
 148

Chapter 6

Distributive Tracking in Wireless Sensor Networks

This chapter develops the distributive tracking algorithms for tracking a single target in

wireless sensor networks. Based on the collaborative information processing framework

and the hierarchical sensor network architecture proposed in Chapter 3, this chapter extends

PF, EKPF and PF-PDAF algorithms developed in Chapters 4 and 5 for distributively

tracking a single target over a number of sensor clusters in the sensor field. To conserve

communication bandwidth in propagating the estimation results amongst the sensor clusters,

this chapter adopts the Gaussian mixture model (GMM) to approximate the probability

density function of the target state. Moreover, this chapter develops a composite objective

function to assist sensing nodes selection in the distributive tracking algorithms for the

purpose of conserving energy consumption while still maintaining the desirable tracking

accuracy in the wireless sensor networks.

6.1 Introduction

In PF, EKPF and PF-PDAF tracking algorithms developed in Chapters 4 and 5, the

probability density function of the target state is updated based on the measurements

obtained by a set of active sensing nodes within one sensor cluster. In principle, this sensor

cluster can be expanded to include all sensing nodes deployed in the sensor field with the

cluster leader collecting the measurements from all these sensing nodes to update the target

state estimate. However, such a centralized scheme would require intensive communication

resources and energy consumption since a large number of sensing nodes need to transmit

their measurements to the cluster leader. For sensing nodes far from the cluster leader,

multi-hop routing is needed which corresponds the energy requirements. Therefore, it is

imperative to lower the communication overheads and energy consumption while still

maintaining the desirable tracking accuracy through the development of distributive

tracking schemes.

This chapter aims to develop distributive algorithms for tracking a single target in

wireless sensor networks within the collaborative information processing framework

 149

proposed in Chapter 3. Across the whole sensor field, a number of sensor clusters are

dynamically formed according to the geometry of the sensing nodes and the predicted

position of the target. Each sensor cluster occupies a smaller region within the sensor field;

this complies with the assumptions we have made in Chapter 3 that the sensing nodes are

only equipped relatively short range radio transmitters. At each time step, only one sensor

cluster is active; and a portion of sensing nodes within this sensor cluster are activated to

sense and provide their measurements to the cluster leader, which then runs the tracking

algorithm (i.e., either PF or EKPF or PF-PDAF) to update the probability density function

of the target state (hereafter named as “belief”). After updating the target state estimate, the

cluster leader computes the distance between itself and the predicted position of the target

at the next time step. If this distance is larger than a pre-defined threshold, the cluster

leader initiates a new cluster leader election process by broadcasting a message to its

neighbouring leader nodes. The details of cluster leader election and the following sensor

cluster formation can be found in Chapter 3. When the election process completes, the

current cluster leader forwards its belief to the new cluster leader. The new cluster leader

selects sensing nodes within the newly formed sensor cluster, activating these sensing

nodes, collecting their measurements and updating the “belief”. The above process will be

continued until the target moves out of the sensor field. By this way, the estimation of the

target state is updated sequentially in a distributive manner. Figure 6.1 depicts the scenario

of distributive tracking a single target in a wireless sensor network.

To facilitate distributive target tracking, this chapter adopts a Gaussian mixture model

(GMM) to approximate the “belief”. Instead of transmitting a high volume of particles data ,

the current cluster leader only transmits a handful of GMM parameters to the next cluster

leader. This will greatly conserve communication bandwidth and energy consumption in a

wireless sensor network. Moreover, this chapter develops a composite objective function

incorporating both the information utility measure and the energy consumption measure to

facilitate the sensing node selection in the distributive tracking algorithms. This composite

objective function will enable the distributive tracking algorithms to achieve the desirable

tracking accuracy while still maintaining lowered energy consumption.

The organization of this chapter is as follows. Section 6.2 presents the Gaussian mixture

model (GMM) which is adopted to approximate the “belief” of target state. The

Expectation-Maximization (EM) algorithm which is used to compute the parameters of

GMM is also detailed. Section 6.3 presents the sensing node selection scheme that can be

integrated into the distributive tracking algorithms to further address the trade-off between

 150

tracking accuracy and energy consumption. Section 6.4 implements the distributive PF,

EKPF and PF-PDAF tracking algorithms. Section 6.5 conducts the simulation and Section

6.6 summarizes this chapter.

Target Trajectory

Target

Report

Control Centre

QueryLeader Node

Sensing Node

Sensor Cluster

Figure 6.1 Distributive target tracking in a wireless sensor network

6.2 Gaussian Mixture Model (GMM) for the Propagation of Target State Estimate

6.2.1 GMM for the Approximation of Probability Density Function of the Target State

In the distributive target tracking as depicted in Figure 6.1, the current cluster leader needs

to transmit its “belief”, i.e. the probability density function of the target state ()kkp :0zx

to the next cluster leader when the target leaves the current sensor cluster. For PF, EKPF

and PF-PDAF tracking algorithms developed in the previous chapters, at the k -th time step

()kkp :0zx is approximated by a set of weighted particles as follows:

() () ()∑
=

∗−=≈
N

i

i
kkkkkk

N
pp

1
:0:0

1
ˆ xxzxzx δ (6.1)

where ()kkp :0ˆ zx is the particles’ approximation of the probability density function of the

target state. Note that in PF, EKPF and PF-PDAF algorithms, the particles { } N

i
i

k 1=
∗x have

equal weights of
N

1 after the resampling step. Therefore, to propagate the “belief” from

 151

the current cluster leader to the next cluster leader, a high volume of data (i.e. particles)

needs to be transmitted. In previous chapters, we use 1000 particles in PF and PF-PDAF

and 200 particles in EKPF for an acceptable level of tracking performance. This would

require tremendous amount of power and bandwidth for communication and might not be

feasible in the resource constrained wireless sensor networks. To address this problem, it is

proposed that the Gaussian Mixture Model (GMM) be used to approximate the probability

density function of the target state, ()kkp :0zx .

The GMM is a mixture of several Gaussian distributions and its probability density

function is defined as a weighted sum of Gaussians. By using the GMM, ()kkp :0zx can

be approximated as follows:

() () ()jPjpp k

M

j
kk xzx ∑

=

≈
1

:0 (6.2)

In Equation 6.2, M is the number of mixture components. () Mjjp k ,...,1, =x are the

probability density functions of the mixture components which are Gaussian distributions

with mean vector Mjj ,...,1, =µ and covariance matrix Mjj ,...,1, =Σ , i.e.

() ()jjkk Njp Σµxx ,;~ . () MjjP ,...,1, = are the weights of the mixture components

(called the mixing coefficients) which satisfy () 10 << jP and () 1
1

=∑ =

M
j

jP . In the

remaining of this chapter, the mixing coefficient ()jP , the mean jµ and the covariance

jΣ are referred to as the GMM parameters. Note that we discard the time step index k in

the GMM parameters for the sake of clarity and this would not cause any ambiguity.

