EVALUATING SITES FOR SUBSURFACE CO₂ INJECTION/SEQUESTRATION: TANGGUH, BINTUNI BASIN, PAPUA, INDONESIA

(VOLUME 2: Figures and Appendices)

Jonathan P. Salo

Supervisors: Dr. Simon C. Lang Dr. John G. Kaldi

Australian School of Petroleum University of Adelaide South Australia S.A. 5005

May 2005

TITLE PAGE
ACKNOWLEDGMENTSi
ABSTRACTiii
TABLE OF CONTENTS vi
PART I – INTRODUCTION1
1. INTRODUCTION
1.0 Rationale and Aim
1.1 Background on Global Warming2
1.2 Greenhouse Effect4
1.3 Greenhouse Gases
1.4 Carbon Dioxide11
1.5 Complete Carbon Cycle13
1.6 Anthropogenic CO ₂ 16
1.7 Non-geological CO ₂ Disposal Options16
2. PROJECT AREA BACKGROUND20
2.1 Location
2.2 Concession history and current status
3. EVALUATION OF GEOLOGICAL SEQUESTRATION OPTIONS27
3.1 CUCS (CO ₂ in unmineable coal-bed sequestration)28
3.2 CECMP (CO ₂ for enhanced coal-bed methane production) 29
3.3 CDOGR (CO ₂ in depleted oil/gas reservoirs)
3.4 CCV (CO ₂ in cavity or void)
3.4.1 Salt domes, mines, and tunnels
3.4.2 New Guinea Limestone Group member (NGLG) 31
3.4.2.1 Eocene carbonates
3.4.2.2 Oligocene Limestone Formation32
3.4.2.3 Faumai Formation
3.4.2.4 Kais Limestone Formation32
3.4.2.5 Nonsuitability of the NGLG for CO ₂ 33
3.4.2.6 Nonsuitability of CDOGR for CO ₂ 34
3.4.2.6.1 Insufficient Storage Capacity 34
3.4.2.6.2 Supercritical Phase Instability35
3.4.2.6.3 Unsuitable Mineralogy36

		3.4.2.6.4 Karstification37
		3.4.2.6.5 Salawati Basin Distance37
3.5 CEOR (CO ₂ 1	for enhance	d oil recovery)
3.6 CEGR (CO ₂ 1	for enhance	d gas recovery)
3.7 CSA (CO ₂ in	saline aqui	fer)
3.7.1	CSA in n	on-hydrocarbon bearing structural traps39
3.7.2	CSA in h	ydrocarbon bearing structural traps40
4. REGIONAL TECTO	NIC AND	STRUCTURAL HISTORY 41
4.1 Paleozoic		41
4.2 Mesozoic		
4.3 Cenozoic		
5. LITHOSTRATIGRA	PHY AND	SEDIMENTOLOGY55
5.1 Lithostratigra	phic Overv	iew Of The Bird's Head55
5.2 Database Sun	nmary	
5.3 Lithostratigra	phy And So	edimentology Summary60
5.3.1	Permian.	
5.3.2	Triassic	64
5.3.3	Early Jura	assic64
5.3.4	Middle Ju	ırassic64
	5.3.4.i.1	Aalenian Sandstone
	5.3.4.i.2	Roabiba Sandstone
5.3.5	Late Juras	ssic 69
	5.3.5.i.1	Pre-Ayot Clastics Succession
	5.3.5.i.2	Pre-Ayot Shale69
	5.3.5.i.3	Ayot Limestone Formation71
	5.3.5.i.4	Upper Late Jurassic Shales72
	5.3.5.i.5	Glauconitic Unconformity73
5.3.6	Late Creta	aceous
5.3.7	Late Pale	ocene Succession76
	5.3.7.i.1	Sand-Prone 'Lower Member' Interval78
	5.3.7.i.2	Sand-Prone 'Middle Member' Interval80
	5.3.7.i.3	Sand-Prone 'Upper Member' Interval83
	5.3.7.i.4	Mud-Prone Interval84
5.3.8	Eocene S	uccession86

