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Chapter 1 

Introduction 

A wireless sensor network (WSN) consists of a large number of small, low-power, and 

inexpensive sensor nodes with on-board sensing, processing and wireless communication 

capabilities. These sensor nodes are networked and deployed “on the ground, in the air, 

under water, on bodies, in vehicles, and inside buildings” [1] to collaboratively monitor and 

perceive surrounding phenomena. Driven by advancements in semiconductor fabrication, 

system-on-a-chip (SoC) integration, wireless communication and signal processing 

techniques, the wireless sensor network has recently emerged as a new discipline [1]–[8]. 

Applications of wireless sensor networks span a broad range – military surveillance, 

condition-based equipment maintenance, environmental and habitats monitoring, health 

care, and disaster prevention and relief … etc [2], [9]–[14]. It is envisioned that large-scale 

distributive wireless sensor networks will eventually instrument our entire planet and 

revolutionise the way in which we interact with the physical world [2]–[3].   

The increasing popularity and deployment of wireless sensor networks have inspired the 

research community to explore various aspects of wireless sensor networks, including: 

sensor node hardware design; sensor network deployment and sensor nodes localisation; 

sensor network synchronisation; distributed estimation; medium access control (MAC); 

routing; sensor network tasking and querying; and modelling and inference … etc [8]. 

Nevertheless, it remains to be a challenging and non-trivial task to design wireless sensor 

networks. Such challenges arise from the unique characteristics of wireless sensor networks, 

especially the highly dynamic topology and connectivity of sensor networks, and the 

constrained energy resource and communication bandwidth available for individual sensor 

nodes [2]–[3], [15]. To address these challenges, on the one hand, it is necessary to develop 

the information processing techniques that cater for representing, processing, storing and 

fusing data and information in a distributive manner in the wireless sensor networks; and 

on the other hand, there is also a need for developing the networking techniques that is 

concerned with sensor network discovery, control and information delivery (i.e., the 

routing protocol) as well as wireless channel management (i.e. the  communication 
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protocol) to facilitate information processing. To conserve communication and 

computation resources and achieve scalability and adaptability, it is essential to blend 

information processing design with networking design in wireless sensor networks.  

This thesis is concerned with the development of collaborative information processing 

techniques for estimating the state (i.e. position) of the moving ground vehicle (hereinafter 

referred to as “target tracking”) in the context of wireless sensor networks. The thesis aims 

to provide an understanding of the interaction between the information processing and the 

networking in wireless sensor networks. Based on such understanding, a collaborative 

information processing framework which integrates distributive estimation, hybrid 

communication protocol and hierarchical routing scheme is proposed in this thesis. A suite 

of estimation algorithms for tracking both single and multiple targets is developed. The 

emphases are put on coordinating sensor nodes for the target state estimation under 

measurement origin uncertainty and resources constraint in wireless sensor networks. 

Throughout this thesis, it is assumed that the target tracking is performed in a wireless 

sensor network which only consists of the stationary acoustic sensor nodes. 

This chapter is organized as follow. Section 1.1 points out the motivation of this thesis. 

Section 1.2 overviews the target tracking problem in the context of wireless sensor 

networks. Section 1.3 summarizes the major contributions of this thesis. Section 1.4 

presents the organization of the thesis. 

1.1 Motivation 

The development of wireless sensor networks was originally motivated by military 

applications such as battlefield surveillance. However, wireless sensor networks are now 

applied in many areas, including environment and habitat monitoring, healthcare, home 

automation, and traffic control. Among these applications, target tracking is a canonical 

application and has received increasing attention in the literature [1], [9], [16]–[26].  A 

typical single target tracking scenario is depicted in Figure 1.1 in which a large number of 

densely deployed sensor nodes co-operatively measure and estimate to determine the state 

of the target (e.g., the position, velocity and heading of the target) over a sequence of time 

steps. In multiple target tracking, a wireless sensor network is tasked to infer the states of 

multiple targets from information gathered by the sensor nodes at each time step.  
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Unlike target tracking algorithms 1  developed for centralised platforms (e.g. radar, 

sonar…etc) [1], [27], the target tracking algorithms developed for wireless sensor networks 

need to be decentralised and energy efficient due to the highly dynamic network topology 

arising from the deployment of numerous volume of sensor nodes; and the severely 

constrained communication and computation resources of each individual sensor node.   

 

Sensor node

Target 

Target Trajectory

 
                      Figure 1.1 Illustrative target tracking in a wireless sensor network 

 

In the past few years, a number of techniques have been developed for target tracking in 

wireless sensor networks, including the maximum likelihood estimation [16], the graph 

based method [89], the Kalman filter (KF) [106], and the sequential Monte Carlo (SMC) 

approach [18]–[20]. However, significant issues still remain: estimating target state under 

measurement origin uncertainty due to clutter which are arising from multi-path effects, 

sensor errors and spurious objects; managing the identities of multiple targets; 

approximating and propagating the estimation results amongst sensor nodes within the 

network; scheduling a group of sensor nodes based on the task requirement and resource 

                                                 
1 In this thesis, the term “target tracking” includes both single and multiple target tracking. 
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availability; managing wireless channel for communication among sensor nodes; and 

routing information between sensor nodes. 

The need to study the above issues motivates the research reported in this thesis. In the 

thesis, the term “collaborative information processing” refers to a unified approach that 

jointly addresses information processing and networking for the distributive estimation of 

target state in the highly dynamic and resources constrained wireless sensor networks. The 

collaborative information processing is the integration of three closely related components: 

the distributive estimation of target’s state under measurement origin uncertainty; the 

hierarchical routing in highly dynamic environment; and the self-organised hybrid 

communication on the dynamic basis. Each of the above components addresses one 

important aspect for target tracking application in wireless sensor networks; but on the 

other hand, these components are complementary to each other. The distributive estimation 

component is responsible for coordinating sensor nodes that participate in the tracking task, 

balancing the information contribution of individual sensor node against its resource 

consumption, acquiring necessary but non-redundant pieces of data and information, and 

making the estimation of the target state. The routing component and the communication 

component provide the distributive estimation component with an efficient and accurate 

information exchange backbone by forming the routes for information delivery and 

managing the access to the wireless channel.  

1.2 Target Tracking in Wireless Sensor Networks 

This section provides an overview of target tracking in wireless sensor networks. It consists 

of a description of the generic target tracking scenario in wireless sensor networks, a brief 

introduction of various target tracking approaches, and a highlight of the research works 

conducted in this thesis. However, the detail review of related target tracking techniques for 

wireless sensor network will be provided in Chapter 2. 

Figure 1.2 depicts a generic scenario of target tracking in a wireless sensor network in 

which two vehicles traverse a sensor field simultaneously. In some regions of the sensor 

field (region I in Figure 1.2), two vehicles are spatially well separated and the tracking 

problem can be regarded as the tracking of two single targets. However, when two vehicles 

are closely-spaced (region II in Figure 1.2), it becomes a multiple target tracking problem 

that the states of the two targets must be estimated jointly. The target tracking problem, as 

well as the algorithms developed to tackle the target tracking problem will be discussed in 

detail in the following chapters. 
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Figure 1.2 Target tracking in wireless sensor networks 

 

During the past four decades, researchers have developed various tracking algorithms 

[27], [28]. However, these algorithms are mostly for centralised platforms (e.g., radar, 

sonar etc) and their applicability to wireless sensor networks is unknown. Tracking 

algorithms developed for wireless sensor networks need to be distributive and, more 

importantly, energy awareness needs to be incorporated into every aspect of algorithm 

design in the wireless sensor networks.  

The most frequently adopted framework for target tracking is the recursive Bayesian 

estimation. In recursive Bayesian estimation framework, target tracking is regarded as the 

process of estimating the target state (i.e., position, velocity, and attitude ... etc) of a 

dynamic system (linear or non-linear) from noisy measurement data (Gaussian or non-

Gaussian noise). It only requires a system model that defines the target dynamics, a 

measurement mode that relates the measurements to target state, and an initial probability 

distribution (prior knowledge) of the target state. The general recursions update the 

probability density function of the target state through two steps: a prediction step that uses 

the system model to propagate the probability density function of target state at the 

previous time step to form the prediction; and a correction step that incorporates the latest 
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measurement through Bayes’ rule to form the new probability density function of the target 

state at the current time step. 

For the linear and Gaussian problem, the above recursion can be computed analytically 

by the standard Kalman filter (KF) [29]–[31]. However, for non-linear problems, there are 

no closed form solutions and approximation methods need to be used. The well-known 

extended Kalman filter (EKF) linearises the state space model through the use of a first 

order truncated Taylor series expansion around the current estimate of the system state [29]. 

Instead of adopting analytical Taylor series linearisation as used in the EKF, there is also a 

number of Gaussian approximate derivative-free filters using deterministic sampling 

methods for the propagation of random variables through nonlinear systems [32]–[37]. 

Examples include the unscented Kalman filter (UKF) [33], the central difference filter 

(CDF) [34], and the sigma-point Kalman filters (SPKFs) [35]. Furthermore, there also 

exists another group of approximate method that is known as the sequential Monte Carlo 

Method (SMC) or Particle filter (PF) [38]–[45]. This approximation approach represents 

the distribution of the random variables by empirical point mass approximations and these 

are recursively updated using sequential importance sampling and resampling [38]. There 

also exist some hybrid approaches that integrate EKF, UKF or SPKF into PF to attain 

better trade-off between accuracy and efficiency [35], [46]. 

In most practical target tracking applications in wireless sensor networks, the sensor 

nodes may yield unlabelled measurements due to clutter and missed detections. Moreover, 

multiple targets, which are not sufficiently separated temporally and spatially in the sensor 

field, may also lead to unlabelled measurements at sensor nodes. Such measurement origin 

uncertainty leads to the challenging data association problem. In the target tracking 

literature, a large number of strategies are available to solve the data association problem 

on centralised platforms [27], [47]. The multiple hypotheses tracker (MHT) records all the 

possible association hypotheses over time. This approach, however, is at the expense of 

very heavy computation burden since the number of association hypotheses grows 

exponentially over time [27]. To control the number of association hypotheses, the joint 

probabilistic data association filter (JPDAF) applies a gating procedure to remove 

infeasible hypotheses. A filtering step is then conducted for each of the remaining 

hypotheses, which are combined in proportion to the corresponding posterior hypotheses 

probabilities [47]. The probabilistic multiple hypotheses tracker (PMHT) assumes the 

association variables to be independent to tackle the problem of gating [27]. Recently, 
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strategies have been proposed to combine the JPDAF and PMHT with sequential Monte 

Carlo method (SMC) for nonlinear applications [48], [49].  

In this thesis, various techniques for target tracking are explored. To track a single target, 

a number of algorithms have been developed: the sequential extended Kalman filter (S-

EKF), the sequential unscented Kalman filter (S-UKF), the Particle filter (PF), and the 

novel hybrid extended Kalman and Particle filter (EKPF). To tackle the data association 

problem due to measurement origin uncertainty, novel hybrid algorithms have also been 

developed which integrate Particle filter (PF) with probability density association filter 

(PDAF) for single target tracking, while integrating with joint probabilistic data association 

filter (JPDAF) for multiple target tracking in wireless sensor networks. By adopting the 

hierarchical sensor network architecture and utilising the Gaussian mixture model (GMM), 

distributive PF, EKPF and PF-PDAF algorithms are developed for tracking single target 

while distributive PF-JPDAF algorithm is developed for tracking multiple targets. 

Moreover, for single target tracking in wireless sensor networks, a recursive posterior 

Cramer-Rao lower bound (PCRLB) under measurement origin uncertainty is calculated to 

provide a theoretical lower bound on mean square error of the target state estimation to 

which the tracking algorithm can attain [50]. PCRLB will also facilitate sensing nodes 

selection in target tracking algorithm; the sensing nodes selection is based on the 

optimization of a composite objective function incorporates the information measure which 

is on the basis of PCRLB calculation and the energy consumption measure which is 

decided by the positions of the sensing nodes.  

1.3 Thesis Contributions 

This section summarizes the major contributions made in this thesis. Taking into account 

the interplay between information processing and networking, this thesis proposed a 

collaborative information processing framework to fulfil the tasks of distributive tracking 

both single and multiple target under measurement origin uncertainty in wireless sensor 

networks. The framework integrates the information processing which is responsible for 

the representation, fusion and processing of data and information with networking (i.e. 

communication protocol and routing protocol) which caters for the formation of network, 

the delivery of data and information, and the management of wireless channels.  

 

The first key contribution of this thesis is to propose a collaborative information 

processing framework for target tracking in wireless sensor networks. This 
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framework provides a unified approach that jointly addresses information 

processing and networking for the distributive estimation of target state in the 

highly dynamic and resources constrained wireless sensor networks. 

 

Within the collaborative information processing framework, this thesis developed a suite 

of algorithms for single target tracking in wireless sensor networks, including the S-EKF, 

the S-UKF, the PF, and the EKPF. The purpose is to develop appropriate tracking 

algorithms that are computationally accurate, efficient, consistent and suitable for 

distributed implementation for single target tracking in wireless sensor networks.   

 

The second key contribution of this thesis is the development of PF and a novel 

EKPF tracking algorithms which use discrete samples (particles) to represent the 

probability density function of the target state and hence they can accommodate 

nonlinear measurement models. Moreover, the novel EKPF algorithm integrating 

EKF into PF is shown to further improve the tracking accuracy. 

 

Given the limited energy and communication bandwidth of individual sensor nodes, a 

critical consideration in the design of wireless sensor networks is that most of the 

information processing and exchange must take place at a local level (e.g., within a cluster 

of sensor nodes) to reduce the communication overhead. By adopting the hierarchical 

network architecture to achieve dynamic sensor nodes clustering and utilizing the Gaussian 

mixture model (GMM) to propagate estimation results amongst sensor clusters, this thesis 

developed distributive PF, EKPF and PF-PDAF for single target tracking and the 

distributive PF-JPDAF for multiple target tracking in wireless sensor networks.  

 

The third key contribution of this thesis is the development of distributive 

tracking algorithms for wireless sensor networks. This helps to achieve scalability 

and adaptability as well as energy efficiency in highly dynamic and energy 

constrained wireless sensor networks.  

 

In this thesis, the data association problem is tackled when tracking a single target in the 

cluttered environment or when tracking multiple targets that are closely spaced. The well-

known PDAF and JPDAF are extended for target tracking under measurement origin 

uncertainty in wireless sensor networks. Especially, the particles are adopted to represent 
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the probability density function of the target state, thus the resulting PF-PDAF and PF-

JPDAF algorithms are suitable for general nonlinear single target and multiple target 

tracking in wireless sensor networks.  

 

The fourth key contribution of this thesis is the adoption of particles to represent 

the probability density function of the target state for the development of hybrid 

tracking algorithms including PF-PDAF and PF-JPDAF for both single and 

multiple target tracking under measurement origin uncertainties in wireless 

sensor networks.  

 

In wireless sensor networks, one of the most important concerns is the maximising the 

tracking accuracy while operating within constraints on sensor network resources. In this 

thesis, a sensing nodes selection scheme is designed to allocate sensor network resources 

by optimising a composite objective function which incorporates the information measure 

on the basis of the calculation of posterior Cramer-Rao lower bound (PCRLB) and the 

resource consumption measure which is based on the locations of sensing nodes.        

 

The fifth key contribution of this thesis is the development of a sensing nodes 

selection scheme in the distributive tracking algorithm that properly allocates 

sensor network resources to achieve desirable tracking performance while 

maintaining modest resources consumption in the target tracking task. 

 

1.4 Thesis Organisation 

This section presents the organisation of the thesis. Chapter 2 provides an overview of 

wireless sensor networks. It presents the concepts, applications and characteristics of 

wireless sensor networks. It identifies design challenges and surveys the approaches to 

these challenges with the emphases on two closely related design issues: information 

processing and networking. Since target tracking is one of the most important applications 

in wireless sensor networks and is also the central theme of this thesis, Chapter 2 also 

provides a detailed review of strategies and techniques reported in the literature for target 

tracking in the context of wireless sensor networks.  

Chapter 3 proposes a collaborative information processing framework for target tracking 

in wireless sensor networks. This collaborative information processing framework includes 
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three major components – the distributive estimation of target state; the hierarchical routing; 

and the self-organised hybrid communication. Each of the components addresses one 

important aspect for target tracking application in wireless sensor networks; the 

combination of these components provides an integrated solution for target tracking in 

wireless sensor networks. Chapter 3 describes the functional blocks for each of the above 

three components, and especially, details the design of hierarchical routing protocol and 

hybrid communication scheme. 

Chapter 4 develops techniques and algorithms for tracking a single target in wireless 

sensor networks. On the basis of the recursive Bayesian estimation, a number of tracking 

algorithms, namely S-EKF, S-UKF, PF and EKPF are developed in Chapter 4. Making use 

of the advantages of both Gaussian approximate filters (e.g., EKF) and sample-based 

approximation filters (e.g., PF), the novel hybrid EKPF algorithm is shown in Chapter 4 to 

consistently outperform S-EKF, S-UKF and PF algorithms. To determine the theoretical 

performance bound to which the tracking algorithms could attain, Chapter 4 computes the 

posterior Cramer-Rao lower bound (PCRLB) to benchmark the performance of the 

developed tracking algorithms. Moreover, extensive simulations are carried out in Chapter 

4 to assess the performance of the developed tracking algorithms. 

Chapter 5 addresses the problem of tracking a single target under measurement 

uncertainty due to clutter and missed detections in wireless sensor networks. By using 

particles to represent the probability density function of the target state, a particle filter (PF) 

and probabilistic data association filter (PDAF) hybrid tracking algorithm, referred to as 

the PF-PDAF is developed in Chapter 5. This PF-PDAF algorithm extends the well-known 

PDAF to the general nonlinear state-space model. Furthermore, the posterior Cramer-Rao 

lower bound (PCRLB) computed in Chapter 4 is also extended to accommodate clutter and 

missed detections in Chapter 5, and thus it can also provide a theoretical lower bound on 

the tracking performance under measurement origin uncertainty.  

Chapter 6 develops the distributive tracking algorithms for tracking a single target in 

wireless sensor networks. On the basis of the hierarchical sensor network architecture and 

the  dynamic sensor nodes clustering developed in Chapter 3 as well as the Gaussian 

mixture model (GMM), the PF and EKPF tracking algorithms developed in Chapter 4, and 

the PF-PDAF tracking algorithms developed in Chapter 5 are implemented in a distributive 

manner in Chapter 6. A composite objective function is also developed to facilitate the 

sensing nodes selection in the above distributive tracking algorithms. This composite 

objective function incorporates the information measure which is based on PCRLB and the 
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energy consumption measure which is decided by the positions of the sensing nodes. By 

adopting this composite object function, the distributive tracking algorithms develop in 

Chapter 6 can properly allocate sensing, computing and communication resources to attain 

desirable performance while still maintaining modest energy consumption when tracking a 

single target in wireless sensor networks. The distributive tracking algorithms developed in 

Chapter 6 will further enhance the applicability of the algorithms developed in Chapter 4 

and Chapter 5. 

Chapter 7 addresses the problem of tracking multiple targets under measurement origin 

uncertainty in the wireless sensor networks. By adopting the particles’ representation of the 

probability density function of the target state, a particle filter (PF) and joint probabilistic 

data association filter (JPDAF) hybrid tracking algorithm, named as PF-JPDAF tracking 

algorithm is developed. PF-JPDAF combines the advantage of PF that can be applied to the 

general nonlinear problem with the merit of JPDAF that can effectively tackle the 

challenging data association problem. Chapter 7 also conducts extensive simulations on 

various multiple target tracking scenarios in wireless sensor works.  

Chapter 8 concludes the thesis and suggests several directions for future research. 
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     Chapter 2 

         Overview 

This chapter is an overview of wireless sensor networks. It presents the concept, 

applications and characteristics of wireless sensor networks. It identifies design challenges 

and surveys the approaches to these design challenges with the emphases on two closely 

related design issues, the networking design and the information processing design. Since 

target tracking is one of the most important applications in wireless sensor networks and is 

also the central theme of this thesis, this chapter provides a detailed review of strategies 

and techniques reported in the literature for target tracking in the context of wireless sensor 

networks.  

This chapter is organized as follows. Section 2.1 briefly describes the benefits and the 

applications of wireless sensor networks. Section 2.2 presents the characteristics of 

wireless sensor networks, and summarises the research challenges from three design 

perspectives: sensor node hardware design; networking design; and information processing 

design. Section 2.3 surveys the technical approaches to the above design challenges. 

