particular target. 

However, this chapter doesn’t explicitly implement the gating procedure. Instead, a soft-

gating scheme is implemented in this chapter, in which, at each time step, only a set of 

sensing nodes closest to the targets are selected to participate the tracking task (refer to the 

simulations in Section 7.5 for details). 

Similar to the distributive PF-PDAF developed in Chapter 6, by adopting the 

hierarchical sensor network architecture and the GMM model, the distributive PF-JPDAF 

has also been developed. The simulation illustrates the distributive PF-JPDAF algorithm 

for distributively tracking multiple targets in wireless sensor networks (refer to the tracking 

scenario depicted in Figure 7.10). 

 

        7.4.3 Target State Proposal Distribution 

In the above PF-JPDAF algorithm, the transition prior is taken as the target state proposal 

distribution:                         

 
  ( ) ( )1,,1,, , −− = ktktkktkt p xxZxxπ    for   Tt ,...,1=                          (7.25) 

 
It leads to a straightforward approach in which the new particles are generated from the 

target dynamics. However, as pointed out in the previous chapters, such proposal 

distribution may lead to divergence of the whole algorithm since the state space is explored 

without taking account of any knowledge of the measurements. It is proved in the literature 

that the optimal proposal distribution that minimize the variance of the importance weights 

is in the following form [38]: 

 
( ) ( )

( ) ( )1,,,

1,,1,, ,,

−

−−

≈

=

ktktktk

kktktkktkt

pp

p

xxxZ

ZxxZxxπ
  for   Tt ,...,1=                (7.26) 

 
where ( )ktkp ,xZ  is the measurement likelihood that only conditions on the target state, 

and ( )1,, −ktktp xx  is the probability density function of target dynamics. However, for 

single and multiple target tracking under measurement origin uncertainty, it is generally not 

possible to obtain a closed-form expression for the above optimal proposal distribution due 

to the data association uncertainty.  
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To construct the proposal distributions other than the transition prior, one approach is to 

approximate the optimal target proposal distribution by defining a mixture state proposal: 

part of the new particles is sampled from the target dynamics (e.g. transition prior); other 

part of the new particles is sampled from a mixture in which each component of the 

mixture is attributed to one measurement and target pair at one sensing node. This mixture 

state proposal distribution is defined as follows: 

 

( ) ( ) ( ) ( )n
kjktkt

N

n

l

j
jnktktkktkt

s
n
k

p ,1,,
1 1

,1,,1,, ,1, zxxxxZxx −
= =

−− ∑ ∑−+= πγηηπ  Tt ,...,1=  (7.27)         

 

where 10 ≤≤η  is the factor that balances the contributions of the transition prior and the 

mixtures to the entire proposal distribution. jn,γ  ( n
ks ljNn ,...,1;,...,1 == ) are the mixture 

weights and ∑∑
= =

=
s

n
kN

n

l

j
jn

1 1
, 1γ .  It is further assumed that the mixture component in Equation 

7.27 takes the following form: 

 
( ) ( ) ( )1,,,,,1,, , −− ∝ ktktkt
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kjktkt pp xxxzzxxπ                       (7.28) 

 
where ( )kt

n
kj

n
tp ,, xz  is the measurement likelihood of the j -th measurement which is 

acquired at the n -th sensing node with respect to the t -th target (Equation 7.11).  Equation 

7.28 can be further approximated by a Gaussian as follows:  
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where  kt ,Q  is the covariance matrix of the process noise of the t -th target at the k -th time 

step, n
kt ,H  is the Jacobian evaluated at the predicted target state 1,,,ˆ −= ktktkt xAx  and it is 

given as follows: 
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where [ ]ktktkt yx ,,, ˆˆˆ =x  is the predicted target position and [ ]nnn ΥΧ=r  is the position 

of the n -th sensing node.  ktS ,  is the acoustic signal energy of the t -th target.                       

 However, the performance of the above mixture state proposal greatly depends on the 

problem to be solved at hand. We found that the PF-JPDAF adopting the above mixture 

proposal distribution does not outperform the PF-JPDAF adopting the transition prior as 

the proposal distribution. This is because the measurements used to calculate the mixture 

components include both the target and clutter originating measurements; although parts of 

the new particles which are generated by the target originating measurements can lead PF-

JPDAF to explore the areas in the state-space closing to the positions of the targets, the 

other parts of new  particles which are generated by the clutter originating measurements 

may mislead PF-JPDAF to explore the areas in the state space that may be even far away 

from the positions of targets. Moreover, the PF-JPDAF adopts the mixture proposal 

distribution introduces extra computation burdens in the wireless sensor networks.              