Given the probability density function ()kkp :0zx which is represented by N

particles, now our purpose is to find a M -component GMM to approximate it. This

problem can be considered as an unsupervised learning in which the particles are generated

by the individual components of the Gaussian mixture distribution and we don’t have the

knowledge of which particle was generated by which component of such mixture

distribution [19], [156]. Therefore, our task is to map N particles into M classes and

calculate the GMM parameters (){ } MjjP jj ,...,1,, =Σµ for each of the M mixture

components.

Normally, the maximum likelihood (ML) method can be adopted to estimate the GMM

 152

parameters. In ML method, the negative log-likelihood for the right-hand side of Equation

6.2 can be written as

() ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∗

==

∑∑ j
i

M

j

N

i

jpL θx ,ln
11

θ (6.3)

where { }N

i
i

1=
∗x are particles (the time index k is also dropped for the sake of clarity) and

(){ } M

jjjj jP
1

,,
=

= Σµθ are GMM parameters to be calculated. By differentiating

Equation 6.3 with respect to jµ and jΣ , we could obtain the ML solution for estimating

the GMM parameters as follows [156]:

()

()∑

∑

=

∗

=

∗∗

= N

i

i

N

i

ii

j

jP

jP

1

1

x

xx

µ (6.4)

()()()

()∑

∑

=

∗

=

∗∗∗ −−

= N

i

i

N

i

T
j

i
j

ii

j

jP

jP

1

1

x

µxµxx

Σ (6.5)

() ()∑
=

∗=
N

i

ijP
N

jP
1

1
x (6.6)

However, the quantity ()∑
=

∗
N

i

ijP
1

x in Equations 6.4, 6.5 and 6.6 is difficult to compute

analytically. Hence, the GMM parameters ()[] MjjP jj ,...,1,,, =Σµ can not be

obtained explicitly by the above ML method. Therefore, we need to resort to the

expectation maximization (EM) algorithm [134] to compute the GMM parameters.

6.2.2 Expectation Maximization (EM) Algorithm for Parameter Estimation

The EM algorithm is an iterative method for estimating the unknown parameters from an

incomplete dataset [158]. Here, the term “incomplete” refers to the “hidden” information in

the dataset. In the above GMM approximation problem, the “hidden” information refers to

 153

the knowledge of mapping between the GMM components and the particles, i.e. which

component ()Mjj ...,1, ∈ of GMM generated which particle ()Nii ...,1, ∈ . This

section briefly reviews the generic EM method for unknown parameters estimation and

next section will derive the EM algorithm for estimating the GMM parameters for

constructing the GMM model to approximate the probability density function of the target

state ()kkp :0zx .

Let’s define a complete dataset { } N
iii yx 1, = which consists of two subsets of univariate

variables: a subset of N univariate variables { }N
iix 1= whose values are known; and a

subset of N hidden univariate variables { } N
iiy 1= whose values aren’t known. It is assumed

that both { }N
iix 1= and { }N

iiy 1= are independently and identically distributed (i.i.d). The

unknown parameters to be decided by EM algorithm for the above dataset is denoted as θ .

The negative log-likelihood of the incomplete dataset { }N
iix 1= and the complete dataset

{ } N
iii yx 1, = over this unknown parameter θ are as follows:

() ()θθ i

N

i
xpL ∑

=

=
1

ln (6.7)

() ()θθ ii

N

i
yxpL ,ln

1

comp ∑
=

= (6.8)

where ()θii yxp , is the joint probability density function of both known and hidden

variables given the parameter θ . In EM algorithms, we aim to maximize ()θL . However,

we may not be able to explicitly maximize it. Instead, we try to maximize ()θcompL .

Unfortunately, due to the unknown variables { } N
iiy 1= , ()θcompL cannot be maximized

directly either. To tackle this difficulty, we take the expectation of Equation 6.8 with

respect to some joint distribution over all iy , denoting as ()yq where { }N
iiy=y as

follows:

 154

() () ()

() () (){ }

() () () ()

() () ()

() () ()θθ

θθ

θθ

θθ

θθε

Ldxypq

xpdxypq

dxpqdxypq

xpxypE

yxpE

ii

N

i

N

i
iii

N

i

i

N

i
ii

N

i

iii

N

i
q

ii

N

i
q

+=

+=

+=

⎥⎦
⎤

⎢⎣
⎡=

⎥⎦
⎤

⎢⎣
⎡=

∑∫

∑∑∫

∑∫∑∫

∑

∑

=

∞

∞−

==

∞

∞−

=

∞

∞−
=

∞

∞−

=

=

yy

yy

yyyy

y

y

,ln

ln,ln

ln,ln

,ln

,ln

1

11

11

1

1

comp

 (6.9)

Recall the i.i.d assumption of the “hidden” variables { }N
iiy 1= made earlier in this section,

we have () ()m
N
m m yqq ∏ =

=
1

y and thus Equation 6.9 becomes

() () () ()

() () ()θθ

θθθε

Lydxypyq

Ldxypyq

iii

N

i
ii

ii

N

i
m

N

m
m

+=

+⎥⎦
⎤

⎢⎣
⎡=

∑ ∫

∑ ∫ ∏

=

∞

∞−

=

∞

∞−
=

,ln

,ln

1

1 1

comp y
 (6.10)

In Equation 6.10, all terms in the product for which im ≠ can be integrated independently

and being densities evaluate to unity, thus we made the simplification in the equation.

It can be seen that all terms in Equation 6.10 are functions of the unknown parameters θ .

Now we wish to adapt those parameters for the purpose of increasing the likelihood ()θL .

Denoting the values of the parameters θ at the τ -th step as τθ and let the joint distribution

over all hidden variables iy take the following form

() ()τθ,iiii xypyq = (6.11)

Then we can rewrite Equation 6.10 for the ()1+τ -th step as

() () () ()11

1

1comp ,ln, ++

=

∞

∞−

+ +=∑ ∫ ττττ θθθθε Lydxypxyp iii

N

i
ii (6.12)

In Equation 6.12, if we adjust 1+τθ to maximize ()1comp +τθε on the left-hand side, since

the first term on the right-hand side is maximized when ττ θθ =+1 , it can only decrease as

 155

1+τθ changes. To maintain equality of Equation 6.12, the second term ()1+τθL must

increase. Therefore, maximizing ()1comp +τθε , which may be able to do explicitly, will

increase the true likelihood ()1+τθL . As mentioned earlier in this section, ()1+τθL is the

likelihood we are interested in. The general EM algorithm is based on this reasoning and it

consists of following two steps [134], [156]:

(1) The Expectation Step to computing the expectation of the complete data log-likelihood

()τθε comp , where the expectation is computed with respect to the distributions

()τθ,ii xyp using the current values of the parameters τθ .

(2) The Maximization Step to determining the new values of parameters 1+τθ by

maximizing ()τθε comp which is computed in the E-step.

The above two steps will be repeated until the likelihood reaches to the maximum.