	5.3.9	New Guin	ea Limestone Group (NGLG)	87
		5.3.9.i.1	Oligocene Limestone Formation	87
		5.3.9.i.2	Faumai Formation	88
		5.3.9.i.3	Kais Limestone Formation	90
	5.3.10	Steenkool	Formation	91
PART	TII – INJECTIVITY.			93
6.	STRATIGRAPHY			94
	6.1 Stratigraphic I	Methodolog	27	. 94
	6.1.1	Seismic S	tratigraphy	96
	6.1.2	Palynolog	ical Biozonation	100
	6.1.3	Wireline I	og Motifs and Stratigraphic Correlations	s101
	6.2 Paleogeograph	nic Facies M	Maps for Tangguh Sequence Stratigraphy	104
	6.3 Detailed Sequ	ence Strati	graphy Framework for Tangguh	107
	6.3.1	Late Perm	ian	116
	6.3.2	Triassic a	nd Early Jurassic	117
	6.3.3	Aalenian	MJ-4 (Middle Jurassic)	. 120
	6.3.4	Bajocian/I	Early Bathonian MJ-3 (Middle Jurassic).	123
	6.3.5	Late Bath	onian MJ-2 (Middle Jurassic)	. 131
	6.3.6	Callovian	MJ-1/LJ-11 (Middle-Late Jurassic)	132
	6.3.7	Ayot Lime	estone Formation LJ-9 (Late Jurassic)	140
	6.3.8	Upper Lat	e Jurassic LJ-8 to LJ-2 (Late Jurassic)	142
	6.3.9	Late Creta	ceous	143
	6.3.10	Cenozoic	Succession	145
	6.4 Limitations an	d Alternati	ves	146
	6.5 Re-interpretat	ion of the H	Bird's Head Tectonic/Structural History	147
7.	RESERVOIR CHAR	ACTERIZA	ATION	153
	7.1 Whole Cores,	Core Plug	Analyses, and DST Data	153
	7.2 Reservoir Qua	lity		156
	7.2.1	Late Perm	ian Reservoir Quality	156
	7.2.2	Aalenian	Sandstone Formation Reservoir Quality	163
	7.2.3	Callovian	and Bathonian/Bajocian Roabiba Sandsto	one
		Formation	Reservoir Quality	. 165
	7.2.4	Ayot Lim	estone Formation Reservoir Quality	170

7.2.5	Late Cretaceous Reservoir Quality	171
7.2.6	Late Paleocene Reservoir Quality	172
7.2.7	NGLG Reservoir Quality	174

PART III – CONTAINMENT	176
8. ESSCI STRATA EVALUATION	177
8.1 Late Permian Reservoir ESSCI Potential	179
8.2 Middle Jurassic Reservoir ESSCI Potential	
8.3 Late Cretaceous Reservoir ESSCI Potential	
8.4 Late Paleocene Sand-Prone Interval ESSCI Potential	
8.5 New Guinea Limestone Group Reservoir ESSCI Potential	188
8.6 ESSCI Stratum Rating and Ranking	190
9. ESSCI STRUCTURE EVALUATION	193
9.1 Vorwata Structure ESSCI Potential	194
9.2 Wiriagar Deep Structure ESSCI Potential	196
9.3 Ubadari Structure ESSCI Potential	198
9.4 Roabiba Structure ESSCI Potential	199
9.5 Ofaweri Structure ESSCI Potential	200
9.6 Wos Deep Structure ESSCI Potential	
9.7 Kalitami Structure ESSCI Potential	201
9.8 Saritu Deep Structure ESSCI Potential	202
9.9 Ranking Structural Trap ESSCI Potentials	203
10. ESSCI SEAL EVALUATION	205
10.10verview of Reservoir/Seal Couplets and Seal Potential	205
10.2 Mercury Injection Capillary Pressure Methodology	207
10.3 Roabiba Reservoir Top and Lateral Seals	216
10.4 Roabiba Reservoir Regional Seals	224
10.5 Limitations	228
10.6 Discussions Regarding Seal Capacity, Geometry, and Integr	ity231
10.7 Seal Potential Conclusions	246
10.8 ESSCI Seal Evaluation	249
11. CO2 STORAGE CAPACITY ANALYSIS AND WEIGHTED DISTA	ANCE
FACTORING	252
11.1 ESSCI CO ₂ Storage Capacity Analysis And Evaluation	252