 

         7.5 Simulations  

To evaluate the performance of the PF-JPDAF algorithm developed in this chapter, 

extensive simulations have been conducted on two synthesized tracking scenarios as 

depicted in Figure 7.1: the first scenario is two crossing targets tracking; and the second 

scenario is two close-spaced paralleling targets tracking.  

For the first tracking scenario, two different tracking schemes have been implemented 

and evaluated. The first scheme assumes that all sensor nodes form one single sensor 

cluster and a single PF-JPDAF algorithm is executed for target state estimation. The second 

scheme is a distributive tracking scheme, it partitions the whole sensor field into several 

smaller regions with each region occupied by a sensor cluster; and in each sensor cluster, 

PF-PDAF algorithm or PF-JPDAF algorithm is performed for target state estimation. The 

simulation setup for the above multiple target tracking scenarios is summarized as follows. 
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PF-JPDAF algorithm is tested with the different settings of clutter and detection rates for 

both crossing targets tracking and close-spaced paralleling targets tracking. In the 

simulations, 50 independent Monte Carlo runs are conducted for each setting; and for an 

individual Monte Carlo run, the ground truth of the target remains unchanged while the 

target originated measurements are regenerated according to Equation 7.3 at each time step. 

The magnitude of target signal is assumed to be time-invariant and takes the same value for 

each target, i.e. 2,15000, == tS kt . The measurement noise is set to ( )1,0~ Nn
kn  for 

all sensing nodes at each time step.  

 

(a)

(b)  
 

 Figure 7.1 Two synthesized multiple target tracking scenarios 
                                        (a) Two crossing targets  (b) Two close-spaced paralleling targets 
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Throughout this chapter, the assumption has been made that the measurement range of 

each sensing node is 200 m . For an individual sensing node, the clutter originating 

measurements are simulated to be uniformly distributed in a square with the size of 400 m  

×  400 m  centered at the location of this sensing node. The number of clutter originating 

measurements follows the Poisson distribution as defined by Equation 7.5. The magnitudes 

of the clutter generated signal are set as the same as that of the target (i.e. 5000) and also 

corrupted by the Gaussian noise ( )1,0N . By assuming the same magnitude for the signal 

generated by the target and clutter, the difficulty of recognizing the origins of the 

measurements is greatly increased; hence we can assess the PF-JPDAF algorithm’s ability 

in effectively solving the data association problem. 

In the simulation, the prior estimate of each target state is assumed to be Gaussian with 

the mean vector 00x  and covariance matrix 00P : 
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where truthx  is the ground truth of the target at time step 0=k  (i.e. the initial position of the 

target).  The particles number used in the PF-JPDAF algorithm is 1000. 

As in the previous chapters, two types of RMSEs are used to assess the performance of 

PF-JPDAF algorithm: the nRMSE  which is computed by averaging over all time steps for 

each individual Monte Carlo run, and the kRMSE  which is computed by averaging over 

all Monte Carlo runs (i.e. 50 runs) for each time step. The mathematical definition of these 

two RMSEs can be found in Chapter 4 and are not repeated here.  

 

7.5.1 Simulation Results of Tracking Two Crossing Targets  

To evaluate the performance of PF-JPDAF algorithm in effectively tracking two crossing 

targets, two different sensing nodes deployment strategies are adopted. In the first 

deployment strategy (hereinafter named as Layout 1, Figure 7.2), total 24 sensing nodes are 

distributed covering the area in which the two targets will traverse. The distances between 

two sensing nodes are 40 m  and 20 m  in X- and Y- coordinates, respectively. During the 

whole period of the tracking task, at each time step, a set of eight sensing nodes are 
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selected to make acoustic measurements and transmit their measurement to the cluster 

leader (the cluster leader is not drawn in Figures 7.2). In the second deployment strategy 

(hereinafter named as Layout 2, Figure 7.3), in the area where two targets are far away, the 

sensing nodes are distributed along the roadside of each target; in the area where two 

targets will move closely, the sensing nodes are distributed to cover the area. During the 

time steps 18~1=k , a set of 20 sensing nodes (enclosed in the two black ellipses in Figure 

7.3) are selected to make measurements and transmit their measurement to the cluster 

leader, the distance between two sensing nodes is 10 m ; during the time steps 37~19=k , 

a set of 16 sensing nodes (enclosed in a rectangle in Figure 7.3) are selected to make 

measurements and transmit their measurement to the cluster leader, the distances between 

two sensing nodes are 21 m  and 13 m  in X- and Y- coordinates, respectively; and during 

the  time steps 56~38=k , a set of 20 sensing nodes (enclosed in the two blue ellipses in 

Figure 7.3) are selected to make measurements and transmit their measurement to the 

cluster leader, the distance between two sensing nodes is 10 m .  