6.2.3 EM Algorithm for Estimating the GMM Parameters

For the GMM parameters estimation problem defined earlier in this section, the dataset is

regarded as incomplete because we do not know which GMM component

()Mjj ...,1, ∈ generated a given data point ()Nii ...,1, ∈ . Thus, in GMM the hidden

variables { } N
iiy 1= denotes the generating component and each iy takes integer values

range over M...,1 . For the log-likelihood of the complete dataset (Equation 6.8), we take

its expectation with respect to the distribution () ()∏= =
N
i ii xyPq 1 , τθy . Since iy is a

discrete variable, the expectation over all { } N
iiy 1= is simply a combination of N sums:

() () () (){ }

() () ()

()

() () ()

() () ()11

1 1

11

1

1 1 1 1 1

1 1 1 1

11

11

1

1comp

,ln,

,ln,

,

,ln,

,ln

1 1 1

1

++

= =

++

=

= = = = = ≠

= = = =

++

++

=

+

∑ ∑=

⎭
⎬
⎫∑×

∑
⎩
⎨
⎧ ∑ ∑ ∑ ∑ ∏=

∑ ⎥⎦
⎤

⎢⎣
⎡ ∑ ∑ ∏=

⎥⎦
⎤

⎢⎣
⎡ ∑=

− +

τττ

τττ

τ

τττ

τττ

θθθ

θθθ

θ

θθθ

θθθε

iii

N

i

M

y
ii

iii

M

y
ii

N

i

M

y

M

y

M

y

M

y

N

im
mm

N

i

M

y

M

y

N

m
iiimm

iii

N

i
q

yPyxpxyP

yPyxpxyP

xyP

yPyxpxyP

xpxyPE

i

i

i i N

N

KK

K

y

(6.13)

 156

In the derivation of Equation 6.13, we make use of the property ()∑ =
=M

y mm
m

xyP
1

1, τθ .

The above computation of ()1comp +τθε is the Expectation-step of the EM algorithm; in

the Maximization- step, we maximize ()1comp +τθε with respect to the parameters 1+τθ . So

if we differentiate Equation 6.13 and set the derivatives to zero, we can obtain the iterative

expression of 1+τθ . The above derivation of EM algorithms is for the univariate dataset.

However, the results can be extended to the multivariate dataset [156].

Starting with an initial trial values of the GMM parameters (){ } M

jjjj jP
0

0000 ,,
=

= Σµθ ,

the EM algorithm for GMM parameter estimation is performed as follows (note we replace

ix with i∗x to denote the particles) [156]:

1. Expectation Step: computing the probability density function ()τθx ,ijP ∗ for each

particle ()Nii ...,1, ∈ and each mixture component ()Mjj ...,1, ∈ using the current

values of the parameters (){ }jPjj
τττ ,,Σµ

 () () ()

() ()∑
=

∗

∗

∗ =
M

j
jj

i

jj
i

i

jPP

jPP
jP

1
,

,
,

τττ

τττ
τ

Σµx

Σµx
θx (6.14)

2. Maximization Step: computing the re-estimate values for the parameters

(){ }jP 111 ,, +++ τττ Σµ

()

()∑

∑

=

∗

=

∗∗

+ =
N

i

i

N

i

ii

j

jP

jP

1

11

,

,

τ

τ

τ

θx

xθx
µ (6.15)

()()()

()∑

∑

=

∗

=

+∗+∗∗

+

−−
=

N

i

i

N

i

T
j

i
j

ii

j

jP

jP

1

1

11

1

,

,

τ

τττ

τ

θx

µxµxθx
Σ (6.16)

 157

() ()∑
=

∗+ =
N

i

ijP
N

jP
1

1 ,1 ττ θx (6.17)

The above iteration is repeated and the likelihood function increased until a local maximum

is achieved. However, there is no guarantee that the EM algorithm converges to a global

maximum. For example, if the likelihood functions have multiple maxima, the EM

algorithm may converge to a local maximum. Further discussion of convergence of EM

algorithm can be found in [158] and won’t be detailed here. In the simulation conducted in

this chapter, we adopt five components GMM and set the stopping condition for the EM

iterations as the relative change in log-likelihood falling below 0.01 or the number of

iterations reaching 20 for an acceptable level of performance.

With the GMM approximation, the target state estimate can be propagated through the

transmission of a low volume dataset of GMM parameters ()[] MjjP jj ,...,1,,, =Σµ

rather than a high volume dataset of particles. Taking PF-PDAF algorithm as an example,

in the original PF-PDAF 1000 particles need to be transmitted; however, with the use of

five components GMM, in the distributive PF-PDAF only 15 GMM parameters need to be

transmitted.

After receiving the parameters of GMM, the new cluster leader re-draws particles from

the GMM. This is performed straightforward: we first select a component j at random

according to the mixing coefficients ()jP , and then sample from the relevant individual

Gaussian density () ()jjkk Njp Σµxx ,;~ to generate particles.

6.3 Sensing Nodes Selection Scheme

The introduction of distributive tracking algorithm brings with it a need to select sensing

nodes for a sensor cluster. With a partition of the sensor field, each cluster leader only

activates a subset of all sensing nodes. In the interest of further resource economisation, the

cluster leader only activates three sensing nodes that lie closest to the predicted location of

the target instead of all sensing nodes within the cluster and collects their measurements for

target state estimate. Such sensing node selection scheme is intuitively appealing since the

SNR is stronger for sensing nodes close to the target which typically implies that

information obtained from these sensing nodes are more accurate. However, this strategy

does not take into account the energy consumption measure and thus may not help the

distributive tracking algorithms to achieve energy efficiency in a wireless sensor network.

 158

Moreover, there exists many combinations of three sensing nodes within a sensor cluster;

and the combination of the three closest sensing nodes may not achieve the best balance

between tracking accuracy and energy consumption.

This section describes a composite objective function that combines an information

utility measure with an energy consumption measure. By minimizing this composite

objective function, the cluster leader dynamically selects and activates a combination of

three sensing nodes at the beginning of each time step, such that this combination can

provide higher information utility and consumes less energy. In turn, the distributive

tracking algorithms can attain desirable tracking accuracy while still conserve the energy in

wireless sensor networks.

6.3.1 Problem Formulation of Sensing Nodes Selection

In the distributive tracking algorithms, there are two inter-related components: the tracking

component and the sensing nodes selection component. Both components are implemented

on the cluster leader. At the beginning of the k -th time step, the selection component

selects a subset of sensing nodes within the cluster based on the predicted target position 6

and the positions of the sensing nodes in the cluster and the remaining energy in the

sensing nodes. The tracking component then invokes only those selected sensing nodes,

collects their measurements and updates the estimate of target state for the k -th time step.

Figure 6.2 depicts the above process.

It needs to be emphasized that due to the distributive nature of the wireless sensor

networks, the sensing nodes selection has to be done by the cluster leader without the

explicit knowledge of the measurements residing at each sensing node at the beginning pf

each time step. Hence, the sensing nodes selection decision has to be made solely on the

sensing nodes’ characteristics (i.e. the positions of the sensing nodes and the remaining

energy) and the predicted contribution made by the sensing nodes (i.e. the sensing nodes’

contribution to the target state estimation). The assumption has already been made in

Chapter 4 that the cluster leaders know the positions of the sensing nodes. The cluster

leader gets the knowledge of the remaining energy of sensing nodes during the sensor

cluster formation (Refer to Chapter 3). The sensing nodes selection scheme developed in

6 The predicted target’s position is computed through the system model by using the target state estimate

 at the ()1−k -th time step, i.e. 1−= kk
prediction xAx . The target state estimate 1−kx is provided by

 the tracking component at the end of the ()1−k -th time step.

