# A theoretical evaluation of transmission dosimetry in 3D conformal radiotherapy

Paul D Reich

Thesis submitted for the degree of Doctor of Philosophy in

The School of Chemistry and Physics, University of Adelaide



September 2008

# Contents

| bstra | nct                                                                               | 2                                                                                                                                                                                                               | cxiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gned  | State                                                                             | ment                                                                                                                                                                                                            | xxv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ckno  | wledge                                                                            | x ments x                                                                                                                                                                                                       | xvii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| edica | ntion                                                                             | x                                                                                                                                                                                                               | xxii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Intr  | roducti                                                                           | ion                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.1   | Patier                                                                            | t dose verification: A major challenge in modern radio<br>therapy                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.2   | Aims                                                                              | of the current thesis                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.3   | Thesis                                                                            | outline                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In v  | vivo dos                                                                          | imetry in radiotherapy: A review                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.1   | The n                                                                             | eed for dosimetric verification in radiotherapy                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.2   | Techn                                                                             | iques for <i>in vivo</i> dosimetry in external beam radiotherapy $\ldots$ .                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 2.2.1                                                                             | Entrance and exit dosimetry                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 2.2.2                                                                             | Midplane dosimetry using the entrance and exit dose                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 2.2.3                                                                             | Two-dimensional midplane dosimetry                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 2.2.4                                                                             | The transition from film to EPID                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 2.2.5                                                                             | Midplane dosimetry: 2D back-projection techniques                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 2.2.6                                                                             | Alternative back-projection techniques                                                                                                                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 2.2.7                                                                             | Transmitted dose prediction                                                                                                                                                                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | pstra<br>gned<br>ckno<br>edica<br>Intr<br>1.1<br>1.2<br>1.3<br>In v<br>2.1<br>2.2 | pstract<br>gned States<br>cknowledge<br>edication<br>Introducti<br>1.1 Patien<br>1.2 Aims<br>1.3 Thesis<br>In vivo dos<br>2.1 The n<br>2.2 Techn<br>2.2.1<br>2.2.2<br>2.2.3<br>2.2.4<br>2.2.5<br>2.2.6<br>2.2.7 | gred Statement       5         cknowledgements       x         cdication       x         Introduction       x         1.1       Patient dose verification: A major challenge in modern radiotherapy       x         1.2       Aims of the current thesis       x         1.3       Thesis outline       x         1.4       Patient dose verification: A major challenge in modern radiotherapy       x         1.2       Aims of the current thesis       x         1.3       Thesis outline       x         1.4       Proviso dosimetry in radiotherapy: A review       x         2.1       The need for dosimetric verification in radiotherapy       x         2.2.1       Entrance and exit dosimetry in external beam radiotherapy       x         2.2.2       Midplane dosimetry using the entrance and exit dose       x         2.2.3       Two-dimensional midplane dosimetry       x         2.2.4       The transition from film to EPID       x         2.2.5       Midplane dosimetry: 2D back-projection techniques       x         2.2.6       Alternative back-projection techniques       x         2.2.7       Transmitted dose prediction       x |

|     | 2.2.8 | Transmitted dose prediction using Monte Carlo | 34 |
|-----|-------|-----------------------------------------------|----|
| 2.3 | Summ  | nary and conclusions                          | 34 |

#### 3 Evaluation of a treatment planning system for modelling transmitted

| $\operatorname{dos}$ | e                         |                                                                                             | 37 |
|----------------------|---------------------------|---------------------------------------------------------------------------------------------|----|
| 3.1                  | 1 Introduction            |                                                                                             |    |
| 3.2                  | 3.2 Materials and methods |                                                                                             | 38 |
|                      | 3.2.1                     | Pinnacle <sup>3</sup> treatment planning system $\ldots \ldots \ldots \ldots \ldots \ldots$ | 38 |
|                      | 3.2.2                     | Dosimetric calibration of the SLIC-EPID                                                     | 38 |
|                      | 3.2.3                     | Simulation of phantom and EPID                                                              | 42 |
|                      | 3.2.4                     | Simulation of transmitted dose using treatment planning system                              | 44 |
|                      | 3.2.5                     | Extraction of the transmitted dose plane from $\rm Pinnacle^3~\ldots$ .                     | 45 |
|                      | 3.2.6                     | Orientation, scaling and alignment of measured and computed images                          | 46 |
|                      | 3.2.7                     | Noise analysis of images                                                                    | 47 |
|                      | 3.2.8                     | Comparison of measured and predicted images                                                 | 48 |
| 3.3                  | Result                    | $\operatorname{ts}$                                                                         | 51 |
|                      | 3.3.1                     | Noise analysis of images                                                                    | 51 |
|                      | 3.3.2                     | Comparison of measured and predicted EPID doses for varying                                 |    |
|                      |                           | phantom thicknesses                                                                         | 52 |
|                      | 3.3.3                     | Evaluation of minimum detectable phantom thickness changes using                            |    |
|                      |                           | transmitted dose                                                                            | 59 |
| 3.4                  | Discu                     | ssion                                                                                       | 60 |
|                      | 3.4.1                     | Overestimation of transmitted dose calculations relative to mea-                            |    |
|                      |                           | surement                                                                                    | 60 |
|                      | 3.4.2                     | Dosimetric uncertainties in the SLIC-EPID measurements                                      | 63 |
|                      | 3.4.3                     | Image alignment                                                                             | 65 |
| 3.5                  | Summ                      | nary and conclusions                                                                        | 65 |
|                      |                           | n of Dinnado <sup>3</sup> dogo colculations for predicting changes in trans                 |    |