11.2 Integrating ESSCI CO ₂ Storage Capacity Analysis with Reservoir,
Structure, and Seal Potential ESSCI Evaluations253
11.3 Distance/Economics Factor Weighted Rating and Ranking257
12. CO ₂ INJECTION FAULT RE-ACTIVATION RISK EVALUATION260
PART IV – CO2 INJECTION-SITE RECOMMENDATION AND GEOLOGIC
MODEL VERIFICATION
13. CO ₂ INJECTION SITE LOCATION RECOMMENDATIONS
14. TANGGUH GEO-CELLULAR MODEL
14.1 The Geological Test Model
14.2 The Preliminary Geological Model
14.3 The Final 3D Geologic Model279
14.4 The Modeling Strategy
14.4.1 Zones Versus Layers in the Geological Model
14.4.2 Limitations on Volume of Active Cells in the Geological
Model
i. Incorporation of Faults into the Final Tangguh 3D Geologic
Model
ii. Attributes and Variograms in the Geological Model287
14.5. Results of the Final 3D Geologic Model
14.6. Preliminary Reservoir Simulation Results
14.7. Conclusions

PART V – IMPLICATIONS FOR IMPLEMENTATION	294
15. DRILLING AND DATA RECOMMENDATIONS FOR EXPLORATION	DN
AND INJECTION WELLS	295
15.1. Recommendations on Future Tangguh Well Data Acquisitions	295
15.1.1. Steenkool/Sele Formations	296
15.1.2. Kais/Faumai Formations (NGLG)	297
15.1.3. Eocene/Paleocene Formations	299
15.1.4. Late Cretaceous Interval	301
15.1.5. Jurassic Sequences	302
15.1.6. Triassic/Permian Sequences	303
15.1.7. Final Remarks on Data Acquisition	304

15	5.1.8. Co	nclusions	305
16. EVALUATIO	ON OF S	SUBSURFACE CO2 MONITORING	306
16.1. Surfac	ce Meas	urements	306
16.2. Smart	Well C	ompletions	307
16.3. Seism	ic		308
16.4. Time-	Lapse 3	D ('4D') Seismic Surveys	308
16.5. Down	hole Sei	smic	309
16	8.5.1.	VSP	309
16	8.5.2.	Cross-well Seismic Tomography	310
16	6.5.3.	Single-well Sonic Logging	310
16	6.5.4.	Microseismic Imaging	311
16.6. Electr	omagne	tic Methods	312
16.7. Surfac	ce Electi	romagnetic Measurements	312
16.8. Cross	-well El	ectromagnetic Methods	313
16.9. Down	hole to	Surface Electromagnetic Methods	313
16.10. ERT	Г (Electr	ical Resistance Tomography)	313
16.11. Gra	vity		314
16.12. Trac	cers		314
16.13. Lim	itations	and Advantages	315
16.14. Sub	surface	CO ₂ Monitoring Conclusions and	
Rec	ommend	lations	315
PART VI – CONCI	LUSION	IS, POSTSCRIPT, AND REFERENCES	320
17. Conclusions.			321
18. Postscript			335
19. References			340

VOLUME 2 (FIGURES and APPENDICES)

PART VII – FIGURES1	
PART VIII – APPENDICES	191
Appendix 1 :DST-PTA Summary	191
Appendix 2: Petrophysical Summary	205
Appendix 3: Porosity and Permeability Summary (V-10)	229
Appendix 4: Core Plug/Chip Atlas	238

