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Chapter 5 

Tracking a Single Target under Measurement Origin 
Uncertainty in Wireless Sensor Networks  

 
This chapter addresses the problem of tracking a single target under measurement origin 

uncertainty due to clutter and missed detections in wireless sensor networks. By using 

particles to represent the probability density function of the target state, this chapter 

develops the Particle filter (PF) and probabilistic data association filter (PDAF) hybrid 

tracking algorithm, name as PF-PDAF. The PF-PDAF algorithm extends the well-known 

PDAF to the general nonlinear system in an attempt to make use of the advantages of 

PDAF in effectively dealing with clutter and missed detections. To provide a theoretical 

lower bound on the tracking performance under measurement origin uncertainty, the 

posterior Cramer-Rao lower bound (PCRLB) that takes into consideration of clutter and 

missed detections is derived and computed in this chapter.  

 

5.1 Introduction 

In most practical single target tracking applications in wireless sensor networks, a sensing 

node may acquire more than one measurement. These measurements typically include the 

measurement generated by the target to be tracked (assuming this target is detected) and the 

measurements originated from clutter. Here, the term “clutter” refers to the undesired 

objects that may originate from the terrain, thermal noises, electromagnetic interference, 

and acoustic anomalies. Generally, the clutter originated measurements are random in 

number, location and intensity [27], [47]. Another complicating aspect is that, at some time 

steps, the target may be undetected by the sensor nodes. This is referred to as missed 

detections. Under measurement origin uncertainty due to clutter and missed detections,  the 

tracking algorithm needs to first solve the so-called data association problem that 

distinguishes the target originated measurement from clutter originated measurements; and 

then it can incorporate the right measurement for the target state estimate [47], [132].  
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The aim of this chapter is to develop techniques and algorithms for tracking a single 

target under measurement origin uncertainty resulting from the aforementioned clutter and 

missed detections. Using the particles’ representation of the probability density function of 

the target state, the traditional probabilistic data association filter (PDAF) is extended to 

handle the general nonlinear state space model, while the advantages of PDAF in solving 

the data association problem are kept. To provide the theoretical lower bound on the 

tracking performance under measurement origin uncertainty, the PCRLB that takes into 

account the clutter and missed detections is also derived and computed.  

This chapter is structured as follows. In Section 5.2, the problem of tracking a single 

target under measurement origin uncertainty in a wireless sensor network is formulated. In 

Section 5.3, the hybrid PF-PDAF algorithm for tracking a single target under measurement 

origin uncertainty in wireless sensor networks is developed. In Section 5.4, the PCRLB that 

consider the clutter and missed detections is derived and computed. In Section 5.5, 

simulations are conducted on various synthetic tracking scenarios to assess the 

performance of PF-PDAF algorithm. Moreover, simulations are also carried out to compare 

the root square PCRLB values with RMSE values on the synthetic tracking scenarios. 

Finally, in Section 5.6 the conclusion remarks are provided. 

 

5.2 Problem Formulation 

This section formulates the problem of tracking a single target with clutter and missed 

detections in a wireless sensor network. It is assumed that over the full duration of a 

tracking task, the target moves in space spanned by a sensor node cluster which employs a 

leader node and a fix set of sN  sensing node (termed as active sensing nodes). The state 

space model for this setting can be written as follows:  

 

                                                 kkkk vxAx +=+1                                                           (5.1)                              
 

( ) s
n
kk

n
k

n
kt Nn ,...,1,, == nxhz                                     (5.2) 

 
Equation 5.1 is the system model, and this chapter adopts the nearly constant velocity (CV) 

model as in Chapter 4. In Equation 5.1, kx  is the target state at time step k  which is given 

by [ ] T
kyxk vyvx ,,,=x , where x  and y  are the target positions in x- and y-coordinate 

respectively while xv  and yv  are the target velocities in x- and y-coordinate, respectively. 
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kx  is assumed to be unobserved with initial probability distribution ( )0xp . kA  is the 

system transition matrix. kv  is the process noise vector  and assumed to be Gaussian with 

zero mean and covariance matrix kQ , i.e. ( )kk N Q0,~v . kA  and kQ  for the CV model 

are already given in Chapter 4. In Equation 5.2, the superscript n  refers to the n -th sensing 

node; the first subscript t  refers to the t -th target (however, in this chapter there is only 

one target); and the second subscript k  denotes the k -th time step. In other words, n
kt ,z  

denotes the target originated measurement acquired by the n -th sensing node at the k -th 

time step. n
kh  is the measurement function of  the n -th sensing node at the k -th time step. 

As mentioned earlier in Chapter 4, the measurement model adopted throughout this thesis 

is nonlinear; hence n
kh  is a nonlinear function (repeated in Equation 5.3). n

kn  is the 

measurement noise at the n -th sensing node and it is assumed to be Gaussian with mean 
n
kµ  and covariance matrix n

kR , i.e. ( )n
k

n
k

n
k N Rµn ,~ . 

Under the measurement origin uncertainty, at a particular time step k , the n -th sensing 

node acquires a set of measurements which may include the measurement generated by the 

target as well as measurements originated from clutter. This set of measurements is 

designated as ( ) n
k

n

kl

n
kj

n
k

n
k ljn

k
,...,1,,...,,...,

,,,1 == zzzZ , where n
kl  is the total number of 

measurements acquired by the n -th sensing node at the k -th time step. In practice, these 
n
kl  measurements can all be clutter originated measurements, or there is one target 

originated measurement and 1−n
kl  clutter originated measurements. At time step k , the 

concatenated measurement over all sN  sensing nodes that involve in the tracking task is 

denoted as ( )sN
kkk ZZZ ,...,1

= . The time aggregated measurement from the initial time step  

to the k -th time step is denoted as ( )kk ZZZ ,...,0:0 = . 

The model of target originated measurement has already been defined in Equation 4.6 of 

Chapter 4. For convenience, the equation is re-written here 
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where kS  is the intensity of the acoustic signal generated by the target at the  k -th time 

step, and ( )n
k

n
k N R,0~ε  is the additive Gaussian noise with zero mean and covariance n

kR  

at the n -th sensing node.  kρ  and n
kr  are the position coordinates of the target and the n -th 

sensing node, respectively.  