Section 2.4 zooms to the current efforts in applying target tracking techniques to wireless 

sensor networks and supplies a survey on related research works reported in the literature.  

2.1 Benefits and Applications of Wireless Sensor Networks  

The deployment of wireless sensor networks offered significant benefits: the higher spatial 

resolutions and extended coverage; the greater fault-tolerance and robustness; and the 

reduced total cost because of the small size and lower price of sensor nodes [2], [3], [15]. 

These benefits lie in the fact that the sensor nodes are densely deployed in locations close 

to the observed phenomena to acquire the most relevant and reliable data and information, 

and through the data and information exchange between them, these sensor nodes are 

capable of building up an integrated understanding of the observed phenomena.   

The significant benefits of wireless sensor networks attract a wide range of applications. 

To date, some wireless sensor networks applications have already been deployed into the 

real environment and even more applications have been envisioned [2], [3], [8], [15]. These 

applications can be roughly grouped into the following categories: 
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■ The wireless sensor networks are applied in the detection, estimation, localisation, 

classification and tracking of moving objects. Examples can be found in [1], [5], [9].  

■ The sensor nodes are spatially distributed to convey the surrounding environment in 

a timely manner. This includes ecosystem monitoring, assembly line and machine 

monitoring, inventory control and logistics, and disaster detection … etc. Examples 

include deploying wireless sensor network to monitor the parterres of petrels’ 

nesting burrows [11], and using wireless sensor networks to investigate moisture 

contents in soil monitoring [51].  

■ The wireless sensor networks are equipped with mobility, for example, combining 

wireless sensor networks, robotics and/or unmanned aerial vehicles (UAVs) to 

provide new capabilities in various applications [52], [53].    

It can be predicted that in the near future the wireless sensor networks technology will 

provide people with the capability of remote interaction with the physical world anywhere 

and at anytime, just as today’s Internet allows people to access digital information 

anywhere and at anytime. 

2.2 Characteristics and Research Challenges in Wireless Sensor Networks  

Wireless sensor networks have a number of unique characteristics that make them 

inherently different from traditional data networks [2]–[5]. These characteristics may be 

divided into two major categories. 

The first category is concerned with the pervasive nature of wireless sensor networks. In 

some applications, there may be several hundreds and even up to thousands of sensor nodes 

that are densely scattered over a geographical area. Each sensor node might only acquire a 

fragment of data and information, it is therefore vital to coordinate all sensor nodes or a 

cluster of sensor nodes to acquire the necessary pieces of data and information, process 

these data and information instantaneously, and subsequently transform them into 

meaningful knowledge regarding the observed physical phenomena and finally make this 

knowledge available to users (be they humans or machines). Moreover, sensor nodes are 

prone to failure due to harsh deployment environments. Hence, in contrast to traditional 

infrastructure-based communication networks, the connectivity and topology of wireless 

sensor networks are always evolving and highly dynamic. This requires scalability and 

adaptability to be built into wireless sensor networks and implies the needs of novel 

networking design and information processing design. 
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The second category deals with the significant resource constraints (e.g., the limited 

power supply, communication bandwidth and computing ability of the individual sensor 

node) on wireless sensor network operation. Energy efficiency is a critical issue and energy 

awareness needs to be incorporated into every aspects of wireless sensor networks 

development. However, developing energy efficient algorithms in a highly distributed 

environment is a non-trivial task and requires the consideration of multiple trade-offs 

between performances and resource utilisation in terms of communication and computing. 

The above characteristics pose considerable research challenges to the design, 

development and deployment of wireless sensor networks: connecting and managing of 

sensor nodes within a communication network in scalable and energy efficient ways; and 

representing, fusing, processing and propagating data and information in a distributive 

manner while minimising the use of resources.  Following sections will provide a short 

discussion of these challenges from three major design perspectives: sensor node design, 

information processing design, and networking design (i.e. routing protocol and 

communication protocol). Figure 2.1 depicts the relationship of these three design aspects 

within the integrated functions of sensing, processing, routing and communication in a 

wireless sensor network. 

Communication Hardware
& Control Logic

MAC Algorithm

Local Routing

Multi-hop Routing

Sensing Modality
& Control Logic

Signal Processing
at Sensor Node

Information 
Processing

Data and Information 
Propagation
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  Figure 2.1 Sensing, processing, routing and communication in a wireless sensor network 
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2.2.1 Research Challenges in Sensor Node Design  

Generally, a sensor node integrates following components: (1) a sensing unit which is 

equipped with one or more sensing modalities to perceive the physical world; (2) a 

processing unit for computing and management; (3) a communicating unit for data 

transmission and reception; (4) a power supply; and (5) an operating system (software) for 

the operation and control of whole sensor node [54]–[60]. Developed sensor nodes include 

Motes [54], WINS [4], Smart-Its [55], piconodes [56], NICTOR WSN Platform [57], 

FLECKs [154] and Zigbee Wireless Microcontroller [58] [59] … etc. 

In many applications of wireless sensor networks, the sensor nodes are un-attended in 

possibly hostile environments and hence it is generally impractical and even impossible to 

charge or replace the sensor nodes. Therefore, one critical requirement in sensor node 

design is the low power consumption. One common adopted approach to this requirement 

is based on a low duty cycle operation mechanism: for the majority of time, the sensor 

node is asleep; when the response is needed, the sensor node quickly wakes up and starts 

processing; and after carrying out its duty, the sensor nodes returns to sleep again. Various 

electronic circuit designs to achieve this low duty cycle operations in sensor nodes have 

been reported in the literature [54]–[59]. However, the full review of these works is out of 

the scope of this chapter.  

2.2.2 Research Challenges in Networking Design  

Networking design is concerned with wireless sensor network discovery, formation, 

control, communication and data and information routing. It develops protocols and 

algorithms for the data link layer and the network layer in the protocol stack [5], [61]. The 

networking design plays a pivotal role for a wireless sensor network to achieve self-

organisation, scalability and adaptability. 

In a wireless sensor network, the first task of networking design is to build up the 

network connectivity for wireless communication among the large number of densely 

scattered sensor nodes, and to pave the way for fair and efficient sharing of communication 

resources amongst sensor nodes. This task belongs to the medium access control (MAC) 

design in the data link layer [63]. In the wireless sensor networks, the chief design 

challenges of MAC are energy efficiency due to the limited energy resources of individual 

sensor nodes, and the scalability and adaptability arising from the frequently changing 

sensor network topologies.  



 16 

The second task of networking design for wireless sensor networks is to develop routing 

protocols to carry out network discovery, formation and maintenance for data and 

information delivery within the network. However, designing routing protocols in wireless 

sensor networks is very challenging [5], [62]. First, traditional IP based protocols may not 

be applied in wireless sensor networks due to the relatively large number of sensor nodes. 

Second, sensor nodes are highly resource constrained and energy awareness needs to be 

incorporated into routing protocols. Third, position awareness of sensor nodes is important 

in the routing protocols design since information collection is normally based on the 

location. Finally, routing protocols need to exploit data aggregation to improve efficiency 

of resources utilisation.   

2.2.3 Research Challenges in Information Processing Design 

In a wireless sensor network, the information processing design caters for the extraction, 

representation, manipulation and propagation of data and information. It aims to provide a 

scalable and efficient way to process the high volume of spatially and temporally 

distributed data generated by a large number of sensor nodes while still maintaining the 

modest utilisation of resources consumption [5], [18]. The central theme of this thesis falls 

into this category of design. 

The challenges of information processing design include the organisation of the 

participating sensor nodes into different clusters; the management of the identities of 

multiple concurrent physical phenomena; the estimation of the states of physical 

phenomena; and the approximation and propagation of the estimation results. Important 

research issues include information aggregation, storage and retrieval, information sharing 

between sensor nodes, estimation algorithms for the inference of physical phenomena, 

information querying and tasking methods, and information compression and replication.  

2.2.4 The Interplay between Networking Design and Information Processing Design 

The above networking and information processing are two closely related design issues in 

wireless sensor networks. Information processing algorithms require information 

dissemination and aggregation among sensor nodes. Quite clearly, this requires both the 

MAC and routing algorithms are in place. On the other hand, by exploiting information 

processing techniques, MAC and routing can be done in more energy-efficient ways. Some 

network parameters such as the residual energy of sensor nodes and the channel state of 

network can be conveyed and provided by information processing algorithms to enhance 

the performance of the MAC and routing protocols [64]. Effectively and seamlessly 
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integrating networking design and information processing design can lead to an efficient 

usage of limited resources and an improved network performance.  

2.3 Literature Survey of Research Works in Wireless Sensor Networks 

This section provides a literature survey focusing on the research works of networking and 

information processing design. Next section will survey the research works on target 

tracking in wireless sensor networks.        

2.3.1 The Survey of MAC Protocol Design 

MAC protocol manages the access to the shared communication medium by defining rules 

that allow sensor nodes to communicate with each other orderly and efficiently. It has been 

extensively studied in traditional wireless voice and data communications. There are two 

different types of MAC protocols [63]: the fixed-assignment channel access method which 

assign nodes onto different sub-channels to avoid collision, including time-division 

multiple access (TDMA), frequency-division multiple access (FDMA), code-division 

multiple access (CDMA), and space-division multiple access (SDMA); and the contention-

based channel-access method in which nodes compete for the wireless communication 

channel, examples include carrier-sense multiple access (CSMA) and IEEE 802.11 

standard.  

Since wireless sensor networks differ from traditional wireless voice or data networks, 

MAC for wireless sensor networks also carries its own characteristics. The primary 

concerns of MAC in the context of wireless sensor networks is to attain energy efficient so 

as to prolong the lifetime of entire network; and also to achieve scalability and adaptability 

to suit for the highly dynamic network topology [63], [71].  

In the past few years, many researchers have extended the MAC protocol for wireless 

sensor networks. Ye et al. [65] developed a Sensor–MAC (S-MAC) which is a hybrid of 

CSMA and TDMA. In S-MAC, the synchronized time sub-channels are maintained, 

however, unlike pure TDMA, these sub-channels can be much bigger than normal TDMA 

sub-channels and synchronization failures do not necessarily lead to communication failure 

because the handshakes mechanism (i.e. sender sends Request-to-send (RTS) message 

before transmitting message and receiver sends Clear-to-send (CTS) message if it is 

available) is employed. S-MAC adopts the periodic sleep-listen schedule based on a locally 

managed synchronisation. Neighbouring sensor nodes form virtual clusters to set up a 

common sleep schedules and this helps to reduce control overhead and enable traffic-
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adaptive wake-up. Moreover, S-MAC adopts in-channel signalling to avoid overhearing 

unnecessary traffic. Enz et al. [66] proposed WiseMAC which is a single-channel 

contention MAC based on non-persistent CSMA (np-CSMA). To mitigate idle listening 

which is one of the major energy wastes in wireless channel, WiseMAC combines np-

CSMA with preamble sampling techniques. The preamble sampling technique consists of 

regularly sampling the channel to check for activity. At the sender side, a wake-up 

preamble of size equal to the sampling period is transmitted ahead of every data packet to 

ensure that the receiver will be awake when data transmission begins. At the receiver side, 

if it finds the channel is busy, it continues to listen until it receives a data packet or the 

channel becomes idle again. By dynamically adjusting the length of the preamble, 

WiseMAC can achieve better performance under variable traffic conditions. Woo and 

Culler [67] investigated various configuration of CSMA. They proposed an adaptive rate 

control scheme aiming to achieve fair bandwidth allocation to all sensor nodes. Rajendran 

et al. [68] designed a traffic-adaptive MAC protocol that is based on the traditional TDMA, 

and the energy efficiency is achieved by ensuring that transmissions have no collisions, and 

by allowing sensor nodes to switch to sleep state whenever they are not transmitting or 

receiving. Recently, cross-layer design approaches by integrating MAC into routing 

protocols for wireless sensor networks are proposed by several researchers [69], [70]. For 

instance, the routing path could be chosen depending on the collision information available 

from MAC. 

This thesis will adopt a hybrid of TDMA and CSMA MAC to build communication 

service for target tracking application in wireless sensor networks. Refer to Chapter 3 for 

the details. 

2.3.2 The Survey of Routing Protocol Design 

In a wireless sensor network, routing protocols is responsible for network formation and 

information delivery so as to facilitate the coordination and management among sensor 

nodes as well as the information gathering, processing and propagating across the entire 

sensor network. The routing protocols for wireless sensor networks can be grouped into 

three categories [62]: the flat-based routing protocol in which all sensor nodes are assigned 

equal roles; the hierarchical-based routing protocol in which sensor nodes play different 

roles; and the location-based routing protocol in which the sensor nodes’ positions are 

exploited for the information relaying. 
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Some examples of flat-based routing protocol are Sensor Protocols for Information via 

Negotiation (SPIN) [72], Directed diffusion and its variations [73]–[75], Information-

driven sensor querying (IDSQ) and constrained anisotropic diffusion routing (CADR) 

[76] … etc. SPIN uses meta-data (high-level data descriptors) to eliminate the transmission 

of redundant data throughout the network. To overcome the problems of overlap and 

ensure that only useful information are transferred, SPIN adopts a negotiation scheme in 

which sensor nodes negotiate with each other before transmitting data and information. In 

addition, the sensor nodes in SPIN can base their communication decisions both upon the 

application-specific knowledge of the data and upon the knowledge of the energy resources 

that are available to them. This allows the sensor nodes to efficiently distribute data given a 

limited energy. Directed diffusion is data-centric in which data generated by sensor nodes 

is named by attribute-value pairs. A sensor node requests data by sending interests for 

named data, and data matching the interests are then drawn down towards that sensor node. 

Intermediate sensor nodes can cache, or transform data, and may direct interests based on 

previously cached data. Such process enables diffusion to achieve energy savings by 

selecting empirically good paths and by caching and processing data in-network. In IDSQ 

and CADR, an information utility measure is introduced to select sensor nodes to query and 

to dynamically guide data routing. This ensures that information gain is maximised while 

latency and bandwidth are minimised. 

One example of location-based routing protocol is Geographic and Energy Aware 

Routing (GEAR) [78]. Rather than sending the interests to whole sensor networks as in 

Directed diffusion, GEAR only sends interests to a certain region of sensor network. 

GEAR uses energy aware neighbour selection to route data to the destination region and 

Recursive Geographic Forwarding or Restricted Flooding algorithm to disseminate the data 

inside the destination region. By doing so, GEAR can conserve more energy than Directed 

diffusion.    

 One representative hierarchical-based routing protocol is the Low Energy Adaptive 

Clustering Hierarchy (LEACH) protocol [77]. LEACH is a clustering based protocol and it 

outperforms classical clustering algorithms by using adaptive clusters and rotating cluster-

heads, allowing the energy requirements of the system to be distributed among all the 

sensor nodes. In addition, LEACH is able to perform local computation in each cluster 

before transmitting the data to the base station. This greatly reduces the energy 

consumption in wireless sensor networks, as computation is much cheaper than 

communication.   
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In this thesis, the hierarchical sensor network architecture is adopted and sensor nodes 

are assigned different roles – the leader nodes which are responsible for information 

processing and the sensing nodes that make acoustic measurements and provide their 

measurements to the leader nodes. Accordingly, this thesis adopts a hierarchical routing 

protocol which is in spirit similar to LEACH but with some alteration and extension to suit 

for the target tracking application in wireless sensor networks. Refer to Chapter 3 for the 

details. 

2.3.3 The Survey of Information Processing Design  

Information processing techniques leverage the processes of transforming raw data and 

information collected from sensor nodes into meaningful knowledge about the observed 

physical phenomena. Information processing for wireless sensor network is an 

interdisciplinary research area with the focus on the representing, storing, processing and 

propagating spatially-temporarily distributed information under the constraints such as 

energy efficiency. Information processing in wireless sensor networks has increasingly 

drawn attention in research communities [9], [18], [20], [22], [79]–[88]. Current research 

efforts include system state estimation, sensor management, distributed compression, 

sensor querying and tasking, mobile-agent based information processing, and distributed 

inference and learning in wireless sensor networks … etc.  

Sayeed et al. developed a collaborative signal processing (CSP) framework for the 

detection, classification and tracking of targets in wireless sensor networks [9], [22], [80]–

[82]. In CSP framework, the sensor field is divided into smaller spatial coherence regions 

(SCRs) to facilitate distributed information processing. An important property of the SCRs 

is that the spatial signal field remains strongly correlated within a SCR and approximately 

uncorrelated in distinct SCRs. Accordingly, in each SCR, sensor nodes are assigned 

different roles – the normal sensor nodes for sensing and the leader nodes for coordinating 

information processing within SCR and communication between different SCRs. Two 

methods of information exchange amongst sensor nodes are developed – the data fusion 

method to exchange low dimensional feature vectors, and the decision fusion method to 

exchange high dimensional likelihood values. Furthermore, distributed classification 

algorithms are also incorporated into CSP framework for the classification of target type in 

wireless sensor networks.   

Zhao et al. proposed a set of information-based approaches for information processing in 

wireless sensor networks [18], [79]. The main idea of these approaches is to determine 
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sensor nodes which will participate in information processing by optimizing an information 

utility function constrained by a given cost function in terms of communication and 

computing. Based on the similar idea of sensor node selection, Guo and Wang developed a 

dynamic sensor collaboration scheme [20]. In this scheme, at each time step the probability 

density function of the target state (called the belief state) is estimated and then used for 

optimal sensor selection for the next time step to maximise the information gain. Qi et al. 

developed the mobile agent based information processing for wireless sensor networks [84]. 

In their approach, a mobile agent, which is a special kind of “software” is adopted. It can 

migrate from one sensor node to another sensor node performing data and information 

processing. This approach differs from the commonly used client/server approaches where 

individual sensor nodes (clients) send measurements to a leader node (server) for 

information processing.  

Other research works of information processing for wireless sensor networks include: 

distributed detection with the integration of wireless channel condition in the algorithmic 

design [85]; distributed compression-estimation under bandwidth constraints [86]; 

distributed inference using graphic models and message-passing algorithms [87]; and joint 

source-channel communication for distributed estimation [88] … etc.  

This thesis develops collaborative information processing techniques for target tracking 

applications in wireless sensor networks. It adopts a hierarchical sensor network 

architecture in which the sensor field is partitioned into a number of smaller regions like 

the above spatial coherence regions (SCRs). In each smaller region, a sensor cluster 

consisting of a leader node and a number of sensing nodes is formed. At each time step, the 

leader node selects a subset of sensing nodes to participate the tracking task; the sensing 

nodes selection is based on a composite function which is balancing the information utility 

and energy consumption of the sensing nodes. To attain desirable tracking performance 

while maintain efficient use of limited communication and computing resources, this thesis 

jointly optimises the interdependent operation of sensing, information processing, 

communication and routing in the wireless sensor network.  

2.4 The Research Works of Target Tracking in Wireless Sensor Networks   

Target tracking problem covers many aspects of wireless sensor networks, from target state 

estimation, communication, information routing, to estimation results propagation and 

inference … etc. This thesis will focus on the task of tracking single and multiple target 

using stationary acoustic sensor nodes in wireless sensor networks. This section supplies a 
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survey of various strategies and approaches reported in the literature for target tracking in 

the context of wireless sensor networks with the special emphasis on the approaches that 

treat target tracking within the recursive Bayesian estimation framework. 

2.4.1 Acoustic Energy Based Target Tracking 

Target tracking using acoustic sensor nodes have been found in many applications. 

Examples include the speaker’s position tracking in videoconference and multimedia 

human computer interface applications [43], [90], [91]; and the vehicle’s location 

estimation in an open field [92] … etc. Existing target tracking methods using acoustic 

sensor nodes are: direction of arrival (DOA), time delay of arrival (TDOA), and received 

signal strength or energy. DOA approaches estimates the target location by exploiting the 

phase difference measured at receiving sensors [93]–[95] and it is applied to the 

applications where the acoustic source emits a coherent, narrow band signal. TDOA 

estimates the target location by estimating time delays between different sensor nodes [96], 

[97]. It requires accurate measurements of the relative time delay between sensor nodes. To 

measure the relative time delay, acoustic signatures extracted from individual sensor node 

must be compared. 

For wireless sensor network applications, acoustic energy based features is an 

appropriate choice since the acoustic power emitted by a moving target (e.g., vehicle) 

usually varies slowly with respect to time. As such, the sampling rate for the acoustic 

energy time series can be set much lower than that for the raw acoustic time series [16]. 