 159

this chapter makes use of the PCRLB to predict the contribution that the sensing nodes

make to the target state estimate.

Sensing Nodes
Selection

Target Tracking

Selection
Decision

Sensor Measurements
Target State
Estimation

Figure 6.2 Sensing node selection and tracking

In energy-constrained wireless sensor networks, energy is a resource to be conserved to

prolong the networks’ operational lifetime. Moreover, it is typically the case that the

energy cost of communications is orders of magnitudes greater than that of local

computation [8]. Therefore, we only consider the energy consumption in communication in

designing the sensing nodes selection scheme. However, other sources of energy

consumptions such as activating the sensing nodes, taking the measurements, and

executing the tracking algorithm may also be incorporated without changing the structure

of the sensing nodes selection scheme developed in this chapter.

To assess the energy consumption in communication, the following radio and signal

processing model is employed [8]:

outsptx edeE .α+= (6.18)

where spe is the energy cost of the signal processing, oute is the radio transmitter output

energy and a simple geometric path loss model is assumed, so that the propagation loss is

proportional to

 160

42
1

≤≤α
αd

 (6.19)

where α is the path loss exponent and d is the transmission distance in meter.

It is assumed that any sensing node within the sensor cluster can transmit its

measurements to cluster leader through the one-hop communication (refer to Chapter 3).

Based on the Equations 6.18 and 6.19, the energy consumption for the n -th sensing node

to transmit its measurement to the cluster leader is modelled as being proportional to the

square distance between itself and the cluster leader:

2leader

k
n
k

n
kc rr −∝ (6.20)

where n
kc denotes the energy consumption of the n -th sensing node when it transmits the

measurement to the cluster leader at the k -th time step, n
kr and leader

kr denote the position

of the n -th sensing node and the cluster leader, respectively.

To take into account the information utility of a combination of sensing nodes, the

posterior Cramer-Rao lower bound (PCRLB) is adopted since it can provide a theoretical

lower bound on the tracking accuracy that tracking algorithms could attain. However, it

needs to emphasis that the PCRLB is computed without using the measurements obtained

by the sensing nodes at the k -th time step since these measurements are not available when

the cluster leader makes the sensing node selection decision (Refer to Chapter 4). For the

sake of integrity, the equations of PCRLB calculation for the k -th time step are re-written

as follows:

()
() 112

1
111

11
21

1
22

1

1

−
−

−
−−−−

−

⎥⎦
⎤

⎢⎣
⎡ +−=

=

kkkkk

kPCRLB

DDJDD

J
 (6.21)

where

 1
1
11

11
1 −

−
−−− = kk

T
kk AQAD (6.22)

 1

11
12

1
−
−−− −= k

T
kk QAD (6.23)

 T

kkk 1
1
1

21
1 −

−
−− −= AQD (6.24)

 ()kkk zJQD += −

−−
1
1

22
1 (6.25)

 161

() () () n
k

n
k

Tn
k

N

n

n
z qk HHJ

20

2

−∑= σ (6.26)

where 0N denotes a combination of 0N sensing nodes, nq2 is the information reduction

factor (IRF) of the n -th sensing node, n
kH is the Jacobian for the n -th sensing node, n

kσ is

the standard deviation of the measurement noise at the n -th sensing node, 1−kA is the

system transition matrix, and 1−kQ is the covariance of the process noise. The calculation

of the above parameters can be found in Chapters 4 and 5.

In sensing nodes selection, the ultimate goal is to select a subset of 0N sensing nodes

out of the total sN sensing nodes in the current sensor cluster. This can be treated as a

constrained optimization problem. Let ka denote the combination of 0N sensing nodes

(named as sensing option) at the k -th time step. The communication cost associated with

sensing option ka is denoted as ()kaΘ and the information utility associated with sensing

option ka is denoted as ()kPCRLB a . Two types of constrained optimization problems for

sensing nodes selection can be formulated:

(1) Minimizing the communication cost

The objective is to activate the lowest communication cost combination of 0N sensing

nodes that maintains a desirable accuracy in the target state estimate. It involves obtaining

the lowest communication cost sensing option ka at the k -th time step such that

()kPCRLB a does not exceed a desired threshold ()ThPCRLB

 ()k

opt
k aa Θ= minarg

 such that () () 0≤− ThPCRLBPCRLB ka (6.27)

(2) Minimizing the tracking error

The objective is to activate the combination of 0N sensing nodes that minimizes the

tracking error subject to the constraints on the communication cost. It involves obtaining

the sensing option ka at the k -th time step such that ()kPCRLB a is minimized subject to

a constraint on the communication cost ()thΘ

 162

 ()k
opt
k PCRLB aa minarg=

such that () () 0≤Θ−Θ thka (6.28)

6.3.2 Brief Review of Sensing Nodes Selection for Target Tracking Applications

Sensing nodes selection is normally referred to as sensor scheduling in the literature.

Recently, it has received considerable attentions in target tracking applications [148]-[151],

[157]. Several sensor scheduling frameworks and optimization techniques have been

developed and a brief review of these works is supplied as follows.

Sensor scheduling algorithms based on the predicted error covariance matrix were

developed in [119], [157]. In [119], a PCRLB based framework was used to schedule the

deployment of sensors to control the tracking accuracy. In [157], a scheduling algorithm

was developed for linear Gaussian models in which the minimum number of sensors was

selected to drive the error covariance matrix to a desired matrix. However, these two

algorithms did not consider the energy consumption of sensors.

In [150] and [151], the sensor scheduling problem was treated as a constrained

optimization problem in which a performance metric (i.e. the predicted tracking

performance or the energy consumption) is optimized under certain constraints (i.e. the

energy consumption or the predicted tracking performance). The optimization problems

were then posed as the binary (0-1) convex programming problems which can be further

simplified to 0-1 mixed integer programming problems under certain assumptions. The (0-

1) convex programming problems and 0-1 mixed integer programming problems were

solved by using outer approximation and linear programming relaxation based branch-and-

bound algorithms. However, the sensor scheduling algorithms developed in [150] and [151]

require complex algorithmic implementation and introduce a heavy computation burden.

In [149], a lightweight sensor scheduling scheme was proposed. Instead of posing the

sensor scheduling as the complex constrained optimization problem, sensor scheduling is

achieved by using an objective function which incorporates both the information utility

measure and the energy consumption measure. However, since the authors in [149] adopted

the single leader-based tracking scheme, only one sensor node is considered in their sensor

scheduling algorithm. In this chapter, we develop a similarly lightweight, composite

objective function based sensor scheduling (sensing nodes selection) scheme, but extended

to scheduling more than one sensing nodes.