The sensing nodes selections in the above Layouts 1 and 2 are empirically decided for 

the PF-JPDAF algorithm to attain desirable tracking accuracy at the reasonable 

computation cost. However, the sensing nodes selection schemes developed in Chapter 6 

can be extended and adopted in PF-JPDAF algorithm for multiple target tracking. It will 

involve extensive mathematical derivation and computation arising from the presence of 

multiple targets [152], [153]. Sensing nodes selection scheme for multiple target tracking 

will not be discussed in this thesis. 
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K=1 ~18

K=19 ~37

K=38 ~56

 
 

    Figure 7.2 The sensing nodes deployment for tracking two crossing targets (Layout 1) 
                                    (k is the time step and the sensing nodes enclosed in the ellipses denote the 
                                    selected sensing nodes at each time step.)  

 

K=1 ~18

K=19 ~37

K=38 ~56

 
  

    Figure 7.3 The sensing nodes deployment for tracking two crossing targets (Layout 2) 
                                    (k is the time step and the sensing nodes enclosed in the ellipses denote the 
                                     selected sensing nodes at each time step.)  
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Simulation results of PF-JPDAF using Layout 1   

Figure 7.4 depicts the estimated trajectories of two crossing targets obtained by the PF-

JPDAF algorithm using Layout 1 under four different sets of clutter and detection 

rates: 0Cd,1Pd == ; 5.0Cd,1Pd == ; 0Cd,9.0Pd == ; and 5.0Cd,9.0Pd == . Note that 

the above results are averaged over 50 Monte Carlo runs. Figures 7.5 and 7.6 show the 

RMSE values of two crossing targets using Layout 1 under the settings of  0Cd,1Pd ==  

and 5.0Cd,9.0Pd == , respectively.  

 

(a)

(c)

(b)

(d)  
                
                  Figure 7.4 Estimated trajectories of two crossing targets under different settings of detection                      
                                     and clutter rates (Layout 1) 
                                     (a) 0Cd,1Pd ==                      (b) 5.0Cd,1Pd ==   
                                     (c) 0Cd,9.0Pd ==                   (d) 5.0Cd,9.0Pd ==  
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(a)

(c)

(b)

(d)  
                             

               Figure 7.5 RMSE values of PF-JPDAF algorithm for tracking two crossing targets  
                                            with the setting of  0Cd,1Pd ==  (Layout 1) 
                                            (a) kRMSE  of  Target 1              (b) nRMSE  of  Target 1                 
                                            (c) kRMSE  of  Target 2              (d) nRMSE  of  Target 2 
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(a)

(c)

(b)

(d)  
                      

                  Figure 7.6 RMSE values of PF-JPDAF algorithm for tracking two crossing targets  
                                              with the setting of  5.0Cd,9.0Pd ==   (Layout 1)     
                                             (a) kRMSE  of  Target 1                  (b) nRMSE  of  Target 1                 
                                             (c) kRMSE  of  Target 2                  (d) nRMSE  of  Target 2 

 

From Figures 7.4, 7.5 and 7.6, it can be seen that when measurement origin uncertainty 

is low, the PF-JPDAF algorithm can track two crossing targets well; especially when there 

is no clutter and missed detections, i.e. 0Cd,1Pd == , the estimated trajectories of two 

targets almost fit the true trajectories (Figure 7.4 (a)) and the magnitudes of nRMSE  

values of  two targets in most runs are less than 10 m  (43 runs out of total 50 runs for 

target 1 and 45 runs out of total 50 runs for target 2. Refer to Figures 7.5 (b) and 7.5 (d)). 