The clutter originated measurements are assumed to be independent and uniformly 

distributed over the observation space V  of a sensing node with the probability 

 

( ) ( ) ( )n
k

n
kj

n
kj

n
kj

n
k lj

V
pp ,...,1

1
measurment originatedclutter   theis,,,,0 ∈== zzz    (5.4) 

 
It is assumed throughout this thesis that all sensing nodes have the same observation space 

V . This assumption coincides with the nature of a wireless sensor network: a large number 

of homogeneous sensing nodes with the identical transmission range, sensing modalities 

and initial energy are deployed around the observed phenomena (i.e. moving target) to 

provide unbiased and consistent information.     

In target tracking, it is commonly assumed that the number of the clutter originated 

measurements in the observation space V  of a sensing node follows a Poisson probability 

mass function (pmf) given by [27] 

 

                            ( ) ( ) ( )
!
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,
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where λ  is the clutter rate which is defined as the number of clutter generated 

measurements per unit volume of the observation space. n
kCl ,  is the number of clutter 

originated measurements obtained at the n -th sensing node during the k -th time step.  

The assumptions that have been made in Section 4.2 of Chapter 4 are retained 

throughout this chapter. Among these assumptions, we emphasize the independent 

assumptions made for the measurement noises and the process noise: the measurement 

noises and the process noise are uncorrelated; the measurement noises are not correlated at 

the same sensing node and amongst different sensing nodes. In addition, in this chapter we 

also make two more assumptions:  

(1) The target can be either detected or undetected by a sensing node. 

(2) At each time step, each sensing node can provide more than one measurement because 

of the presence of clutter. It is assumed that the measurements acquired at an individual 
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sensing node are already separated by some means of signal processing [21]. However, the 

sources or labels of these measurements are unavailable from the sensing nodes. 

 

5.3 PF-PDAF for Tracking a Single Target under Measurement Origin   
      Uncertainty in Wireless Sensor Networks 

The hybrid PF-PDAF is a straightforward implementation of PDAF by using particles to 

represent the probability density function of the target state. Since the target might be 

undetected at the n -th sensing node, we denote the probability of the target being detected 

or the detection rate as dP . For the sake of clarity and without losing the generality, it is 

assumed throughout this thesis that dP  is time invariant. It is also assumed that dP  takes 

the same value across all sensing nodes since we adopt the homogeneous sensing nodes 

with the same sensing modality and signal processing functionalities for target tracking in 

wireless sensor networks. With the detection rate dP  and the probability distribution of the 

number of the clutter originated measurements (Equation 5.5), the prior probability that 

there are n
kl  measurements at the k -th time step can be expressed as  
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In turn, the probability that one particular measurement is target originated is given by  
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At the k -th time step, for the n -th sensing node, the probability density function of the 

measurement likelihood given the target state kx  and the number of measurements n
kl , 

( )n
kk

n
k lp ,xZ  can be derived as follows  
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where n
k,0ζ  denotes the event of having all measurements obtained by the n -th sensing 

node at the k -th time step are clutter originated; and ( )n
k

n
k lP ,0ζ  is the prior probability of 

having event n
k,0ζ  given n

kl  measurements. n
k

n
kj lj ,...,1,, =ζ  denotes the event of having 

one target originated measurement amongst n
kl  measurements obtained by the n -th 

sensing node at the k -th time step; and ( )n
k

n
kj lP ,ζ  is the prior probability of 

n
k

n
kj lj ,...,1,, =z  being the target originated measurement. Substituting Equation 5.4 into 

5.8, we obtain  
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where ( )k

n
kjp xz ,  is the likelihood of  the j -th measurement obtained at the n -th sensing 

node with respect to the target state kx  at the k -th time step and it is given by  
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where n

kR  is the covariance matrix of the measurement noise and n
kĤ  is the Jacobian 

matrix of  n
kh  and defined as follows  

( )
1

ˆ
−

=
=

kkd
d n

kn
k mxx

xh
H                                               (5.11) 

 
where 111 −−− = kkkkk mAm  and 11 −− kkm  is the mean of target state estimate obtained at 

the previous time step, i.e. the ( )1−k -th time step. 

Supposing that at the ( )1−k -th time step, the probability density function of the target 

state, i.e. ( )1:01 −− kkp Zx  is already known and approximated by a set of N  particles 

together with their weights { }N

i
i
k

i
k w

11,1 ,
=−−x , the process of PF-PDAF to obtain 

( )kkp :0Zx  at the k -th is as follows. At the k -th time step, the sN  sensing nodes are 

activated to sense and then transmit their measurements to the cluster leader. 
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Correspondingly, the cluster leader will receive total sN  sets of measurements with each 

set contains s
n
k Nnl ,...,1, =  measurements. Upon receiving these measurements, the cluster 

leader executes PF-PDAF algorithm to update the target state estimate for the k -th time 

step. In this PF-PDAF, the new set of particles { }N
i

i
k 1=x  at the k -th time step is drawn from 

the transition prior ( )i
k

i
kp 1−xx  (i.e. adopting transition prior as the proposal distribution).  

Similar to the PF and EKPF tracking algorithms in Chapter 4, PF-PDAF algorithm 

mixes the measurements from different sensing nodes into a single likelihood function for 

multiple sensing nodes. The measurements independence assumption made in Section 5.2 

allows for the factorization of this measurement likelihood over sN  sensing nodes: 
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Note that in Equation 5.12, i

kx  denotes the i -th particle. Combining Equations 5.6, 5.7 

and 5.9~5.12, the new importance weight of i -th particle can be set as 
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where ( )k
n

kjp xz ,  is computed according to Equation 5.10. Consequently, a set of new 

particles { }N

i
i
k

i
k w

1,, =
x are obtained to approximate the probability distribution density of 

target state ( )kkp :0Zx  at the k -th time step. After the resampling step,  ( )kkp :0Zx  can 

be approximated as follows 
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where δ  is the Dirac function and *i

kx  is the particles obtained after the resampling step. 