 163

6.3.3 Sensing Nodes Selection by Adopting a Composite Objective Function

The proposed composite objective function comprises of an information utility measure

and an energy consumption measure. The information utility measure is based on PCRLB

and the energy consumption measure is decided by the communication cost between the

sensing node and the cluster leader.. Instead of posing the sensing node selection problem

as the constrained optimization problem in Equations 6.26 and 6.27, we solve the sensing

node selection problem by adopting a weighted composite objective function in which the

information utility measure and the energy consumption measure carry the different

weights which are decided by the requirements of the tracking applications. The composite

objective function takes the following form:

 () () () ()kkk PCRLB aaa Θ−+=Ψ αα 1 (6.29)

where ()kPCRLB a and ()kaΘ are the information utility measure and the energy

consumption measure (communication cost) of the sensing option ka , respectively. The

weight []1,0∈α is used to balance the information utility measure ()kPCRLB a and the

energy consumption measure ()kaΘ in the composite objective function. The magnitude

of α depends on the requirements of tracking applications. The adoption of Equation 6.29

for sensing nodes selection avoids the complicated computation in explicitly solving the

constrained optimization problem of Equations 6.27 and 6.28.

For the problem of selecting 0N sensing nodes from total sN sensing nodes within a

sensor cluster, there will be
()000 !

!

NNN

N
N
N

s

ss

−
=⎟

⎠
⎞

⎜
⎝
⎛ possible combinations. Now the objective is to

find a optimal combination of 0N sensing nodes that minimizes ()kaΨ , i.e.

() ⎟

⎠
⎞

⎜
⎝
⎛

∈Ψ=
0

,minarg N
Nj

k
opt
k

sjaa (6.30)

()j
kaΨ is the composite function for the j -th combination of 0N sensing nodes out of

total sN sensing nodes.

The process of choosing the best combination of sensing nodes is straightforward: the

composite objective functions associated with different sensing nodes combinations are

computed according to Equation 6.29; and the sensing nodes combination which leads to

 164

the smallest value of the objective function is selected by the cluster leader. The sensing

nodes in this combination will then be activated to take sensing action and transmit their

measurements to the cluster leader.

It is noted that combination number will become large with the increasing number of

sensing nodes in the sensor cluster. To combat this exponential increase, the sensing node

selection scheme proposed in this chapter is performed in two steps: in the first step, a

small portion of the sensing nodes, say, mN sensing nodes amongst all sN sensing nodes

within the sensor cluster are selected solely based on their locations to the predicted target

position; in the second step, the composite objective function (Equation 6.28) is calculated

for all the possible combination of 0N sensing nodes out of mN sensing nodes. However,

we do not expect a very large number of sensing nodes within one sensor cluster because

sensor cluster is formed in a relative smaller region with relative smaller number of sensor

nodes (refer to Chapter 3). In the simulation conducted in this chapter, at each time step,

five sensing nodes that are closest to the predicted target location are firstly selected, i.e.,

5=mN . Then the composite objective function for each combination of 30 =N sensing

nodes out of 5=mN sensing nodes is calculated. There will be total 10 combinations.

Finally, the three sensing nodes in the combination that gives the smallest value of the

objective function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈Ψ

m
o

N
Njj , is activated to take sensing action and transmit their

measurements to the cluster leader.

In some practical large target tracking applications in wireless sensor networks, it may

be required to collect more measurements from a large number of sensing nodes and

consequently, the combinations number becomes large. Thus, the above exhaustive

computation of all combinations of these sensing nodes may be prohibitive and some

search techniques would be needed [151]. However, the implementation of these search

techniques is beyond the scope of this thesis.

6.4 Distributive PF, EKPF, and PF-PDAF Tracking Algorithms

By making use of the GMM model and the sensing nodes selection scheme, the original PF,

EKPF and PF-PDAF tracking algorithms developed in Chapters 4 and 5 can be readily

extended to their distributed forms, i.e. the distributive PF, EKPF and PF-PDAF tracking

algorithms. The pseudo-code of the distributive PF, EKPF and PF-PDAF is listed in

Algorithm 6.1.

 165

Algorithm 6.1 Distributed PF/EKPF/PF-PDAF Tracking Algorithm

1. The cluster leader of sensor cluster a does the following:
 1.1 For Ni ,...,2,1= draws particle i

kx from the initial probability density function

 of the target state ()0xp .
 1.2 Selects sensing nodes and collects their measurements.
 1.3 Calculates the probability density function ()kkp :0Zx by using
 one of PF/EKPF/PF-PDAF algorithms developed in previous chapters.
 1.4 Computes the GMM approximation of ()kkp :0Zx by Equations 6.14 ~6.17.

 1.5 Forwards GMM parameters to the cluster leader of sensor cluster b
 if the target moves out of sensor cluster a .

2. The cluster leader of sensor cluster b does the following:
 2.1 For Ni ,...,2,1= , draws particles from GMM to approximate

 the prior probability density function ()1:0 −kkp Zx at the previous time step.
 2.2 Selects sensing nodes and collects their measurements.
 2.3 Calculates the probability density function ()kkp :0Zx by using
 one of PF/EKPF/PF-PDAF Algorithms developed in previous chapters.
 2.4 Computes the GMM approximation of ()kkp :0Zx by Equations 6.14 ~6.17.
 2.5 Forwards GMM parameters to the cluster leader of sensor cluster c
 if the target moves out of sensor cluster b .

3. The cluster leader of sensor cluster c repeats the above steps 2.1 ~ 2.6.

6.5 Simulations

This section conducts extensive simulations to evaluate the performance of three

distributive tracking algorithms namely distributive PF, distributive EKPF and distributive

PF-PDAF. It also assesses several sensing node selection schemes including the composite

function based sensing node selection scheme for the distributive PF-PDAF.

The simulation setup is chosen to be the same as Chapters 4 and 5 as much as possible.

Figure 6.3 depicts the simulation setup (Figure 6.3 is a repeat of Figure 5.1 in Chapter 5).

The ground vehicle traverses through a two-dimensional (2D) sensor field and four

different tracking scenarios are used in the simulation. These tracking scenarios are

synthesized with different target trajectories, target dynamics, clutter rates, detection rates

and sensing nodes. The target trajectories are digested from a real on-site experiment [23].

Differ from Chapters 4 and 5, the sensor field in each tracking scenario in Figure 6.3 is

partitioned into two regions and in each region, a sensor cluster is formed. This sensor field

partition is for the evaluation of the distributive tracking algorithms and sensing node

selection schemes developed in this chapter. Since two clusters of senor nodes can reveal

 166

the key performance of the “belief” propagation using GMM and sensing node selection

schemes without introducing heavy computations in simulations, we only choose two

sensor clusters and not more sensor clusters in the simulations. However, the distributive

tracking algorithms and the sensing nodes selection schemes developed in this chapter can

be readily applied to track the target over an arbitrary number of sensor clusters in the

wireless sensor networks. Moreover, the above two sensor clusters are formed statically;

however, the dynamic formation of sensor clusters can be achieved within the collaborative

information processing framework proposed in Chapter 3.