Thus, little data will need to be transmitted over the wireless communication channel. This 

will not only reduce the energy consumption for data transmission at individual sensor 

nodes but also reduce the demand of communication bandwidth over shared wireless 

channels. It is well known that the energy of acoustic signal attenuates as a function of 

distance from the source [114]. Using this property, researchers proposed various acoustic 

energy based approaches for target tracking in wireless sensor networks. These approaches 

can be roughly classified into the following categories: graph based estimation [89], [111] 

–[113]; maximum likelihood estimation [16]; and recursive Bayesian estimation [19],[25]. 

Throughout the thesis, it is assumed that acoustic sensor nodes are employed to form the 

wireless sensor network and the tracking algorithms will be developed based on the 

acoustic energy measurements collected from these acoustic sensor nodes.  
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2.4.2 Recursive Bayesian Estimation for Target Tracking in Wireless Sensor Networks  

The purpose of target tracking is to determine the target state (i.e. position, velocity and 

heading) using the sensor measurements. The most widely adopted approach for target 

tracking is the recursive Bayesian estimation in which the tracking problem is formulated 

and solved on the probabilistic basis. The fundamental Bayesian theorem is that the 

probability density function of  the target state containing all information of the target and 

can be derived given the state space model [27], [28], [47], [99], [100]. The general 

recursive Bayesian estimation updates the probability density function of the target state 

through two stages: a prediction stage that propagates the probability density function at 

the previous time step through the target dynamics to form the one step ahead prediction; 

and a correction stage that incorporates the latest measurements through Bayes’ rule to 

form the new probability density function at the current time step. The algorithms within 

recursive Bayesian estimation framework include Kalman filter, sequential Monte Carlo 

(e.g. Particle filter), along with numerous various variants and hybrids of these two 

algorithms. A survey of recursive Bayesian estimation for target tracking in wireless sensor 

networks is provided as follows. 

Single Target or Well-Separated Multiple Target Tracking in Wireless Sensor Networks  

Sayeed et al. developed a suite of algorithms for the detection, classification and tracking 

of targets in wireless sensor networks [9], [22], [80]–[82]. In these algorithms, the sensor 

field is divided into smaller regions and sensor nodes are assigned different roles. Such 

idea of sensor field partition is apparently attractive for distributive target tracking in 

wireless sensor networks and have also been adopted by other researchers [19]. However, 

the works reported in [9], [22], [80]–[82] mainly focused on the single target tracking 

problems. Although the authors also tackled the problems of multiple target tracking, their 

solutions were based on the assumption of sufficient separation in space and/or time of 

multiple targets, or tracking multiple targets with the use of target classification techniques. 

In contrast, in this thesis, we tackle the multiple target tracking problem by explicitly 

solving the challenging data association problem. 

Zhao et al. proposed a leader-based tracking scheme for single target tracking in 

wireless sensor networks [8], [76], [79], [102]: at each time step, the sensor node which 

most reduces the uncertainty of target state estimation is selected as leader node; this leader 

node estimates the target state based on the estimation from previous leader node and its 

current measurement. For tracking multiple targets that well-separated in space, a leader 
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node is selected for each of the targets and the tracking task is performed in parallel within 

different sensor clusters located in the different smaller regions. Guo and Wang [20] 

adopted the similar leader-based scheme for single target tracking under measurement 

origin uncertainty introduced by clutter and missed detections. To improve the tracking 

performance and cater for nonlinear measurements, they used an Auxiliary Particle filter 

(APF) to implement the leader-based scheme. Sheng et al. [19] proposed distributed 

Particle filters for target tracking in wireless sensor networks. Instead of using the 

measurement of a single leader node, the estimation of target state is updated by making 

use of the measurements from a group of sensor nodes located in a cliques (the concept of 

sensor cliques is quite similar to that of SCR as described in Section 2.3.3). Each clique 

receives a partial estimate of target state from its preceding clique, and updates this partial 

estimate with local measurements made by the sensor nodes within the clique. Then, it 

forwards the updated partial estimate to the next clique. The process will repeat until the 

target moves out of the sensor field. By this way, the estimation of target state is in a 

distributive manner. However, the author did not consider the scenario of tracking target 

with clutter and missed detections (e.g. measurement origin uncertainty). 

Without assuming different roles of sensor nodes, several researchers also proposed a 

number of distributive algorithms [17], [26], [106]–[108]. Coates proposed a distributive 

particle filter for target tracking in a wireless sensor network [17]. It is assumed that the 

measurements at each sensor node are independent so that the measurement likelihood 

function can be factored into products of partial likelihood functions. The procedure of 

Coates’ method is as following: each sensor node maintains a separate particle filter; the 

partial likelihood function is updated at each sensor node using only the measurement 

acquired by this sensor node and the partial likelihood functions estimated in the preceding 

sensor node; the final probability density function of the target state will be back-

propagated to all preceding sensor nodes and a new set of particles will be generated at 

each sensor node using this probability density function. In the above procedure, the partial 

likelihood function is represented by some kind of parametric model whose parameters 

require training. However, neither the parametric model nor the training method is detailed 

in [17]. The computation and communication resource required of this algorithm is quite 

high and so is not ideally suited to the resources constrained wireless sensor networks. 

Vercauteren and Wang developed a decentralised Gaussian mixture sigma-point 

information filter [26]. This decentralised filter makes use of the sigma-point filter for its 

better performance over extended Kalman filter for nonlinear tracking applications [35] and 
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the information filter (it is the inverse covariance form of the Kalman filter [100]) for its 

capability to be easily decentralised. The authors adopted the flat network architecture 

(peer-to-peer topology) with homogeneous sensor nodes. To handle the multimodal 

probability density, the probability density function of the target state is represented by 

using a Gaussian mixture model. At every time step, each sensor node runs a bank of 

parallel sigma-point information filter to compute the components for the above Gaussian-

mixture model; sensor nodes communicate with each other to share the information of the 

cumulative quantities of these Gaussian components; and finally, each sensor node 

computes the updated quantities for the Gaussian components. In addition, each sensor 

node also performs a local probabilistic data association (PDA) to tackle the measurement 

origin uncertainty due to clutter and missed detections. Apparently, the above decentralised 

algorithms require extensive communication among sensor nodes, and the computation 

burden of each sensor node is also quite high. Therefore, the algorithm may not be suited to 

resources constrained wireless sensor networks either. Recently, Ribeiro et al. proposed a 

distributed Kalman filter jointly solving the compression and estimation problems for target 

tracking in  wireless sensor networks [106]–[108]. The communication cost is conserved by 

quantifying the measurements at each sensor node and only feeding the quantified 

measurements into Kalman filter for target state estimation. The authors demonstrated that 

the complexity of this distributed Kalman filter was comparable to the equivalent Kalman 

filter based on the original measurements while the mean squared error (MSE) of the 

resultant estimate was close to the MSE based on the original measurements. However, as 

demonstrated in Chapter 4, when state-space model is non-linear (this thesis uses acoustic 

sensor nodes and the acoustic measurement model is nonlinear, refer to Chapter 4), the 

Kalman filter or extended Kalman filter based tracking algorithms may significantly 

deteriorate. Therefore, the distributed algorithms proposed in [106]–[108] have the limits 

when applied to nonlinear target tracking in wireless sensor networks.  

Motivated by the above works, this thesis developed a suite of algorithms for single 

target tracking in wireless sensor networks, including sequential extended Kalman filter (S-

EKF), sequential unscented Kalman filter (S-UKF), Particle filter (PF) and hybrid extended 

Kalman Particle filter (EKPF) (refer to Chapter 4). Among these algorithms, PF and EKPF 

can effectively combat the non-linearity introduced by the nonlinear acoustic measurement 

model. The novel EKPF developed in this thesis integrates extended Kalman filter as a core 

component to the Particle filter to achieve better tracking accuracy. In contrast to the above 

distributed tracking algorithms proposed in [17], [26], [106]–[108], this thesis adopts the 
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hierarchical network architecture (cluster-tree topology) to achieve distributive target 

tracking. Also differing from the algorithms developed in [8], [76], [79], [102] in which the 

estimation of target state is only based on the measurement form a single sensor node, in 

this thesis the estimation of target state is based on the measurements from a group of 

sensor nodes. As will be discussed in Chapter 3, such hierarchical network architecture is 

also beneficial to the development of communication protocol (MAC) and routing protocol 

for target tracking applications in wireless sensor network. Moreover, a Particle filter and 

probability density association filter (PDAF) hybrid algorithm, named as PF-PDAF 

algorithm is also developed for single target tracking under measurement origin uncertainty 

due to clutter and missed detections. 

Multiple Target Tracking in Wireless Sensor Networks  

In multiple target tracking, a sensor node may acquire more than one measurement; these 

measurements are not only generated by the targets but also possibly generated by the 

clutter. Hence multiple target tracking algorithm needs to solve the data association 

problem, i.e. correctly mapping the measurement and target pairs with the interference 

introduced by clutter. There are prolific strategies and methodologies have been proposed 

in the literature for multiple target tracking [27]. These strategies and methodologies will 

be reviewed in Chapter 7 and here we focus on the research works of multiple target 

tracking in the context of wireless sensor networks. 

Sheng et al. extended the distributive Particle filter to multiple target tracking [19]. 

Instead of tackling the data association problem explicitly, the author proposed a clustering 

algorithm to separate and/or merge multiple targets into a number of target groups which 

are assumed to be well separated spatially. Within a target group, all targets are regarded as 

a “super target” and an independent Particle filter is maintained for estimating the state of 

this “super target” as tracking a single target. However, in many practical multiple target 

tracking scenarios [147], the targets may become neither well separated nor very closely 

spaced; therefore, the joint state estimation of multiple targets by explicitly solving the data 

association problem becomes necessary.  

 Vercauteren et al. extended the leader-based tracking scheme [18] to multiple target 

tracking [101]. In their solution, at each time step, one leader node performs a series of 

tasks including sensing, estimating target state, selecting next leader node, and handing 

over the estimation results. To facilitate implementing such leader-based multiple target 

tracking algorithm, the authors made several assumptions:  no more than two targets can be 
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present in the measurement range of a leader node; one target is always within the range of 

its leader node while another target is considered as interference. These assumptions limit 

the number of measurements and targets, and accordingly, help reduce the complexity in 

solving the date association problem. During each time step in the tracking task, for each 

target, there is a leader node maintaining a Particle filter to update the target state. When 

two targets are moving close to each other (for example, two targets are crossing), the two 

leader nodes of both targets still encounter the data association problem and need to 

execute joint target state estimation algorithm. However, it may not be trivial and efficient 

to run the same joint target state estimation algorithm separately on these two leader nodes. 

Moreover, when two targets are crossing, it is also not a trivial task to select the leader 

node because one leader node may have chance to be selected for both targets. Furthermore, 

when there are more than two targets (assuming these targets at some time steps will be 

crossing or closely spaced), maintaining one leader node for each of the targets may not be 

realistic; thus the leader-based multiple target tracking algorithm proposed in [101]  may 

not readily extendable to more than two targets tracking in wireless sensor networks.  

Oh et al. proposed a Markov chain Monte Carlo data association (MCMCDA) algorithm 

for multiple target tracking in wireless sensor networks [103], [104]. This MCMCDA 

algorithm uses Metropolis-Hastings algorithms [105] to generate samples from a 

distribution on the problem space. The authors claimed MCMCDA can track unknown 

number of targets in the presence of clutter and missed detections. However, MCMCDA is 

a batch algorithm that is based on multiple scans; it requests not only the measurements 

obtained at current time step, but also the measurements from several previous time steps 

for the estimation of target state. This may increase the resources consumption in terms of 

memory, computation and communication. Although the authors also developed single-

scan version of MCMCDA, it is not appealing because the implementation is not 

straightforward.  

In contrast to the above works, this thesis develops the Particle filter based multiple 

target tracking algorithm – a Particle filter and joint probability density association filter 

hybrid algorithm (PF-JPDAF). Differing from the algorithm developed in [19], this PF-

JPDAF algorithm tackles the data association problem explicitly, and thus can be applied 

into the occasions that multiple targets are closely spaced. Also differing from the leader-

based multiple target tracking algorithm proposed in [101], PF-JPDAF adopts hierarchical 

sensor network architecture, at each time step, the leader node selects several sensing nodes, 

collecting their measurements, estimating the target state, and if necessary, propagating the 
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estimation results to the next leader node. Target state estimation using the information 

from multiple sensing nodes can improve the tracking accuracy. Unlike MCMCDA 

algorithm developed in [103], [104], PF-JPDAF only uses the measurements acquired at 

the current time step. Thus, in contrast to MCMCDA algorithm, PF-JPDAF only requires 

modest resources utilization when it is applied for on-line multiple target tracking in 

wireless sensor networks. 
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Chapter 3 

      Collaborative Information Processing Framework   
for Target Tracking in Wireless Sensor Networks 

  

This chapter proposes a collaborative information processing framework for target tracking 

in wireless sensor networks. The framework includes three major components – the 

distributive estimation of target state under measurement origin uncertainty; the 

hierarchical routing in highly dynamic environment; and the self-organised hybrid 

communication on the dynamic basis. Each of the components addresses one important 

aspect for target tracking application in wireless sensor networks; on the other hand, these 

components are complementary to each other to provide an integrated solution for tracking 

targets in wireless sensor networks.   

This chapter is organized as follows. Section 3.1 presents a hierarchical wireless sensor 

network architecture which is adopted in this thesis. This hierarchical wireless sensor 

network architecture is the foundation of the whole thesis and the algorithms developed in 

the following chapters are all based on it. Section 3.2 details the collaborative information 

processing framework for target tracking in wireless sensor networks. Both the hierarchical 

routing component and the self-organised hybrid communication component are detailed. 

The distributive estimation component is briefly introduced in this chapter; however, it is 

the focus of this thesis and will be developed in the following chapters. Section 3.3 

concludes this chapter. 

3.1 Hierarchical Sensor Network Architecture  

Given the limited energy and communication bandwidth of individual sensor nodes, a 

critical consideration in wireless sensor networks is that most of data and information 

processing must take place at a local level, i.e. among a group of sensor nodes located in a 

relatively smaller region. This is also to comply with the observation that at each time 

instance, the data and information processing only require collaboration among a limited 

number of sensor nodes in a certain region and not among an arbitrary set of sensor nodes 

distributed across the whole sensor field.  
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Figure 3.1 shows a sensor field partition scheme proposed by Sayeed et al. [80]-[82]. 

Similar partition schemes are also adopted in [9], [19], [148]. In Figure 3.1, the sensor field 

of the size yx DD ×  is divided into a number of smaller regions with the same size of 

ycxc DD ,, × . Here, the evenly partition of the sensor field is only for illustration, however, it 

is not required in the collaborative information processing framework proposed in this 

chapter and the algorithms developed in the following chapters.  

xcD ,

ycD ,

yD

xD  
                                                      Figure 3.1 Sensor field partition   

 

The sensor nodes used in this thesis are assumed to be equipped with only acoustic 

sensing modality. When a target moves in the sensor field, it generates a space-time signal 

( )kyxs ,, . This signal is a function of the x - and y - coordinates and time k , and it can be 

represented as following [80] 
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where xB and yB  represent the spatial bandwidth in x - and y - coordinates and kB  

represents the temporal bandwidth of the signal in new dimensional units, respectively. 

( )fvv yx ,,φ  is the underlying spectral representation which satisfies 

 
   ( ) ( )[ ] ( ) ( ) ( ) ( )'''''' ,,,,,, ffvvvvfvvfvvfvvE yyxxyxyx

T
yx −−−= δδδφφφ                           

(3.2) 



 31 

for some ( ) 0,, ≥fvv yxφ  that represents the power spectral density (PSD) of the signal 

field, where T denotes matrix transposition and δ denotes Dirac delta function. The signal 

correlation function sγ  is related to the PSD via three-dimensional Fourier transformation:                
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Both power spectral density ( )fvv yx ,,φ  and signal correlation function ( )kyxs ∆∆∆ ,,γ   

characteristic the statistics of the random target signal ( )kyxs ,, .  

In the above sensor field partition scheme, the assumption is made that the target’s 

signal ( )kyxs ,,  is perfectly correlated in each of the smaller regions in Figure 3.1, i.e. at 

any time step k , one has ( ) ( )kskyxs =,, ; however, the temporal process ( )ks  in 

different smaller regions are statistically independent. The above assumption facilitates the 

development of signal and information processing algorithms in wireless sensor networks. 

The individual sensor node samples the target signal ( )kyxs ,, , computes the intensity of 

this signal, and transmits the magnitude of signal’s intensity to a fusion centre (leader node 

in this thesis, refer to Chapter 4) for the estimation of target state. 

   This thesis adopts a hierarchical sensor network architecture based on the above sensor 

field partition scheme: the whole sensor field is partitioned into a number of smaller 

regions, and in each smaller region, a group of sensor node forms a sensor cluster. During 

the target tracking task, sensor nodes are dynamically organised into different clusters 

(refer to Figure 1.2 in Chapter 1). Each sensor cluster is composed of two types of sensor 

nodes – the leader node and the sensing nodes: 

 The leader nodes are sparsely deployed in the sensor field. Their number is less than the 

sensing nodes but still has sufficient coverage for the whole sensor field. Besides the 

acoustic sensing modality, each leader node is also equipped with an advanced digital 

signal processor (DSP) and a powerful wireless transmitter (i.e. the radio transmission 

range is larger than that of sensing node). Hence, the leader nodes have powerful 

information processing and communication capabilities;  

 
 The sensing nodes are densely scattered over the sensor field. Sensing nodes are 

equipped with acoustic sensing modality. However, they are equipped with less 

powerful microprocessors and relatively short range wireless transmitters. The sensing 
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nodes provide leader nodes with the acoustic energy measurements, i.e. the intensity of 

the target’s signal ( )kyxs ,,  upon request.  

 

The formation of a sensor cluster is triggered by the detection of an approaching target, 

and it includes several phases and involves communication protocol and routing protocol. 

This will be discussed in the next section. Throughout this chapter, the following 

assumptions are made: a leader node has the knowledge of itself and its all neighbouring 

sensing nodes, including the positions, residual energy, and one-hop communication costs 

between itself and each neighbouring sensing node;  the sensing nodes have the knowledge 

of the residual energy of themselves.  Such knowledge can be established during network 

initialisation and discovery. Moreover, it is also assumed that the sensing node and leader 

node (i.e. cluster leader) exchange information via a single-hop communication within a 

sensor nodes cluster; there is no peer-to-peer communication among the sensing nodes 

within a sensor nodes cluster; and all sensing nodes and leader nodes are time-

synchronized.  

3.2 Collaborative Information Processing Framework 

Unlike the centralised platform (e.g. radar, sonar…etc.), in a wireless sensor network the 

measurements and the tracking algorithms are physically distributed across sensor nodes in 

the network. This implies that along with the target state estimation, the communications 

amongst sensor nodes and information routing in network should also be viewed as an 

integral part of the target tracking problem in wireless sensor networks [22]–[24]. In 

particular, the following issues need to be considered together:  

1. The estimation of the target state in a distributive manner; 

2. The management of target identity in the presence of multiple targets and clutter;  

3. The selection and organization of sensing nodes to collaboratively participate in the 

tracking task;  

4. The routing protocol for data and information delivery within the sensor network;  

5. The communication protocol for the management of wireless channel. 

To address the above issues, this chapter proposes a collaborative information 

processing framework for tracking both single and multiple target in wireless sensor 

networks. The proposed framework emphasises the collaboration amongst sensor nodes, 

i.e., coordinating a group of sensing nodes to provide consistent, essential but non-

redundant data and information for the accurate estimation of target state. Such 
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collaborative information processing will not only reduce the volume of data and 

information to be transported, but also the probability of collision and interference in the 

wireless channel. Thus, the power consumption in network is reduced and hence, the 

lifetime of the wireless sensor network can be prolonged.  

The proposed collaborative information framework incorporates three major 

components: the distributive estimation of target state under measurement origin 

uncertainty; the hierarchical routing in highly dynamic environment; and the self-organised 

hybrid communication on dynamic basis. Figure 3.2 depicts the components and their 

building blocks of the proposed collaborative information processing framework. The first 

component, the distributive estimation of target state is the focus of this thesis, and a 

number of algorithms have been developed and will be presented in the following chapters. 