The complete PF-PDAF tracking algorithm is listed below. 
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Algorithm 5.1 PF-PDAF Tracking Algorithm for Single Target Tracking under  

                         Measurement Origin Uncertainty in Wireless Sensor Networks 

 Initialization: 0=k  

          For Ni ,...,2,1=  draw particle i
kx  from the prior ( )0xp . 

 For time steps ,...2,1=k  

          - For Ni ,...,2,1= , draw sample ( )i
kk

i
k p 1~ −xxx . 

   - For Ni ,...,2,1= , evaluate the importance weights as per following steps 

. For sNn ,...2,1=  sets of measurements from sN  sensing nodes, do 
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. Compute the importance weights of particles  
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  - For Ni ,...,2,1= , normalize the importance weights: ∑
=

=
N

j

j
k

i
k

i
k www

1

~  

  - Multiply (suppress) particles i
kx  with high (low) importance weights i

kw~   to obtain 

    N  new particles *i
kx  that are approximately distributed according to ( )kkp :0Zx . 

  - For Ni ,...,2,1= , reset the importance weights 1~ −== Nww i
k

i
k . 

   Output: The output of the algorithm is a set of particles that can be used to approximate  
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     the probability density function of target state, i.e. ( ) ( )∑
=

−=
N

i

i
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N
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ˆ xxZx δ . 

 

The above process is the general implementation of the PF-PDAF algorithm for tracking 

a single target under measurement origin uncertainty in a wireless sensor network. 

However, there still remains some design issues, for example, the measurement selection 

(gating) procedure and the proposal distribution design. These two issues are briefly 

discussed below.  

Gating procedure aims to preclude the measurements that are far from the predicted 

measurement region and thus to reduce the computation load [27]. Physical justification is 

that such measurements are likely to be erroneous and would not contribute information 

about the target. Normally, gating is performed at each time step by defining an area of 

measurement space which is called gate. All measurements located in the gate are selected 

and used for the target state estimation while the measurements not in the gate are ignored. 

There are a number of gating schemes in the literature including centralized gating, model 

based gating, model probability weighted gating and two-stage model probability weighted 

gating [27], [133], [155]. However, the detailed discussion of the gating design is beyond 

the scope of this chapter. Instead of explicitly employing the above gating procedure, the 

PF-PDAF tracking algorithm developed in this chapter implements a simple and efficient 

sensing nodes selection scheme to achieve “soft” gating. The strategy adopted uses only the 

measurements from three sensing nodes that are closest to the predicted target position at 

each time step for the target state estimation. This immediately implies that the 

measurements from sensing nodes which are far from the predicted target position are 

precluded from the target state estimation. Apparently, the above method is also effective 

in precluding a considerable amount of clutter originated measurements, since we can infer 

from SNR considerations that more accurate measurements are made by nearby sensing 

nodes.  

In the above PF-PDAF algorithm, the transition prior is taken as the proposal 

distribution. This choice of proposal distribution makes the algorithmic implementation 

straightforward. However, as discussed in Chapter 4, it may lead to inefficient algorithms 

since the particles cannot be moved to high measurement likelihood area in the state space. 

To design a better proposal distribution, at first it seems reasonable to resort to the 

approach similar to the one that adopted in EKPF that uses EKF to take into account the 

latest target generating measurement.  However, under the measurement origin uncertainty 
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due to the clutter and missed detections, it is not a trivial task to pick up the target 

generating measurement in the prediction step before solving the data association problem 

in the update step. Therefore, it is fundamentally difficult to directly implement a hybrid 

EKF and PDAF tracking algorithm analogue to the EPKF development in Chapter 4.  

One solution to the above problem is to adopt a mixture proposal distribution in which 

one portion of the new particles is generated from the transition prior while the reminder of 

the new particles are sampled from a mixture with each component of this mixture 

accounting for one measurement either generated by the target or generated by the clutter 

[48]. Evidently, such a solution will increase the implementation complexity and the 

computation burden. Moreover, in this mixture proposal distribution, some particles may 

be moved to the high likelihood area while other particles may move far away from the 

high likelihood area since they are propagated by incorporating the clutter generated 

measurements. Consequently, the overall performance of the PF-PDAF which adopts 

mixture proposal cannot justify the extra algorithmic complexity and computation burden it 

introduces. In Chapter 7, the above mixture proposal distribution is developed for multiple 

target tracking in a wireless sensor network and the simulation results do not show much 

improvement over the transition prior approach.  

     
5.4 PCRLB Calculation under Measurement Origin Uncertainty 

The PCRLB in Chapter 4 is calculated with the assumption of no clutter and missed 

detections. This section will derive and compute PCRLB with clutter and missed detections. 

As already derived in Chapter 4, under the linear system model (recalled that the nearly 

constant velocity (CV) system model is adopted throughout this thesis), the recursive form 

of the Fisher information matrix (FIM), kJ  is given by5:         

 
                                       ( ) 12
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1
1
11

11
1 −

−
−−− = kk

T
kk AQAD                                                (5.16) 

 
     

                                                 
5 To keep the notational clarity in the derivation, here we assume that FIM 1−kJ  at the ( )1−k -th time step 

   is  already known and derive the FIM kJ  for the k -th time step. 
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In the above equations, only the second part of Equation 5.19 shows the dependency of the 

PCRLB on the measurement at the k -th time step, and only this part is affected by the 

measurement origin uncertainty due to clutter and missed detections. Therefore, we will 

focus on this part in the following derivation of the measurement contribution to the 

PCRLB under measurement origin uncertainty.  

 

5.4.1 Derivation of the Measurement Contribution to the PCRLB 
         under Measurement Origin Uncertainty 

Firstly, let’s define the second part of Equation 5.19 at the k -th time step as ( )kzJ :  
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Now the task is to derive ( )kzJ , the measurement contribution to PCRLB at the k -th time 

step. As in Chapter 4, we assume that there are total sN  sensing nodes are activated to 

participate in the tracking task at the k -th time step. Thus the PCRLB will be the reverse of 

a mixture FIM of which each component corresponds to one of the sN  sensing nodes (refer 

to Section 4.10 of Chapter 4). In the following derivation, firstly we will derive ( )kn
zJ , the 

measurement contribution to the PCRLB from the n -th sensing node at the k -th time step 

and then extend the results to the sN  sensing nodes. Using notations described earlier in 

this chapter, the measurements obtained at the n -th sensing node is denoted as 

( ) n
k

n
kl

n
kj

n
k

n
k ljn

k
,...,1,,...,,...,

,,,1 == zzzZ , where n
kl  is the total number of measurements 

acquired by the n -th sensing node.   