4 Resolution of Pinnacle<sup>3</sup> dose calculations for predicting changes in transmitted dose 67

|          | 4.1                                   | Introd                                                                                                                | uction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67                                                                                                                                 |
|----------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|          | 4.2                                   | Mater                                                                                                                 | ials and methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68                                                                                                                                 |
|          |                                       | 4.2.1                                                                                                                 | Predicting the presence of small inhomogeneities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68                                                                                                                                 |
|          |                                       | 4.2.2                                                                                                                 | Predicting shifts in inhomogeneity position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69                                                                                                                                 |
|          |                                       | 4.2.3                                                                                                                 | Predicting changes in transmission in presence of surface contour .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72                                                                                                                                 |
|          |                                       | 4.2.4                                                                                                                 | Predicting changes in transmission in presence of surface contour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                    |
|          |                                       |                                                                                                                       | and heterogeneities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75                                                                                                                                 |
|          | 4.3                                   | Result                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77                                                                                                                                 |
|          |                                       | 4.3.1                                                                                                                 | Predicting the presence of small inhomogeneities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77                                                                                                                                 |
|          |                                       | 4.3.2                                                                                                                 | Predicting shifts in inhomogeneity position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                                                                                                 |
|          |                                       | 4.3.3                                                                                                                 | Predicting changes in transmission due to surface contour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85                                                                                                                                 |
|          |                                       | 4.3.4                                                                                                                 | Predicting changes in transmission in the presence of surface con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |
|          |                                       |                                                                                                                       | tour and heterogeneities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91                                                                                                                                 |
|          |                                       | 4.3.5                                                                                                                 | Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97                                                                                                                                 |
|          |                                       |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |
| <b>5</b> | An                                    | evalua                                                                                                                | tion of transmission dosimetry for a 3D conformal four-field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |
| 5        | An<br>box                             | evalua<br>prosta                                                                                                      | ation of transmission dosimetry for a 3D conformal four-field<br>ate treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99                                                                                                                                 |
| 5        | <b>An</b><br><b>box</b><br>5.1        | evalua<br>prosta<br>Introd                                                                                            | ate treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>99</b><br>99                                                                                                                    |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater                                                                                   | ate treatment       9         uction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>99</b><br>99<br>00                                                                                                              |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater<br>5.2.1                                                                          | ate treatment       9         auction       9         ials and methods       10         Expansion of patient CT images       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>99</b><br>99<br>00<br>00                                                                                                        |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater<br>5.2.1<br>5.2.2                                                                 | ate treatment       9         auction       9         ials and methods       10         Expansion of patient CT images       10         Transmitted dose calculations for a four-field box technique       10                                                                                                                                                                                                                                                                                                                                                                                     | <b>99</b><br>99<br>00<br>00<br>01                                                                                                  |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater<br>5.2.1<br>5.2.2<br>5.2.3                                                        | ate of transmission dosimetry for a 3D conformal four-field         ate treatment       9         auction       9         ials and methods       9         Expansion of patient CT images       10         Transmitted dose calculations for a four-field box technique       10         Simulation of dosimetry errors       10                                                                                                                                                                                                                                                                  | <ul> <li>99</li> <li>99</li> <li>00</li> <li>00</li> <li>01</li> <li>04</li> </ul>                                                 |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater<br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4                                               | ate treatment       9         auction       9         ials and methods       10         Expansion of patient CT images       10         Transmitted dose calculations for a four-field box technique       10         Simulation of dosimetry errors       10         Evaluation of dosimetric errors at the transmitted dose plane       10                                                                                                                                                                                                                                                      | <ul> <li>99</li> <li>99</li> <li>00</li> <li>00</li> <li>01</li> <li>04</li> <li>05</li> </ul>                                     |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater<br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5                                      | ate treatment       9         auction       9         ials and methods       10         Expansion of patient CT images       10         Transmitted dose calculations for a four-field box technique       10         Simulation of dosimetry errors       10         Evaluation of dosimetric errors at the transmitted dose plane       10         Evaluation of dosimetric errors inside the patient       10                                                                                                                                                                                  | <ul> <li>99</li> <li>99</li> <li>00</li> <li>01</li> <li>04</li> <li>05</li> <li>06</li> </ul>                                     |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater<br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>Result                            | ate treatment       9         ials and methods       10         Expansion of patient CT images       10         Transmitted dose calculations for a four-field box technique       10         Simulation of dosimetry errors       10         Evaluation of dosimetric errors at the transmitted dose plane       10         Evaluation of dosimetric errors inside the patient       10         Simulation of dosimetric errors inside the patient       10                                                                                                                                      | <ul> <li>99</li> <li>99</li> <li>00</li> <li>01</li> <li>04</li> <li>05</li> <li>06</li> <li>06</li> </ul>                         |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prost:<br>Introd<br>Mater<br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>Result<br>5.3.1                   | ate treatment       9         ials and methods       10         Expansion of patient CT images       10         Transmitted dose calculations for a four-field box technique       10         Simulation of dosimetry errors       10         Evaluation of dosimetric errors at the transmitted dose plane       10         Evaluation of dosimetric errors inside the patient       10         Gamma analysis results for anterior and posterior beams       10                                                                                                                                 | <ul> <li>99</li> <li>99</li> <li>00</li> <li>01</li> <li>04</li> <li>05</li> <li>06</li> <li>06</li> <li>06</li> </ul>             |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater<br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>Result<br>5.3.1<br>5.3.2          | ate treatment       9         ials and methods       10         Expansion of patient CT images       10         Transmitted dose calculations for a four-field box technique       10         Simulation of dosimetry errors       10         Evaluation of dosimetric errors at the transmitted dose plane       10         Evaluation of dosimetric errors inside the patient       10         Gamma analysis results for anterior and posterior beams       10         Gamma analysis results for left- and right-lateral beams       11                                                       | <ul> <li>99</li> <li>99</li> <li>00</li> <li>01</li> <li>04</li> <li>05</li> <li>06</li> <li>06</li> <li>06</li> <li>12</li> </ul> |
| 5        | <b>An</b><br><b>box</b><br>5.1<br>5.2 | evalua<br>prosta<br>Introd<br>Mater<br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>Result<br>5.3.1<br>5.3.2<br>5.3.3 | ate treatment       9         ials and methods       10         Expansion of patient CT images       10         Transmitted dose calculations for a four-field box technique       10         Simulation of dosimetry errors       10         Evaluation of dosimetric errors at the transmitted dose plane       10         Simulation of dosimetric errors inside the patient       10         Gamma analysis results for anterior and posterior beams       10         Gamma analysis results at the patient midplane       11         Gamma analysis results at the patient midplane       11 | <ul> <li>99</li> <li>99</li> <li>00</li> <li>01</li> <li>04</li> <li>05</li> <li>06</li> <li>06</li> <li>12</li> <li>16</li> </ul> |

|   | 5.4  | Summ    | $ary/conclusions \ldots \ldots$                    | 124 |
|---|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6 | An   | evalua  | tion of transmission dosimetry for a 3D conformal head and                                                                                                  | d   |
|   | necl | k treat | ement                                                                                                                                                       | 127 |
|   | 6.1  | Introd  | luction                                                                                                                                                     | 127 |
|   | 6.2  | Mater   | ials and methods                                                                                                                                            | 129 |
|   |      | 6.2.1   | Modification of patient head and neck CT scans                                                                                                              | 129 |
|   |      | 6.2.2   | A 3D CRT Head and Neck treatment plan using the modified CT                                                                                                 |     |
|   |      |         | scans                                                                                                                                                       | 129 |
|   |      | 6.2.3   | Simulation of the 2D transmitted dose                                                                                                                       | 130 |
|   |      | 6.2.4   | Simulation of MLC errors in the head and neck treatment plan                                                                                                | 135 |
|   | 6.3  | Result  | 5S                                                                                                                                                          | 139 |
|   | 6.4  | Summ    | ary and conclusions                                                                                                                                         | 160 |
| 7 | An   | evalua  | ation of transmission dosimetry for a 3D conformal opposing                                                                                                 | g   |
|   | tang | gential | breast treatment                                                                                                                                            | 163 |
|   | 7.1  | Introd  | luction                                                                                                                                                     | 163 |
|   | 7.2  | Mater   | ials and Methods                                                                                                                                            | 165 |
|   |      | 7.2.1   | Construction of the <i>virtual</i> EPID                                                                                                                     | 165 |
|   |      | 7.2.2   | Dose extraction at the virtual EPID                                                                                                                         | 168 |
|   |      | 7.2.3   | Simulation of respiratory motion                                                                                                                            | 169 |
|   |      | 7.2.4   | Two-dimensional gamma analysis                                                                                                                              | 171 |
|   |      | 7.2.5   | Dose-Volume Histograms                                                                                                                                      | 172 |
|   | 7.3  | Result  | 55                                                                                                                                                          | 173 |
|   |      | 7.3.1   | Two-dimensional gamma analysis                                                                                                                              | 173 |
|   |      | 7.3.2   | Dose volume histograms                                                                                                                                      | 181 |
|   |      | 7.3.3   | Summary and conclusions                                                                                                                                     | 183 |
| 8 | Con  | nclusio | ns                                                                                                                                                          | 185 |
|   | 8.1  | Major   | $\cdot$ conclusions of this thesis $\ldots \ldots \ldots$ | 185 |