Other two components, the hierarchical routing and hybrid communication will be detailed 

in the following subsections. However, the full development and implementation of these 

two components are beyond the scope of this thesis. 
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Figure 3.2 Collaborative information processing framework 
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3.2.1 Distributive Estimation of Target State under Measurement Origin Uncertainty 

The ultimate purpose of the distributive estimation component is to coordinate sensor 

nodes to acquire necessary pieces of data and information, process these data and 

information, subsequently transform them into meaningful knowledge regarding the target 

state and finally makes this knowledge available to users (be they humans or machines). To 

fulfil this purpose, a number of algorithms have been developed in this thesis aiming to 

achieve desirable tracking accuracy while maintaining the modest consumptions of the 

system resources in terms of communication and computation. The building modules 

within the distributive estimation component are briefly described as follows. However, the 

details of these modules as well as the resulting algorithms will be presented in the 

following chapters of this thesis. Here, it also needs to emphasize that the distributive 

estimation component is highly correlated with the routing component and communication 

component in that several modules included in the distributive estimation component are 

also addressed in the latter two components.    

 

Sensing nodes selection – Amongst the sensing nodes in the current active sensor cluster, 

not all of them provide useful information that effectively contributing to the estimation of 

the target state. Furthermore, if all of these sensing nodes take the measurements and 

transmit their measurements for target state estimation in the cluster leader, it will consume 

tremendous energy in the resources highly constrained wireless sensor networks. In this 

thesis, however, instead of activating all sensing nodes in a sensor cluster to take sensing 

action, the cluster leader selects an optimal subset of these sensing nodes, only activating 

the selected sensing nodes, and incorporating their measurements into the target state 

estimation. The sensing nodes selection will be detailed in Chapter 6, and the key idea is to 

balance the information contribution and the energy consumption at the sensing nodes 

within the current sensor cluster. 

 

Data association algorithms – In most practical target tracking applications in wireless 

sensor networks, there may exists multiple targets and the clutter as well. In turn, the 

measurements obtained at a sensing node may consist of the measurements generated by 

the targets and the measurements generated by the clutter. This will make the assignment 

of measurements to the corresponding targets in the tracking algorithm difficult. 

Consequently, it is necessary to develop data association algorithm to solve this 

measurement origin ambiguity. In this thesis, two algorithms have been developed to 
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effectively tackle the data association problems. For the single target tracking in the 

presence of clutter, the hybrid of Particle filter and probability density association filter 

(PF-PDAF) has been developed (Chapter 5). For the multiple target tracking in the 

presence of clutter, the hybrid of Particle filter and joint probability density association 

filter (PF-JPDAF) has been developed (Chapter 7). 

 

Distributed tracking algorithms – At each time step, the selected sensing nodes in a sensor 

cluster forward their acoustic energy measurements to the cluster leader, and in turn, the 

cluster leader runs the tracking algorithm to estimate the target state. This information 

processing process continues until the target moves out of this cluster, and then the cluster 

leader passes its belief (i.e. the probability distribution of the target state) to the cluster 

leader of next sensor cluster. In this way, the estimation of target state is updated 

distributively in the wireless sensor network. This thesis developed a number of 

distributive tracking algorithms in the following chapters, including the distributive PF 

algorithm, the distributive EKPF algorithm, the distributive PF-PDAF algorithm, and the 

distributive PF-JPDAF algorithm.    

 

Belief propagation algorithms – When the target moves out of the region occupied by a 

sensor cluster, the cluster leader needs to propagate its belief to the cluster leader of the 

next sensor cluster. Since this thesis adopts particles to represent the probability density 

function of target state, a high volume of particles data needed to be transferred from one 

cluster leader to another cluster leader. This will consume tremendous communication 

overheads and may even cause network congestion. To combat this problem, this thesis 

makes use of a Gaussian mixture model (GMM) to approximate the probability density 

function, and consequently, only the GMM parameters whose number is far less (two 

orders less as shown in the simulations in Chapter 6) than that of particles needs to be 

transmitted to the next cluster leader (refer to Chapter 6 for details). Hence, the 

communication overhead is greatly reduced and energy is saved.  

 

3.2.2 Hierarchical Routing in Highly Dynamic Environment 

Routing caters for network discovery, formation and date delivery. It is essential for 

properly transferring data and information to the right destination at the right time in a 

wireless sensor network. In the proposed collaborative information processing framework, 

the routing scheme provides a backbone for the distributive target state estimation 
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component, from sensing nodes selection and distributive target tracking to belief 

propagation. However, routing is one of very challenging design tasks in wireless sensor 

networks because: 

1. It is not possible to adopt the traditional IP-based routing protocol since the relatively 

large number of sensor nodes are deployed in a wireless sensor network; 

2. In target tracking applications, at each time step, the measurements obtained from 

numerous sensing nodes need to be transmitted to the cluster leader; 

3. The sensor nodes are highly resource constrained; 

4. There is a high probability that the data has some redundancy and such redundancy 

needs to be exploited by the routing protocols to improve energy and bandwidth 

utilisation. 

 
Corresponding to the hierarchical wireless sensor architecture, a hierarchical type 

routing protocol similar to that proposed in [77] is adopted in this thesis. In this hierarchical 

routing protocol, the clusters are formed distributively across the sensor network without 

any centralized control. Moreover, the leader nodes perform data aggregation and 

integration, and consequently, the energy at an individual sensing node could be saved and 

the lifetime of a wireless sensor network can be prolonged. This section will details the 

design of such hierarchical routing protocol. However, the full development and 

implementation of the routing protocol is beyond the scope of this thesis. 

Basically, the hierarchical routing is comprised of two stages: the first stage (cluster 

formation stage) is responsible for the cluster leader election and the sensor cluster 

formation; the second stage (steady stage) is used for sensing nodes selection within the 

sensor cluster, delivering the data (i.e. acoustic measurements) between the sensing nodes 

and the leader node within the sensor cluster, and forwarding the belief (i.e. estimation 

results) from the leader node of the current sensor cluster to the leader node of the next 

sensor cluster leader (belief propagation between cluster leaders will be detailed later in 

this section).  

Figure 3.3 shows the time-line of this hierarchical routing protocol. Its process is 

described as follows. 
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Figure 3.3 Time-line of the routing protocol operation 

 

Cluster Leader Election and Sensor Cluster Formation 

In single target tracking, when a leader node detects an approaching target (leader nodes 

are also equipped with sensing modality, refer to section 3.1), it volunteers itself to act as 

the cluster leader and recruits sensing nodes to form a sensor cluster. However, there is a 

critical design issue needs to be considered here: which leader node should be elected as 

the cluster leader and takes the responsibility to form the sensor cluster if several leader 

nodes detect the approaching target simultaneously. Ideally, the leader node that obtains the 

measurement with the largest magnitude of target’s signal intensity should be elected 

because it is the closest leader node to the target. In multiple target tracking, two scenarios 

may exist: the targets are well separated in space; and the targets are closely spaced (but 

cannot be regarded as a “super target”, refer to Chapter 2). In the first scenario, for each of 

the targets a unique sensor cluster is formed; and in each sensor cluster, the cluster leader 

election process will be the same as that of single target tracking. In the second scenario, 

the leader node may obtain the measurement which is the sum of the acoustic intensities of 

several signals with each corresponding to a target (in the following chapters, it is assumed 

that these acoustic signals can be separated by advanced signal processing techniques [21]). 

For this scenario, the leader node which obtains the measurement with the largest 

magnitude of signal intensity will still be elected as the cluster leader. Consequently, 

cluster leader node election process for this scenario will still be the same as that of the 

single target tracking. The cluster leader election process is described as follows. 

Without a centralised facility existing for cluster leader election in a wireless sensor 

network, an effective method to determine the cluster leader is to adopt a bake-off timer 

whose values are determined by the magnitude of the intensity of target’s signal obtained at 
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the leader nodes. A leader node whose acoustic signal intensity measurement intensity 

exceeds a predefined threshold sets a back-off timer and does not broadcast its intention of 

becoming the cluster leader until the timer expires. If by the time the back-off timer expires, 

this leader node receives an intention from another leader node and then it cancels the timer 

and terminates its volunteering process. Otherwise, this leader node becomes the cluster 

leader.  

Nevertheless, there might exists a scenario where two leader nodes have the same value 

in their back-off timers since the distance from the target to these two leader nodes are the 

same. To solve this dilemma and also for the purpose of evenly distributing the load 

amongst the leader nodes, the value of the back-off timer for an individual leader node can 

be defined as a composite function consisting of two terms: a term decided by the acoustic 

signal intensity measurement obtained at this leader node; and a term defined by the 

residual energy in this leader node. Then, the set value of the back-off timer can be 

expressed as  

 
( ) ( ) ( ) ( ) Ω∈−+= mmEmZmT resαα 1                                    (3.4) 

 
where ( )mT  is the set value of the back-off timer for the m -th leader node. ( )mZ  is the 

intensity of the acoustic signal acquired by the m -th leader node. ( )mEres  is the residual 

energy of the m -th leader node.  α  is the scaling factor which is used to balance the 

influence of the acoustic signal intensity measurement and the residual energy of the leader 

node. By adopting the above composite function, the confliction in the cluster leader 

election due to the same magnitude of the target’s signal acquired by two leader nodes can 

be mitigated. 

Once the cluster leader is elected, it broadcasts an advertised message over neighbouring 

sensing nodes using the carrier-sense multiple access with collision avoidance (CSMA/CA) 

MAC protocol (refer to next section for details). This message contains this cluster leader’s 

ID and a header that distinguish this message as an announcement message. Upon 

receiving the announcement message from the cluster leader, the neighbouring sensing 

nodes reply with a “Join Request” message. The message contains the sensing node’s ID 

and its residual energy. Similarly, CSMA/CA MAC protocol is adopted for this message 

transmission. By receiving the “Join Request” messages, the cluster leader builds a cluster 

member list which includes the sensing nodes’ IDs and their residual energies. Now the 

sensor nodes cluster is formed.  
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Sensing Nodes Selection and Measurements Transmission 

After the formation of a sensor node cluster, then at each time step, the cluster leader 

selects a subset of sensing nodes from the cluster member list, activating these selected 

sensing nodes to sense and provide their measurements, and finally, updating the 

estimation of the target state. The selection criterion of sensing nodes is based on a 

composite objective function which consists of both information utility and energy 

consumption measures. More specifically, the information utility is calculated on the basis 

of the posterior Cramer-Rao lower bound (PCRLB). The energy consumption measure is 

based on the relative distance between the sensing nodes and the cluster leader. The 

PCRLB computation will be detailed in Chapters 4 and 5 while the sensing nodes selection 

scheme will be developed in Chapter 6.  

From the computation results of the above composite function, the cluster leader will 

decide a subset of sensing nodes within the sensor cluster to participate in the tracking task. 

The cluster leader will send out an “Activation Request” message containing the ID of the 

selected sensing nodes. Upon hearing this message, the selected sensing nodes will wake 

up and return an “Activation Confirmed” message to the cluster leader to confirm their 

participation in the sensing task. Again, CSMA/CA MAC protocol is used for the above 

two messages transmission. Once receiving the “Activation Confirmed” message, the 

cluster leader assigns a Time Division Multiple Access (TDMA) schedule and sends it to 

the selected sensing nodes. After the TDMA schedule is known by all selected sensing 

nodes, the selected sensing nodes start to acquire the acoustic signal emitted by the target, 

processing it to get the intensity information, and then transmitting this acoustic intensity 

information along with the residual energy information of themselves to the cluster leader. 

In turn, the cluster leader uses the acoustic intensity information to estimate the target state 

and also updates the residual energy information of these selected sensing nodes in the 

cluster member table.    

 

Belief Propagation between Cluster Leaders 

In this thesis, “belief” refers to the probability density function of the target state. In the 

algorithms developed in the following chapters, the “belief” is represented by particles and 

their weights. As described in section 3.2.1, the belief propagation algorithm aggregates, 

approximates and propagates the estimation results from one cluster leader to another 

cluster leader. However, there still one issue remains: how the current cluster leader 

decides when to propagate its belief to which leader node. Basically, at each time step, after 
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the target state estimation, the cluster leader computes the distance between itself and the 

predicted position of the target of the next time step. If this distance becomes larger than a 

predefined threshold, then this cluster leader needs to propagate its belief to the next 

potential leader node of the cluster in its vicinity. To do so, this cluster leader broadcasts a 

message to its neighbouring leader nodes to initiate a new cluster leader election and sensor 

cluster formation process. It is assumed the communication range of this cluster leader is 

long enough that the message it broadcasted can reach all neighbouring leader nodes that 

have the potential to be the next cluster leader. Upon receiving this broadcasting message, 

the neighbouring leader nodes make the acoustic measurements. Then, the cluster leader 

election process as described earlier is started. Later on, when the new cluster leader is 

elected, the previous cluster leader forwards its belief to the new cluster leader. Then the 

new cluster leader starts to form a new sensor cluster to perform the tracking task. The 

above process will continue until the target moves out of the sensor field. It can be seen 

that the sensor cluster is formed dynamically, and at any time step, only a small portion of 

the sensing nodes is activated to take sensing and processing action while most sensing 

nodes are in “sleep” mode. This strategy will help conserve energy utilisation and in turn, 

prolong the lifespan of the wireless sensor network.  

 Figure 3.4 depicts the flow graph of the above process of cluster leader election, sensor 

cluster formation, sensing nodes selection and belief propagation. In some applications, the 

Users (i.e. higher level application software) that reside out of the wireless sensor network 

may query the target state. Hence, the current cluster leader needs to transmit its estimation 

results to the Users through multi-hop routing. However, multi-hop routing protocol is not 

considered in this thesis.   
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Figure 3.4 Flow graph of hierarchical routing protocol 
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3.2.3 Self-Organised Hybrid Communication on Dynamic Basis 

In the above distributive estimation component and hierarchical routing component of the  

collaborative information processing framework, each task, from cluster leader election and 

sensor cluster formation, sensing nodes selection and measurements transmission, to belief 

propagation, requires communication over the wireless channel. The quality of the 

communication component of the collaborative information processing framework has a 

large impact on the overall performance of the target tracking in a wireless sensor network 

[67]. The major challenge of communication component design in wireless sensor 

networks is to avoid collision when two sensor nodes transmit data over the same wireless 

channel at the same time. The collision of the transmitted packets will require the re-

transmission of the collided packets and this is at the cost of extra energy consumption.  

The communication component in the proposed collaborative information processing 

framework is mainly the medium access control (MAC) protocols. MAC protocols have 

been extensively studied in traditional wireless communication systems [67]. It assists each 

sensor node to decide when and how to access the shared wireless channel and can be 

clarified into two categories: the scheduling based protocol such as time division multiple 

access (TDMA), frequency division multiple access (FDMA) and code division multiple 

access (CDMA); and the contention based protocol such as carrier sense multiple access 

(CSMA) and IEEE 802.11. In wireless sensor networks, the widely applied MAC protocols 

include the scheduling based protocol TDMA and the contention-based protocol CSMA.  

In this thesis, a hybrid of TDMA and CSMA/CA MAC protocol is adopted for the 

communication component of the collaborative information processing framework.  

TDMA is adopted when the selected sensing nodes transmit their measurements to the 

cluster leader. In TDMA, the cluster leader allocates time slots for sensing nodes, i.e. 

dividing the wireless channel into many smaller time slots; and in each time slot, only one 

sensing node is allowed to transmit. The major advantage of TDMA is its energy efficiency 

since it effectively avoids the collision by pre-allocating the slots to individual sensing 

nodes. Moreover, low-duty-cycle operation of the sensing nodes can also be implemented 

under TDMA. A sensing node only turns on its radio when a time slot is assigned to it 

while turning off its radio when all time slots have been assigned to other sensing nodes. 

The disadvantage of TDMA is in that it has limited scalability and adaptability to the 

changes on the number of sensing nodes. Hence, TDMA is not suitable for either the sensor 

cluster formation or sensing nodes selection since the number of sensing nodes in both 

processes is time varying.  
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CSMCSMA/CA is adopted in two occasions in communication component of the 

proposed collaborative information processing framework. The first occasion is during the 

sensor cluster formation when the cluster leader announces its identity to recruit sensing 

nodes and the intended sensing nodes reply with the “Join Request” message. The second 

occasion is after the sensing nodes selection process when the cluster leader announces the 

list of selected sensing nodes to activate these sensing nodes, and the selected sensing 

nodes reply with the “Activation Confirmed” message. In CSMA, the communication 

channel is not divided into time slots and an individual sensing node is not assigned a time 

slot. Instead, the communication channel is shared by all sensor nodes and it is allocated 

on-demand by employing a contention mechanism to decide which node has the right to 

access the channel.  The major advantage of CSMA is that it can scale easily to the change 

of the number of sensing nodes and flexible to the network topology changes. For example, 

in the above first occasion, the sensing nodes in the vicinity of the cluster leader need to 

send the “Join Request” messages to the cluster leader. Since the formation of sensor 

cluster has not completed yet at this stage, the cluster leader still doesn’t know which 

sensing node will join the sensor cluster. Hence, it is impossible for the cluster leader to 

pre-allocate the channel for the unknown sensing nodes to send the “Join Request” 

message. Consequently, TDMA is not appropriate here and CSMA is adopted. Similarly, in 

the above second occasion, the cluster leader doesn’t know whether the selected sensing 

nodes will confirm to take sensing action before these sensing nodes reply with the 

“Activation Confirmed” message. Hence, it is again impossible for the cluster leader 

allocating channel for these sensing nodes and we still need to resort to CSMA. 

However, the pure CSMA has its own disadvantage in that the collisions can not be 

avoided. In sensor cluster formation and sensing nodes selection, if two sensing nodes want 

to send message to the cluster leader simultaneously, they need to contend for the channel 

and a collision may happen (as illustrated in Figure 3.5). In Figure 3.5, when sensing node 

a   is  sending a message  to the cluster leader node,  sensing  node c   is  not  aware of this    
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Figure 3.5 The hidden terminal problem 

 

transmission due to the range of its radio. If sensing node c  starts transmitting now, cluster 

leader will receive collided packets form both sensing nodes. Original CSMA could not 

solve this problem. In this chapter, an enhanced CSMA, called CSMA/CA (CA stands for 

collision avoidance) which uses a handshake mechanism is adopted. The handshake starts 

from the sender by sending a short Request-to-Send (RTS) packet to the intended receiver. 

Then the receiver replies with a Clear-to-Send (CTS) packet. The sender starts sending data 

after it receives the CTS packet. The purpose of RTS-CTS handshake is to let the 

neighbouring nodes know there is a data transmission over the channel. In Figure 3.5, 

although sensing node c  cannot hear the RTS sent by sensing node a , it can hear the CTS 

from cluster leader. If a node hears an RTS or CTS destined to other nodes, it should back-

off without sending its own packet. However, CSMA/CA does not completely eliminate 

collision problem, but now the collisions are mainly on RTS packets. Since the RTS packet 

is very short, the cost of collisions is greatly reduced. The details of CSMA/CA can be 

found in [65]. Other enhanced versions of CSMA have also been proposed in the literature 

[63], [68]. However, the detailed implementation of these CSMA protocols is beyond the 

scope of this thesis. 

3.3 Summary 

This chapter proposed a collaborative information processing framework for target tracking 

in wireless sensor networks. Three major components, namely the distributive estimation 

of target state, the hierarchical routing and the self-organised hybrid communication are 

detailed. On the one hand, these components and their associated algorithms are 

independent because they address different aspects of target tracking problems in wireless 
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sensor networks; on the other hand, they are highly correlated in the sense that they are 

complementary to each other in order to provide an integrated solution for tracking target 

in wireless sensor networks.  

However, the focus of this thesis is to develop distributive estimation component. 

Developing the full set of routing component and communication component is beyond the 

scope of this thesis. The investigation of routing component and communication 

component is only in the context of backing up the distributed estimation component. The 

following chapters will develop various algorithms for the distributive estimation 

component of the proposed collaborative information processing framework. 
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Chapter 4 

      Tracking a Single Target in Wireless Sensor Networks  
 

This chapter develops techniques and algorithms for tracking a single target in wireless 

sensor networks. On the basis of the recursive Bayesian estimation method, four tracking 

algorithms are developed, namely the sequential extended Kalman filter (S-EKF), the 

sequential unscented Kalman filter (S-UKF), the generic Particle filter (PF), and the hybrid 

extended Kalman Particle filter (EKPF). Extensive simulations are carried out to assess the 

performance of these algorithms. To determine the theoretical performance bound to which 

the tracking algorithms could attain, the posterior Cramer-Rao lower bound (PCRLB) is 

computed and compared for all four tracking algorithms. 

 

4.1 Introduction 

As discussed in the previous chapters, the task of target tracking in a wireless sensor 

network is to estimate the relevant state of the target (e.g. the position, velocity and heading 

of the target) in a timely manner, from information gathered by sensor nodes. The most 

frequently adopted paradigm for target tracking is the recursive Bayesian estimation. In this 

thesis, the acoustic sensor nodes are employed to form a wireless sensor network. The 

measurement obtained at an acoustic sensor node is a function of the distance between this 

sensor node and the target; and thus the measurement model is nonlinear. However, for 

such nonlinear target tracking problem which is the subject of this chapter, no analytical 

solutions exist for recursive Bayesian estimation and appropriate approximation methods 

are needed.  