LIST OF TABLES

Table 1.1: Current averaged atmospheric gas composition	8
Table 5.1: Bintuni Basin gross intervals and formation/member	59
Table 6.1: Core and cuttings depth shifts at each well	95
Table 6.2a:Sequence stratigraphy zone/boundary depths at Tangguh	97
Table 6.2b:Sequence stratigraphy zone/boundary depths at Tangguh (cont.)	98
Table 6.3: Isopach thickness for zones/members	99
Table 6.4: Palynological zonation scheme used by Core Laboratories	103
Table 6.5: Palynological/Ichnological/Sedimentological/Log Motif charts 108	-113
Table 7.1: List of all intervals cored and examined in Tangguh area	157
Table 7.2: Master list of new plug analyses (2002-2003)	158
Table 7.3: Core and cuttings depth shift for all wells	159
Table 7.4: Reservoir depth table	160
Table 7.5: New core plug porosity and permeability results	169
Table 7.6: Paleocene core plug porosity and permeability result summary	173
Table 8.1: Data confidence factor matrix for probabilistic HC exploration	178
Table 8.2: Data confidence factor matrix for ESSCI stratum at Tangguh	183
Table 8.3: Table of data confidence factor rating for ESSCI stratum	192
Table 9.1: Data confidence factor matrix for ESSCI structures at Tangguh	197
Table 9.2: Table of data confidence factor rating for ESSCI structures	204
Table 10 1: Core plug/chip MICP analyses results	208
Table 10.2:Example of GEODISC geochemical calculator	212
Table 10.3: CO ₂ column height calculator	212
Table 10.4: Measured salinities for major reservoirs	213
Table 10.5: Temperatures and pressures at datum for major reservoirs	215
Table 10 6a: Sensitivities to varied threshold pressures	218
Table 10 6b: Sensitivities to varied contact angles	210
Table 10 6c: Sensitivities to varied interfacial tension	220
Table 10.7: Comparison of seal capacities and column heights for various seals	226
Table 10.7: Comparison of sear capacities and cordinin neights for various sears Table 10.8: Bulk XRD analyses on core plug/chin seal samples	220
Table 10.9a: Petrographic analysis for V-1 and V-2 core plugs	235
Table 10.9h: Petrographic analysis for V-2 and V-2 core plugs	235
Table 10.90. Petrographic analysis for V_{-1} and V_{-7} core plugs	230
Table 10.9d: Petrographic analysis for V-10 core plugs (cont.)	237
Table 10.9d. Tetrographic analysis for V-10 core plugs (cont.)	230
Table 10.10: Summary of seal capacity, geometry integrity, and potential	237
Table 10.10: Summary of sear capacity, geometry, integrity, and potential Table 10.11: Data confidence factor matrix for ESSCI seals at Tanggub	2 4 0 251
Table 10.11. Data confidence factor matrix for ESSCI scals at Tanggun Table 11.1: Calculator for CO ₂ storage volume in Tangguh structures	251
Table 11.2: Deting Product for ESSCI renkings	254
Table 11.2. Rating Flouret for ESSCI faikings	255
Table 12.1: List of Tanggub area look off tosts/formation integrity tosts	259
Table 12.1. List of Tangguh area wells with EMI/EMS herehole image loss	201
Table 12.2. Table of Tanggun area wens with FMI/FMIS borehole image logs	202
Table 14.1. Zonation and layering scheme for final Tangguh geological model	210
Table 14.2. Zonation and layering scheme for final ranggun geologic model Table 14.2. Numerical facing addes used in the attribute 'Simple Facing Line'	204
Table 14.5. Numerical facies codes used in the authorite. SimpleFacies_Use	200 200
Table 14.4: Variogram models and numerical codes for paleodepositional facte	8290
rable 14.5. variogram models, structures, and parameters for stochastically	200
Table 14 & The search allings representers for role densities of factors	290 201
1 able 14.0: The search ellipse parameters for paleodepositional facies	291