| 8.2  | Future directions                                     | 187                                                                                                                                                                                                                                                                         |
|------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| App  | pendix                                                | 191                                                                                                                                                                                                                                                                         |
| A.1  | Expansion of the original patient CT images           | 191                                                                                                                                                                                                                                                                         |
| A.2  | 3D dose reconstruction of dose file from $Pinnacle^3$ | 192                                                                                                                                                                                                                                                                         |
| A.3  | Masking of transmitted dose images                    | 194                                                                                                                                                                                                                                                                         |
| A.4  | Gamma function                                        | 195                                                                                                                                                                                                                                                                         |
| ling | ranhy                                                 | 201                                                                                                                                                                                                                                                                         |
|      | 8.2<br>App<br>A.1<br>A.2<br>A.3<br>A.4                | <ul> <li>8.2 Future directions</li> <li>Appendix</li> <li>A.1 Expansion of the original patient CT images</li> <li>A.2 3D dose reconstruction of dose file from Pinnacle<sup>3</sup></li> <li>A.3 Masking of transmitted dose images</li> <li>A.4 Gamma function</li> </ul> |

# List of Tables

| 3.3.1 Isocentric set up: Gamma evaluation study to determine which (ideal)                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| combination of DD and DTA yield gamma scores of 90 $\%$ or more averaged                                                                                                         |
| over all phantom thicknesses                                                                                                                                                     |
| 3.3.2 Fixed SSD set up: Gamma evaluation study to determine which (ideal)                                                                                                        |
| combination of DD and DTA yield gamma scores of 90 $\%$ or more averaged                                                                                                         |
| over all phantom thicknesses                                                                                                                                                     |
| 5.3.1 Comparison of gamma scores and maximum (absolute) dose differences                                                                                                         |
| between transmitted and midplane dose maps for the anterior-posterior                                                                                                            |
| beam                                                                                                                                                                             |
| 5.3.2 Comparison of gamma scores and maximum (absolute) dose differences                                                                                                         |
| between transmitted and midplane dose maps for the left-lateral beam. $\ . \ . \ 115$                                                                                            |
| 5.3.3 Clinical dose statistics for the planning target volume and critical structures                                                                                            |
| (single fraction) for beam shifts in the anterior direction. $\dots \dots \dots$ |
| 5.3.4 Clinical dose statistics for the planning target volume and critical structures                                                                                            |
| (single fraction) for beam shifts in the right-lateral direction                                                                                                                 |
| 5.3.5 Clinical dose statistics for the planning target volume and critical structures                                                                                            |
| (single fraction) for beam shifts in the superior direction. $\dots \dots \dots$ |
| 6.3.1 The number of leaves detected at the transmitted dose plane resulting from                                                                                                 |
| the MLC displacement errors simulated in each of the six beams 141                                                                                                               |
| $6.3.2\mathrm{Gamma}$ scores calculated with $3\%/2.5\mathrm{mm}$ criteria for $0.25\mathrm{cm}$ and $0.50$                                                                      |
| cm leaf shifts introduced into each of the six fields. $\ldots \ldots \ldots \ldots \ldots \ldots 142$                                                                           |

| 6.3.3 $D_{max}$ , $D_{min}$ and $D_{avg}$ DVH statistics recorded in the original plan and for            |
|-----------------------------------------------------------------------------------------------------------|
| plans simulated with MLC errors in the left-posterior oblique beam 155 $$                                 |
| 6.3.4 $D_{max}$ , $D_{min}$ and $D_{avg}$ DVH statistics recorded in the original plan and for            |
| $\ensuremath{\operatorname{plans}}$ simulated with MLC errors in the anterior-posterior (supraclavicular) |
| beam                                                                                                      |
| 6.3.5 $D_{max}$ , $D_{min}$ and $D_{avg}$ DVH statistics recorded in the original plan and for            |
| plans simulated with MLC errors in the left-lateral beam                                                  |
| 6.3.6 $D_{max}$ , $D_{min}$ and $D_{avg}$ DVH statistics recorded in the original plan and for            |
| plans simulated with MLC errors in the anterior-posterior (neck) beam 158 $$                              |
| 6.3.7 $D_{max}$ , $D_{min}$ and $D_{avg}$ DVH statistics recorded in the original plan and for            |
| plans simulated with MLC errors in all six beams                                                          |
| 7.2.1 Magnitude and direction of beam shifts used to simulate the breathing and                           |
| setup errors                                                                                              |
| 7.3.1 Gamma scores calculated using clinical gamma criteria (3 $\%/2.5~{\rm mm})$ and                     |
| less strict criteria of 5 $\%/2.5~\mathrm{mm}$ and 10 $\%/2.5~\mathrm{mm}$ for the combined               |
| breathing and set up errors in the lateral beam                                                           |
| 7.3.2 Clinical dose statistics for the planning target volume and critical structures                     |
| (single fraction) for simulated breathing. NB. breathing excursions are                                   |
| combined in the same direction in both beams                                                              |