Numerous approximation methods to the recursive Bayesian estimation have been 

proposed in the literature [29]–[40]. The well-know extended Kalman filter (EKF) 

linearises the state space model through the use of a first order truncated Taylor series 

expansion around the system state estimation obtained from the previous time step [29], 

[30]. Without making use of the analytical Taylor series linearisation, the unscented 

Kalman filter (UKF) adopts a deterministic sampling approach to propagate the mean and 

covariance of the system state estimation obtained from the previous time step [32], [33]. 
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In contrast to EKF and UKF, the Particle filter (PF) approach represents the probability 

density function of system state by empirical samples (particles) and then these samples are 

recursively updated using sequential importance sampling and resampling techniques [38]–

[40].  

Taking into account the unique characteristics of target tracking in wireless sensor 

networks, particularly the interplay between information processing and networking, this 

chapter develops tracking algorithms that aim to be accurate, robust, and energy efficient 

for estimating the state of a single target in wireless sensor networks2.  

For most practical target tracking in wireless sensor networks, clutter due to multi-path 

effects, spurious objects or sensor errors may yield unlabelled measurements (detector false 

alarms) at the sensor nodes. In addition, an individual sensor node may fail to detect a 

target (missed detections). Moreover, multiple targets, which are not sufficiently separated 

temporarily and spatially in the sensor field, may also lead to unlabelled measurements at 

sensor nodes. The above measurement origin uncertainty leads to the challenging data 

association problem [47]. However, this chapter only considers tracking a single target 

under the dual assumptions of no clutter and missed detection. The single target tracking 

algorithm under measurement origin uncertainty due to clutter and missed detections will 

be described in Chapter 5. For the sake of simplicity and without losing the generality, this 

chapter further assumes that the tracking task is performed within one sensor cluster which 

consists of a fixed set of sensing nodes (termed as active sensing nodes) and a cluster 

leader node; at every time step during the whole tracking task, the active sensing nodes 

provide the cluster leader node with their measurements and the cluster leader node 

executes the tracking algorithm to update the estimate of the target state. The distributive 

algorithms for tracking a single target over a series of sensor clusters within a sensor field 

will be described in Chapter 6. To quantify the theoretical performance that the algorithms 

developed in this chapter could attain, the posterior Cramer-Rao lower bound (PCRLB) is 

computed and compared for the developed tracking algorithms. PCRLB under 

measurement origin uncertainty will be derived and computed in Chapter 5. The multiple 

target tracking algorithm will be developed in Chapter 7. 

The organisation of this chapter is as follows. Section 4.2 formulates the single target 

tracking problem in the context of wireless sensor networks. Section 4.3 reviews the 

                                                 
2 In this chapter and the following chapters, we focus on the timely estimation of the target position from the    

   measurements obtained at the sensing nodes. 
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general principle of the recursive Bayesian estimation. Section 4.4 through Section 4.7 

propose a number of algorithms specified for single target tracking in wireless sensor 

networks, including the S-EKF, the S-UKF, the PF, and the EKPF. Extensive simulations 

are conducted to evaluate and compare the performance for these algorithms. The results 

from these simulations are detailed in Section 4.8. Section 4.9 computes the PCRLB which 

is the theoretical bound on the mean square error (MSE) of the target state estimate, and 

also carries out simulations to compare the PCRLB  with root mean square error (RMSE) 

for the developed tracking algorithms on some synthetic tracking scenarios. Finally, 

Section 4.10 summarises this chapter. 

 

4.2 Problem Formulation and System Description 

This section formulates the single target tracking problem in the context of wireless sensor 

networks. The issues to be covered include the target motion model, the nonlinear 

measurement model, the clutter model, and the dynamic clustering based target tracking 

scheme. 

 

4.2.1 Formulation of Single Target Tracking Problem in a Wireless Sensor Network  

Considering the single target tracking scenario as depicted in Figure 1.1, the key elements 

of the single target tracking problem can be defined as a tuple, 

mmgr CSTPEPΨT EΨ ,,,,, ,=  [18], [20]. Ψ  is the collection of sensor nodes. ΨP  

specifies the characteristics of each sensor node such as the location, type (sensing node or 

leader node), sensing modality (acoustic, seismic or magnetic) and residual energy. E  is 

the link connectivity among sensor nodes, and EP specifies the properties of each link such 

as link capacity and quality. gT  defines the properties of target such as the target position, 

velocity and heading. mS  is the signal model which describes how the target’s signal 

propagates and attenuates in the physical medium. Throughout this thesis, acoustic sensor 

node is adopted and thus the signal model is the inverse squared distance model [16]. mC  is 

used to define the clutter model when tracking target in cluttered environment.   

In target tracking, it is common practice to adopt the dynamic state space model [27]. A 

state space model consists of a system model that describes the evolution of a target state 

and a measurement model that relates the measurement to the target state: 
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System Model (Process Model) 

At time step k , the target state vector { } xxx n
kk k ℜ∈∈ ,Ν;  is assumed to be 

unobserved (hidden) with initial probability density function ( )0xp . The evolution of the 

state vector kx  is given by 

( )kkkk vxfx ,1−=                                                       (4.1) 

 

where xνxf nnn
k ℜ→ℜ×ℜ: can be linear or nonlinear function, { }Ν∈kk ,v  is an 

independent and identically distributed (i.i.d.) process noise vector, and vx nn ,  are 

dimensions of the state and process noise vectors, respectively.  

 

2. Measurement Model (Observation Model) 

At time step k , the measurement vector { } zzz n
kk k ℜ∈∈ ,Ν;  is defined by 

         

                                          ( )kkkk nxhz ,=                                                      (4.2) 

 

where znxh nnn
k ℜ→ℜ×ℜ: can be linear or nonlinear function, { }Ν∈kk ,n  is an 

independent and identically distributed (i.i.d.) measurement noise vector, and nz nn ,  are 

dimensions of measurement and measurement noise vectors, respectively.  

In this thesis, it is assumed that the process noise and measurement noise are 

uncorrelated with each other. The concatenated state vector and the measurement vector 

from the initial time step to the k -th time step are denoted as 

{ }kk xxxx ,...,, 10:0 = and { }kk zzzz ,...,, 10:0 = , respectively. 

 

4.2.2 Target Motion Model 

Throughout this thesis, a target is considered as a slowly manoeuvring point object moving 

in a two-dimensional (2D) plane and thus can be adequately described by the nearly 

constant-velocity (CV) model [28], [116]. Accordingly, the system model defined in 

Equation 4.1 becomes,  

                                                 kkkk vxAx += −1                                                         (4.3) 
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where the target state vector at time step k  is given by [ ]T
kyxk vyvx ,,,=x . x  and y  are 

the target positions in x and y coordinate, respectively; xv  and yv  are the target velocities 

in x and y coordinate, respectively. The process noise vector kv  is assumed to be Gaussian 

with zero mean and covariance matrix kQ , i.e. ( )kk N Q0v ,~ . In Equation 4.3, the 

system matrix kA  and the process noise covariance matrix kQ  are given as follows 
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where T  is the sampling time and kζ  is the level of the power spectral density of the 

corresponding continuous process noise [28]. The system matrix kA is time invariant in the 

above nearly CV system model. However, in the following sections, the time index k  of 

kA  is still kept to account for the sake of generality. 

 

4.2.3 Nonlinear Measurement Model  

In this thesis, each individual sensing nodes is equipped with acoustic transducer and the 

measurement it acquires is a function of the distance between itself and the target. When a 

target passes the n -th sensing node at the k -th time step, the magnitude of the acoustic 

intensity measured at this node is [16]: 
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                                            n
kn

kk

kn
k
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S
ε+

+−
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rρ
z                                           (4.6) 

where kS  is the intensity of the acoustic signal generated by the target at the  k -th time 

step, and ( )n
k

n
k N R,0~ε  is the additive Gaussian noise with zero mean and covariance 

matrix  n
kR  at the n -th sensing node during the k -th time step.  kρ  and n

kr  are the position 

coordinates of the target and the n -th sensing node, respectively. c is a very small constant 

related to the size of the target and it helps deal with the situation when the target moves 

very close to the sensing nodes.  

For the sake of simplicity and without losing the generality, the following assumptions 

for the measurement model are made in this thesis [16], [23]:  

1. The distance between a target and its neighbouring sensor nodes should be far enough 

(but not too far) that the sound source of the target (i.e. the engine of a vehicle) can be 

modelled as omni-directional; and that the signal propagation delay can be ignored. 

2. The target does not undergo sudden manoeuvres relative to the sampling rates of the 

sensing nodes and thus can be modelled with a near constant velocity (CV) model. 

3. All sensor nodes are synchronised. 

4. The measurement noises at different sensing nodes are uncorrelated.  

 

4.2.4 Clutter Model 

In most target tracking applications in wireless sensor networks, the measurements 

obtained at individual sensing node may also originate from clutter and the target may even 

go to undetected [7], [26]. Therefore, at the k -th time step, the n -th sensing node may 

acquire a group of measurements which are denoted as ( )n
kl

n
k

n
k n

k ,,0 ,..., zzz = , where n
kl  is the 

total number of measurements acquired by the n -th sensing node at the k -th time step. 

Among the n
kl measurements, there will be two types of measurements:  

(1) The target originating measurement which magnitude is defined in Equation 4.6. Note 

that Equation 4.6 is nonlinear. 

(2) The clutter originating measurements that are assumed to be independent and uniformly 

distributed within the observation space V  of a sensing node. In target tracking, it is 

commonly assumed that the number of the clutter originating measurements in the 

observation space follows a Poisson probability mass function (pmf) given by [27], [47] 
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where λ  is the clutter rate which is defined as the number of clutter originating 

measurements per unit volume of the observation space. n
kcl ,  is the number of clutter 

originating measurements at the n -th sensing node during the k -th time step.  

However, the algorithms developed in this chapter assume that there is one target and no 

clutter is present; consequently, there is only one measurement at each sensing node. The 

development of tracking algorithms in cluttered environment is deferred until Chapter 5. 

 

4.2.5 Dynamic Clustering Based Target Tracking Scheme 

As discussed in Chapter 3, the hierarchical sensor network architecture is adopted in this 

thesis. Sensor nodes are dynamically organised into different clusters according to their 

locations and the tracking tasks. When a leader node detects an approaching target, it 

recruits its neighbouring sensing nodes to form a sensor cluster. At every time step, this 

leader node selects a subset of the sensing nodes in the sensor cluster, collecting their 

measurements, and executing the tracking algorithm to update the estimate of the target 

state. This process continues until the target moves out of the current sensor cluster.  

This chapter is focused on the development of fundamental techniques and algorithms 

for tracking a single target in a wireless sensor network with the assumptions that the 

tracking task takes place in one sensor cluster and a fixed set of sensing nodes (active 

sensing nodes) are activated to sense and provide cluster leader their measurements 

throughout the whole period of the tracking task. The extension of these algorithms for 

tracking a single target over a series of sensor clusters will be detailed in Chapter 6.  

 

4.3 The Recursive Bayesian Estimation and Kalman Filter (KF) 

Given the state space model (Equations 4.1 and 4.2), the purpose of the recursive Bayesian 

estimation is to compute the probability density function of the target state kx  by using the 

available cumulative measurements { }kk zzzz ...,,, 10:0 =  received up to the k -th time 

step. In the recursive Bayesian estimation, the probability density function ( )kkp :0zx  of 

the target state kx  given the measurements k:0z  contains sufficient statistical information 

regarding the target state at the k -th time step [35], [39]. The target tracking task can then 
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be performed as recursively updating the above probability density function when the new 

measurement becomes available.  

Assuming the probability density function ( )1:01 −− kkp zx  at the ( )1−k -th time step is 

already known, the probability density function ( )kkp :0zx  for the k -th time step can be 

computed through two steps: the prediction step and the update step. 

 

    1. Prediction Step (time propagation) 

Using the state transition probability density function ( )1−kkp xx  (can be computed via 

Equation 4.1) to calculate the prior probability density function ( )1:0 −kkp zx  by 

 

                ( ) ( ) ( ) 11:0111:0 −−−−− ∫= kkkkkkk dppp xzxxxzx                        (4.8) 

 

2. Update Step (measurement update) 

Incorporating the most recent measurement kz  to update the prior probability density 

function ( )1:0 −kkp zx  through Bayes law 

  ( ) ( ) ( )
( )1:0

1:0
:0

−

−=
kk

kkkk
kk

p

pp
p

zz

zxxz
zx                                   (4.9) 

where        

                       ( ) ( ) ( ) kkkkkkk dppp xzxxzzz 1:01:0 −− ∫=                      (4.10) 

 

In the above computation, the initial probability density function of the target state is 

assumed available, i.e. ( ) ( )000 xzx pp ≡  ( 0z  being the set of no measurements). In 

Equation 4.9, the probability density function ( )kkp xz  is termed as the measurement 

likelihood and can be obtained from the measurement model (Equation 4.2). The 

recurrence relations in Equations 4.8 and 4.9 form the basis of the recursive Bayesian 

estimation and they are general enough for any form of probability density functions (i.e. 

Gaussian or non-Gaussian) of the target state, all possible functions kf  and kh  (i.e. linear 

or nonlinear), and any noises distributions ( )kp v  and ( )kp n  in the state-space model.  

In recursive Bayesian estimation, there exists a very few state estimation problems that 

satisfy the following linear and Gaussian conditions [29], [35]:  
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1) Both the functions xνxf nnn
k ℜ→ℜ×ℜ: and znxh nnn

k ℜ→ℜ×ℜ:  in the state-space  

model (Equations 4.1 and 4.2) are linear;  

2) If the probability density function ( )1:01 −− kkp zx  at the ( )1−k -th time step (previous 

time step)  is Gaussian, the probability density function ( )kkp :0zx  at the k -th time 

step (current time step) is also Gaussian provided that process noise kv  and 

measurement noise kn  are drawn from Gaussian distributions with known parameter.  

For these estimation problems, the state space model (Equations 4.1 and 4.2) can be 

simplified as 

kkkk vxAx += −1                                                 (4.11) 
                            

                                                        kkkk nxHz +=                                                   (4.12)  
 

where kA  is the known linear state transition matrix ( kA  is defined in Equation 4.4 for 

nearly CV model), and kH  is the known linear measurement matrix. The covariance 

matrices of the process noise vector kv  and measurement noise vector kn  satisfy the 

following equations 
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                                             [ ] jiE T
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Note that in Equations 4.11~4.15 the state transition matrix kA , the measurement matrix 

kH , and the noises covariance matrices kQ  and kR  are allowed to be time variant.  

Under the above linear and Gaussian conditions, the recursions in Equations 4.8~4.10 

can be analytically computed by the standard Kalman filter (KF). Assuming the mean 

vector 11 −− kkm  and the covariance matrix 11 −− kkP  of the probability density function of the 

target state,  ( )1:01 −− kkp zx  at the ( )1−k -th time step are already known, we have 
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                                  ( ) ( )111111:01 ,; −−−−−−− = kkkkkkk Νp Pmxzx                           (4.16) 
 

where ( )Pmx ,;Ν  is the Gaussian probability density function with argument x , mean 

vector m , and covariance matrix P  as follows 3 

       ( )
( )

[ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧ −−−= − mxPmx

P
Pmx

x

1

2
1exp

2

1,; T

n
Ν

π
   (4.17) 

 

The KF then calculates the mean vector kkm  and covariance matrix kkP  for the k -th time 

step through the following recursive relationships [29]–[31]: 

Prediction Step (Time propagation) 

 
              ( ) ( )111:0 ,; −−− = kkkkkkk Νp Pmxzx                                      (4.18) 

where 

                                                111 −−− = kkkkk mAm                                                        (4.19) 
 

                                  T
kkkkkkk APAQP 1111 −−−− +=                                                 (4.20) 

         

Update Step (Measurement update) 

 
( ) ( )kkkkkkk Νp Pmxzx ,;:0 =                                           (4.21) 

where  

                  ( )11 −− −+= kkkkkkkkk mHzKmm                                        (4.22) 
 

  11 −− −= kkkkkkkk PHKPP                                                 (4.23) 
 

1
1

−
−= k

T
kkkk SHPK                                                        (4.24)                   

      
  k

T
kkkkk RHPHS += −1                                                      (4.25)   

 
  

                                                 
3 In all the equations of this chapter,  the dimension of the vector x  is denoted by  xn , the transpose of a  

   matrix M  is denoted  by  TM , and the inverse of a matrix M  is denoted by  1−M . 
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In Equations 4.24 and 4.25, kK  is the Kalman gain and kS  is the covariance matrix of the 

innovation term 1−− kkkk mHz . Under the above purely linear and Gaussian assumption, 

the KF is the optimal solution to the state estimation problem in the sense that no other 

algorithms can outperform it [100].  

However, most real-world state estimation problems consist of nonlinear systems (i.e. 

the measurement model adopted in this thesis is nonlinear); hence the integrals in the 

recursive Bayesian estimation (e.g. Equations 4.8~4.10) become intractable for these 

system. Therefore, approximation approaches must be employed. Following sections will 

develop approximation approaches to the recursive Bayesian estimation under nonlinear 

and non-Gaussian situations; and on the basis of these approaches, a number of tracking 

algorithms will be designed for tracking a single target in wireless sensor networks.  

 

4.4 Sequential Extended Kalman Filter (S-EKF) for Tracking a Single  

      Target in Wireless Sensor Networks 

This section starts with a description of the extended Kalman filter (EKF), and then 

proposes the sequential EKF (S-EKF) tracking algorithm which fits well in the hierarchical 

sensor network architecture for tracking a single target in wireless sensor networks. 

 

4.4.1 Fundamentals of EKF 

If kf and kh in Equations 4.1 and 4.2 are nonlinear functions, then the state space model 

cannot be explicitly transformed into the form of Equations 4.11 and 4.12 due to the non-

linearity. The EKF approximates this non-linearity by a truncated Taylor expansion of 

nonlinear functions kf and kh  evaluated around the target state estimation from the 

previous time step, and accordingly, the probability density function of the target state is 

approximated by Gaussians [29]–[31]. The process of EKF is detailed as follows. 

Assuming the mean vector 11 −− kkm  and covariance matrix 11 −− kkP  of the probability 

density function of the target state,  ( )1:01 −− kkp zx  at the ( )1−k -th time step are already 

known, we have 

 

                              ( ) ( )111111:01 ,; −−−−−−− ≈ kkkkkkk Νp Pmxzx                           (4.26) 
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Following the linearisation, the estimate of target state can be updated in a manner similar 

to the KF, the mean kkm  and covariance kkP  at the k -th time step are computed through 

the following recursive relationships 

Prediction Step (Time propagation) 

 
( ) ( )111:0 ,; −−− ≈ kkkkkkk Νp Pmxzx                                        (4.27) 

where                                      

                111 −−− = kkkkk mfm                                                     (4.28) 
 

                               T
kkkkkkk APAQP ˆˆ

1111 −−−− +=                                         (4.29) 

 

Update Step (Measurement update) 

 
 ( ) ( )kkkkkkk Νp Pmxzx ,;:0 ≈                                        (4.30) 

where  

  ( )11 −− −+= kkkkkkkkk mhzKmm                                       (4.31) 
 

11
ˆ

−− −= kkkkkkkk PHKPP                                              (4.32) 
 

In the above equations, kÂ  and kĤ  are local linearisations of nonlinear functions kf  and 

kh , i.e. the Jacobian matrices of kf  and kh : 
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The Kalman gain kK  and the covariance matrix of the innovation term (i.e. 1−− kkkk mHz ) 

kS  are computed as follows 

1
1

ˆ −
−= k

T
kkkk SHPK                                                 (4.35) 

 
                              k

T
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ˆˆ
1                                             (4.36) 
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The above EKF utilizes the first term in the Taylor expansion of the nonlinear function. 

However, the simple “first order Taylor series linearization” employed by the EKF affects 

the accuracy of the final target state estimation; and this may lead to divergence of the EKF 

itself. A higher order EKF that retains further terms in the Taylor expansion exists, 

however, it will be at the expense of additional complexity. The higher order EKF will not 

be discussed in this chapter and readers may refer to [29] for more details. 