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

I
I

I I

II

II

II II

Figure 6.3 Simulation setup for assessing the distributive tracking algorithms
 (V3, V4, V10 and V1 denote four different tracking scenarios with

 different target trajectories, target dynamics and active sensing
 nodes. I and II denote two different sensor clusters)

This section is organized as follows. Subsection 6.5.1 presents the simulation results of

the distributive PF and distributive EKPF algorithms. Subsection 6.5.2 presents the

 167

simulation results of the distributive PF-PDAF algorithm. Subsection 6.5.3 compares four

sensing node selection schemes for the distributive PF-PDAF algorithm, and also presents

the simulation results of the distributive PF-PDAF algorithm that adopts the composite

objective function for the sensing node selection.

6.5.1 The Simulation Results of Distributive PF and Distributive EKPF Algorithms

This section evaluates the tracking accuracy of distributive PF and distributive EKPF

algorithms. In the simulations, at each time step, the cluster leader selects three sensing

nodes that are closest to the predicted target position and collects their measurement for

the update of the “belief”. When the target moves out of the first sensor cluster, the cluster

leader passes its “belief” in GMM format (in the simulation, we use five components

GMM to approximate the “belief”) to the cluster leader in the second sensor cluster (refer

to Chapter 3 for the details of “belief” propagation).

In the simulations, 200 independent Monte Carlo runs are conducted for both

distributive PF and distributive EKPF algorithms. In each Monte Carlo run, the target

trajectory remains unchanged. However, the measurements obtained at the sensing nodes

are synthesized according to the measurement model as defined below:

() ()

n
k

nknk

n
kt

yyxx

S
εξ +

−+−
=

22, (6.31)

where ()kk yx , and ()nn yx , are the positions of the target and the n -th sensing node in x-

and y-coordinate, respectively. S is the source energy and set to 5000 in the simulations.

The background noise is assumed to be Gaussian and set to () s
n
k NnN ...,,2,1,1,0~ =ε

for all sensing nodes. Hence, the SNR is 37 dB at the target position. In the simulations, the

particles number adopted in the distributive PF is 1000 and in the distributive EKPF is 200.

The particles are initialized according to Gaussian with mean vector 00x and covariance

matrix 00P as follows:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=

0
1
0
1

00 truthxx ,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

00P (6.32)

where truthx is the ground truth at time step 0=k (i.e. the initial position of the target).

 168

In the simulations, the root mean square error (RMSE) is used to assess the performance

of the tracking algorithms. As in Chapters 4 and 5, two types of RMSEs are used: the
nRMSE which refers to the RMSE value of the n -th Monte Carlo run that is averaged

over all time steps of the tracking task; and the kRMSE which is the RMSE value of the

k -th time step that is averaged over all Monte Carlo runs (200 runs for both PF and EKPF).

The definition of the above two RMSEs can be found in Chapters 4 and 5 and will not be

repeated here.

Figure 6.4 presents the simulation results of the distributive PF algorithm and the

original PF algorithm developed in Chapter 4 for each of the four tracking scenarios as

depicted in Figure 6.3. Figure 6.5 presents the simulation results of the distributive EKPF

algorithm and the original EKPF algorithm developed in Chapter 4 for each of the four

tracking scenarios. The kRMSE values in Figures 6.4 and 6.5 are computed by excluding

the bottom 50 runs with the lowest nRMSE values and the top 50 runs with the largest
nRMSE values (It is referred to as the processed data in the figures). The purpose of this

data exclusion is to remove the outliner and reduce the bias imposed by the very low or the

very large nRMSE values in some runs of the simulation.

 169

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

 Figure 6.4 The performance of distributive PF and original PF algorithms
 of four tracking scenarios (averaged over the processed data)

 170

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

Figure 6.5 The performance of distributive EKPF and original EKPF algorithms of four
 tracking scenarios (averaged over the processed data)

In Figures 6.4 and 6.5, the dotted circles denote the time steps of “belief” handover

between two cluster leaders. It consists of two kRMSE values: the first kRMSE value is

for the last time step of the first sensor cluster; and the second kRMSE value is for the first

time step of the second sensor cluster. The estimate result obtained at the last time step of

the first sensor cluster is approximated by the GMM and then propagated to the second

sensor cluster. At the first time step of the second sensor cluster, the cluster leader firstly

generates new particles by sampling the above GMM, and then updates its “belief” by

using the measurements collected from the three selected sensing nodes in the second

 171

cluster. However, the above “belief” handover process might degrade the performance of

distributive PF and distributive EKPF algorithms. In V3 tracking scenario (Figures 6.4 (a)

and 6.5 (a)), the handover happens at the time steps 27 and 28, it can be seen that the

magnitudes of RMSE values of both distributive PF and distributive EKPF algorithms at

these two time steps are larger than those of original PF and original EKPF algorithms. In

V4 tracking scenario (Figures 6.4 (b) and 6.5 (b)), the handover happens at the time steps

14 and 15, it can also be found the increase in RMSE in both distributive PF and

distributive EKPF algorithms. The performance degradation during the “belief” handover

time steps in the distributive PF and distributive EKPF algorithms is due to the error

introduced by the GMM approximation. However, as evidenced in both figures, after the

handover period, the cluster leader in the second sensor cluster collects measurements from

the selected sensing nodes to update its “belief” at each time step, and eventually, the

distributive PF and distributive EKPF could attain almost the same tracking accuracy as the

original PF and original EKPF algorithms developed in Chapter 4.

In tracking scenario V1 (Figures 6.4 (d) and 6.5 (d)), the “belief” handover happens at

the time steps 37 and 38 and there is a significant decrease of the magnitude of RMSE from

time step 37 to time step 38 in both distributive PF and distributive EKPF algorithm. This

decrease is due to the fact that when the target moves toward the boundary of the first

sensor cluster, the sensing nodes provide less information (due to their locations to the

target) of target. When the target enters the second sensor cluster, although the GMM

approximation introduces error in target state estimate, the sensing nodes in the second

sensor cluster can provide more accurate information for the target state estimate since they

are closer to the target.

From the above discussion, it can be concluded that the degradation in performance of

distributive PF and distributive EKPF algorithms is not very significantly; both distributive

PF and distributive EKPF algorithms can attain almost the same accurate level as the

original PF and original EKPF algorithms. To propagate the estimation results from one

cluster leader to another cluster leader, only 15 parameters (both distributive PF and

distributive EKPF adopt 5 components GMM) need to be transmitted. In contrast, there

will be 1000 particles (PF) or 200 particles (EKPF) need to be transmitted without adopting

GMM. Apparently, the adoption of GMM greatly conserves the communication overheads

in wireless sensor networks.

It is necessary to mention that in the above simulations, we did not take into account the

energy consumption in sensing nodes selection and only simply select three closest sensing

 172

nodes for the distributive PF and distributive EKPF algorithms well as the original PF and

original EKPF algorithms. This is because we want to compare the tracking performance of

distributive PF and distributive EKPF algorithms with that of original PF and original

EKPF algorithm at the same conditions. The simulation results of distributive tracking

algorithms that consider both tracking accuracy and energy consumption will be presented

in Section 6.5.3.