From the Equation 5.20, we can further write ( )kn
zJ  as follows: 
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where ( )n
klP  is the prior probability that there are n

kl  measurements at the k -th time step 

and has been derived in Equation 5.6. ( )n
k

n
z lJ  is defined as  
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Recalled from Equations 5.8 and 5.9, { }( )k
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kp xz 1, =  in the above Equations is actually 
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IN Equation 5.23, ( )n

klε  is the probability that a measurement is target generated and is 

given by Equation 5.7. ( )k
n

kjp xz ,  is the probability density function of the measurement 

likelihood of the j -th measurement as defined in Equation 5.10. Substituting Equations 

5.10 and 5.23 into Equation 5.22 and taking the gradient with respect to kx , we can get 
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where n
kĤ  is the Jacobian of the measurement function as defined in Equation 5.11 and 

( )n
k

n
k lΨ  is defined as  
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(5.26) 
 

For most applications, analytically calculating the expectation in Equation 5.26 is almost 

impossible and we need to resort to numerical methods which require further complicated 

mathematical derivations. To simplify the derivation of ( )n
k

n
k lΨ  in Equation 5.25, two 

assumptions are made here: 

Assumption 1: The integration region of the measurements obtained at an individual 

sensing  node { } n
k

n
kj lj .,..,1,, =z  is symmetric; 

Assumption 2:  The measurement noise is zero mean and its covariance n
kR  is a multiple of 

the identity matrix and takes the following form:   
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σ=                                                        (5.27) 

 

Where 
n

I n  is a nn  dimension identity matrix ( nn  is the dimension of measurement noise) 

and n
kσ  is the standard deviation of the measurement noise at the n -th sensing node during 

the k -th time step.  

Define 
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From Assumption 2, the elements of a particular n
kj ,

~z  are independently and identically 

distributed (i.i.d) with zero mean.  

Substituting Equations 5.27 and 5.28 into Equation 5.25, ( )n
k

n
k lΨ  becomes 
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where  

 

          ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )∑
=

−

−

⎥
⎦

⎤
⎢
⎣

⎡
−+−

⎥
⎦

⎤
⎢
⎣

⎡
−

= n
kl

j

n
kj

n
k

Tn
kjn

k
n
k

n
kn

k

n
kj

n
k

Tn
kjn

k
n
k

n
k

n
kj

l

l
Vl

l

l
V

f

1
,

2
,

,
2

,

,
~~

2

1
exp

2

1
1

~~
2

1
exp

2

1

~

zz

zz

z

σ
σπ

ε
ε

σ
σπ

ε

   

                                 (5.30) 
 
In the first step of Equation 5.29, the cross terms are odd-symmetric around k

n
k xĤ . Based 

on Assumption 1, they are equal to zero because of the symmetric integration region of 

measurements { } n
k

n
kj lj .,..,1,, =z . Substituting Equations 5.24, 5.29 and 5.30 into 

Equation 5.21, we obtain the measurement contribution to PCRLB which takes account of 

all measurements obtained by the n -th sensing node at the k -th time step: 
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where 
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Under Assumption 2, the elements of vector n
kj ,

~z  are identically and independently (i.i.d) 

distributed with zero mean and the integration region of each element of n
kj ,

~z  in the 

expectation in 5.32 is symmetric about zero. This leads to the off-diagonal elements of 
n

kj ,Φ  in Equation 5.32 being all zero. Hence, n
kj ,Φ  is then an identity matrix multiplied by a 

scalar: 
n
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n
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n
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n
IΦ φ                                             (5.33) 

 

where 
n

I n  is a nn  dimensional identity matrix ( nn  is the dimension of measurement noise) 

and n
kj ,φ  is as follows 
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Moreover, according to Assumptions 1 and 2 and Equation 5.28, { } n
k

n
kj lj .,..,1,~

, =z  are 

identically distributed. Therefore, we have n
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n
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n
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k ,,,1 ...... φφφ ====  and Equation 5.33 

becomes 
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Substituting 5.35 into 5.31, ( )kn
zJ , the measurement contribution to the PCRLB from the 

n -th sensing node at the k -th time step can now be expressed as  
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Now the remaining task is to calculate n
k,1Φ . However, it is difficult to analytically 

calculate the expectation in Equation 5.34. Following subsection will develop the 

approximation method to calculate n
k,1Φ , and in turn, finally compute the PCRLB.  

 

5.4.2 Numerical Calculation of PCRLB  

Explicitly writing out the expectation for Equation 5.34, we have  
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Note that Equation 5.37 is a ( )1+n

kl -fold integral with respect to kx  and n
k

n
kj lj .,..,1,~

, =z . 

Here we assume that the observation volume of the sensing node is large enough, and 

consequently, the inner integrations with respect to { } n
kl
j

n
kj 1,

~
=z  are independent of kx  [118]. 

Consequently, in Equation 5.37 the integration with respect to kx  can be omitted. By 

substituting Equations 5.23 and 5.30 into 5.37, we have  
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To facility the integration in Equation 5.38, we assume that the measurements are restricted 

to a validation gate [118], [119]:  
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where g  is a constant controlling the gate volume. Now the observation volume V  is 

replaced by the volume of the validation gate ( ) znn
kg gV σ2= , here zn  is the dimension of 

the measurement vector n
kj,

~z . Substituting Equation 5.34 into Equation 5.38, now we have 
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(5.40) 

 
where                 
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In Equation 5.40, the 
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kl  times (once for each 

measurement). If we let  
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then Equation 5.40 can be simplified as 
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The integration in Equation 5.44 can be solved by the Monte Carlo integration technique 

[131]. Finally, by substituting Equations 5.44, 5.35, 5.36 into 5.21, ( )kn
zJ , the 

measurement contribution to the PCRLB from the  n -th sensing node at the k -th time step 

can be obtained.  