 

4.4.2 S-EKF for Single Target Tracking in Wireless Sensor Networks 

Based on the above EKF, this subsection implements the sequential extended Kalman filter 

(S-EKF) for tracking a single target in wireless sensor networks. S-EKF runs a separate 

EKF for each of the measurements collected at a set of sensing nodes in a wireless sensor 

network. This is possible, if the measurement noise rendering the sensing node is 

statistically independent between the different sensing nodes; it should be noted that this 

statistically independent assumption has already been made earlier in this chapter.  

In the following discussion we assume that a target is traversing in one sensor cluster 

which consists of a cluster leader and a fixed set of sN  sensing nodes; at every time step, 

all these sN  sensing nodes are activated to sense and transmit their measurements to the 

cluster leader for the target state estimate. The state-space model in Equations 4.1 and 4.2 

can be expanded to include the measurements from these sN  sensing nodes as follows 

 
                 ( )kkkk vxfx ,1−=                                                      (4.37) 

 

      ( ) s
c
kk

c
k

c
k Nc ...,,1, == nxhz                                       (4.38) 

 

where the superscript c  refers to the c -th sensing node, hence c
kz , c

kh  and c
kn  denote the 

measurement, the measurement function and the measurement noise at the c -th sensing 

node during the k -th time step, respectively. 

For the measurement received from each sensing node, the cluster leader implements a 

separate EKF, termed as the sub-EKF; for sN  sensing nodes participating in the tracking 

task, there will be total sN  sub-EKFs. The sub-EKF for the measurement obtained from 

the c -th sensing node is indexed as the c -th sub-EKF. Accordingly, the last sub-EKF is 
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indexed as the sN -th sub-EKF. In S-EKF, the estimation result from the previous sub-EKF 

becomes the prior estimation for the next sub-EKF.  

Assuming the mean vector 11 −− kkm  and covariance matrix 11 −− kkP  of the probability 

density function ( )1:01 −− kkp zx  at the ( )1−k -th time step is already known, the S-EKF 

computes the mean and covariance of the probability density function ( )kkp :0zx  at the 

k -th time step is as follows.  

At the beginning of the k -th time step, mean 11 −− kkm  and covariance matrix 11 −− kkP  

become the input (i.e. prior estimate) of the first sub-EKF as in the non-sequential version 

of EKF:  

                                                 11
1

1 −−− = kkkkk mfm                                                   (4.39) 
 

                                            T
kkkkkkk APAQP ˆˆ

111
1

1 −−−− +=                                          (4.40) 

In the above equations, the superscript “1” of mean 1
1−kkm  and covariance matrix 1

1−kkP  

refers to the first sub-EKF. The computation of kÂ  is the same as in EKF (Equation 4.33). 

The following sub-EKFs, for example, the c -th sub-EKF, uses the output from the ( )1−c -

th sub-EKF as its prior target state estimate in the prediction step and the measurement 

obtained from the c -th sensing node in the update step; and subsequently, the output of the 

c -th sub-EKF is passed to the next sub-EKF, i.e. the ( )1+c -th sub-EKF as its prior target 

state estimate. Finally, the output of the last sub-EKF, the sN -th sub-EKF is used as the 

target state estimate of the entire S-EKF. The above process is depicted in Figure 4.1 and 

can be described by the following equations:                             
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                      sN
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where the Kalman gains for the first sub-EKF and the c -th sub-EKF are: 
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Figure 4.1 The illustrative flowchart of S-EKF algorithm 
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and the covariance matrices of the innovation terms are: 
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and the Jacobian of the measurement function for sub-EKFs are: 
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The state covariance matrix is updated for each sub-EKF by 

 
                   1

1
111

1
1 ˆ

−− −= kkkkkkkk PHKPP                                                  (4.49) 

 

                   ( ) ( )T
k

c
kkkk

c
k

c
k

T
k

c
kkkk

c
kk

c
k

c
k

c
kk

c
kk

APAQHKAPAQ

PHKPP

ˆˆˆˆˆ

ˆ

1
1

1
1

11

−
−

−
−

−−

+−+=

−=
                  (4.50) 

 
 sN

kkkk PP =                                                              (4.51)                   
                  

The complete S-EKF tracking algorithm is listed in Algorithm 4.1. 

The above S-EKF algorithm has several advantages: the architecture is easily extendable, 

and more sensing nodes can be added by simply putting them into the chain, instead of 

reconfiguring the entire algorithm; if a sensing node cannot provide a measurement at a 

particular time step, the corresponding sub-EKF can be simply skipped.  The above 

advantages will enable S-EKF to achieve better scalability and adaptability when it is 

applied to track a single target in wireless sensor networks. However, S-EKF suffers from 

the same problem as EKF, the simple “first order Taylor series linearization” may also lead 

to the divergence of the entire algorithm, especially when there exists high nonlinearity in 

the tracking problem.  

 

Algorithm 4.1 Sequential Extended Kalman Filter (S-EKF) for Single Target Tracking in 

                         Wireless Sensor Networks 

 State-Space Model (assuming there is a fix set of  sN  sensing nodes are activated to sense and  

     transmit their measurements to the cluster leader at every time step) 

            ( )kkkk vxfx ,1−=                                                       
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c
k Nc ....,,1,, == nxhz  

 Initialization (for time step 0=k ) 
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 For time step ,...2,1=k  

     1.  Compute the Jacobians for system model 
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     2.  Run the first Sub-EKF as follows 
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        4.  The output for time step k  is then 
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4.5 Sequential Unscented Kalman Filter (S-UKF) for Tracking  

      a Single Target in Wireless Sensor Networks  

This section starts with a description of the unscented Kalman filter (UKF), and then 

develops the sequential UKF (S-UKF) algorithm for tracking a single target in wireless 

sensor networks. 

 

4.5.1 Fundamentals of UKF 

Unlike the EKF, the UKF does not approximate the nonlinear state space model directly. In 

contrast, it uses a minimal set of deterministically chosen sample points to approximate the 

probability density function of a random vector (i.e. the target state in this thesis) [32], [33]. 

These sample points capture the mean and covariance of the random vector, and when the 

random vector undergoes a nonlinear transformation, they can capture the mean and 

covariance accurately to the second order with errors only in the third- and higher-order. 

Thus, the performance of UKF is generally more advanced than that of EKF when they are 

applied to the nonlinear systems.  

The core of a UKF algorithm is a deterministic sampling approach called the unscented 

transformation (UT) for the calculation of the statistics of a random vector undergoing a 

nonlinear transformation. Supposing a xn -dimension random vector x  with known mean 

xm  and covariance xP  is taking a nonlinear transformation ( )xy g= , now the task is to 

calculate the mean ym and covariance yP of random vector y . To do so, the UT 

deterministically chooses a set of 12 +xn weighted samples { } xn
iii
2

0
,

=
ωχ  as follows [33]:       
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     (4.52)           

 

whereκ  is a scaling parameter and ( )( ) in xx Pκ+  is the i th column (or row) of the 

matrix square root of ( ) xx Pκ+n . Each weight iω  is associated with a sample point iχ  
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and 1
x2

0

=∑
=

n

i
iω . The mean ym  and covariance yP  of random vector y  can be computed by 

the weighted summation of these sample points                                
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The above calculations are accurate to the second order of the Taylor series expansion of 

( )xy g= for any nonlinear function. Errors are introduced in the third and higher order 

moments but can be scaled by properly choosing the parameter κ . However, if the 

nonlinearity is very severe, the above UT approximation may be inaccurate, and the scaled 

unscented transformation (SUT) is introduced [32], [33]. SUT employs another positive 

scaling parameter α  to provide an extra degree of freedom to control the scaling of the 

sample points. Using SUT, the set of sample points { } xn
iii
2

0
,

=
ωχ  is transformed into the 

scaled set { } xn
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2

0
'' ,
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ωχ  by 
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The unscented Kalman filter (UKF) is a straightforward application of SUT to Kalman 

filter (KF) framework. However, the state vector in UKF is redefined as the concatenation 

of the original state vector, the process noise vector, and the measurement noise vector, i.e. 
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The effective dimension of this augmented state vector is now  nvxa nnnn ++= , where xn  

is the dimension of original state vector, vn  is the dimension of process noise vector and 

nn  is the dimension of measurement noise vector. Similarly, the augmented state 

covariance matrix is built up by concatenating the covariance matrices of the target state, 

the process noise and the measurement noise: 

 

    ...,2,1,0
00

00

00

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= k

k

k

kk

k

R
Q

P

P a                                (4.57)                  

 

where kkP , kQ  and kR  are the covariance matrices of target state, process noise and 

measurement noise at the k -th time step, respectively. By augmenting the target state with 

the process and measurement noises, the uncertainties in the noises are taken into account.  

This allows for the effect of the noises on the system dynamic and measurement to be 

captured with the same level of accuracy as with which the target state is treated. The full 

UKF algorithm is listed as below. More details can be found in [32], [33], [35]. 

 

Algorithm 4.2 Unscented Kalman Filter (UKF) 

Definitions:   
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 For ,...2,1=k  

   1. Calculate sample points and the corresponding weights: 

             ( ) ( )[ ]a
a

aa
a

aaa PmPmmχ 111111111111 −−−−−−−−−−−− +−++= kkkkkkkkkkkk nn λλ  

(4.60)      
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     where 
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in above equations, ( ) aa nn −+= καλ 2 is the scaling parameter. Parameter α  determines 

the spread of the sample points around xm  and is usually set to a small positive value. 

Parameter κ  is a secondary scaling parameter which is set to either 0 or an−3 . Parameter β  

is a scalar parameter which provides an extra degree of freedom and used to incorporate any 

extra prior knowledge of the probability distribution of target state kx  ( 2=β for Gaussian 

distribution) [33], [35].  

 

       2. Prediction Step (Time-update): 
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        3. Update Step (Measurement update): 
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( )11 ˆ −− −+= kkkkkkkk zzKmm                                                                                   (4.71)                     

   T
kkkkkk kk

KPKPP zz−= −1                                                                                             (4.72)                   
 
 

4.5.2 S-UKF for Single Target Tracking in Wireless Sensor Networks 

Analogous to the S-EKF as proposed in the Sub-section 4.4.2, a sequential UKF algorithm 

(S-UKF) employing a bank of UKF is also developed for tracking a single target in 

wireless sensor networks. The process of S-UKF is quite similar to that of S-EKF and is 

briefly presented as follows. At each time step, a fixed set of sN  sensing nodes transmit 

their measurements to the cluster leader. For each received measurement from these 

sensing nodes, the cluster leader implements a separate UKF, called the sub-UKF. The 

output (the target state estimate) from the previous sub-UKF becomes the input of the next 

sub-UKF. For example, the c -th sub-UKF uses the output from the ( )1−c -th sub-UKF as 

the prior target state estimate in the prediction step and the measurement from the c -th 

sensing node for the update step. The result of the c -th sub-UKF is then passed to the next 

sub-UKF, i.e. the ( )1+c -th sub-UKF. Finally, the output of the last sub-UKF sN  is used 

as the target state estimate of the entire S-UKF algorithm. For the complete S-UKF 

tracking algorithm, one only needs to substitute the equations of EKF in both prediction 

step and update step in Algorithm 4.1 with those of S-UKF (Algorithm 4.2). However, the 

full S-UKF is not listed here. 

As S-EKF, the advantages of S-UKF also lie in its scalability and adaptability to the 

frequently topology changes in wireless sensor networks. In theory, the S-UKF consistently 

outperforms the S-EKF in terms of accuracy and robustness because UKF captures the 

mean and covariance of target state estimate accurately to the second order with errors only 

introduced in the third and higher orders. However, in practical applications, the 

performance of S-UKF and S-EKF will be problem dependent, and the S-UKF is not 

necessarily outperforms the S-EKF. As shown in the simulation, when the measurement 

model is nonlinear but the system model is linear (recalled that in this thesis we adopt the 

nearly constant velocity (CV) system model which is linear), the improvement of S-UKF 

over S-EKF is not very significant. In addition, the computation cost of S-UKF is higher 

than that of S-EKF. 
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In the following two sections, we use particles to represent the probability density 

function of the target state; and the resulting two algorithms – PF and EKPF can be applied 

to more general nonlinear and non-Gaussian systems. The simulation results show that 

EKPF consistently outperforms S-EKF and S-UKF in all synthetic tracking scenarios while 

PF outperforms S-EKF and S-UKF in most synthetic tracking scenarios. 

 

4.6 Generic Particle Filter (PF) for Tracking a Single  

      Target in Wireless Sensor Networks  

Although UKF and EKF adopt different approach to approximate the nonlinearity of the 

state-space model, they both assume a Gaussian probability density function of the target 

state to perform the recursive Bayesian estimation. In contrast, the Particle filter (PF) does 

not make any explicit assumptions on the form of the probability density function of the 

target state. Instead, PF approximates the probability density function of the target state by 

a set of weighted random samples (called particles); and hence it can be applied to more 

general nonlinear, non-Gaussian systems [38]–[45].  

Starting with an introduction of Monte Carlo simulation and importance sampling, this 

section develops the generic PF algorithm which is based on the sequential importance 

sampling and resampling techniques for tracking a single target in wireless sensor networks.  

 

4.6.1 Monte Carlo Simulation and Importance Sampling 

In the Monte Carlo simulation, a set of weighted samples are randomly drawn from a given 

probability density function of the state vector  ( )kkp :0:0 zx ; and then these samples can be 

used to approximate this probability density function by the following empirical estimate: 
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where ( )⋅δ  is the Dirac delta function and { }N
i

i
k 1:0 =x  are the N  weighted samples drawn 

from ( )kkp :0:0 zx . These samples are assumed to be independent and identically 

distributed (i.i.d.). For any expectation of the following form 
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it can be approximated by the above weighted samples, i.e. 
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According to the law of large numbers, as the sample numbers N  increases, the above 

approximated expectation eventually converges to the true expectation:  
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However, in most target tracking applications, it is almost impossible to draw samples 

directly from the probability density function ( )kkp :0:0 zx  as in Equation 4.73. The PF 

circumvents this difficulty by adopting a technique called importance sampling in which 

the samples are instead drawn from a known, easy-to-sample, proposal distribution 

( )kk :0:0 zxπ . Therefore, the selection of such proposal distribution is a critical issue in the 

PF design.  

Assuming a proposal distribution ( )kk :0:0 zxπ  has already been obtained, Equation 4.74 

can be changed to the following form by using Bayes law: 
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where the variables kw :0  are called the un-normalized importance weights, and given by 

                                     
( ) ( )

( )kk

kkk
k

pp
w

:0:0

:0:0:0
:0

zx

xxz

π
=                                           (4.78) 

 

( )kp :0z  in Equation 4.77 is normally unknown and difficult to calculate, however, it can 

be eliminated by the following derivations: 
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where [ ]⋅πE  is denoted the expectation that is taken over the proposal distribution 

( )kk :0:0 zxπ . Hence, by drawing samples from ( )kk :0:0 zxπ , the expectations of interest 

( )[ ]kE :0xg  can be approximated by the following estimate: 
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where i
kw :0

~  are the normalized importance weights and they are given by 
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Accordingly, by using the samples obtained from the above proposal distribution, the 

probability density function ( )kkp :0:0 zx  can be approximated as 
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Note in Equation 4.82, { }N

i
i

k 1:0 =x  are samples drawn from the proposal distribution 

( )kk :0:0 zxπ  with their normalised importance weights { }N

i
i
kw 1:0

~
= . The sufficient conditions 

for Equation 4.82 to hold can be found in [38], [42] and will not be discussed here. 

 

4.6.2 Sequential Importance Sampling  

To sequentially compute the probability density function of target state throughout all time 

steps in a tracking task, normally the following recursive form of the proposal distribution 

is adopted [38]: 

 
               ( ) ( ) ( )kkkkkkk :01:01:01:0:0:0 ,zxxzxzx −−−= πππ                  (4.83) 

 

In the sequel, we refer to ( )kkk :01:0 ,zxx −π  as the proposal distribution. Under the 

Markovian assumptions that the current state is independent of all the previous 

measurements given the previous state; the current measurements are independent of all the 

previous measurements given the current state, ( )kp :0x  and ( )kkp :0:0 xz  in Equation 4.78 

can be factorized over time steps as follows 
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Substituting Equations 4.83~4.85 into Equation 4.78, we can recursively estimate the 

importance weights kw :0  as 
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Equation 4.86 shows that for an appropriately chosen proposal distribution 

( )kkk :01:0 ,zxx −π , the importance weights of particles can be sequentially updated. 

Moreover, in Equation 4.86, the measurement likelihood ( )kkp xz  and the state transition 

probability density function ( )1−kkp xx  can be calculated directly from the state space 

model (Equations 4.1 and 4.2). Therefore, to estimate the target state, one only needs to 

generate a prior set of particles and then recursively compute the importance weights of 

these particles. Normally, the initial particles are drawn from the initial distribution of 

target state ( )0xp  and equally weighted as 
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The above process is known as sequential importance sampling (SIS) in the literature. 

However, as pointed out at the beginning of this chapter, the interests of target tracking 

applications is on the acquiring the probability density function ( )kkp :0zx  at the current 

time step k  rather than the probability density function ( )kkp :0:0 zx  that is over the whole 

period up to time step k . Hence, it is not necessary to keep the entire history of the 

particles trajectories; i
k:0x  and ( )k:0g x  in the above equations can be replaced by i

kx  and 

( )kxg . Hence, Equations 4.80 and 4.82 can be rewritten as follows: 
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Choosing the proposal distribution ( )kkk :01:0 ,zxx −π  is one of the most critical design 

issues in PF. In [42], the authors proved that the proposal distribution in the following form  
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 73 

minimizing the variance of the importance weights. ( )kkkp zxx ,1−  is referred to as the 

optimal proposal distribution. However, the proposal distribution in the form of 

 

                                            ( ) ( )1:01:0 , −− = kkkkk p xxzxxπ                                     (4.91) 
 

is the most popular choice of proposal distribution and has been applied in many state 

estimation problems including target tracking. In the literature, this state transition 

probability density function ( )1−kkp xx  is also named as the transition prior. As 

mentioned earlier in this section, the transition prior can be computed by using the system 

model (Equation 4.1). For example, if the process noise is Gaussian with zero mean and 

covariance kR , the transition prior is simply as 

 
                        ( ) ( )( )kkkkk Np R0xfxxx ,,; 11 −− =                         (4.92) 

 

Substituting Equation 4.91 into Equation 4.86, the importance weights of the particles 

become:  
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It can be seen that, by adopting transition prior as the proposal distribution, the importance 

weights of particles are easily updated by using the measurement likelihood ( )kkp xz . 

The measurement likelihood can be computed through the measurement model (Refer to 

Equation 4.95). 

Nevertheless, the transition prior is not conditioned on any measurements, especially the 

most recent measurement. When it is adopted in PF for the practical target tracking, the 

transition prior can possibly lead to the degeneracy problem of the entire PF algorithm. 

This is because the particles cannot be moved toward the region of high measurement 

likelihood without the information contained in the most recent measurements; especially, 

it is found that after a limited number of iterations, only a few particles retain significant 

importance weights while most particles have negligible weights. The above side-effects of 

adopting the transition prior as proposal distribution is more obvious in the cases where the 
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measurement likelihood has a very sharp peak and/or have very little “overlap” with the 

transition prior. 

The straightforward approach to overcome the above degeneracy problem is to use a 

very large number of particles. However, this carries the cost of heavy computational 

requirements and hence unattractive for practical applications in highly resources 

constrained wireless sensor networks. Those feasible solutions to the degeneracy problem 

include a strategy for resampling and constructing a good proposal distribution [38], [39]. 

The resampling method will be presented in the next subsection and the construction of 

good proposal distribution will be discussed in the next section. Especially, we propose a 

novel extended Kalman filter and Particle filter hybrid algorithm, named as extended 

Kalman Particle filter (EKPF) tracking algorithm. EKPF constructs a better proposal 

distribution by making use of the EKF component to incorporate the most recent 

measurement to propagate the particles to high measurement likelihood region in the state-

space. 

 

4.6.3. Resampling of the Particles 

To address the rapid degeneracy problem in the above sequential importance sampling (SIS) 

method, a resampling (i.e. selection) stage can be adopted to eliminate the particles with 

low importance weights and multiply the particles with high importance weights [39]. The 

resampling scheme involves generating a new set of particles { } N
i
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Finally, the above resampling process will produce N  new particles with equal weighting 

N

1 .  