However, the performance of PF-JPDAF algorithm is deteriorated when the clutter rate is 
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increased or the detection rate is decreased; when the measurement origin uncertainty 

changes to 5.0Cd,9.0Pd == , the estimated trajectories deviates from the true trajectories 

(Figure 7.4 (d)) and the magnitudes of nRMSE  values of  two targets in many runs are 

larger than 50 m   (13 runs out of total 50 runs for target 1 and 17 runs out of total 50 runs 

for target 2. Refer to Figures 7.6 (b) and 7.6 (d)). The relatively poor performance under 

higher clutter rates is because the sensing nodes in Layout 1 are sparsely deployed: some 

sensing nodes are laid far away from the both targets; and at these sensing nodes, the 

magnitude of clutter originated measurements might be larger than that of target originated 

measurements. This will increase the difficulty in solving the data association problem; and 

as a consequence, the deterioration on the overall performance of the PF-JPDAF algorithm 

can be expected.   

 

Simulation results of PF-JPDAF using Layout 2  

Figure 7.7 depicts the estimated trajectories of two crossing targets obtained by the PF-

JPDAF algorithm using Layout 2 under four different sets of clutter and detection 

rates: 0Cd,1Pd == ; 5.0Cd,1Pd == ; 0Cd,9.0Pd == ; and 5.0Cd,9.0Pd == . Note that 

these results are also averaged over 50 Monte Carlo runs. Figures 7.8 and 7.9 show the 

RMSE values of two crossing targets using Layout 2 under the settings of 0Cd,1Pd ==  

and 5.0Cd,9.0Pd == , respectively.  

From Figures 7.7, 7.8 and 7.9, it can be seen that the PF-JPDAF algorithm using Layout 

2 can track two crossing targets very well when the measurement origin uncertainty is low; 

and when the measurement origin uncertainty becomes large, the performance of the PF-

JPDAF algorithm may be deteriorated. However, comparing Figures 7.7~7.9 with Figures 

7.4~7.6, it can be seen that the PF-JPDAF algorithm using Layout 2 outperforms the PF-

JPDAF algorithm using Layout 1. At the setting of 5.0Cd,9.0Pd ==  (i.e. measurement 

origin uncertainty is large), for the PF-JPDAF algorithm adopting Layout 2, the nRMSE  

values in 12 runs out of 50 runs exceed 50 m  for target 2 and the nRMSE  values in all 50 

runs are below 10 m  for target 1. In contrast, for the PF-JPDAF algorithm adopting Layout 

1, the nRMSE  values in 17 runs out of 50 runs exceed 50 m  for target 2 and the nRMSE  

values in 13 runs out of 50 runs exceed 50 m  for target 1. The better performance of 

Layout 2 over Layout 1 inspired us to develop a distributive multiple target tracking 

scheme as described in the next section. 
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(a)

(c)

(b)

(d)  
                   
                    Figure 7.7 Estimated trajectories of two crossing targets under different settings of detection                      
                                     and clutter rates (Layout 2) 
                                     (a) 0Cd,1Pd ==                      (b) 5.0Cd,1Pd ==   
                                     (c) 0Cd,9.0Pd ==                  (d) 5.0Cd,9.0Pd ==  



 216 

(a)

(c)

(b)

(d)  
                              
                         Figure 7.8 RMSE values of PF-JPDAF algorithm for tracking two crossing targets  
                                             with the setting of  0Cd,1Pd ==  (Layout 2) 
                                             (a) kRMSE  of  Target 1                  (b) nRMSE  of  Target 1                 
                                             (c) kRMSE  of  Target 2                  (d) nRMSE  of  Target 2 
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(a)

(c)

(b)

(d)  
                        
                            Figure 7.9 RMSE values of PF-JPDAF algorithm for tracking two crossing targets  
                                              with the setting of  5.0Cd,9.0Pd ==   (Layout  2)     
                                              (a) kRMSE  of  Target 1             (b) nRMSE  of  Target 1                 
                                              (c) kRMSE  of  Target 2             (d) nRMSE  of  Target 2 

 
 

7.5.2 Simulation Results of Distributively Tracking Two Crossing Targets  

Figure 7.10 depicts the scenario of distributively tracking two crossing targets. The sensor 

field, the trajectories of two targets, the sensing nodes and the simulation set-up are all 

remained the same as in Layout 2 (Figure 7.3). However, instead of treating all the sensing 

nodes in the sensor field to form one sensor cluster, the whole sensor filed in Figure 7.10 is 

divided into five adjoining regions and in each region several sensing nodes and one leader 
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node (the leader nodes are not drawn in Figure 7.10) form a sensor node cluster. Hence, 

there are total five sensor clusters. The above five adjoining regions are named as Region 