# List of Figures

| $2.2.1 \ {\rm The}$ homogeneous water phantom geometry used by Rizzotti $et \ al$ to de-            |    |
|-----------------------------------------------------------------------------------------------------|----|
| termine the midplane dose from measurements of entrance and exit doses $1$                          | 10 |
| 2.2.2 A schematic representation of the phantom and variables used in the geo-                      |    |
| metric mean method (figure courtesy of Huyskens $et al [1]$ ) 1                                     | 12 |
| $2.2.3\mathrm{A}$ schematic of an equivalent rectilinear phantom (with varying off-axis             |    |
| density) used to represent a curved phantom geometry as proposed by                                 |    |
| Broggi et al. The beam entrance is indicated by the arrow located to the                            |    |
| left of the figure (figure courtesy of Broggi $et \ al \ [2]$ )                                     | 14 |
| 2.2.4 A schematic of the phantoms used to determine the geometric factor, $G$ .                     |    |
| SPRs are measured at the exit surface of an inhomogeneous phantom with a                            |    |
| symmetrically placed inhomogeneity, and an equivalent homogeneous phan-                             |    |
| tom with the same radiological thickness (figure courtesy of Boellaard $et$                         |    |
| al [3])                                                                                             | 18 |
| $2.2.5\ {\rm Geometry}\ {\rm used}$ in the convolution/superposition algorithm. The primary         |    |
| interaction site and dose deposition site are represented by vectors $\mathbf{r}'$ and $\mathbf{r}$ |    |
| (relative to the surface), respectively (figure adapted from Metcalfe $et \ al \ [4]$ ). 2          | 28 |
| 2.2.6 Schematic of the anthropomorphic phantom ("thorax" phantom) and the                           |    |
| corresponding virtual EHP used to predict the transmitted dose. The vari-                           |    |
| ables $t_{x,y}$ and $L_{x,y}$ correspond to the polystyrene thickness of the EHP along              |    |
| a beam ray-line at $(x, y)$ and the distance from the exit surface of the EHP                       |    |
| to the transmitted dose plane, respectively (figure courtesy of Pasma $\mathit{et}$                 |    |
| al [5])                                                                                             | 30 |

| 3.2.1 Calibration curves for the SLIC-EPID at different nominal linac repetition         |    |
|------------------------------------------------------------------------------------------|----|
| settings (MU/min). The curve corresponding to $300 \text{ MU/min}$ was used              |    |
| in this study. Error bars may not be visible due to their similar size to                |    |
| corresponding data points. (Figure courtesy of M. Mohammadi $[6])$                       | 40 |
| 3.2.2 A Correction Factor matrix defined for a 6MV photon beam in an open                |    |
| field (15.8 $\times$ 19.5 $\rm cm^2$ at isocenter) at an SED of 140 cm. (Figure courtesy |    |
| of M. Mohammadi [6])                                                                     | 42 |
| 3.2.3 CT arrangement of RW3 used to simulate a phantom and EPID separated                |    |
| by an air gap. (Not to scale).                                                           | 43 |
| 3.2.4 Isocentric (a) and SSD (b) treatment setups simulated by the planning              |    |
| system for the RW3 phantom geometry.                                                     | 44 |
| 3.2.5 Relative depth dose values (on the central axis) obtained from Matlab,             |    |
| to confirm the position of $d_{max}$ (plane # 246) inside the water-equivalent           |    |
| EPID. Plane separation = $0.25$ cm                                                       | 46 |
| 3.2.6 A reference alignment image for determining "left" and "right" orientations        |    |
| in the EPID images.                                                                      | 47 |
| 3.2.7 A geometric interpretation of the gamma concept used in this study. (Fig-          |    |
| ure courtesy of Depuydt <i>et al</i> [7])                                                | 49 |
| 3.3.1 SNRs in measured and predicted EPID doses on CAX as a function of                  |    |
| phantom thickness.                                                                       | 52 |
| 3.3.2 Comparison of calculated and measured mean doses on CAX for different              |    |
| phantom thicknesses. (a) Isocentric set up. (b) Fixed SSD set up. All                    |    |
| points contain error bars, but are too small to appear in the vertical scale.            | 53 |
| 3.3.3 Isocentric set up: comparison of calculated and measured EPID dose beam            |    |
| profiles with gamma profiles also shown. (a)–(b) Phantom thickness of $30$               |    |
| cm. (c)–(d) Phantom thickness of 20 cm. (e)–(f) Phantom thickness of 10                  |    |
| cm                                                                                       | 54 |

| $3.3.4\ {\rm Fixed}\ {\rm SSD}\ {\rm set}\ {\rm up}:\ {\rm comparison}\ {\rm of}\ {\rm calculated}\ {\rm and}\ {\rm measured}\ {\rm EPID}\ {\rm dose}\ {\rm beam}$ |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| profiles with gamma profiles also shown. (a)–(b) Phantom thickness of 28 $$                                                                                        |    |
| cm. (c)–(d) Phantom thickness of 22 cm. (e)–(f) Phantom thickness of 18                                                                                            |    |
| cm                                                                                                                                                                 | 55 |
| 3.3.5 Gamma maps. (a)–(c) Isocentric set up. (a) Phantom thickness 30 cm                                                                                           |    |
| (3%/3.8 mm), (b) Phantom thickness 20 cm (2%/3.8 mm), (c) Phantom                                                                                                  |    |
| thickness 10 cm, $(3\%/3.8 \text{ mm})$ . (d)–(f) Fixed SSD set up. (a) Phantom                                                                                    |    |
| thickness 28 cm (3%/3.8 mm), (b) Phantom thickness 22 cm (4.5%/3.8                                                                                                 |    |
| mm), (C) Phantom thickness $18~{\rm cm}~(4.5\%/3.8~{\rm mm}).$ Corresponding gamma                                                                                 |    |
| scores are shown in tables 3.3.1 and 3.3.2.                                                                                                                        | 58 |
| 3.3.6 Minimum detectable resolution in collapsed-cone superposition dose cal-                                                                                      |    |
| culations at the transmitted dose plane $(d_{max})$ as a function of phantom                                                                                       |    |
| thickness. (a)–(c) Isocentric set up. (a) reference phantom thickness 25 cm,                                                                                       |    |
| (b) reference phantom thickness 15 cm, (c) reference phantom thickness 6                                                                                           |    |
| cm. (d)–(e) Fixed SSD set up. (d) reference phantom thickness 26 cm, (e)                                                                                           |    |
| reference phantom thickness 22 cm.                                                                                                                                 | 60 |
| 3.4.1 The total error (variance) in the dose calibration curve and the sum of its                                                                                  |    |
| parts, as a function of phantom thickness. (a) Isocentric set up. (b) Fixed                                                                                        |    |
| SSD set up                                                                                                                                                         | 63 |
| 4.2.1 Model of an inhomogeneity inside a homogeneous phantom using Pinnacle <sup>3</sup>                                                                           |    |
| (a) Set up for increasing the width of the inhomogeneity from $0.1 - 5$ cm                                                                                         |    |
| (a) Set up for increasing the height of the inhomogeneity from $0.5 - 1.5$ cm                                                                                      | 69 |
| (b) Set up for increasing the neight of the inhomogeneity from 0.5 1.5 cm.                                                                                         | 05 |
| 4.2.2 The 5 $\times$ 5 $\times$ 5 cm <sup>2</sup> innomogeneity used for simulating innomogeneity dis-                                                             | 70 |
| pracements on-axis from $0 - 8.0$ cm                                                                                                                               | 70 |
| 4.2.3 The semi-infinite inhomogeneity contained inside a 20 cm thick phantom                                                                                       |    |
| for simulating displacements at three different depths                                                                                                             | 71 |
| 4.2.4 Set up for CT scanning the two cylindrical phantoms and EPID represen-                                                                                       |    |
| tation. (a) Large cylinder. (b) Small cylinder                                                                                                                     | 73 |