For sN sensing nodes participating the tracking task, their measurements contribution to 

the PCRLB ( )kzJ  cam then be written as follows 
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where 
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In the literature, nq2  is named as the information reduction factor (IRF). ( )kz
0J  is the 

counterpart of  ( )kzJ  when there are no clutter and missed detections. Therefore, the 

measurement contribution to the PCRLB, ( )kzJ , can be regarded as the ( )kz
0J  with no 

measurement origin uncertainty multiplied by a scalar IRF.  

In Equations 5.45~5.47, ( )kz
0J  can be readily obtained through the calculation of the 

Jacobian n
kĤ  (refer to Section 4.10 in Chapter 4). The IRF nq2  can be obtained through the 

computing of n
k,1φ  in Equation 5.44 by Monte Carlo approximation method as follows 

[131]: 
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(5.48) 
 

where ( )lU rj, , n
klj ,...,1= ; znr ,...,1= ; mNl ,...,1=  are independent and identically 

distributed random variables drawn from a uniform distribution on [ ]gg ,− . From 

Equations 5.42, 5.46 and 5.48, it can been seen that IRF nq2  will be time invariant if the 

measurement noise, the clutter rate, and the detection rate are remain unchanged over time 

steps throughout the tracking task. This implies that we only need to calculate 2q  once.  

As in Chapter 4, the target state estimate at the previous time step is needed for 

computing the FIM kJ  at the current time step. We still adopt particles’ representation of 

the target state to compute the Jacobian kĤ  as follows:  
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where S  is the target energy and set to 5000=S  as in the simulations. ( )n
k

n
k yx ,  and 

( )i
k

i
k yx ,  are the positions of the n -th sensing node’s and the i -th particle’s position at 

the k -th time step, respectively.    

Taking into account that total sN  sensing nodes participating the tracking task, we need 

to substitute Equation 5.49 into Equation 5.45 to compute the measurement contribution 

( )kzJ  to the PCRLB as follows:   
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where 11
kτ , 3113

kk ττ = , 33
kτ  are given as below 

 

   
( )

( ) ( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−

−
×= ∑ ∑

= =

N

i

N

n n
k

i
k

n
k

i
k

n
k

i
k

k

k

s

yyxx

xxS
q

N 1 1
222

22

2
11 41

R
τ          (5.51) 

 

( ) ( )
( ) ( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−

−−
×= ∑ ∑

= =

N

i

N

n n
k

i
k

n
k

i
k

n
k

i
k

n
k

i
k

k
k

s

yyxx

yyxxS
q

N 1 1
222

2

2
13 41

R
τ      (5.52) 

 

( )
( ) ( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+−

−
×= ∑ ∑

= =

N

i

N

n n
k

i
k

n
k

i
k

n
k

i
k

k
k

s

yyxx

yyS
q

N 1 1
222

22

2
33 41

R
τ           (5.53) 

 

In Equations 5.51~5.53, we make use of the relationship of  ( )2n
k

n
k σ=R . The 

superscript n  is removed for both measurement noise covariance n
kR  and IRF nq2  since we 
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adopt the homogeneous sensing nodes with identical properties. It is needed to emphasize 

that IRF 2q  is a scalar and only needs to be computed once if the measurement noise, the 

clutter rate and the detection rate of the sensing nodes are time invariant. 

Combining Equations 5.50~5.53 with Equations 5.15 ~ 5.20, we can finally obtain the 

PCRLB under measurement origin uncertainty due to clutter and missed detections for 

tracking a single target in the wireless sensor networks.  

 

5.5 Simulations  

This section evaluates the performance of PF-PDAF algorithm for single target tracking 

under measurement origin uncertainty in a wireless sensor network. The simulations are 

conducted under different tracking conditions including the clutter rate, the detection rate, 

the signal to noise ratio (SNR), the prior estimate of the target state and the number of 

particles used in the algorithm. The numeric results of root square PCRLB are also 

presented and compared with the RMSE of PF-PDAF algorithm under the same tracking 

conditions. 

 

5.5.1 Simulation Setup 

The simulation setup is chosen to the same as Chapter 4 as much as possible. The ground 

vehicle traverses through a two-dimensional (2D) sensor field and four different tracking 

scenarios are used in the simulation (Figure 5.1, a repeat of four tracking scenarios of 

Figure 4.3 in Chapter 4). These tracking scenarios are synthesized with different target 

trajectories, target dynamics, clutter rates, detection rates and sensing nodes. The target 

trajectories are digested from a real on-site experiment (details can be found in [23]).  

In the simulation presented following, it is assumed that the tracking task is performed 

within one sensor cluster which consists of one cluster leader (not drawn in Figure 5.1) and 

a fixed set of 20 sensing nodes (active sensing nodes) selected from 200 randomly 

deployed sensing nodes. In the simulations conducted in Chapter 4, these 20 active sensing 

nodes are all activated to sense and transmit their measurements to the cluster leader for the 

target state estimate throughout the tracking task. However, in the simulations conducted in 

this chapter the cluster leader further selects first three sensing nodes that closest to the 

predicted target position from the 20 active sensing nodes, and only these three sensing 

nodes are activated to sense and transmit their measurements to the cluster leader. Upon 
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receiving the measurements from these three sensing nodes, the cluster leader then 

executes the PF-PDAF algorithm to update the target state estimate.   

 

(c) V 1 0

(b) V 4(a) V 3

(d) V 1  
 

             Figure 5.1  Four tracking scenarios with different target trajectories, target 
                                  dynamics and active sensing nodes (V3, V4, V10 and V1 denote 

                                                   the four tracking scenarios)  
 

The target originated measurement at each active sensing node is synthesized according 

to the measurement model defined in Equation 5.3. At the k -th time step, the target 

originated measurement at the n -th sensing node is as follows  
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where ( )kk yx ,  and ( )nn yx ,  are positions of the target and the n -th sensing node in x- 

and y-coordinate, respectively. S  is the source energy and it is the acoustic intensity 

measured at 1 m away from the target. In the simulations, S  is set to 5000 and the 

background noise is assumed to be Gaussian and set to ( ) s
n
k NnN ...,,2,1,1,0~ =ε  for 

all active sensing nodes. The SNR is 37 dB at the target position, and actual SNR at a 

sensing node relies on the distance between this sensing node and the target. For example, 

for a sensing node that is 50 meters away from the target, the SNR is 10 dB.  