1a, Region 2a, Region 1c, Region 2c and the Joint Region. There are 10 sensing nodes in 

each of the Region 1a, 2a, 1c and 2c and 16 sensing nodes in the Joint Region. Two targets 

start to move in Region 1a and Region 2a, respectively. In Region 1a and Region 2a, the 

single target tracking is performed separately for each target by using PF-PDAF algorithm 

developed in Chapter 5. When the two targets enter the Joint Region, the multiple target 

tracking is performed by using PF-JPDAF algorithm. After the two targets leaving the Joint 

Region and enter Region 1c and Region 2c, the single target tracking is performed again 

for each of them by using PF-PDAF algorithm. The GMM model developed in Chapter 6 is 

used for the propagation of the estimation results amongst sensor clusters. 

joint

1a 2a

2c 1c

 
              Figure 7.10 Distributively tracking two crossing targets in adjoining regions  

 

Figure 7.11 depicts the estimated trajectories of two targets obtained by the above 

distributive two crossing targets tracking scheme under four different settings of clutter and 

detection rates: 0Cd,1Pd == ; 5.0Cd,1Pd == ; 0Cd,9.0Pd == ; and 5.0Cd,9.0Pd == . 

In Figure 7.11, the circle represents the handover time steps that one cluster leader 
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transmits its estimation results to the next cluster leader (the details of the handover of 

estimation results can be found in Chapter 6). Figures 7.12 and 7.13 show the RMSE 

values of two targets obtained by the distributive two crossing targets tracking scheme 

under the settings of 0Cd,1Pd ==  and 5.0Cd,9.0Pd == , respectively.  

 

(a)

(c)

(b)

(d)  
              
                  Figure 7.11 Estimated trajectories of two crossing targets with different settings of detection                       
                                     and clutter rates using distributive tracking scheme 
                                     (a) 0Cd,1Pd ==              (b) 5.0Cd,1Pd ==   
                                     (c) 0Cd,9.0Pd ==          (d) 5.0Cd,9.0Pd ==  

                       (The circles denote the handover time step that one cluster leader transmits 
                        its estimation results to the next cluster leader.) 
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(a)

(c)

(b)

(d)  
                        
                          Figure 7.12 RMSE values for distributively tracking two crossing targets with the  
                                             setting of  0Cd,1Pd ==   
                                             (a) kRMSE  of  Target 1        (b) nRMSE  of  Target 1                 
                                             (c) kRMSE  of  Target 2        (d) nRMSE  of  Target 2 
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(a)

(c)

(b)

(d)  
                          
                             Figure 7.13 RMSE values for distributively tracking two crossing targets with the  
                                                setting of 5.0Cd,9.0Pd ==   
                                                (a) kRMSE  of  Target 1        (b) nRMSE  of  Target 1                 
                                                (c) kRMSE  of  Target 2        (d) nRMSE  of  Target 2 

 

From Figure 7.11, it can be seen that the handover of estimation results between the 

cluster leaders does not cause the significant distortion on the overall performance of the 

distributive tracking scheme. This is because in multiple target tracking under measurement 

origin uncertainty due to the presence of multiple targets and clutter, the overall 

performance of the tracking algorithm is greatly decided by the data association problem, 

i.e. to which extend the measurement generated by one target can be correctly picked up 

from the measurements generated by other targets or clutter. It can be seen from Figures 
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7.12 and 7.13 that the higher measurement origin uncertainty degrades the tracking 

accuracy of the distributive tracking scheme as it does in the normal PF-JPDAF algorithm 

adopting Layouts 1 and 2. 

Figure 7.14 compares the performance of PF-JPDAF algorithm using Layout 1, PF-

JPDAF algorithm using Layout 2, and the distributive tracking scheme for tracking two 

crossing targets. Figures 7.14 (a)-(c) show the result under the setting of 0Cd,1Pd ==  

and Figures 7.14 (d)-(f) show the result under the setting of 5.0Cd,9.0Pd == . It can be 

seen that the distributive tracking scheme outperforms other two schemes (Layout 1 and 

Layout 2) under both settings.  