LIST OF FIGURES Volum	ne 2
Fig. 1.1: Changes in atmospheric CO ₂ composition plotted from ice core	2
Fig. 1.2: Change in CO_2 concentrations over a millennium	3
Fig. 1.3: Change in CO_2 concentrations and temperature over a millennium	3
Fig. 1.4: Change in CO ₂ concentrations and temperature over 400,000 yrs	4
Fig. 1.5: Change in GHG over a millennium	5
Fig. 1.6: Projected thermal expansion of sea level	6
Fig. 1.7: Projected sea level from thermal expansion and land-ice melt volume	6
Fig. 1.8: Projected SE coastal USA inundation from sea level rise	7
Fig. 1.9: Projected loss of polar ice caps (N. Pole)	8
Fig. 1.10: Map of global oceanic thermohaline circulation system	9
Fig. 1.11: CO ₂ PVT phase diagram	10
Fig. 1.12: LANDSAT image of Cameroon volcanic fields	11
Fig. 1.13: Aerial photograph of Lake Nyos and crater rim after CO ₂ bubble	11
Fig. 1.14: Temperature change relationship to GHG concentrations	12
Fig. 1.15: Schematic of the Complete Carbon Cycle (CCC)	13
Fig. 1.16: Schematic of the Bio-Geological Carbon Cycle	13
Fig. 2.1: Indonesia location map	14
Fig. 2.2: Map of Bird's Head PSC boundaries and gas/oil fields	15
Fig. 2.3: Map of Tangguh development area with gas fields	16
Fig. 3.1: ESSCI CO ₂ cross-sectional geological options schematic	17
Fig. 3.2: Bintuni Basin lithostratigraphic column	18

Fig. 3.3: Location map of production fields in Bintuni and Salawati Basins

Fig. 3.5: Map of 'kitchen area' for source rock hydrocarbon generation

Fig. 4.1: Papua, Indonesia and Bird's Head area location map

Fig. 4.3: Paleotectonic map Middle Oligocene

Fig. 4.4: Paleotectonic map Late Oligocene

Fig. 4.5: Paleotectonic map Early Miocene

Fig. 4.8: Paleotectonic map Pliocene

Fig. 5.2: Examining the cores

Fig. 4.6: Paleotectonic map Middle Miocene

Fig. 4.2: Paleotectonic map Cretaceous/Tertiary (K/T Boundary)

Fig. 4.7: Paleotectonic map Late Miocene of Banda Arc collision

Fig. 4.11: Thermal maturity history plot for Bintuni Basin source rocks

Fig. 4.9: Foreland and Piggyback basin formations map

Fig. 4.10: Kitchen area map of Bintuni and Berau basins

Fig. 5.1: Early stratigraphic column for Bintuni Basin

Fig. 5.3: Fluvio-lacustrine Late Permian shale in core

Fig. 3.4: Map of shallow oil fields, seeps, and deep exploration wells in 1993

- LIST OF TABLES (Appendices) Volume 2
- Table 16.1:Limitations/Advantages of CO₂ monitoring techniques/methods

Appendix 3: Core Plug Porosity and Permeability Table 1998 (V-10 well)