6.5.2 The Simulation Results of Distributive PF-PDAF Algorithm

This section conducts simulations to evaluate the distributive PF-PDAF algorithm, and

compare its performance with that of the original PF-PDAF algorithm developed in

Chapter 5. As in Section 6.5.1, in both distributive PF-PDAF and original PF-PDAF

algorithms, at each time step, the cluster leader selects three sensing nodes that are closest

to the predicted target position and collects their measurement for the target state estimate.

The settings of SNR and prior estimate of target state are also the same as those in Section

6.5.1. The number of particles in both distributive PF-PDAF and original PF-PDAF is 1000.

Figures 6.6~6.8 compare the tracking performance of distributive PF-PDAF algorithm

and the original PF-PDAF algorithm under varying detection rates (8.0,9.0,1Pd =) while

the clutter rate λ is fixed such that 5.0Cd == Vλ (Vλ=Cd is the averaged number of

clutter originated measurements in the observation space V of a sensing node) for each of

the four tracking scenarios as depicted in Figure 6.3.. For each setting, 100 independent

Monte Carlo runs are conducted. The kRMSE values in these figures are computed by

excluding the top 25 runs with the largest nRMSE values and the bottom 25 runs with the

lowest nRMSE values (this is referred to as the processed data in the figures).

Figure 6.9 depicts the RMSE values of distributive PF-PDAF algorithm for tracking

scenario V3 under different detection rates 7,0,8.0,9.0,1Pd = with the clutter rate fixed at

5.0Cd == Vλ . Figure 6.9 (a) shows the kRMSE value of each time step that averaged

over 100 independent runs. Figure 6.9 (b) also shows the kRMSE value of each time step;

however, instead of being averaged over all 100 runs, the kRMSE value in Figure 6.9 (b)

is computed by excluding the top 25 runs with the largest nRMSE values and the bottom

25 runs with the lowest nRMSE values. Figures 6.9 (c) and 6.5 (d) are the nRMSE values

of all 100 independent runs.

 173

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

 Figure 6.6 The performance of distributive PF-PDAF and original PF-PDAF algorithms
 of four tracking scenarios with the setting of 5.0Cd,1Pd ==
 (averaged over the processed data)

 174

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

 Figure 6.7 The performance of distributive PF-PDAF and original PF-PDAF algorithms
 of four tracking scenarios with the setting of 5.0Cd,9.0Pd ==
 (averaged over the processed data)

 175

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

 Figure 6.8 The performance of distributive PF-PDAF and original PF-PDAF algorithms of
 four tracking scenarios with the setting of 5.0Cd,8.0Pd ==
 (averaged over the processed data)

 176

(a) (b)

(c) (d)

 Figure 6.9 RMSE of distributive PF-PDAF algorithm with different detection rates for
 tracking scenario V3 (clutter rate fixed)
 (a) kRMSE value of each time step averaged over 100 runs
 (b) kRMSE value of each time step averaged over the processed data
 (c) nRMSE value of 100 runs (5.0Cd,1Pd == and 5.0Cd,9.0Pd ==)
 (d) nRMSE value of 100 runs (5.0Cd,8.0Pd == and 5.0Cd,7.0Pd ==)

Figures 6.10~6.12 compare the tracking performance of the distributive PF-PDAF

algorithm and the original PF-PDAF algorithm with the varying clutter rates

(5.1,0.1,1.0Cd =) while the detection rate is fixed at 9.0Pd = for each of the four

tracking scenarios. The kRMSE values in these figures are computed by the exclusion of

the top 25 runs with the largest nRMSE values and the bottom 25 runs with the lowest

 177

nRMSE values (This is refereed to as the processed data in the figures). Figure 6.13

depicts the RMSE value of the distributive PF-PDAF algorithm in which the clutter rates

are varying (5.1,0.1,5.0,1.0Cd =) while the detection rate is fixed at 9.0Pd = for the

tracking scenario V3. Figure 6.13 (a) shows the kRMSE value that averaged over all 100

independent runs while Figure 6.13 (b) shows the kRMSE value that computed by

excluding the top 25 runs and the bottom 25 runs as before. Figures 6.13 (c) and 6.13 (d)

show the nRMSE value of all 100 runs for each setting.

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

 Figure 6.10 The performance of distributive PF-PDAF and original PF-PDAF algorithms
 of four tracking scenarios with the setting of 1.0Cd,9.0Pd ==
 (averaged over the processed data)

 178

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

 Figure 6.11 The performance of distributive PF-PDAF and original PF-PDAF algorithms
 of four tracking scenarios with the setting of 0.1Cd,9.0Pd ==
 (averaged over the processed data)

 179

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

 Figure 6.12 The performance of distributive PF-PDAF and original PF-PDAF algorithms
 of four tracking scenarios with the setting of 5.1Cd,9.0Pd ==
 (averaged over the processed data)

 180

(a) (b)

(c) (d)

 Figure 6.13 RMSE of distributive PF-PDAF algorithm with different clutter rates for
 tracking scenario V3 (detection rate fixed)
 (a) kRMSE value of each time step averaged over all 100 runs.
 (b) kRMSE value of each time step averaged over the processed data
 (c) nRMSE value of 100 runs (1.0Cd,9.0Pd == and 5.0Cd,9.0Pd ==)
 (d) nRMSE value of 100 runs (0.1Cd,9.0Pd == and 5.1Cd,9.0Pd ==)

From Figures 6.6~6.8 and Figures 6.10~6.12, it can be seen that during the “belief”

handover period, the performance of the distributive PF-PDAF algorithm is degraded.

However, after the handover period, the cluster leader in the second cluster collects

measurements from sensing nodes to update its “belief” and eventually it attains almost the

same tracking accuracy as the original PF-PDAF does. The overall performance of the

 181

distributive PF-PDAF under various detection rates and clutter rates is comparative with

that of the original PF-PDAF algorithm developed in Chapter 5.

From Figures 6.9 and 6.13, it can be seen that, similar to the PF-PDAF, the increased

measurement origin uncertainty deteriorates the tracking performance of the distributive

PF-PDAF algorithm.

6.5.3 The Evaluation of Different Sensing Nodes Selection Schemes

In this section, firstly we evaluate four different sensing nodes selection schemes for the

distributive PF-PDAF algorithm. These four sensing node selection schemes are described

as follows:

Scheme 1. The cluster leader selects five sensing nodes that are closest to the predicted

target position in the sensor cluster;

Scheme 2. The cluster leader selects three sensing nodes that are closest to the predicted

target position in the sensor cluster;

Scheme 3. This is a two-stage selection scheme; the cluster leader further randomly

selects a combination of three sensing nodes from the five sensing nodes that

have already been selected by Scheme 1;

Scheme 4. This is also a two-stage selection scheme; by calculating PCRLB, the cluster

leader further selects a combination of three sensing nodes from the five

sensing nodes that have already been selected by Scheme 1, this combination

of three sensing nodes have the lowest PCRLB value amongst the all

combinations of three sensing nodes.

