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Abstract

Two-dimensional transmission dosimetry in radiotherapy has been discussed in the liter-

ature for some time as being a potential method for in vivo dosimetry. However, it still

remains to become a wide spread practice in radiotherapy clinics. This is most likely due

to the variety in radiotherapy treatment sites and the challenges they would present in

terms of detection and interpretation at the transmitted dose level. Thus, the full po-

tential and limitations of applying transmission dosimetry in the presence of dosimetry

errors still need to be demonstrated.

This thesis is a theoretical evaluation of transmission dosimetry using the Pinnacle3 treat-

ment planning system. The accuracy of predicting reliable and accurate absolute trans-

mitted dose maps using the planning system dose algorithm for comparison with measured

transmitted dose maps was initially investigated. The resolution in the dose calculations

at the transmitted level was then evaluated for rectilinear and curved homogeneous phan-

toms and rectilinear inhomogeneous phantoms, followed by studies combining both sur-

face curvature and heterogeneities using anthropomorphic phantoms. In order to perform

transmitted dose calculations at clinically relevant beam focus-to-transmitted dose plane

distances using clinical patient CT data it was first necessary to extend the CT volume.

Finally, the thesis explored the efficacy of applying transmission dosimetry in the clinic by

simulating realistic dosimetry errors in the planning system using patient treatment plans

for a prostate, head and neck, and breast CRT (Conformal Radiotherapy) treatment. Any

differences at the transmitted dose level were interpreted and quantified using the gamma

formalism. To determine whether the transmitted dose alone was a sufficient indicator

xxiii



of the dosimetry errors, the magnitude in transmission dose differences were compared

with those predicted at the midplane of the patient. Dose-Volume Histograms (DVHs)

were also used to evaluate the clinical significance of the dose delivery errors on the target

volume and surrounding healthy tissue structures.
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