Appendix 1: DST-PTA Summary Tables

Appendix 2: Petrophysical Summary Tables

Fig.	5.4:	Late Permian marine sandstone in core (WD-3)	34
Fig.	5.5:	Near-top Late Permian sandstone in core (WD-3)	35
Fig.	5.6:	Late Permian sandstone in core (V-1)	36
Fig.	5.7:	Late Permian/Middle Jurassic unconformity in core (WD-3)	37
Fig.	5.8:	Aalenian Sandstone Formation and overlying MJ-4 shale (WD-3)	38
Fig.	5.9:	Aalenian Sandstone Formation in core (WD-3)	39
Fig.	5.10:	Various depositional facies Aalenian Sandstone Formation (WD-3)	40
Fig.	5.11:	Roabiba Sandstone Formation in core (WD-2)	41
Fig.	5.12:	Roabiba Sandstone Formation in core (WD-7)	42
Fig.	5.13:	Sedimentological features Roabiba Sandstone Formation core (WD-3)	43
Fig.	5.14:	Sedimentological features Roabiba Sandstone Formation core (V-2)	44
Fig.	5.15:	Helminthopsis or Helminthoida ichnological fabric (V-2)	45
Fig.	5.16:	Callovian (LJ-11) marine shale in core (V-10)	46
Fig.	5.17:	Ayot Limestone Formation in core (WD-3)	47
Fig.	5.18:	Ayot belemnite death assemblage in core (WD-3)	48
Fig.	5.19:	Upper Late Jurassic altered volcanic tuff (WD-3)	49
Fig.	5.20:	Base Late Cretaceous/Top Late Jurassic unconformity (WD-3)	50
Fig.	5.21:	Near-Base Late Cretaceous carbonate (WD-3)	51
Fig.	5.22:	Late Paleocene Sand-Prone Interval Middle Member in core (WD-2)	52
Fig.	5.23:	Late Paleocene Sand-Prone Interval Middle Member in core (WD-2)	53
Fig.	5.24:	Late Paleocene Mud-Prone Interval (WD-3)	54
Fig.	5.25:	Oligocene Limestone Formation outcrop photograph (E. Onin-1)	55
Fig.	5.26:	Near-top Faumai Formation coherency image 1632 ms TWT	56
Fig.	5.27:	Faumai Formation coherency image 1660 ms TWT	57
Fig.	5.28:	Faumai Formation coherency image 1892 ms TWT	58
Fig.	5.29:	Kais Limestone Formation coherency image 1200 ms TWT	59
Fig.	5.30:	Kais Limestone Formation coherency image 1320 ms TWT	60
Fig.	5.31:	Kais Limestone Formation coherency image 1340 ms TWT	61
Fig.	5.32:	LANDSAT image of Berau bay and Bintuni Bay	62
Fig.	5.33:	Aerial photograph of the Wiriagar River and Wiriagar Swamp	63
Fig	6.1:	Stratigraphic geological cross-section $A - A'$	64
Fig	6.2:	Stratigraphic geological cross-section $\mathbf{B} - \mathbf{B}'$	65
Fig.	6.3:	Stratigraphic geological cross-section $C - C'$	66
Fig.	6.5	Stratigraphic geological cross-section $D - D'$	67
Fig.	6 5·	Stratigraphic geological cross-section $\mathbf{E} = \mathbf{E}'$	68
Fig.	6.6 [.]	Extensional Mesozoic rifting along Australian NW Shelf margin	69
Fig.	6.0.	Bintuni Basin Mesozoic stratigraphic column	70
Fig.	6.7. 6.8 [.]	A20 Aalenian isopach man	71
Fig.	6 9·	Early A20 paleogeographic facies map	72
Fig.	6 10·	Late A 20 paleogeographic facies map	73
Fig.	6 11.	Baiocian/Bathonian gross isonach man	74
Fig.	6 1 2 ·	R10 isonach man	75
Fig.	6 13.	R10 paleogeographic facies man	76
Fig.	6 14·	R10 parcogeographic factos map R20 isonach man	70
Fig.	6 15	R20 naleogeographic facies man	78
Fig.	6 16	R20 jsopach man	70
Fig.	6 17.	R30 naleogeographic facies man	,) 80
Fig.	6 1 8.	R40 isopach man	<u>81</u>
Fig.	6 10.	R40 naleogeographic facies man	87
Fig.	6 20.	R50 isopach man	83
- 1 <u>5</u> .	0.20.		00