 

4.6.4 Generic PF for Target Tracking in Wireless Sensor Networks 

As mentioned earlier in this chapter, it is assumed that a fixed set of sN  sensing nodes are 

activated to sense and provide cluster leader with their measurements. Upon receiving 

these measurements, the cluster leader runs the PF tracking algorithm which is on the basis 

of the sequential importance sampling and resampling (SIR) to update the target state 
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estimate. This approach fuses the measurements from different sensing nodes into a single 

multiple sensing nodes measurement likelihood (recall the assumption has already been 

made in this chapter that the measurement obtained from a particular sensing node is 

independent of the measurements obtained from other sensing nodes). This leads to the 

factorized measurement likelihood over all sN  sensing nodes 
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is the probability density function of the measurement likelihood regarding the 

measurement obtained by the n -th sensing node at the k -th time step . In Equations 4.94 

and 4.95, ( )sN
k

n
kkk zzzz ,...,,...,1=  is the concatenated measurement over all sN  sensing 

nodes that involve in the tracking task at the k -th time step, n
kz  is the measurement 

acquired by the n -th sensing node, n
kR  is the covariance matrix of the measurement noise 

at the n -th sensing node, and n
kH  is the Jacobian matrix for the measurement model (refer 

to Section 4.4). Finally, for the PF adopting the transition prior ( )1−kkp xx  as the proposal 

distribution, the un-normalized importance weights of particles are computed as  
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The above generic Particle filter (PF) using the sequential importance sampling and 

resampling (SIR) techniques and adopting the transition prior as the proposal distribution is 

listed below.  
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Algorithm 4.3 The Generic Particle Filter (PF) for Single Target Tracking  

                         in Wireless Sensor Networks  

 
 Initialization: 0=k  

   For Ni ,...2,1=  draw particle i
kx  from the prior of the target state ( )0xp . 

 For ,...2,1=k  

1. Importance sampling step 

 - For Ni ,...2,1= , sample ( )i
kk

i
k p 1~ −xxx . 

 - For Ni ,...2,1= , evaluate the importance weights 
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 - For Ni ,...2,1= , normalize the importance weights: ∑
=

=
N

j

j
k

i
k

i
k www

1

~  

2. Selection step (resampling) 

 -Multiply (suppress) samples i
kx with high (low) importance weights i

kw~   to obtain N  random 

  samples *i
kx approximately distributed according to ( )kkp :1zx . 

 -For Ni ...,2,1= , set 1~ −== Nww i
k

i
k . 

 
 Output: The output of the algorithm is a set of particles that can be used to approximate the 

probability density function of target state as follows ( ) ( )∑
=

−=
N

i

i
kkkk N

p
1

*
:0

1ˆ xxzx δ . 

 

    4.7 PF and EKF Hybrid Algorithm (EKPF) for Tracking a Single  
           Target in Wireless Sensor Networks 

On the basis of the SIR techniques and adopting transition prior as the proposal distribution, 

the generic PF algorithm developed in the previous section is conceptually simple, and 

easily implemented with moderate computation cost for tracking a single target in wireless 

sensor networks. However, in this generic PF, the propagation of the particles are solely 

decided by the target dynamic (i.e. system model); hence, the positions of particles at 

current time step are decided by the positions of the particles at the previous time step 

without taking into account the information contained in the most recent measurements. 



 77 

Consequently, the generic PF might not properly relocate the particles in the state-space. 

This may lead to the algorithm ignoring some important regions of the state-space when 

searching for a potential target.  

There are several strategies have been proposed in the literature to properly relocate 

particles in the state-space by designing a better proposal distribution [35], [121]–[123]. 

Motivated by these strategies, in this section we develop a novel hybrid extended Kalman  

Particle filter (EKPF) tracking algorithm which provides the resulting algorithm with the 

important property of better proposal distribution.  

The key idea behind the EKPF is to choose a proposal distribution that is conditioned on 

the most recent measurement kz  for the target state estimate at the k -th time step. Such 

proposal distribution not only helps to effectively propagate particles to the high 

measurement likelihood area, but also allows for easily sampling and computing the 

importance weights of the particles. As pointed out in Section 4.6, one such proposal 

distribution is the optimal proposal distribution ( )kkkp zxx ,1− . However, it is normally 

not easy to directly generate particles from this optimal proposal distribution. Consequently, 

it is often needed to resort to Gaussian distribution to approximate this optimal proposal 

distribution and then draw samples from the approximation, i.e.  

 

( ) ( ) ( )kkNkkkkkk qp :01:01:0 ,, zxzxxzxx ≈= −−π                     (4.97) 
 

where Nq  denotes a Gaussian distribution. Generally, this approximated proposal 

distribution ( )kkNq :0zx  is a better choice than the transition prior ( )1−kkp xx  since it 

takes into account the information contained in the most recent measurement. 

A tractable way of generating above Gaussian approximated proposal distribution is to 

use a separate EKF to generate a Gaussian proposal distribution for each of the N  particles:   

 
                               ( ) ( ) NiNq i

kk
i

kk
i
kk

i
k ,...,1,;:0 ==Ν Pmxzx                         (4.98) 

 

At the k -th time step, EKPF algorithm uses the EKF equations, with the most recent 

measurement, to compute the mean and covariance of the proposal distribution for each of 

the N  particles which are propagated from the ( )1−k -th time step. Subsequently, the  N  

particles for the k -th time step can be obtained. The process of EKPF is described as 

follows. 
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It is assumed that the target state estimation ( )1:01 −− kkp zx  at the ( )1−k -th time step is 

already known and represented by N  equally weighted particles { } N

i
i
k 1=x  (recall the 

resampling step of generic PF algorithm in Section 4.6). The assumption is also made that 

the mean Nii
kk ...,,1,11 =−−m  and covariance matrix Nii

kk ...,,1,11 =−−P  for each of these 

N  particles are already computed at the ( )1−k -th time step. Then the mean 

Nii
kk ...,,1, =m  and covariance matrix Nii

kk ...,,1, =P  of the N  particles at the k -th 

time step can be obtained through the standard EKF steps: 
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Similar to the S-EKF, S-UKF and generic PF tracking algorithms developed in the 

previous sections, here we still assume that a fixed set of sN  sensing nodes are activated 

and provide the cluster leader with their measurements for target state estimate. Since a 

separate EKF is implemented for each of the N  particles, there will be total sNN ×  EKFs 

in EKPF for sN  measurements received from the sN  sensing nodes. However, the EKPF 
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algorithm developed in this section only makes use of the measurement from one most 

informative sensing node to propagate particles, i.e. only implements one EKF instead of 

the S-EKF (consisting of sN  EKFs) for each of the N  particles. Normally, the criteria for 

selecting the most informative sensing node includes information utility based and 

geometry based measures [76]. The EKPF algorithm developed in this chapter uses the 

geometry based measure which selects the sensing node that lies closest to the target as the 

most informative sensing node. Since the sensing node adopted in this chapter is equipped 

with acoustic modality, the measurement acquired at an individual sensing node is the 

inverse of the squared distance between the target and this sensing node. Thus, at each time 

step, upon receiving the measurements from the sN  sensing nodes, the cluster leader 

selects the sensing node with largest measurement as the most informative sensing node 

and uses its measurement to implement a separate EKF for each of the N  particles. Also as 

in the generic PF, the importance weights of the particles in EKPF are updated by the 

factorized measurement likelihood over all sN  measurements from sN  sensing nodes, i.e. 
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⎢
⎣
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sN

n

i
k

n
k

i
k

i
k pww xz1 . The complete EKPF algorithm is listed in the Algorithm 4.4. 

The EKPF algorithm is a hybrid of PF and EKF. The PF part provides the general 

probabilistic framework to handle nonlinear systems while the EKF part generates a better 

proposal distribution by taking into account the most recent measurements. Compared to 

the generic PF, EKPF introduces more computation burden. However, EKPF makes use of 

the most recent measurement and consequently, sampling at current time step is more 

efficient and the number of particles needed in the algorithm might be reduced 

considerably. This will be demonstrated through simulations in the next section. Simulation 

results shows that the EKPF outperforms the generic PF, S-EKF and S-UKF in the context 

of tracking accuracy and robustness when these algorithms are applied to track a single 

target in wireless sensor networks.  
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Algorithm 4.4 The Extended Kalman Particle Filter (EKPF) for Single Target Tracking  

                         in Wireless Sensor Networks 

 
 Initialization: 0=k  

      For Ni ...,2,1= draw particle ( )i
kx from the initial distribution ( )0xp .  

 For ,...2,1=k  

   1. Particles propagation: for particles Ni ...,2,1=  

             1.1 Prediction step:  

            Compute the process model Jacobians: 
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              1.2 Update step:  

             Compute the measurement model Jacobians: 
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          2. Particles’ weight update: for Ni ...,2,1=  
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~       (Normalisation) 

            3. Resampling 

          Multiply (suppress) particles i
kx with high (low) importance weights i

kw~  to  

          obtain  N  random samples *i
kx  approximately distributed according to ( )kkp :0zx .        

 Output: a set of particles that can be used to approximate the probability density function 

of the target state, i.e. ( ) ( )∑
=

−=
N

i

i
kkkk N

p
1

*
:0

1ˆ xxzx δ . 

 

Finally, it should be noted that the UKF can also be used to construct the proposal 

distribution, i.e. integrating UKF into PF to propagate particles to the areas of high 

measurement likelihood. However, since this chapter adopts the nearly constant velocity 

(CV) model which is a linear system dynamic model, UKF is not expected to exhibit 

consistent superiority over EKF (refer to [128] and also evidenced by the simulation results 

in the next section). Moreover, since the computation cost of UKF is normally heavier than 

that of EKF, the resulting UKF and PF hybrid algorithm will demand considerably higher 

computation resources and may not be applicable in the resource constrained wireless 

sensor networks. Therefore, the UKF and PF hybrid algorithm is not considered in this 

chapter. 

 

4.8 Simulations  

Extensive simulations have been conducted to evaluate the tracking algorithms developed 

in this chapter. This section presents the simulation results of S-EKF, S-UKF, PF and 

EKPF and compares the performance of these algorithms by computing the root mean 

square error (RMSE) values. In the next section, RMSE values of S-EKF, S-UKF, PF and 

EKPF will also be compared with the posterior Cramer-Rao lower bound (PCRLB) which 

is a lower bound on the tracking accuracy to which the tracking algorithms can attain.  In 

the following simulations, all algorithms are implemented in Matlab and run on a Pentium 

4, 2.8 GHz computer.  

 

4.8.1 Simulation Setup 

Figure 4.2 shows a typical simulation setup. The sensor field is two dimensional with the 

size of  mm 250300 × .  A  ground  vehicle  traverses  this  sensor  field  from north-east to 
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                  Figure 4.2 The typical simulation setup of tracking a single target 
                                     in a wireless sensor network 

 

south-west, its trajectory (also called “ground truth”) is depicted in the figure. There is a set 

of 200 sensing nodes randomly deployed in this sensor field. In the simulations throughout  

this chapter, it is assumed that the tracking task is performed within one sensor cluster 

which consists of one leader node (e.g., the cluster leader, was not drawn in Figure 4.2) and 

20 sensing nodes (named as active sensing nodes) that are selected from the 200 deployed 

sensing nodes. At every time step during the whole period of the tracking task, these 20 

active sensing nodes are activated to sense and provide the cluster leader with their 

measurements; and upon receiving these measurements, the cluster leader executes one of 

the four algorithms developed in this chapter to update the target state estimate. However, 

it should be noted that in practical target tracking applications in wireless sensor networks, 

the active sensing nodes are not fixed. Instead, they are selected by some criteria and their 

number may also vary from time step to time step. In this thesis, we use the geometry 

based criterion for the selection of active sensing nodes: at each time step, the active 

sensing nodes at the current time step are selected based on their distances to the predicted 

position of the target; the sensing nodes that lie closest to the predicted target position 

becomes the active sensing nodes (refer to Chapter 6 for the details). This active sensing 
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nodes selection scheme explains why some of the active sensing nodes are favourably 

placed in Figure 4.2. However, in order to assess the robustness of the developed tracking 

algorithms, not all active sensing nodes are deployed very close to the target position.  

Figure 4.3 depicts six different tracking scenarios that used in the simulations. These 

tracking scenarios are set up with different target trajectories, different target dynamics and 

different sets of active sensing nodes. The target trajectories in Figure 4.3 are digested from 

a real on-site experiment (details can be found in [23]). In Figure 4.3, the label V12, V4, 

V10, V3, V6 and V1 correspond to the vehicles DW12, DW4, DW10, DW3, DW6 and 

DW1 in [23]; however, these labels are referred to the above six different tracking 

scenarios throughout this thesis. 

In the simulations, the measurement at individual sensing node is synthesized according 

to the measurement model as defined in Equation 4.6, i.e. at the k -th time step, the 

magnitude of the measurement acquired by the n -th sensing node is synthesized as follows.  

 

   
( ) ( ) s

n
k

nknk

n
k Nn

yyxx
S ...,,2,1

22
=+

−+−
= εz         (4.107) 

 

where ( )kk yx ,  and ( )nn yx ,  are the positions of the target and the n -th sensing node, 

respectively. S  is the source energy, defined to be the acoustic intensity measured at m1  

away from the target. In the simulations, S  is set to 5000 and the background noise is set 

as ( ) s
n
k NnN ...,,2,1,1,0~ =ε  for all active sensing nodes. It needs to be pointed out 

that although the signal to noise ratio (SNR) is 37 dB at the target position, the actual SNR 

at individual sensing node depends linearly on the distance between this sensing node and 

the target. For example, for a sensing node that is 50 meters away from the target, its SNR 

is merely 10 dB. In the following simulations, it is also assumed that there is no clutter and 

missed detection. 
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Figure 4.3 Six tracking scenarios with different target trajectories, target 
                                            dynamics and active sensing nodes (V12, V4, V10, V3, V6 and  
                                            V1 denote six different tracking scenarios throughout this thesis)  

 

In the simulations, four target tracking algorithms, S-EKF, S-UKF, PF and EKPF are 

tested on each of the six tracking scenarios as depicted in Figure 4.3. For each algorithm, 

the prior estimate of the target state is assumed Gaussian with the mean 00x  and 
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covariance matrix 00P . To describe the different level of the uncertainty in the prior 

estimate of target state, the mean 00x  and covariance 00P  are categorized into four groups: 
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where truthx  is the initial position of the target (i.e. the ground truth at time step 0=k ).   

In the simulations, 200 independent Monte Carlo runs have been conducted for each of 

the four tracking algorithms and the root mean square error (RMSE) is used to compare the 

performance of these algorithms. Two different types of RMSE are computed in this 

chapter: one is averaged over all time steps for each individual Monte Carlo run, and 

another is averaged over all 200 Monte Carlo runs for each time step. These two types of 

RMSE are defined as follows. 
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In Equation 4.112, nRMSE  is referred to as the RMSE value of the n -th Monte Carlo run 

that is averaged over all time steps of the target tracking task. K  is the total number of time 

steps in the tracking task. [ ]Tn
k

n
k

n
k yx=r  and [ ]Tn

k
n
k

n
k yx ˆˆˆ =r  correspond to the true target 

position and the estimated target position at the k -th time step during the n -th Monte 

Carlo run, respectively. In Equation 4.113, kRMSE  is referred to as the RMSE value of the 

k -th time step that is averaged over all 200 Monte Carlo runs.  Ψ  is the total number of 

Monte Carlo runs (i.e. 200=Ψ  in the simulation). [ ]Tn
k

n
k

n
k yx=r  and [ ]Tn

k
n
k

n
k yx ˆˆˆ =r  

correspond to the true target position and the estimated target position in the n -th Monte 

Carlo run at the k -th time step, respectively. The above two RMSE parameters indicate 

how much the target position estimation obtained from the tracking algorithms deviates 

from the true target position and will be used to assess the performance of the algorithms 

developed in this chapter. 

 

         4.8.2 The Simulation Results of S-EKF and S-UKF Tracking Algorithms 

This section conducted simulations for both S-EKF and S-UKF tracking algorithms with 

varying settings including the mean and covariance of the prior estimate of target state and 

the signal to noise ratio (SNR). The simulation results are obtained by performing 200 

Monte Carlo runs of S-EKF and S-UKF under these settings for each of the six tracking 

scenarios as depicted in Figure 4.3. 

Figure 4.4 depicts nRMSE  values of S-EKF and S-UKF of 200 Monte Carlo runs. 

Figure 4.5 depicts the kRMSE  values of S-EKF and S-UKF of time steps averaged over 

these 200 Monte Carlo runs. Figure 4.6 also shows the kRMSE  values of S-EKF and S-

UKF of time steps; however, instead of being averaged over all 200 Monte Carlo runs, the 

kRMSE  values in Figure 4.6 is computed by excluding the bottom 50 runs with the lowest 

nRMSE  values and the top 50 runs with the largest nRMSE  values (it is referred to as the 

processed data in the figure). The purpose of this data exclusion is to reduce the bias 

imposed by very large RMSE values in some Monte Carlo runs. In the simulations depicted 

in Figures 4.4, 4.5 and 4.6, for each Monte Carlo run of a tracking scenario, the true target 

trajectory and the set of active sensing nodes are kept unchanged, but the simulated 
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measurements at each sensing node are regenerated according to Equation 4.107 in which 

the target energy is set as 5000=S  and the background noise is set as 

( ) s
n
k NnN ...,,2,11,0~ =ε . In addition, both S-EKF and S-UKF adopt the same prior 

estimate of target state in which the mean and covariance are set as 3
00x  and 3

00P  (defined 

in Equation 4.110), respectively.  

From Figures 4.4, 4.5 and 4.6, it can be seen that the performance of both S-EKF and S-

UKF are not very robust and they even become divergent (an individual Monte Carlo run is 

considered to be divergent when the magnitude of its nRMSE  value excesses 50 m ). The 

worst result of S-EKF is the tracking scenario V12 in which there are 146 runs out of 200 

runs are divergent. The poor performance of S-EKF is not unexpected because of the first 

order Taylor expansion of nonlinear measurement model in S-EKF. From Figures 4.4, 4.5 

and 4.6, it can also be seen that the performance of S-UKF is not always better than that of 

S-EKF. In some tracking scenarios, S-UKF is even outperformed by S-EKF. For example, 

in tracking scenario V6, 86 runs of S-UKF algorithm are divergent while only 8 runs of S-

EKF algorithm are divergent. In theory, the UKF (S-UKF) can improve the tracking 

accuracy over the EKF (S-EKF) [32]; however, in this simulation the improvement of S-

UKF over S-EKF is not very significant. This is because the system model (Equation 4.3) 

chosen in this chapter is the nearly constant-velocity (CV) model which is linear [128]. 

Simulations also show that the computation cost of S-UKF is much higher than that of S-

EKF. In a typical run of these two algorithms, S-UKF needs 0.0245 second for one time 

step target state estimation while the S-EKF tracking algorithm only needs 0.0041 second4.   

 

 

 

 

 

 

 

 

 

 

                                                 
4 Both S-EKF and S-UKF are implemented in Matlab and run on a Pentium 4, 2.8 GHz laptop. 
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                        Figure 4.4 nRMSE  values of S-EKF and S-UKF algorithms of 200 Monte  
                                                       Carlo runs for six tracking scenarios 
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                            Figure 4.5 kRMSE  values of S-EKF and S-UKF algorithms of each time step for six          
                                              tracking scenarios (averaged over 200 runs)  
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                   Figure 4.6 kRMSE  values of S-EKF and S-UKF algorithms of each time step for six 

    tracking scenarios (averaged over the processed data)   
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Figures 4.7 and 4.8 depict the performance of S-EKF and S-UKF under different SNR 

settings for the tracking scenario V12, respectively. The setting of the prior estimate of 

target state in both figures is 4
00x  and 4

00P  (Equation 4.111), i.e. the uncertainty in prior 

estimate of the target state is very low.  From Figures 4.7 and 4.8, it can be seen that when 

the magnitude of SNR drops, the performance of S-EKF degrades faster than that of S-

UKF. At the SNR setting of 23 dB, the mean of kRMSE  (i.e. the RMSE is averaged over 

both time steps and 200 Monte Carlo runs) are 11.05 m  for S-UKF and 30.66 m  for S-

EKF.   

 
 Figure 4.7 S-EKF kRMSE  values under different SNR for tracking scenario V12 

                                       (prior estimate of the target state is 4
00x  and 4

00P ) 

 

 
    Figure 4.8 S-UKF kRMSE  values under different SNR for tracking scenario V12 

                                      (prior estimate of the target state is 4
00x  and 4

00P ) 
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Figure 4.9 shows the performance of S-EKF and S-UKF under different initialisation 

conditions – different prior estimate of the target state for tracking scenarios V10 and V12. 