| 4.2.5 Pinnacle <sup>3</sup> plans of the cylindrical phantoms for simulating relative beam                          |    |
|---------------------------------------------------------------------------------------------------------------------|----|
| displacements (0.5 - 3.0 cm).<br>(a) Large cylinder and (b) Small cylinder. $\ . \ .$                               | 74 |
| 4.2.6 A pelvic section from Rando used for the surface contour study                                                | 75 |
| 4.2.7 Anthropomorphic phantoms. (a) Rando head and neck phantom and (b)                                             |    |
| breast and lung phantom.                                                                                            | 76 |
| 4.3.1 The dose distribution calculated by $\rm Pinnacle^3$ for the 0.1 x 0.1 x 0.5 cm                               |    |
| inhomogeneity. Insert(upper): a magnified view of the inhomogeneity on                                              |    |
| the central axis. Insert(lower): a magnified view of the slightly perturbed                                         |    |
| isodose lines as a result of a small inhomogeneity present above                                                    | 78 |
| $4.3.2(\mathrm{a})$ Cross-plane beam profiles ((a) and (c)) predicted at the transmitted                            |    |
| dose plane for the different sized inhomogeneities and predicted transmitted                                        |    |
| doses on the central axis as a function of inhomogeneity size $((b) \text{ and } (d))$ .                            |    |
| NB. Dose differences displayed in each graph represent "reference" plan                                             |    |
| subtracted from "perturbed" plan, and normalised to the central axis of                                             |    |
| the reference plan beam profiles                                                                                    | 80 |
| 4.3.3 (a) The dose distribution calculated by Pinnacle <sup>3</sup> for the 5 $\times$ 5 $\times$ 5 $\mathrm{cm}^3$ |    |
| inhomogeneity. (b) Predicted transmitted dose on the central axis versus                                            |    |
| displacement in inhomogeneity. NB All plotted points contain error bars                                             |    |
| but are too small to be visible with the vertical scale. $\ldots$ $\ldots$ $\ldots$ $\ldots$                        | 82 |
| 4.3.4 Cross-plane beam profiles in the transmitted dose plane resulting from the                                    |    |
| off-axis inhomogeneity shifts of (a) 0.1 cm, (b) 0.2 cm, (c) 0.4 cm, and (d) $$                                     |    |
| 0.7 cm                                                                                                              | 83 |
| 4.3.5 Predicted cross-plane beam profiles in the transmitted dose plane resulting                                   |    |
| from the semi-infinite inhomogeneity at three different depths inside the                                           |    |
| phantom. The two inserts are magnified views of the beam profiles 5 $\rm cm$                                        |    |
| off-axis.                                                                                                           | 84 |
| 4.3.6 Pinnacle <sup>3</sup> isodose distributions calculated for the, (a) large cylinder and                        |    |
| (b) Small cylinder                                                                                                  | 86 |
| 4.3.7 Pinnacle <sup>3</sup> isodose distributions calculated for the pelvis phantom. $\ldots$ .                     | 87 |
|                                                                                                                     |    |

| 4.3.8 Predicted transmitted doses on the central axis for the three homogeneous              |    |
|----------------------------------------------------------------------------------------------|----|
| curved phantoms plotted against relative shift between beam path and                         |    |
| phantom geometry. NB All plotted points contain error bars but are too                       |    |
| small to be visible with the vertical scale                                                  | 87 |
| 4.3.9 Predicted cross-plane beam profiles in the transmitted dose plane resulting            |    |
| from relative beams shifts of 0.5 - 1.0 cm in the large cylinder ((a)–(c)),                  |    |
| small cylinder ((d)–(f)), and the pelvic phantom (g)-(i)                                     | 88 |
| 4.3.10<br>Gamma maps and gamma scores calculated within the 50 $\%$ isodose lines            |    |
| resulting from relative shifts in the large cylinder. (a), (b) and (c) Relative              |    |
| shifts of 0.5, 0.75 and 1.0 cm, respectively using 3 $\%/2.5$ mm gamma cri-                  |    |
| teria. (d), (e) and (f) Relative shifts of $0.5, 0.75$ and $1.0$ cm, respectively            |    |
| using 1 %/2.5 mm gamma criteria                                                              | 90 |
| 4.3.11<br>Gamma maps and gamma scores calculated within the 50 $\%$ isodose lines            |    |
| resulting from relative shifts in the small cylinder. (a), (b) and (c) Rela-                 |    |
| tive shifts of 0.5, 0.75 and 1.0 cm, respectively using 3 $\%/2.5~\mathrm{mm}$ gamma         |    |
| criteria. (d), (e) and (f) Relative shifts of $0.5, 0.75$ and $1.0$ cm, respectively         |    |
| using 1 %/2.5 mm gamma criteria                                                              | 91 |
| 4.3.12<br>Gamma maps and gamma scores calculated within the 50 $\%$ isodose lines            |    |
| resulting from relative shifts in the pelvis phantom. (a), (b) and (c) Relative              |    |
| shifts of 0.5, 1.0 cm and 2.0 cm, respectively using 3 $\%/2.5$ mm gamma                     |    |
| criteria. (d), (e) and (f) Relative shifts of $0.5$ , $1.0$ and $2.0$ cm, respectively       |    |
| using 1 %/2.5 mm gamma criteria                                                              | 92 |
| 4.3.13(a) Pinnacle <sup>3</sup> isodose distributions calculated for (a) the breast phantom  |    |
| and (b) head and neck phantom.                                                               | 93 |
| 4.3.14Normalised predicted transmitted doses on the central axis for the two                 |    |
| anthropomorphic phantoms versus relative phantom shift                                       | 94 |
| 4.3.1 <sup>5</sup> Predicted cross-plane beam profiles in the transmitted dose plane for the |    |
| anthropomorphic phantoms resulting from relative beams shifts of $0.25$ -                    |    |
| 0.75 cm. (a)-(c) Breast phantom. (d)-(f) Head and neck phantom                               | 95 |
|                                                                                              |    |