Throughout this chapter, the assumption has been made that the measurement range of 

the sensing node is 100 meters. In the simulations, the clutter originated measurements 

obtained at a sensing node are synthesised independently and uniformly and are distributed 

in a square with the size of 200 m  ×  200 m , centered at the location of this sensing node. 

The number of clutter originated measurements follows the Poisson distribution as defined 

in Equation 5.5. The magnitude of the clutter originated measurements is set as the same as 

that of the target, i.e. 5000 and the noise level is also assumed to be Gaussian and set to 

( )1,0N . By assuming the same magnitude for the measurements originated from the 

target and from clutter, the difficulty of recognizing the origins of the measurements is 

greatly increased; hence we can assess the PF-PDAF algorithm’s ability in effectively 

solving the data association problem. 

The prior estimate of the target state is assumed to be Gaussian with mean 00x  and 

covariance 00P . To describe the different levels of the uncertainty in the prior knowledge 

regarding the target state, 00x and 00P  are categorized into following three groups: 
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where truthx  is the ground truth at time step 0=k  (i.e. the initial position of the target).   

In the simulations, 100 independent Monte Carlo runs have been conducted for the each 

setting of PF-PDAF algorithm and the RMSE is used to evaluate the performance of PF-

PDAF algorithm. As in Chapter 4, two different types of RMSE are computed: one is 

averaged over all time steps for each individual Monte Carlo run, and another is averaged 

over all 100 Monte Carlo runs for each time step. These two types of RMSE are defined as 

below: 
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In Equation 5.58, nRMSE  is referred to as the RMSE value of the n -th Monte Carlo run 

that is averaged over all time steps of the tracking task. K  is the total number of time steps 

in the tracking task. [ ]Tn
k

n
k

n
k yx=r  and [ ]Tn

k
n
k

n
k yx ˆˆˆ =r  correspond to the true target 

position and the estimated target position at the k -th time step during the n -th Monte 

Carlo run, respectively. In Equation 5.59, kRMSE  is referred to as the RMSE value of the 

k -th time step that is averaged over 100 Monte Carlo runs.  Φ  is the total number of 

Monte Carlo runs (i.e. 100=Φ ). [ ]Tn
k

n
k

n
k yx=r  and [ ]Tn

k
n
k

n
k yx ˆˆˆ =r  correspond to the true 

target position and the estimated target position in the n -th Monte Carlo run at the k -th 

time step, respectively.  

 

5.5.2 PF-PDAF Results 

The following graphs show the simulation results of PF-PDAF algorithm under various 

settings such as the clutter rate, the detection rate, the prior estimate of target state, the 

SNR and the particles number. In the simulations, the SNR is set to 37 dB at the target 

position. The prior estimate of the target state is Gaussian with the mean 3
00x  and 

covariance 3
00P  as defined in Equation 5.57. The number of particles adopted in the PF-

PDAF algorithm is 1000.  
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Figure 5.2 depicts the RMSE values of tracking scenario V3 under the varying detection 

rates, i.e. 7.0,8.0,9.0,1Pd =  when the clutter rate λ  is fixed such that 5.0Cd == Vλ  

( Vλ=Cd  is the averaged number of clutter originated measurements in the observation 

space V  of a sensing node). Figure 5.2 (a) shows the kRMSE  value that averaged over all 

100 independent Monte Carlo runs.  Figure 5.2 (b) also shows the kRMSE  value; however, 

instead of being averaged over all 100 runs, the kRMSE  in Figure 5.2 (b) is computed by 

excluding the bottom 25 runs with the lowest nRMSE  and the top 25 runs with the largest 
nRMSE  (this is referred to as the processed data in the figure). The purpose of this data 

exclusion is to reduce the bias imposed by very large or very small RMSE values. Figures 

5.2 (c) and 5.2 (d) are the nRMSE  values which are averaged over all time steps in the 

tracking task.  

Figure 5.3 depicts the RMSE value of tracking scenario V3 under the varying clutter 

rates, i.e. 5.1,0.1,5.0,1.0Cd =  when the detection rate is fixed at 9.0Pd = . Figure 5.3 (a) 

shows the kRMSE  value that averaged over all 100 independent runs, and Figure 5.3 (b) 

shows the kRMSE  value which is calculated by the data exclusion (e.g., similar to Figure 

5.2 (b)). Figures 5.3 (c) and 5.3 (d) are the nRMSE  values which are averaged over all 

time steps in the tracking task.  

From Figures 5.2 and 5.3, it can be seen that, as expected, increasing clutter rate or 

decreasing detection rate (i.e. the probability of missed detection increasing) leads to the 

deterioration in the tracking performance of PF-PDAF algorithm. For example, when the 

detection rate is decreased to 7.0Pd = , 44 runs out of total 100 runs are divergent (the 

magnitude of nRMSE  is greater than 50 m  in the particular run); and when the clutter rate 

is increased to 5.1Cd = , 42 runs out of total 100 runs are divergent.     