Fig. 6.21: Early R50 paleogeographic facies map	84
Fig. 6.22: Late R50 paleogeographic facies map	85
Fig. 6.23: R60 isopach map	86
Fig. 6.24: R60 paleogeographic facies map	87
Fig. 6.25: R70 isopach map	88
Fig. 6.26: R70 paleogeographic facies map	89
Fig. 6.27: R80 isopach map	90
Fig. 6.28: R80 paleogeographic facies map	91
Fig. 6.29: Base Pre-Ayot (MFS) GR correlation	92
Fig. 6.30: Callovian Roabiba gross isopach map	93
Fig. 6.31: CU10 isopach map	94
Fig. 6.32: CU10 paleogeographic facies map	95
Fig. 6.33: CU20 isopach map	96
Fig. 6.34: CU20 paleogeographic facies map	97
Fig. 6.35: CU30 isopach map	98
Fig. 6.36: CU30 paleogeographic facies map	99
Fig. 6.37: CU40 isopach map	100
Fig. 6.38: CU40 paleogeographic facies map	101
Fig. 6.39: CU50 isopach map	102
Fig. 6.40: CU50 paleogeographic facies map	103
Fig. 6.41: Pre-Ayot Formation gross isopach map	104
Fig. 6.42: PA10 isopach map	105
Fig. 6.43: PA10 paleogeographic facies map	106
Fig. 6.44: PA20 isopach map	107
Fig. 6.45: PA20 paleogeographic facies map	108
Fig. 6.46: PA30 isopach map (version 1)	109
Fig. 6.47: PA30 paleogeographic facies map	110
Fig. 6.48: PA30 isopach map (version 2)	111
Fig. 6.49: PA60/Avot Limestone Formation isopach map	112
Fig. 6.50: PA60/Ayot Limestone Formation paleogeographic facies map	113
Fig. 6.51: BHMC paleotectonic migration map	114
Fig. 7.1: Wiriagar Deep/Ubadari cross-section with core & DST intervals	115
Fig. 7.2: Vorwata cross-section with core & DST intervals	116
Fig. 7.3: Permian well correlation cross-section V area	117
Fig. 7.4: Late Permian porosity vs. permeability cross-plot	118
Fig. 7.5: Aalenian well correlation cross-section WD-V area	119
Fig. 7.6: Aalenian Top Depth Structure Map	120
Fig. 7.7: Aalenian effective porosity map	121
Fig. 7.8: Aalenian porosity vs. permeability cross-plot	122
Fig. 7.9: Aalenian & Roabiba well correlation cross-section WD-V area	123
Fig. 7.10: Tangguh area seismic line W-E, surface to Base Cretaceous	124
Fig. 7.11: Cross-sectional schematic with simultaneous onlap & truncation	125
Fig. 7.12: Roabiba well correlation cross-section V area	126
Fig. 7.13: Bajocian/Bathonian/Callovian Roabiba Top Depth Structure Map	127
Fig. 7.14: Callovian Roabiba effective porosity map	128
Fig. 7.15: Bajocian/Bathonian Roabiba effective porosity map	129
Fig. 7.16: Roabiba porosity vs. permeability cross-plot	130
Fig. 7.17: Tangguh area Jurassic pressure gradients vs. depth graph	131
Fig. 7.18: Roabiba V-10 core porosity vs. permeability cross-plot	132
Fig. 7.19: Roabiba V-10 log and core porosity vs. permeability cross-plot	133

Fig. 7.20: Ayot porosity vs. permeability cross-plot	134
Fig. 7.21: Late Cretaceous Top Depth Structure Map	135
Fig. 7.22: Late Cretaceous porosity vs. permeability cross-plot	136
Fig. 7.23: Late Paleocene Middle Member porosity vs. permeability cross-plot	137
Fig. 7.24: Late Paleocene well correlation cross-section WD-V area	138
Fig. 7.25: Late Paleocene Sand-Prone well correlation cross-section WD area	139
Fig. 7.26: Kais Limestone Formation (NGLG) Top Depth Structure Map	140
Fig. 8.1: Kais-Faumai salinity difference map	141
Fig. 9.1: Distance to structures from LNG plant map	142
Fig. 10.1: Stratigraphic cross-section of regional seals	143
Fig. 10.2: Geological schematic of regional seals	144
Fig. 10.3: CO ₂ Column Height sensitivities due to varied contact angle	145
Fig. 10.4: CO ₂ Column Height sensitivities due to varied interfacial tension	146
Fig. 10.5: Map of areal extent for Roabiba top seals in the Tangguh area	147
Fig. 10.6: Photograph of severely altered core sample due to storage conditions	148
Fig. 10.7: Photograph of regional seals in slabbed cores	149
Fig. 10.8: Calculated seal capacity from wireline log analysis	150
Fig. 11.1: Relative storage capacity diagram	151
Fig. 11.2: Geologic cross-sectional schematic of proposed injection plan	152
Fig. 11.3: Graph of distance to proposed injection sites	153
Fig. 12.1: Leak-Off Test (LOT) gradient contour map	154
Fig. 12.2: Nafe-Drake Plot	155
Fig. 12.3: Vorwata vertical stress profile with depth	156
Fig. 12.4: Wiriagar Deep vertical stress profile with depth	157
Fig. 12.5: Tangguh area vertical stress contour map	158
Fig. 12.6: Formation pore pressure distribution with depth	159
Fig. 12.7: Rose diagram and depth vs. directional orientation graph	160
Fig. 12.8: Mohr diagram and planes-to-poles diagram	161
Fig. 12.9: Map of the in-situ horizontal stress orientations	162
Fig. 12.10:Fault risk of re-activation map for Tangguh area	163
Fig. 12.11:Fault risk of re-activation depth-slice map at ~14,000 ft TVDss	164
Fig. 13.1: Map of recommended surface injection site locations	165
Fig. 13.2: Subsurface location map of recommended Vorwata injection sites	166
Fig. 13.3: Map of subsurface CO ₂ reservoir volume at Vorwata	167
Fig. 13.4: Map of subsurface CO ₂ reservoir total volume at Vorwata	168
Fig. 14.1: Map of test model area	169
Fig. 14.2: Test model populating geo-cells with sonic values	170
Fig. 14.3: Base Late Cretaceous surface	171
Fig. 14.4: Tangguh coarse grid model with wells/base Late Cretaceous	172
Fig. 14.5: 2D mesh draped on base Late Cretaceous surface	173
Fig. 14.6: Fence display through wells and surfaces from model	174
Fig. 14.7: Wireline log display through surfaces at wells	175
Fig. 14.8: Bounding surfaces menu	176
Fig. 14.9: Work flow diagram	177
Fig. 14.10: Scheme and codes for facies polygons within the model	178
Fig. 14.11: Example of digitized paleogeographic map facies polygons	179
Fig. 14.12: Facies polygons displayed in GEOCARD as an attribute	180
Fig. 14.13: Example of paleogeographic map and facies attribute in model	181
Fig. 14.14: Fault compartment polygons	182
Fig. 14.15: Fault compartment polygons as an attribute	183