It can be seen that none of the above sensing nodes selection schemes incorporates the

energy consumption measure. In contrast, the composite objective function based sensing

nodes selection scheme developed in Section 6.3 takes into account both information utility

and energy consumption. This scheme will be evaluated later in this section.

In the simulation, the settings of SNR and prior estimate of target state are the same as

those in Section 6.5.2. However, the particles number used in the distributive PF-PDAF

algorithm is 2000. The increase of particles number helps to mitigate the distraction on the

evaluation of the sensing node selection schemes. For each tracking scenario as depicted in

Figure 6.3, 100 independent Monte Carlo runs are conducted for each of the above four

sensing nodes selection schemes.

 182

Figure 6.14 compares the tracking accuracy of the distributive PF-PDAF algorithm that

adopts the above four different sensing nodes selection schemes. The kRMSE values in the

figure are calculated with data exclusion as before (i.e. the processed data).

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

V1:

 Figure 6.14 RMSE of distributive PF-PDAF algorithm adopting different sensing nodes
 selection scheme of four tracking scenarios (averaged over the processed data)
 (a) V3 (b) V4 (c) V10 (d) V1

 183

 From Figure 6.14, it can be seen that amongst the four selection schemes, Scheme 3

(randomly selecting a combination of three sensing nodes from the five closest sensing

nodes) is outperformed by the other three schemes. The performance of Scheme 1, in

which the cluster leader collects measurements from five closest sensing nodes, is slightly

better than that of Schemes 2 and 4. However, Scheme 1 demands higher communication

overhead since it needs to transmit five sets of measurements while Schemes 2 and 4 only

need to transmit three sets of measurements. Recall from Chapter 5 that in single target

tracking under measurement origin uncertainty, each set of measurements may contain

several measurements which include the target originated measurement and the clutter

originated measurements. Adopting Scheme 1 implies that a large number of measurements

need to be transmitted in the sensor cluster and this will be at the cost of very high energy

and bandwidth consumption in wireless sensor networks.

Comparing Scheme 2 which selects three closest sensing nodes and Scheme 4 which

selects a combination of three sensing nodes that have the lowest PCRLB value from the

five closest sensing nodes, it can be found that the performance of Scheme 2 is better than

that of Scheme 4. This is due to the adoption of PCRLB as sensing nodes selection criteria

in Scheme 4. The distributive PF-PDAF is suboptimal; however, the PCRLB is the bound

on the performance of an optimal estimator. Hence there is a “gap” between the PCRLB

and the MSE of distributive PF-PDAF algorithm (refer to Chapter 5 for the details) and this

may cause some misleading in sensing nodes selection of Scheme 4. Moreover, the

computational cost of Scheme 4 is slightly higher than that of Scheme 2. For one step

updating of target state estimate, the distributive PF-PDAF algorithm employing Scheme 2

takes 0.1404 second while distributive PF-PDAF algorithm employing Scheme 4 takes

0.1717 second7.

Nevertheless, when it needs to take into account both information utility and energy

consumption measures in sensing nodes selection, the combination of three most closest

sensing nodes in Scheme 2 may not be the optimal combination. This is because the three

sensing nodes in Scheme 2 may not lie closely to the cluster leader (although they lie

closely to the predicted target position) and they will consume considerable energy when

transmitting their measurements to the cluster leader. Therefore, we employ the composite

objective function proposed in Section 6.3 in sensing nodes selection scheme to trade-off

7 This execution time refers to the run time of the non-optimized Matlab code running on a 2.80 GHz,

 Pentium 4 laptop.

 184

information utility and energy consumption of sensing nodes. As mentioned in Section 6.3,

the information utility measure is computed based on the PCRLB and the energy

consumption is computed based on the distance between the sensing node and the cluster

leader (Equation 6.20).

Figure 6.15 compares the tracking performance of the distributive PF-PDAF algorithm

that adopts the composite objective function based sensing node selection scheme and the

distributive PF-PDAF algorithm that adopts the above sensing node selection Scheme 2 for

tracking scenario V3. In Figure 6.15, the kRMSE is computed by excluding the bottom 25

runs with the lowest nRMSE values and the top 25 runs with the largest nRMSE values.

The setting of the simulation remains unchanged and the balance parameter α of the

composite objective function (Equation 6.29) is set to 0.5 (5.0=α). From Figure 6.15, it

can be seen that resulting distributive PF-PDAF algorithm can still track the target

properly. Compared to the distributive PF-PDAF algorithm adopting Scheme 2, the

magnitude of kRMSE value of the distributive PF-PDAF adopting the composite objective

function based selection scheme is higher. However, we can not arbitrarily conclude that

the overall performance of distributive PF-PDAF algorithm is degraded, since the

composite objective function based sensing node selection scheme represents a

compromise between tracking accuracy and energy consumption in the wireless sensor

network. At each time step, the sensing nodes are selected not only on the basis of their

information utility, but also the energy consumption when they transmit their

measurements to the cluster leader. The major benefit of adopting the composite objective

function in sensing nodes selection is to attain the reasonable tracking accuracy while still

maintaining the lower energy consumption. This helps prolong the lifetime of the whole

wireless sensor network.

Figure 6.16 presents the simulation results of the distributive PF-PDAF algorithm that

adopts the composite objective function with varying balance parameter α for each of the

four tracking scenarios as depicted in Figure 6.3. The setting of the simulation remains

unchanged and the balance parameter α is set as () () 9:1: =Θ kkPCRLB aa and

() () 1:9: =Θ kkPCRLB aa . It can be seen the more weight put on the information utility

measure (represented by PCRLB), the more accuracy that the distributive PF-PDAF

algorithm could attain.

 185

(a) (b)

(c) (d)

 Figure 6.15 The performance of distributive PF-PDAF algorithm adopting Scheme 2
 (selecting three closest sensing nodes) and adopting the composite
 objective function (5.0=α) for tracking scenario V3
 (a) 5.0Cd,0.1Pd == (b) 5.0Cd,9.0Pd ==
 (c) 1.0Cd,9.0Pd == (d) 5.0Cd,8.0Pd ==

 186

(c) V 1 0

(b) V 4(a) V 3

(d) V 1

 Figure 6.16 The performance of distributive PF=PDAF algorithm adopting the composite
 objective function with varying balance parameter α
 (1.0Cd,9.0Pd == , averaged over the processed data)

6.6 Summary

This chapter develops distributive tracking algorithms for tracking a single target in

wireless sensor networks. Based on the collaborative information processing framework

and the hierarchical sensor network architecture proposed in Chapter 3, the PF, EKPF and

PF-PDAF tracking algorithms are extended for implementation in a distributive manner.

The Gaussian mixture model (GMM) is adopted for the approximation of the probability

density function of the target state. This helps to conserve communication bandwidth in the

 187

distributive PF, EKPF and PF-PDAF algorithms. Moreover, a composite cost function

which balances the information utility measure and the energy consumption measure is

developed for the sensing nodes selection in the distributive tracking algorithms. By

adopting this composite cost function, we can conserves energy consumption while still

maintaining the desirable tracking accuracy in the wireless sensor networks.

	Chapter 6 Distributive Tracking in Wireless Sensor Networks