| 4.3.16<br>Gamma maps and gamma scores calculated within the 50 $\%$<br>isodose lines        |
|---------------------------------------------------------------------------------------------|
| resulting from relative shifts in the anthropomorphic breast phantom. (a),                  |
| (b) and (c) Relative shifts of 0.25, 0.5 and 0.75 cm, respectively using 3 $$               |
| $\%/2.5~\mathrm{mm}$ gamma criteria. (d), (e) and (f) Relative shifts of 0.5, 0.75 and      |
| 1.0 cm, respectively using 1 %/2.5 mm gamma criteria 96                                     |
| 4.3.17<br>Gamma maps and gamma scores calculated within the 50 $\%$ isodose lines           |
| resulting from relative shifts in the anthropomorphic bhead and neck phan-                  |
| tom. (a), (b) and (c) Relative shifts of 0.25, 0.5 and 0.75 cm, respectively                |
| using 3 $\%/2.5$ mm gamma criteria. (d), (e) and (f) Relative shifts of 0.5,                |
| 0.75 and 1.0 cm, respectively using 1 %/2.5 mm gamma criteria 97                            |
| 5.2.1 An expanded axial CT slice (1024 pixel $\times$ 1024 pixel) of a prostate radio-      |
| therapy patient                                                                             |
| 5.2.2 Pinnacle <sup>3</sup> dose distributions for the anterior-posterior beam and (b) left |
| lateral beams                                                                               |
| 5.2.3 Beam's eye view transmitted dose distributions (cropped at 20 $%$ isodose             |
| lines) extracted at $d_{max}$ for (a) the anterior-posterior, (b) posterior-anterior        |
| beam, (c) Left lateral, and (d) right lateral beams                                         |
| 5.2.4 Dosimetry errors simulated by shifting the coordinates of the beam and                |
| transmitted dose plane in the planning system (shown in the lateral direc-                  |
| tions only)                                                                                 |
| 5.2.5 A schematic illustrating the locations of the transmitted dose plane and              |
| midplane. The midplane is defined relative to patient anatomy, where as                     |
| the transmitted dose plane is defined relative to the radiation field. $\ldots$ . 107       |
| 5.3.1 Gamma maps (3 $\%/2.5$ mm and 1 $\%/2.5$ mm) resulting from beam path                 |
| displacements in the anterior-posterior beam. (a) and (d) 0.5 cm, right-                    |
| lateral, (b) and (e) 1.0 cm, left-lateral, and (c) and (f) 1.5 cm, anterior 108 $$          |
|                                                                                             |

| <ul> <li>5.3.2 Gamma maps (3 %/2.5 mm and 1 %/2.5 mm) resulting from beam path displacements in the left-lateral beam. (a) and (d) 0.5 cm, posterior, (b) and (e) 1.0 cm, superior, and (c) and (f) 1.5 cm, left-lateral</li></ul>                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>5.3.3 Gamma maps calculated using 3 %/2.5 mm in the midplane ((a), (c), (e)) and corresponding gamma maps in the transmitted dose plane ((b), (d), (f)). (a)–(b) left-lateral beam, 0.5 cm shift, superior, (c)–(d) left-lateral beam, 1.0 cm shift, posterior, and (e)–(f) anterior-posterior beam, 1.5 cm shift, posterior.</li> </ul> |
| 5.3.4 Dose-volume histograms evaluated by Pinnacle <sup>3</sup> for beam shifts in the an-<br>terior direction. (a) PTV, (b) rectum, (c) bladder, and (d) left femoral                                                                                                                                                                            |
| head                                                                                                                                                                                                                                                                                                                                              |
| 5.3.5 Dose-volume histograms evaluated by Pinnacle <sup>3</sup> for beam shifts in the right-<br>lateral direction (a) PTV, (b) rectum, (c) bladder, and (d) left femoral head.122                                                                                                                                                                |
| 5.3.6 Dose-volume histograms evaluated by Pinnacle <sup>3</sup> for beam shifts in the su-<br>perior direction (a) PTV, (b) rectum, (c) bladder, and (d) left femoral                                                                                                                                                                             |
| head                                                                                                                                                                                                                                                                                                                                              |
| 6.2.1 A modified CT slice consisting of the original $512 \times 512$ matrix surrounded<br>by two pairs of matrices of dimensions $428 \times 1152$ and $512 \times 320.$ 130                                                                                                                                                                     |
| <ul><li>6.2.2 (a) Simulation of transmitted dose in a water-equivalent medium for one of the oblique beams, and (b) close up of the surface of the transmitted dose medium showing artifacts in the isodose lines. The artifacts are only present at the surface of the virtual EPID.</li></ul>                                                   |
| 6.2.3 The co-ordinate system in Matlab used to derive the coordinates of $d_{max}$<br>in the virtual EPID following the 3D matrix rotation. The dose matrix<br>for the right-posterior oblique beam is shown. The beam focus-to-isocentre<br>distance is denoted by $d_{BI}$ , and the isocentre-to-EPID distance (defined at                     |
| $d_{max}$ , not at the surface) is denoted by $d_{IE}$                                                                                                                                                                                                                                                                                            |

| 6.2.4 (a) An axial view through the transmitted dose medium before rotation                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and (b) after rotation. A direct comparison of isodose lines (20 $\%,$ 40 $\%,$                                                                                          |
| 60 %, 80 %, 90 %, and 100 % - relative to $d_{max}$ ) revealed no significant                                                                                            |
| changes in dose after rotating the 3D dose array                                                                                                                         |
| 6.2.5 Calculated transmitted dose maps (at $d_{max} = 1.5$ cm in the plane of the                                                                                        |
| virtual EPID) cropped at the 5 $\%$ isodose lines. (a) Left-lateral beam,                                                                                                |
| (b) anterior beam (neck), (c) right-lateral beam, (d) left posterior-oblique                                                                                             |
| beam, (e) anterior beam (supraclavicular), and (f) right posterior-oblique                                                                                               |
| beam                                                                                                                                                                     |
| $6.2.6\ {\rm The}\ {\rm anterior}\ {\rm posterior}\ ({\rm supraclavicular})\ {\rm field}.$ The locations of leaves A20                                                   |
| and B20 are circled. (Note that leaf B20 is hidden behind jaw B) 136                                                                                                     |
| 6.2.7 (a)Location of the midplane relative to the transmitted dose plane for the                                                                                         |
| anterior-posterior (supraclavicular) beam                                                                                                                                |
| 6.3.1 Difference maps in the transmitted dose plane resulting from five leaves                                                                                           |
| (leaf $\#$ 1- leaf<br># 5) shifted by (a) 0.01 cm, (b) 0.02 cm, (c) 0.05 cm, and                                                                                         |
| (d) 0.1 cm                                                                                                                                                               |
| 6.3.2 Comparison of gamma maps (3 $%/2.5$ mm) for two different combinations                                                                                             |
| of shift size and number of leaves shifted. (a) Five leaves $/0.5$ cm shift in                                                                                           |
| the L-OBL beam, (b) bank of leaves<br>/ $0.25~\mathrm{cm}$ shift in the L-OBL beam,                                                                                      |
| (c) five leaves<br>/0.5 cm shift in the R-OBL beam, (d) bank of leaves<br>/0.25                                                                                          |
| cm shift in the R-OBL beam, (e) five leaves<br>/0.5 cm shift in the AP(neck)                                                                                             |
| beam, and (f) bank of leaves<br>/0.25 cm shift in the AP(neck) beam 143                                                                                                  |
| 6.3.3 The variation in transmitted dose as a function of leaf displacement for two                                                                                       |
| different leaf positions (leaf 20A and 20B)                                                                                                                              |
| 6.3.4 Variation in transmitted dose as a function of leaf displacement for different                                                                                     |
| dose grid sizes                                                                                                                                                          |
| 6.3.5 Typical beam profiles (calculated using a $0.1 \times 0.1 \text{ cm}^2$ grid size) intersect-                                                                      |
| ing at leaf A20 for a 0.3 cm leaf shift in leaf A20. $\dots \dots \dots$ |