 

 

 

 

 

 

 



 136 

 

 

(a) (b)

(c) (d)
 

                  Figure 5.2 RMSE of PF-PDAF algorithm with varying detection rates for tracking scenario V3 
                                    (clutter rate fixed) 
                                    (a) kRMSE  value (averaged over all 100 runs) 
                                    (b) kRMSE  value (averaged over the processed data)                                     
                                    (c) nRMSE  value of 100 runs ( 5.0Cd,1Pd ==  and 5.0Cd,9.0Pd == )  

                          (d) nRMSE  value of 100 runs ( 5.0Cd,8.0Pd ==  and 5.0Cd,7.0Pd == ) 

 

 

    

 



 137 

(a) (b)

(c) (d)
 

 
                   Figure 5.3 RMSE of PF-PDAF algorithm with varying clutter rates for tracking scenario V3 

                                       (detection rate fixed)  
                                       (a) kRMSE  value (averaged over all 100 runs) 
                                       (b) kRMSE  value (averaged over the processed data) 
                                       (c) nRMSE  value of 100 runs ( 1.0Cd,9.0Pd ==  and 5.0Cd,9.0Pd == )  

                               (d) nRMSE  value of 100 runs ( 0.1Cd,9.0Pd ==  and 5.1Cd,9.0Pd == ) 

 

Figures 5.4 and 5.5 present the tracking performance of PF-PDAF algorithm under three 

different sets of clutter rates and detection rates, i.e. 01.0Cd,1Pd == , 5.0Cd,9.0Pd == ,  

0.1Cd,8.0Pd ==  for each of the four tracking scenarios as depicted in Figure 5.1. Figure 

5.4 shows the kRMSE  value which is computed under the above three sets of clutter rates 
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and detection rates. Figure 5.5 also shows the kRMSE  values, however, it is computed by 

the exclusion of bottom 25 runs with the lowest nRMSE  values and the top 25 runs with 

the largest nRMSE  values. In the above figures, the particles used in the simulations are 

1000 except for tracking scenario V1 in which 2000 particles are used to cater for the extra 

tracking difficulty due to the “U” curve of the target trajectory (Figure 5.1(d)). The SNR 

and the prior estimate of target state remain the same as in Figures 5.2 and 5.3. 

It is evidenced again from Figures 5.4 and 5.5 that the more measurement origin 

uncertainty imposed on the sensing nodes the more degradation on the tracking accuracy of 

the PF-PDAF algorithm occurs.  

 

(c)

(b)(a)

(d)  
 

            Figure 5.4 kRMSE  values of PF-PDAF algorithm for the four tracking scenarios 
                                         (averaged over 100 runs)                        
                                         (a) V3  (b) V4  (c) V10  (d) V1 
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(c)

(b)(a)

(d)  
 
                         Figure 5.5 kRMSE  values of PF-PDAF algorithm for the four tracking scenarios 
                                             (averaged over the processed data)                                  
                                             (a) V3  (b) V4  (c) V10  (d) V1 

 

Figure 5.6 depicts the tracking performance of PF-PDAF algorithm under different SNR 

settings with the clutter and detection rates of 5.0Cd,9.0Pd ==  for the tracking scenario 

V3. The prior estimate of the target state is Gaussian with the mean 3
00x and covariance 3

00P  

and the particle number is 1000. Figure 5.6 (a) shows the kRMSE  value which is averaged 

over all 100 runs while Figure 5.6 (b) shows the kRMSE  value that is computed by 

excluding the bottom 25 runs with the lowest nRMSE  values and top 25 runs with the 

largest nRMSE  values. Figures 5.6 (c) and 5.6 (d) are the nRMSE  value of all 100 

independent runs. It can be observed that in general, higher SNRs lead to more accurate the 
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PF-PDAF algorithm. However, the magnitude of kRMSE  values under SNR 30 dB 

becomes close to that under SNR 27 dB. This is because many runs of PF-PDAF algorithm 

under SNR 30 dB have very high RMSE values (Figure 5.6 (d)). Such phenomena is 

caused by the adoption of transition prior as proposal distribution in the PF-PDAF 

algorithm, in which the particles are driven by the process noise in the system model to 

move from the ( )1−k -th time step to the k -th time step in the state space; and very low 

noise levels (high SNRs) prevent particles from moving to the high measurement 

likelihood areas of the state space. In turn, the performance of the PF-PDAF algorithm is 

affected and its RMSE values are not well bounded. This implies that we need to design a 

better proposal distribution for PF-PDAF algorithm. However, as pointed out in Section 5.3, 

it is not a trivial task to design such a better proposal distribution under the measurement 

origin uncertainty.  

Figure 5.7 shows the performance of PF-PDAF performance under three different sets of 

prior estimates of target state for tracking scenarios V3. These prior estimates are referred 

to as the uncertainty high (defined by Equations 5.55), the uncertainty medium (defined by 

Equations 5.56), the uncertainty low (defined by Equations 5.57). The SNR is set to 37 dB 

at the target position and the particle number is 1000. It can be seen that the increasing 

uncertainty in the prior estimate of target state will generally decrease the performance of 

PF-PDAF algorithm. However, the difference of the tracking accuracy under the medium 

uncertainty of prior target state estimate and the low uncertainty of prior target state 

estimate is not very dramatic. This is because now the dominate factor deciding the 

tracking accuracy of PF-PDAF LGORITHM is the level of measurement origin uncertainty, 

i.e., the clutter rates and the detection rates. 

Figure 5.8 shows the RMSE value of PF-PDAF algorithm with different particles 

number for tracking scenario V3 under the setting of 5.0Cd,9.0Pd == , SNR 37 dB and 

the mean 3
00x  and covariance matrix 3

00P  of the prior estimate of target state. It can be seen 

that the increasing particles number lead to better tracking performance. However, the 

increase of the particles number comes with the higher cost in computation and may not be 

favored in the resources constrained wireless sensor networks. 
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(a) (b)

(c) (d)
 

             Figure 5.6 RMSE of PF-PDAF algorithm under different SNR for tracking scenario V3   
                                       ( 5.0Cd,9.0Pd == , total 100 runs) 
                                       (a) kRMSE  value (averaged over 100 runs) 
                                       (b) kRMSE  value (averaged over the processed data) 
                                       (c) nRMSE  value of 100 runs for SNR 37 dB and 23 dB  
                                       (d) nRMSE  value of 100 runs for SNR 30 dB and 27 dB 
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(a) (b)

(c) (d)
 

                 Figure 5.7 RMSE of PF-PDAF algorithm under different prior estimate of target state for  
                                        tracking scenario V3 ( 5.0Cd,9.0Pd == , total 100 runs) 
                                        (a) kRMSE  value (averaged over 100 runs) 
                                        (b) kRMSE  value (averaged over the processed data) 
                                        (c) nRMSE  of 100 runs with prior estimate uncertainties low and medium  
                                        (d) nRMSE  of 100 runs with prior estimate uncertainty high 
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(a)

(b)  
      

        Figure 5.8 RMSE of  PF-PDAF algorithm under different particles numbers  for tracking scenarioV3 
                          ( 5.0Cd,9.0Pd == ) 
                          (a) kRMSE  value (averaged over 100 runs) 
                          (b) nRMSE  value of 100 runs  
 
 

5.5.3 Compare the Root Square PCRLB with RMSE of PF-PDAF Algorithm 

This subsection compares the PCRLB, which is the theoretical achievable tracking 

accuracy, with the RMSE of the PF-PDAF algorithm. This comparison provides an 

indication of the tracking accuracy attained by the PF-PDAF algorithm under different 

settings of measurement origin uncertainty with varying clutter rates and detection rates. 