The superior performance of the distributive tracking scheme is due to the use of two 

separate PF-PDAF algorithms in the Regions 1a and 2a and in Regions 1c and 2c (Figure  

7.10), instead of using a single PF-JPDAF to jointly estimate the states of the two targets 

throughout the whole sensor field. Although the GMM approximation is used in the 

distributive tracking scheme when one cluster leader propagates its estimation result to the 

next cluster leader and this may have some impacts on the tracking accuracy, however, the 

simulation results show that the performance of the distributive tracking scheme does not 

degrade much.  Moreover, the distributive tracking scheme is more computational efficient 

than other two schemes. In the simulations, the distributive tracking scheme takes 23.66 

seconds for 56 time steps estimation of two targets states while the PF-JPDAF algorithm 

adopting Layout 1 takes 40.51 seconds and PF-JPDAF algorithm adopting Layout 2 takes 

85.82 seconds.  
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(a) Layout 1, Pd=1, Cd=0

(b) Layout 2, Pd=1, Cd=0

(c) Distributive tracking, Pd=1, Cd=0

(d) Layout 1, Pd=0.9, Cd=0.5

(e) Layout 2, Pd=0.9, Cd=0.5

(f) Distributive tracking, Pd=0.9, Cd=0.5

 
                Figure 7.14 RMSE values of PF-JPDAF algorithm using Layout 1, PF-JPDAF algorithm  
                                   using layout2, and  the distributive tracking scheme       
                           (a) Layout 1  0Cd,1Pd ==                       (d) Layout 1  5.0Cd,9.0Pd ==   
                           (b) Layout 2  0Cd,1Pd ==                       (e) Layout 2  5.0Cd,9.0Pd ==  
                           (c) Distributive tracking 0Cd,1Pd ==      (f) Distributive tracking 5.0Cd,9.0Pd ==   
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7.5.3 Simulation Results of Tracking Two Close-spaced Paralleling Targets 

Figure 7.15 depicts the simulation setup for tracking two close-spaced paralleling targets as 

depicted in Figure 7.1 (b). It is assumed that the tracking task takes place in one sensor 

cluster which consists of one cluster leader (the cluster leader is not drawn in the figure) 

and 18 sensing nodes deployed along the road on which the targets traverse. At each time 

step, a set of six sensing nodes are selected from these 18 sensing nodes to make 

measurements and transmit their measurements to the cluster leader. The above sensing 

nodes selection is based on their positions and is empirically decided for the PF-JPDAF 

algorithm to attain desirable tracking accuracy at the reasonable computation cost. 

 

For k=1 ~14

For k=15 ~30

For k=31 ~48

 
   

  Figure 7.15 The scenario of tracking two close-spaced paralleling targets 
                                 (During time step k=1 ~14, the sensing nodes within the black ellipse  
                                 are selected; During time step k=15 ~30, the sensing nodes within the  
                                 red ellipse are selected; During time step k=31 ~48, the sensing nodes  
                                 within the blue ellipse are selected)  

 

Figure 7.16 depicts the estimated trajectories of two close-spaced paralleling targets 

obtained by the PF-JPDAF algorithm under four different sets of clutter and detection 

rates: 0Cd,1Pd == ; 5.0Cd,1Pd == ; 0Cd,9.0Pd == ; and 5.0Cd,9.0Pd == . Figures 

7.17 and 7.18 show the RMSE values of the two targets under the setting of 0Cd,1Pd ==  

and 5.0Cd,9.0Pd == , respectively.  
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(a)

(c)

(b)

(d)  
   

 Figure 7.16 Estimated trajectories of two paralleling targets under different  
                                              settings of detections and clutter rates 
                                              (a) 0Cd,1Pd ==                      (b) 5.0Cd,1Pd ==   
                                              (c) 0Cd,9.0Pd ==                  (d) 5.0Cd,9.0Pd ==  
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(a)

(c)

(b)

(d)  
                
                    Figure 7.17 RMSE values of PF-JPDAF algorithm for tracking two paralleling targets with  
                                        the setting of 0Cd,1Pd ==        
                                       (a) kRMSE  of  Target 1                  (b) nRMSE  of  Target 1                 
                                       (c) kRMSE  of  Target 2                  (d) nRMSE  of  Target 2 
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(a)

(c)

(b)

(d)  
                        
                        Figure 7.18 RMSE values of PF-JPDAF algorithm for tracking two paralleling targets 
                                            with the setting of  5.0Cd,9.0Pd ==   
                                             (a) kRMSE  of  Target 1                  (b) nRMSE  of  Target 1                 
                                             (c) kRMSE  of  Target 2                  (d) nRMSE  of  Target 2 

 