Three sets of different initialisation conditions as defined in Equations 4.108~4.110, 

corresponding to high, medium and low level of uncertainty are adopted. It can be seen that 

generally S-UKF is more robust than S-EKF. In tracking scenario V10, when the prior 

uncertainty turns to high, S-UKF performs better than S-EKF. In tracking scenario V12, S-

EKF outperforms S-UKF under low prior uncertainty; however, when the prior uncertainty 

turns to medium, the performance of S-EKF degrades much faster than that of S-UKF.  

 

S-EKF RMSE under different prior estimate of target state
for V10 (averaged over 200 runs)

S-EKF RMSE under different prior estimate of target state
for V12 (averaged over 200 runs)

S-UKF RMSE under different prior estimate of target state
for V10 (averaged over 200 runs)

S-UKF RMSE under different prior estimate of target state
for V12 (averaged over 200 runs)  

 
                     Figure 4.9 S-EKF and S-UKF algorithms kRMSE  values under different prior estimate of  
                                         target state for tracking scenarios V12 and V10 
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          4.8.3 The Simulation Results of PF and EKPF Tracking Algorithms 

This section conducts simulations for the PF and EKPF tracking algorithms with varying 

settings including the prior estimate of the target state, SNR and the particle numbers used 

in the algorithms. The simulation results are obtained by performing 200 Monte Carlo runs 

of PF and EKPF under these settings for each of the six tracking scenarios as depicted in 

Figure 4.3. 

Figure 4.10 plots the nRMSE  values of PF (using 1000 particle) and EKPF (using 200 

particles) of 200 Monte Carlo runs. Figure 4.11 plots the kRMSE  values averaged over 200 

Monte Carlo runs. Figure 4.12 also shows the kRMSE  values of PF and EKPF; however, 

these kRMSE  values are computed by the exclusion of bottom 50 runs with the lowest 

RSME values and top 50 runs with the largest RMSE values (it is referred to as the 

processed data in the figures). To compare the performance of PF and EKPF with that of S-

EKF and S-UKF, the simulation results from Figures 4.5 and 4.6 are also included in 

Figures 4.11 and 4.12, respectively. For each Monte Carlo run of a given tracking scenario, 

the true target trajectory and the set of active sensing nodes are kept unchanged but the 

simulated measurements at each sensing node are regenerated according to Equation 4.107, 

setting the target energy as 5000=S  and the background noise as ( )1,0~ Nn
kε . In the 

simulations, all four tracking algorithms, S-EKF, S-UKF, PF and EKPF adopt the same 

prior estimate of the target state in which the mean and covariance are set to 3
00x  and 3

00P  

(defined in Equation 4.110), respectively.  

From Figures 4.10, 4.11 and 4.12, it could be seen that the overall performance of PF 

and EKPF is superior to the performance of S-EKF and S-UKF; and EKPF outperforms 

other three algorithms in term of tracking accuracy and robustness. Figure 4.10 shows that, 

in 200 independent Monte Carlo runs for each of the six tracking scenarios, very few  

magnitudes of nRMSE  values of EKPF exceed 10 m , with most nRMSE  being less than 5 

m . In contrast, in many runs of S-EKF and S-UKF, the magnitude of RMSE exceeds 50 

m  (refer to Figure 4.4). It is also shown in Figures 4.11 and 4.12 that PF in general could 

attain better tracking accuracy than both S-EKF and S-UKF.  
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                Figure 4.10 nRMSE  values of PF and EKPF algorithms of 200 Monte Carlo runs  
                                              for six tracking scenarios  
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                  Figure 4.11 kRMSE  values of S-EKF, S-UKF, PF and EKPF algorithms of each time step 
                                         for six tracking scenarios  (averaged over 200 runs) 
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       Figure 4.12 kRMSE  values of S-EKF, S-UKF, PF and EKPF algorithms of each time step  
                                          for six tracking scenarios (averaged over the processed data)   
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Figures 4.13 and 4.14 depict the performance of PF and EKPF algorithms for tracking 

scenario V12 under different SNR settings, respectively.  In both figures, the mean and 

covariance of the prior estimate of the target state is still set to 3
00x  and 3

00P ; the particle 

numbers adopted in PF is 1000 and in EKPF is 200. From Figures 4.13 and 4.14, it can be 

seen that the kRMSE  magnitude of both EKPF and PF turns to divergent when SNR was 

decreased to 20dB; however, in other four occasions with different SNR settings, EKPF 

outperforms PF. As shown in Figure 4.14, the tracking accuracy of EKPF decreases when 

SNR decreased. However, as shown in Figure 4.13, PF does not exhibit similar 

performance characteristics: the magnitude of kRMSE  under SNR 37 dB is larger than the 

magnitudes of kRMSE  under SNR 30 dB and SNR 27 dB; and the magnitude of kRMSE  

under SNR 30 dB is yet again larger than the magnitude of kRMSE  under SNR 27 dB. This 

curious behaviour is due to the PF particle propagation details. In the PF tracking algorithm, 

the particles in the state space are driven by the process noise in the system model to move 

from one time step to the next; very low noise levels (i.e. high SNR) might cause the 

particles not to move to the high measurement likelihood area in the state space. In turn, PF 

could not attain high accuracy and the magnitude of RMSE tends to be large. Especially, in 

cases where the likelihood is too narrow (highly peaked value due to low measurement 

error), the RMSE values of Monte Carlo runs are not bounded. Further evidence of this 

behaviour can be found in Figures 4.15 and 4.16. Figure 4.15 shows the nRMSE  values of 

200 Monte Carlo runs under SNR 37 dB and 27 dB, from which it can be observed that the 

RMSE values under SNR 37 dB are not well-bounded compared to RMSE values under 

SNR 27 dB. Figure 4.16 depicts the measurement likelihood function under SNR 37 dB 

and 27 dB at two time instances. It can be found that the likelihood under SNR 37 dB has a 

much narrower peak than that under SNR 27 dB. This explains why the PF performance 

under SNR 37 dB is worse than the performance under SNR 27 dB. In contrast to PF 

tracking algorithm, EKPF tracking algorithm takes into account the most recent 

measurements into the proposal distribution and use this to move the particles to the area of 

high measurement likelihood, which allows it to achieve higher tracking accuracy in a 

more consistent way. 
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                   Figure 4.13 PF kRMSE  values under different SNR settings for tracking  

                                      scenario V12 (averaged over 200 runs) 

 

 
       Figure 4.14 EKPF kRMSE  values under different SNR settings for tracking  

                                               scenario V12 (averaged over 200 runs) 
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Figure 4.15 PF  nRMSE  values under SNRs 37 dB and 27 dB for tracking scenario V12 

 

SNR=37dB, t=5 SNR=37dB, t=30

SNR=27dB, t=5 SNR=27dB, t=30
 

 
         Figure 4.16 Snapshots of the likelihood with SNRs 37 dB and 27 dB for tracking scenarioV12  
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Figure 4.17 shows the performance of PF and EKPF under different initialisation 

conditions, i.e. the different prior estimate of the target state for tracking scenarios V10 and 

V12. Four sets of different initialisation conditions are: uncertainty high (defined by 

Equations 4.108); uncertainty medium (defined by Equations 4.109); uncertainty low 

(defined by Equations 4.110); and uncertainty very high which is defined as 

[ ]T
truth 0200205

00 += xx , ( )10,10,10,105
00 diag=P . Table 4.1 lists the mean of the 

kRMSE  values (i.e. RMSE  is averaged over both time steps and 200 runs) for tracking 

scenarios V12 and V10. From both Figure 4.17 and Table 4.1, it can be seen in both 

tracking scenarios, EKPF performs very well even when the uncertainty of the prior 

estimate of target state becomes very large. In contrast, the performance of PF degrades 

dramatically when the uncertainty turns to very large. Therefore, Figure 4.17 and Table 4.1 

again show that EKPF outperforms PF in terms of tracking accuracy and robustness.  
 

PF RMSE under different prior estimate of target state (V10) 
(averaged over 200 runs)

EKPF RMSE under different prior estimate of target state (V12) 
(averaged over 200 runs)

PF RMSE under different prior estimate of target state (V12) 
(averaged over 200 runs)

EKPF RMSE under different prior estimate of target state (V10) 
(averaged over 200 runs)  

 
            Figure 4.17  PF and EKPF kRMSE   under different prior estimate of target state for  

                                             tracking scenarios V12 and V10 (averaged over 200 runs) 
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Table 4.1 Mean of  kRMSE  ( m ) over 200 runs for tracking scenarios V12 and V10 

Tracking 
Scenario 

Tracking 
Algorithm 

Uncertainty 
Small 

Uncertainty 
Medium 

Uncertainty 
Large 

Uncertainty 
Very Large 

V12 EKPF 2.058 2.245 3.092 6.250 

V12 PF 26.340 20.753 22.895 40.333 

V10 EKPF 1.828 2.054 3.446 6.247 

V10 PF 2.117 2.191 3.544 12.848 

 
 

Figure 4.18 and 4.19 show the RMSE values of PF and EKPF using different numbers of 

particles. SNR is set to 37 dB and the prior estimate of the target state is set with mean 1
00x  

and covariance 1
00P  (Equation 4.108). Both figures show increases in the number of 

particles lead to better performance of both PF and EKPF algorithms. However, increasing 

particle number will introduce extra computation burden and may not be favoured in real 

wireless sensor networks environments. Figure 4.19 also reveals that EKPF can still attain 

reasonable accuracy when it uses a relatively small number of particles. Recalled from the 

simulation results as depicted in Figures 4.10, 4.11 and 4.12, the performance of EKPF 

employing 200 particles is equivalent to or even better than the performance of PF 

employing 1000 particles. Therefore, the particle numbers in EKPF can be significantly 

reduced without decreasing the accuracy of the tracking results.  This helps to mitigate the 

computation cost introduced by employing N  EKFs ( N  is the number of particles adopted 

in the algorithm) in EKPF.  

Table 4.2 lists the representative run time of one time step target state estimate with S-

EKF, S-UKF, PF and EKPF tracking algorithms.  
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       Figure 4.18 PF kRMSE  values under different particle numbers for tracking scenario V12 

                                 (averaged over 200 runs) 
 

 
         Figure 4.19 EKPF kRMSE  values under different particle numbers for tracking scenario V12 

                                  (averaged over 200 runs) 
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                    Table 4.2 Run time of four tracking algorithms for one time step target state estimate 

Algorithm Particle Numbers Run Time (s) 

S-EKF  0.0041 

S-UKF  0.0245 

5000 0.1767 

1000 0.0253 

500 0.0138 
PF 

100 0.0056 

500 0.4243 

200 0.1532 

100 0.0804 
EKPF 

50 0.0440 

          
         4.8.4 Conclusion Remarks of Simulation Results 

From the above simulation results, it can be concluded that EKPF tracking algorithm 

outperforms S-EKF, S-UKF and PF tracking algorithms in terms of tracking accuracy and 

robustness. However, compared to S-EKF, S-UKF and PF tracking algorithms, EKPF 

tracking algorithm introduces a higher computation burden (Table 4.2). Therefore, for 

practical target tracking in wireless sensor networks, the selection of an appropriate 

algorithm will involve carefully trading off the tracking performance (accuracy and 

robustness) with the computation cost and the tracking conditions (the knowledge 

regarding the sensor field such as sensor nodes deployment, SNR settings, and the initial 

estimate of the target state… etc). It is expected that the exact trade-off will be problem 

dependent, and is beyond the scope of our investigation. 

 

4.9 Posterior Cramer-Rao Lower Bound (PCRLB) for Tracking a 
      Single Target in Wireless Sensor Networks 
 
This section computes the posterior Cramer-Rao lower bound (PCRLB) for tracking a 

single target in wireless sensor networks. The PCRLB is defined to be the inverse of the 

Fisher information matrix (FIM) for a random vector. It provides a lower bound on the 

mean square error (MSE) of the target state estimate to which the tracking algorithms can 

attain. The PCRLB was first introduced by Van Trees [50]. Tichavsky derived the 

recursive PCRLB facilitating the update of FIM from one time step to the next time step 
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[117]. Recently, several authors proposed a number of approaches to calculate the PCRLB 

under various conditions in target tracking applications [118], [119], [124]–[126].  

In this section, the PCRLB under the assumptions of no clutter and missed detections is 

calculated and compared for the tracking algorithms developed in this chapter. In Chapter 5, 

the PCRLB that accommodates the measurement origin uncertainty due to clutter and 

missed detections will be derived and computed. In Chapter 6, the PCRLB will be used as 

the information utility measure in implementing the sensing nodes selection scheme for the 

distributive target tracking in wireless sensor networks. 

 

4.9.1 PCRLB for Single Target Tracking without Clutter and Missed Detections 

For the state space model as defined in Equations 4.1 and 4.2, the relationship between the 

PCRLB and the error covariance matrix of the target state estimate is: 

 
                                            [ ] [ ]{ } 1ˆˆ −≥−− k

T
kkkkE Jxxxx                                     (4.114) 

 
where kx̂  is the estimate of the true target state kx . kJ  is the FIM (i.e. the inverse of the 

PCRLB) at the k -th time step and its ( )ji, -th element is defined as 
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where ( )kkp xz ,  denotes the joint probability density function of the target state kx  and 

the measurement kz , ( )ikx  denotes the i -th component of kx , and the expectation ( ).E  

is taken with respect to both kz  and kx .  

Assuming we have already obtained the FIM kJ  of the k -th time step, we can compute 

the FIM 1+kJ  for the ( )1+k -th time step as follows [117]:         

 
                                       ( ) 121112122

1 kkkkkk DDDD −

+ +−= JJ                                          (4.116) 
 
where 
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Since the system model adopted in this chapter is the nearly CV model which is linear 

(Equation 4.3), Equations 4.117, 4.118, 4.119 and the first part of Equation 4.120 are 

independent of kx : 

 
     kk

T
kkD AQA 111 −=                                                       (4.121) 

 

                112 −−= k
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where kA  is the system matrix and kQ  is the process noise covariance matrix, both have 

been defined earlier in this chapter.  

In Equation 4.124, the expectation ( )[ ]{ }11x ln
11 ++++

∇∇− kk
T pE

kk
xzx  gives the 

dependency of PCRLB on the measurement. As mentioned in Section 4.2, in most practical 

target tracking applications in wireless sensor networks, the measurements obtained at the 

n -th sensor node consists of two types of measurements: the target originating 

measurement with the assumption that measurement noise is Gaussian; and the clutter 

originating measurements which are assumed to be uniformly distributed within the 

observation space of the n -th sensing node. Thus, the measurement likelihood 

( )11 ++ kkp xz  is a mixture of Gaussian and uniform probability densities and this lead to 

the difficulties in calculating the expectation in Equation 4.124. However, as derived in the 

next chapter, the expectation in Equation 4.124 can be reduced to 
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where the matrix 1
ˆ

+kH  is the Jacobian of the measurement function 1+kh  in the state space 

model (Equations 4.1 and 4.2) and it is given by 

 
( )

kkkd
d k

k mfxx
xh

H =
+

+ = 1
1

ˆ                                      (4.126) 

 

where kkm  is the mean of the target state estimate at the k -th time step (refer to Section 

4.3). In Equation 4.125, the scalar variable 1+kq  is called the information reduction factor 

(IRF) which represents the effect of the measurement origin uncertainty due to clutter and 

missed detections on the PCRLB [118], [119]. IRF depends on several factors such as the 

covariance of measurement noise, the probability of detection, the density of clutter 

originating measurements, and the volume of the observation space of the sensing node. In 

this chapter, however, it has already assumed that there is no clutter and missed detections, 

thus the IRF is simply set to unit, i.e. 11 =+kq . The calculation of IRF that takes account of 

the measurement origin uncertainty due to clutter and missed detections is deferred to 

Chapter 5.  

By substituting Equations 4.121~4.126 (setting 11 =+kq ) into 4.116, the FIM, 1+kJ  of 

the ( )1+k -th time step,  becomes 

 
                                 ( ) 1
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where 

 1
1
111

ˆˆ
+

−
+++ = kk

T
kk HRHΓ                                          (4.128) 

 
is the measurement contribution to 1+kJ . Note that the initial FIM ( kJ  at 0=k ) is the 

inverse of the covariance of the prior target state estimate, i.e. 1
000
−= PJ .  

 

4.9.2 PCRLB Calculation  

From Equations 4.126~4.128, it can be seen that the target state at the k -th time step is 

needed for the computation of FIM 1+kJ  for the ( )1+k -th time step. Similar to the generic 

PF tracking algorithm, we adopt particles’ representation of the target state to compute the 

FIM 1+kJ  (PCRLB). In the computation, the particles are propagated from the k -th time 
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step to the ( )1+k -th time which is almost the same as the importance sampling step in the 

PF tracking algorithm (refer to Section 4.6): 

   
Nii

kk
i
k ...,2,111 == ++ xAx                                      (4.129) 

  

where i
k 1+x  denotes the i -th particle at the k -th time step and 1+kA  is the system matrix 

and has been defined in Equation 4.4 for the nearly CV model.  

In order to compare the PCRLB with the MSE of the tracking algorithms developed in 

this chapter, the same assumption as in the previous sections is also made here: a fixed set 

of sN  active sensing nodes participated in the tracking task. Consequently, Equation 4.128 

becomes:          
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With the measurement model defined in Equation 4.6 and the particles’ representation of 

the target state, the Jacobian n
k 1

ˆ
+H  for the n -th sensing node at the ( )1+k -th time step can 

be computed as follows:  
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where S  is the target energy and set to 5000=S  as in the previous sections. ( )n
k

n
k yx 11 , ++  

is the n -th sensing node’s position. ( )i
k

i
k yx 11 , ++  is the i -th particle’s position and given 

by Equation 4.129.    

Substituting Equation 4.131 into Equation 4.130,  1+kΓ  can be computed as follows 
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where 11
1+kτ , 31

1
13

1 ++ = kk ττ  and 33
1+kτ  are given as below 
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In the above equations, it is assumed that the measurement noise at each sensing node takes 

the same value with zero mean and covariance 1+kR . Combining Equations 4.132~4.135 

with Equations 4.127~4.128, we can finally obtain the FIM 1+kJ  for the ( )1+k -th time 

step. Using the above procedure, the PCRLB can be recursively computed for single target 

tracking in wireless sensor networks. 

    Note that in the above computation of FIM 1+kJ  for the ( )1+k -th time, we didn’t make 

use of the measurements obtained at the ( )1+k -th time step, i.e. s
n
k Nn ,...,1,1 =+z . The 

implication is that we can predict PCRLB: if we have already known the target state 

estimate and the PCRLB at the k -th time step, then we can compute the PCRLB for the 

( )1+k -th time step. Based on this property, in chapter 6 we adopt PCRLB as the 

information utility measure in a composite function facilitating the sensing nodes selection 

in distributive target tracking in wireless sensor networks.    

Figure 4.20 depicts the PCRLB  and kRMSE  values of S-EKF, S-UKF, PF and EKPF 

algorithms for each of the six tracking scenarios (Figure 4.3) under SNR 37 dB and with 

the prior estimate of the target state of mean 3
00x  and covariance 3

00P  (Equation 4.110). It 
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can be seen from Figure 4.20 that in all six tracking scenarios, the kRMSE  magnitudes of 

EKPF are very close to the magnitudes of  PCRLB . This again proves the superiority of 

EKPF over PF, S-EKF and S-UKF for tracking a single target in wireless sensor networks. 
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  Figure 4.20 PCRLB  and kRMSE  of different tracking algorithms for the six tracking scenarios 
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4.10 Summary 

On the basis of the recursive Bayesian estimation method, this chapter develops a number 

of tracking algorithms including S-EKF, S-UKF and PF for tracking a single target in 

wireless sensor networks. Especially, a novel hybrid EKPF is also developed and the 

simulation results show that the EKPF outperforms other three algorithms in terms of 

tracking accuracy and robustness. Despite the EKPF requiring greater computational 

efforts than PF, it is possible to reduce the particles used in the EKPF to mitigate this 

without incurring any loss in performance. To help evaluate the performance of the 

developed tracking algorithms, the PCRLB which is the theoretical lower bound on the 

mean square error of the target state estimation is also computed in this chapter. 

The practical target tracking task in wireless sensor networks is normally performed in 

cluttered environment. The measurements acquired at the individual sensing node may 

contain clutter generating measurements and the target may even go to undetected. To deal 

with such measurement origin uncertainty, Chapter 5 will develop a Particle filter (PF) and 

probabilistic data association filter (PDAF) hybrid algorithm, named as PF-PDAF. Due to 

the unique characteristics of wireless sensor networks, the tracking algorithms for wireless 

sensor networks need to be distributive. To fulfil this requirement, Chapter 6 will develop 

distributive PF, EKPF and PF-PDAF tracking algorithms.  
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