The PCRLB and the RMSE are obtained by averaging over 100 independent Monte Carlo 

runs. All simulations are based on the tracking scenario V3 (refer to Figure 5.1) with the 
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setting of SNR 37 dB, the mean 3
00x  and covariance 3

00P  of the prior target state estimate 

state and the particles number 1000.  

Figure 5.9 shows the root square PCRLB under different detection rates with the clutter 

rate fixed for the tracking scenario V3. Figure 5.10 then compares the root square PCRLB 

with the kRMSE  value of the PF-PDAF algorithm under these settings. Figure 5.11 shows 

the root square PCRLB under different clutter rates with the detection rate fixed for the 

tracking scenario V3. Figure 5.12 then compares the root square PCRLB with the kRMSE  

values of the PF-PDAF algorithm under these settings. Table 5.1 shows the root square 

PCRLB values which are averaged over 100 runs and the RMSE values which are averaged 

over all time steps and 100 runs under different detection rates with clutter rate fixed.  

Table 5.2 shows the root square PCRLB values which are averaged over 100 runs and the 

RMSE values which are averaged over all time steps and 100 runs under different clutter 

rates with detection rate fixed. 

From the above figures and tables, we have the following findings: the RMSE of PF-

PDAF algorithm is more affected by the lower detection rates or higher clutter rates than 

the PCRLB is; except at the very low level of measurement origin uncertainty, the RMSE 

of PF-PDAF is at least one order higher than root square PCRLB; and the sensitivity of 

PCRLB to the clutter and missed detections is not great. The significant gap between the 

PCRLB and the RMSE of PF-PDAF algorithm lies in the fact that the PCRLB is the bound 

on the performance of an optimal estimator while PF-PDAF algorithm is suboptimal. As 

proved in [50], for general tracking problems under measurement origin uncertainty, 

optimal estimation algorithms do not exist. However, the PCRLB shows the theoretically 

achievable (not necessarily attainable) tracking accuracy, and it could serve as a lower 

bound on the estimation error covariance of tracking algorithms. Therefore, in the next 

chapter, PCRLB will be used to act as the information utility measure in developing the 

sensing node selection scheme. 

Throughout this chapter, we assumed that the detection rate dP  is a constant. In practical 

tracking applications, the detection rate will be a function that depends on the target-to-

sensing node range, signal energy and noise energy. Such type detection rate may affect the 

performance of PF-PDAF algorithm. However, we will not give the detailed derivation of 

such type detection rate dP  in this thesis.  Readers may refer to the related literature [27], 

[119].  
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           Figure 5.9 Root square PCRLB under different detection rates ( 5.0Cd = ) for tracking scenarioV3 
  

(a)

(c)

(b)

(d)
 

                   Figure 5.10 Root square PCRLB and kRMSE  of PF-PDAF algorithm under different  
                                       detection rates ( 5.0Cd = ) for tracking scenario V3  (averaged over 100 runs) 
                                       (a) 1Pd =    (b) 9.0Pd =   (c) 8.0Pd =    (d) 7.0Pd =  
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            Figure 5.11 Root square PCRLB under different clutter rates ( 9.0Pd = ) for tracking scenarioV3 

                                    

(a)

(c)

(b)

(d)
 

                        Figure 5.12 Root square PCRLB and kRMSE  of PF-PDAF algorithm under different  
                                            clutter rates ( 9.0Pd = ) for tracking scenario V3 (averaged over 100 runs) 
                                            (a) 1.0Cd =    (b) 5.0Cd =   (c) 0.1Cd =    (d) 5.1Cd =  
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                Table 5.1 Averaged PCRLB  and RMSE at different detection rates (Cd=0.5) 
 

 
 Detection Rate 

 
   PCRLB  ( m ) RMSE ( m ) 

Pd =1.0 0.6894   1.4779 
Pd =0.9 1.1318 17.2641 
Pd =0.8 1.3147 34.7461 
Pd =0.7 2.5731 50.3521 

 
               

               Table 5.2 Averaged PCRLB  and RMSE at different clutter rates (Pd=0.9) 
 

 
    Clutter Rate 

 
PCRLB  ( m ) RMSE ( m ) 

Cd =0.1 0.6161 1.7481 
Cd =0.5 1.0239 14.8203 
Cd =1.0 3.3194 25.4498 
Cd =1.5 5.4865 61.1822 

 

 

         5.6 Summary 

This chapter developed the PF-PDAF algorithm for tracking a single target under 

measurement origin uncertainty due to clutter and missed detections in wireless sensor 

networks. By adopting particles to represent the probability distribution function of the 

target state, the PF-PDAF algorithm could accommodate the general nonlinear state-space 

model while keeping the advantages of PDAF in effectively solving the data association 

problem. In order to provide a theoretical bound on the performance of PF-PDAF 

algorithm, the PCRLB under measurement origin uncertainty has also been derived and 

computed. It is shown that under measurement origin uncertainty, the measurement 

contribution to the PCRLB is a product of PCRLB when there is no measurement origin 

uncertainty and a scalar information reduction factor (IRF). 

To minimize system resource utilisation in the wireless sensor networks, next chapter 

will develop distributive tracking algorithms including distributive PF, EKPF and PF-

PDAF. Also by adopting particles representation of the probability density function of 

targets’ states, Chapter 7 will develop algorithms for distributive tracking multiple targets 

under measurement origin uncertainty in wireless sensor networks. 
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