From these figures, it can be seen that when there is no clutter, the PF-JPDAF algorithm 

can track two close-spaced paralleling targets well (Figures 7.16 (a) and 7.16 (c)). However, 

when clutter exists, the performance of PF-JPDAF algorithm is much deteriorated (Figures 

7.16 (b) and 7.16 (d)). This is because under measurement origin uncertainty, two close-

spaced paralleling targets means a greater challenge is posed for the data association 

problem. This may be even more challenging than the scenario of tracking two crossing 

targets, since in close-spaced paralleling targets tracking, two targets generate almost the 
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same measurements at the sensing nodes (recalled that it is assumed that the acoustic 

intensity takes the same value for both targets).  

Although the above simulations are conducted for tracking two targets, the PF-JPDAF 

algorithm developed in this chapter can be used to track more than two targets without any 

change in the algorithmic design. 

 

7.6 Summary  

This chapter addresses the problem of tracking multiple targets under measurement origin 

uncertainty in the wireless sensor networks. The PF-JPDAF multiple target tracking 

algorithm has been developed. By making use of the particle’s representation of the 

probability density functions of the target state and effectively solving the challenging data 

association problem, PF-JPDAF algorithm can be applied to track multiple targets with 

nonlinear measurement model and under measurement origin uncertainty in wireless sensor 

networks.  
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Chapter 8 

Conclusion and Future Work 

 

8.1 Conclusion 

Target tracking is a representative application of wireless sensor networks. Nevertheless, it 

remains to be a challenging and non-trivial task to design target tracking algorithms for 

wireless sensor networks. Such challenges arise from the unique characteristics of wireless 

sensor networks, especially the highly dynamic topology and connectivity of sensor 

networks, and the constrained energy resource and communication bandwidth available for 

individual sensor nodes. To address these challenges, this thesis developed the 

collaborative information processing techniques that jointly tackle both information 

processing and networking issues for the distributive estimation of target state in the highly 

dynamic and resources constrained wireless sensor networks.    

Taking into account the interplay between information processing and sensor network 

architecture, this thesis proposed a collaborative information processing framework for 

target tracking applications in wireless sensor networks. By jointly addresses the 

information processing issue which is responsible for the representation, fusion and 

processing of data and information and the networking issues which caters for the network 

formation, data and information delivery and wireless channel management, this 

framework could provide a unified approach for the distributive target state estimation in 

wireless sensor networks. 

Within the proposed collaborative information processing framework, this thesis 

developed a suite of target tracking algorithms on the basis of the recursive Bayesian 

estimation method. For tracking a single target in wireless sensor networks, four tracking 

algorithms were developed, namely the sequential extended Kalman filter (S-EKF), the 

sequential unscented Kalman filter (S-UKF), the Particle filter (PF), and the novel hybrid 

extended Kalman and Particle filter (EKPF). The PF and EKPF tracking algorithms use 

discrete samples (particles) to approximate the probability density function of the target 

state and thus they can be applied to more general non-Gaussian and non-linear target 
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tracking problems in wireless sensor networks. Especially, the novel EKPF algorithm 

integrates the EKF into PF to propagate particles to higher measurement likelihood area in 

the state-space. The simulation results showed that the EKPF outperformed other three 

algorithms in terms of tracking accuracy and robustness. Despite the EKPF requiring 

greater computational efforts than PF, it is possible to reduce the particles used in the 

EKPF to mitigate this without incurring any loss in performance. Moreover, to help 

evaluate the performance of the developed tracking algorithms, the posterior Cramer-Rao 

lower bound (PCRLB) which is the theoretical lower bound on the mean square error 

(RME) of the target state estimation was computed and compared for the above four 

tracking algorithms. 

In most practical target tracking applications in wireless sensor networks, the sensor 

nodes may yield unlabelled measurements due to clutter and missed detections. Moreover, 

multiple targets, which are not sufficiently separated temporally and spatially in the sensor 

field, may also lead to unlabelled measurements at sensor nodes. Such measurement origin 

uncertainty leads to the challenging data association problem. To tackle the data 

association problem, this thesis developed a hybrid algorithm which integrate the Particle 

filter (PF) with the probability density association filter (PDAF), named as PF-PDAF 

tracking algorithm for single target tracking under the dual assumptions of clutter and 

missed detections. The PF-PDAF tracking algorithm combines the advantages of PDAF 

algorithm in effectively solving the data association problem with the merits of PF that can 

accommodate the general non-Gaussian, nonlinear state-space model. In order to provide a 

theoretical bound on the performance of PF-PDAF algorithm, the PCRLB under 

measurement origin uncertainty was also derived and computed. It was shown that under 

measurement origin uncertainty, the measurement contribution to the PCRLB is a product 

of PCRLB when there is no measurement origin uncertainty and a scalar information 

reduction factor (IRF). Similar to PF-PDAF, this thesis also developed a hybrid algorithm 

which integrate the Particle filter (PF) with the joint probability density association filter 