| 6.3.6 Magnified views of beam profiles (with and without an MLC shift) at the                 |   |
|-----------------------------------------------------------------------------------------------|---|
| plane of the virtual EPID for the anterior-posterior (supraclavicular) field.                 |   |
| Dose difference profiles are superimposed. (a) Leaf A20 shifted by $0.3 \text{ cm}$           |   |
| shift along the negative axis using a 0.1 $\times$ 0.1 $\rm cm^2$ calculation grid size,      |   |
| and (b) leaf A20 shifted by 0.3 cm shift along the positive axis using a 0.4 $$               |   |
| $\times 0.4 \text{ cm}^2$ calculation grid size                                               | 8 |
| 6.3.7 Comparison of dose variations in the transmitted dose plane and midplane                |   |
| at two different leaf locations in the anterior-posterior (supraclavicular)                   |   |
| field.(a) Leaf 20A and (b) leaf 20B                                                           | 9 |
| 6.3.8 Original DVHs and DVHs due to MLC errors present in the left-posterior                  |   |
| oblique beam. (a) PTV, (b) a zoom in of PTV, (c) spinal cord, (d), larynx,                    |   |
| (e) left parotid, and (f) right parotid                                                       | 1 |
| 6.3.9 Original DVHs and DVHs due to MLC errors present in the left-posterior                  |   |
| oblique beam. (a) PTV, (b) a zoom in of PTV, (c) spinal cord, (d), larynx,                    |   |
| (e) left parotid, and (f) right parotid                                                       | 2 |
| 6.3.1@riginal DVHs and DVHs due to MLC errors present in all beams. (a)                       |   |
| PTV, (b) a zoom in of PTV, (c) spinal cord, (d), larynx, (e) left parotid,                    |   |
| and (f) right parotid                                                                         | 3 |
| 6.3.11Original DVHs and DVHs due to MLC errors present in all beams. (a)                      |   |
| PTV, (b) a zoom in of PTV, (c) spinal cord, (d), larynx, (e) left parotid,                    |   |
| and (f) right parotid                                                                         | 4 |
|                                                                                               |   |
| 7.2.1 A wedged parallel opposed breast plan created in Pinnacle <sup>o</sup> used to simulate | 0 |
| patient breathing                                                                             | 6 |
| 7.2.2 (a)An axial slice through the virtual EPID (water-equivalent) displaying                |   |
| the isodose lines calculated by $Pinnacle^3$ , (b) beam profiles predicted by                 |   |
| the Pinnacle <sup>3</sup> treatment planning system through an axial cross-section of         |   |
| the virtual EPID. Dose artifacts are clearly present at the surface of the                    |   |
| virtual EPID but not at $d_{max}$                                                             | 7 |

| 7.2.3 Calculated isodose lines through the cross section of the virtual EPID. (a)                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Before matrix rotation and (b) after matrix rotation. The rotation had                                                                                                         |
| minimal effect on the isodose lines $(0.3 \% \text{ at } d_{max})$                                                                                                             |
| 7.2.4 Two-dimensional computed transmitted dose distributions at $d_{max}$ for (a)                                                                                             |
| lateral tangent, and (b) medial lateral beam                                                                                                                                   |
| 7.2.5 Respiratory motion simulated in the anatomy frame of reference, in which                                                                                                 |
| the beam and virtual EPID move relative to the fixed anatomy. (a) Inhale                                                                                                       |
| breathing and (b) exhale breathing                                                                                                                                             |
| 7.3.1 Gamma maps (for the lateral beam) resulting from (a) Breathing inhale of                                                                                                 |
| 2  mm, (b) breathing exhale of $2  mm$ , (c) breathing inhale of $11  mm$ , and                                                                                                |
| (d) breathing exhale of 11 mm                                                                                                                                                  |
| 7.3.2 Gamma maps (for the lateral beam) resulting from (a) Breathing exhale of                                                                                                 |
| 2 mm combined with 2.5 mm beam shift (superior), (b) Breathing exhale                                                                                                          |
| of 2 mm combined with 2.5 mm beam shift (inferior), (c) Breathing inhale                                                                                                       |
| of 2 mm combined with 2.5 mm beam shift (superior), and (d) Breathing                                                                                                          |
| inhale of 2 mm combined with 2.5 mm beam shift (inferior). $\dots \dots \dots$ |
| 7.3.3 Gamma maps (for the lateral beam) resulting from (a) Breathing exhale of                                                                                                 |
| 11 mm combined with 2.5 mm beam shift (superior), (b) Breathing exhale                                                                                                         |
| of 11 mm combined with 2.5 mm beam shift (inferior), (c) Breathing inhale                                                                                                      |
| of 11 mm combined with 2.5 mm beam shift (superior), and (d) Breathing                                                                                                         |
| inhale of 11 mm combined with 2.5 mm beam shift (inferior) 177                                                                                                                 |
| $7.3.4~\mathrm{A}$ comparison of gamma maps (3 $\%/2.5~\mathrm{mm})$ for the medial tangent beam                                                                               |
| in the midplane and transmitted dose planes resulting from breathing sim-                                                                                                      |
| ulations. (a)–(b) Shallow breathing in the inhale direction, (c)–(d) shallow                                                                                                   |
| breathing in the exhale direction, (e)–(f) shallow breathing in the inhale                                                                                                     |
| direction combined with a 2.5 mm setup error in the superior direction (ie                                                                                                     |
| beam shift in the inferior direction)                                                                                                                                          |

### Abstract

Two-dimensional transmission dosimetry in radiotherapy has been discussed in the literature for some time as being a potential method for *in vivo* dosimetry. However, it still remains to become a wide spread practice in radiotherapy clinics. This is most likely due to the variety in radiotherapy treatment sites and the challenges they would present in terms of detection and interpretation at the transmitted dose level. Thus, the full potential and limitations of applying transmission dosimetry in the presence of dosimetry errors still need to be demonstrated.

This thesis is a theoretical evaluation of transmission dosimetry using the Pinnacle<sup>3</sup> treatment planning system. The accuracy of predicting reliable and accurate absolute transmitted dose maps using the planning system dose algorithm for comparison with measured transmitted dose maps was initially investigated. The resolution in the dose calculations at the transmitted level was then evaluated for rectilinear and curved homogeneous phantoms and rectilinear inhomogeneous phantoms, followed by studies combining both surface curvature and heterogeneities using anthropomorphic phantoms. In order to perform transmitted dose calculations at clinically relevant beam focus-to-transmitted dose plane distances using clinical patient CT data it was first necessary to extend the CT volume. Finally, the thesis explored the efficacy of applying transmission dosimetry in the clinic by simulating realistic dosimetry errors in the planning system using patient treatment plans for a prostate, head and neck, and breast CRT (Conformal Radiotherapy) treatment. Any differences at the transmitted dose level were interpreted and quantified using the gamma formalism. To determine whether the transmitted dose alone was a sufficient indicator of the dosimetry errors, the magnitude in transmission dose differences were compared with those predicted at the midplane of the patient. Dose-Volume Histograms (DVHs) were also used to evaluate the clinical significance of the dose delivery errors on the target volume and surrounding healthy tissue structures.