(JPDAF), named as PF-JPDAF tracking algorithm for multiple target tracking under the 

measurement origin uncertainty in wireless sensor networks. By adopting the particles’ 

representation of the probability density function of the target state, the PF-JPDAF extends 

the JPDAF to solve the general non-linear non-Gaussian multiple targets tracking problems 

in wireless sensor networks.  

Given the limited energy and communication bandwidth of individual sensor nodes, a 

critical consideration in the design of wireless sensor networks is that most of the 
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information processing and exchange must take place at a local level (e.g., within a cluster 

of sensor nodes) to reduce the communication overhead and energy consumption. By 

adopting the hierarchical network architecture to achieve dynamic sensor nodes clustering 

and utilizing the Gaussian mixture model (GMM) to propagate estimation results amongst 

sensor clusters, this thesis developed distributive PF, distributive EKPF, distributive PF-

PDAF tracking algorithms for single target tracking and the distributive PF-JPDAF 

tracking algorithm for multiple target tracking in wireless sensor networks. In these 

distributive tracking algorithms, a number of sensor clusters are dynamically formed within 

the sensor field and each sensor cluster occupies a smaller region. At each time step, in the 

active sensor cluster, a portion of sensing nodes are selected based on their information 

utility and energy consumption measures; these sensing nodes are then activated to sense 

and provide their measurements to the cluster leader, which then runs the tracking 

algorithm to update the probability density function of the target state. When the target 

moves out of the current sensor cluster, the current cluster leader forwards its estimation 

results in the GMM format to the new cluster leader. This process will continue until the 

target moves out of the sensor field. To facilitate the sensing nodes selection in the 

distributive tracking algorithms, a composite objective function incorporating both the 

information utility and the energy consumption measures was developed in this thesis. This 

composite objective function enables the distributive tracking algorithms to achieve the 

desirable tracking accuracy while still maintaining the lowered energy consumption.   

 

8.2 Future Work 

The work reported in this thesis can be extended in several ways. Some potential topics of 

further research are provided as follows. 

 

Extension of PF-JPDAF Algorithm to Track Unknown and Varying Number Targets  

In this thesis, the PF-JPDAF algorithm is successfully applied to track multiple targets 

under measurement origin uncertainty in wireless sensor networks. However, in the 

practical tracking problems the number of targets may vary significantly over the tracking 

period since the targets may enter or leave the area under observation. As a consequence, 

both the number and identity of the targets needed to be estimated. Therefore, one 

extension of PF-JPDAF is to account for an unknown and variable number of targets: 

correctly detect the entering and leaving targets, maintain a unique identification for each 
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target, and update the target state estimate throughout the whole tracking period in the 

wireless sensor networks. 

Computation of PCRLB for Multiple Target Tracking 

In previous chapters, the PCRLB has been calculated for single target tracking. We also 

want to calculate the PCRLB to provide a theoretical lower bound on the performance of 

the multiple target tracking algorithms developed for wireless sensor networks. However, 

in multiple target tracking, the existence of multiple targets and clutter poses a major 

challenge in the PCRLB computation.  

 

Sensing Nodes Selection for Multiple Target Tracking 

As in single target tracking, we want to develop a composite objective function for sensing 

node selection in multiple target tracking. However, in the presence of multiple targets and 

clutter, the calculation of the composite objective function will be complicated, and with 

the increasing number of targets, the enumeration of all possible combinations of sensing 

nodes become intractable and it is necessary to develop the approximation solutions.  

 

Networking Algorithms for Target Tracking in Wireless Sensor Networks 

In chapter 3, the networking algorithms including the hierarchical routing algorithm and the 

hybrid MAC algorithm have been proposed. In the future research, we aim to implement these 

algorithms and integrate them into distributive target state estimation algorithms. However, this is a 

challenging task and need to consider many aspects of system requirements and tradeoffs in 

wireless sensor networks. 
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