## Signed Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

SIGNED: ..... DATE: .....

### Acknowledgements

Firstly I owe my gratitude to Tim van Doorn who planted the first seed for this project in 2003. It seems like only yesterday that I first step foot in your office and asked to do a PhD. I would also like to thank you for your supervision throughout the first half of my candidature and for sharing your expertise with me.

Although it is slightly unorthodox to thank a building, however I must thank the RAH Medical Physics department itself! It has been a pleasure to share the same office space once occupied by previous PhD students (the likes of Paul Keall, Wayne Beckham, Peter Hoban, Jeremy Booth and Peter Greer, who's door name placards are enshrined on one of the office walls) whom some of which have become house-hold names in the Medical Physics community. I have fond memories of this place and I am proud to have been a member of a highly regarded and well established Medical Physics department.

A warm thank you to Loredana Marcu, whom I had the pleasure of sharing an office with during the first years. Thanks for your patience, honesty, approachability and words of encouragement.

Mohammad Mohammadi ("Momo"). What can I say? I have never met such a dedicated and hard-working individual in my life. It was a pleasure having you as a close colleague and friend whom I bonded so well with. Thank you for sharing many laughs with me and for burning the midnight oil with me towards the end of our candidatures. Your Xmas party antics shall live on ... There are so many other people to thank along the way. I would like to start with Christine Robinson for just being her - a happy and cheerful individual to have around. Thanks also for organising all the social events and lunches for the department. In particular, I would also like to thank Kurt Byas, Kym Quach, Madhava Bhat, Ralph Nicholls, Lotte Fog, Judith Pollard, Neil Piller, and all the students in the department whom I got to know. Please forgive me if I have left anybody out!

Last but not least, I would like to express my warmest and sincere thanks to Eva Bezak, who'm I am grateful for accepting to take over the reins from Tim as my supervisor in the second half of my candidature. She is a true professional and great leader whom I have tremendous respect for as a physicist and individual. Thank you for your patience, mentorship and diligence towards my project throughout the years.

On a personal note, I would like to thank my family, particularly my parents for their patience and support throughout this large undertaking. Above all, thank you for having faith in me. Now its time to celebrate!

#### Publications in refereed journals

- P. Reich and E. Bezak, "The use of a treatment planning system to investigate the potential for transmission dosimetry in detecting patient breathing during breast 3D CRT," Australas. Phys. Eng. Sci. Med. 31(2), 110-21 (2008).
- M. Mohammadi, E. Bezak, and P. Reich, "Verification of dose delivery for a prostate sIMRT treatment using a SLIC-EPID", Applied Radiation and Isotopes. In press.
- M. Mohammadi, E. Bezak, and P. Reich, "The use of extended dose range film for dosimetric calibration of a scanning liquid-filled ionization chamber electronic portal imaging device", J Appl Clin Med Phys. 8, 69-84 (2007).
- P. Reich, E. Bezak, M. Mohammadi, and L. Fog, "The prediction of transmitted dose distributions using a 3D treatment planning system," *Australas. Phys. Eng. Sci. Med.* 29, 18-29 (2006).
- M. Mohammadi, E. Bezak, and P. Reich, "Comparison of two-dimensional transmitted dose maps: evaluation of existing algorithms," *Australas. Phys. Eng. Sci. Med.* 29, 179-187 (2006).

#### Papers submitted in refereed journals

**P. Reich**, E. Bezak, and M. Mohammadi, "A theoretical evaluation of transmission dosimetry for a 3D conformal four-field box prostate treatment." *Submitted to Physics in Medicine and Biology.* 

### **Conference** presentations

#### International

- Mohammadi, E. Bezak, and P. Reich. "Using a Scanning Liquid Ionization Chamber EPID for Prostate and Head and Neck Treatments". World Congress on Medical Physics and Biomedical Engineering. 2006. Seoul, South Korea.
- P. Reich, E. Bezak, and M. Mohammadi. "Using a TPS to model the impact of 3D CRT patient treatment set up errors on predicted transmitted dose". 9th International Workshop on Electronic Portal Imaging. 2006. Melbourne, Australia.
- M. Mohammadi, E. Bezak, and P. Reich. "Verification of sIMRT for prostate dose delivery using a SLIC-EPID". 9th International Workshop on Electronic Portal Imaging. 2006. Melbourne, Australia.
- 4. P. Reich, E. Bezak, L. Fog, and M. Mohammadi. "Predicting 2D transmitted dose maps using a 3D treatment planning system". 8th Biennial ESTRO Meeting on Physics and Radiation Technology for Clinical Radiotherapy. 2005. Lisboa, Portugal.

#### National

- 5. P. Reich, E. Bezak, and M. Mohammadi. "What accuracy is required of predicted transmitted dose maps for EPID dosimetry in breast CRT ?". Engineering and the Physical Sciences in Medicine 31st Annual Conference. 2007. Fremantle, Australia.
- 6. P. Reich, E. Bezak, and M. Mohammadi. "The effects of simulated patient setup errors on transmitted dose in 3D prostate CRT". Engineering and the Physical Sciences in Medicine 29th Annual Conference. 2005. Adelaide, Australia.
- 7. M. Mohammadi, E. Bezak, and P. Reich. "Investigation of two-dimensional dose

distribution evaluation tools". Engineering and the Physical Sciences in Medicine 29th Annual Conference. 2005. Adelaide, Australia.

- Awarded IOP Publishing Student Poster Prize.
- M. Mohammadi, E. Bezak, and P. Reich. "Verification of two-dimensional transmitted dose measurements in the presence of homogeneous/inhomogeneous phantoms". *Engineering and the Physical Sciences in Medicine 29th Annual Conference*. 2005. Adelaide, Australia.
- P. Reich, E. Bezak, and L. Fog. "Transmission dosimetry in Pinnacle 3D treatment planning system". Engineering and the Physical Sciences in Medicine 28th Annual Conference. 2004. Geelong, Australia.

#### Other presentations

- P. Reich, E. Bezak, and M. Mohammadi. "The effect of simulated patient setup errors on transmitted dose in 3D prostate CRT". *Postgraduate Student Papers Night*. Adelaide, Australia. 2005. Sponsored by ACPSEM, SAMBE and EACBE (SA branches).
- P. Reich, E. Bezak, and L. Fog. "Transmission dosimetry using Pinnacle 3D treatment planning system: towards an online in vivo dosimetry verification system". *Postgraduate Student Papers Night*. Adelaide, Australia. 2004. Sponsored by ACPSEM, SAMBE and EACBE (SA branches).

To my parents