Fig. 14.16: Fault compartment boundaries for transmissibility multipliers	184
Fig. 14.17: Reservoir simulator screen capture of grids, zones, and attributes	185
Fig. 14.18: Reservoir simulator screen capture at Year 0 from injection	186
Fig. 14.19: Reservoir simulator screen capture at Year 5 from injection	187
Fig. 14.20: Reservoir simulator screen capture at Year 20 from injection	188
Fig. 14.21: Reservoir simulator screen capture at Year 25 from injection	189
Fig. 18.1: Vorwata Mesozoic core palynology/biostratigraphy chart	190

LIST OF FIGURES (Appendix 4)

Volume 2

Fig. 1: Core Plug/Chip Atlas Guide	239
Fig. 2: Core Plug/Chip Atlas: WD-2, 7377' 11"	240-241
Fig. 3: Core Plug/Chip Atlas: WD-2, 7380' 0"	242-243
Fig. 4: Core Plug/Chip Atlas: WD-2, 8681' 3"	244-245
Fig. 5: Core Plug/Chip Atlas: WD-2, 8753' 2"	246
Fig. 6: Core Plug/Chip Atlas: WD-3, 7548' 9"	247-248
Fig. 7: Core Plug/Chip Atlas: WD-3, 7549' 2"	249-250
Fig. 8: Core Plug/Chip Atlas: WD-3, 7552' 7"	251-252
Fig. 9: Core Plug/Chip Atlas: WD-3, 7558' 8"	253-254
Fig. 10: Core Plug/Chip Atlas: WD-3, 7956' 3"	255
Fig. 11: Core Plug/Chip Atlas: WD-3, 9238' 0"	256-257
Fig. 12: Core Plug/Chip Atlas: WD-3, 9272' 1"	258-259
Fig. 13: Core Plug/Chip Atlas: WD-3, 9274' 1"	260-261
Fig. 14: Core Plug/Chip Atlas: WD-3, 9286' 2"	262-263
Fig. 15: Core Plug/Chip Atlas: WD-3, 9309' 8"	264-265
Fig. 16: Core Plug/Chip Atlas: WD-3, 9325' 0"	266-267
Fig. 17: Core Plug/Chip Atlas: WD-3, 9328' 4"	268-269
Fig. 18: Core Plug/Chip Atlas: WD-3, 9344' 1"	270-271
Fig. 19: Core Plug/Chip Atlas: WD-3, 9364' 9"	272-273
Fig. 20: Core Plug/Chip Atlas: WD-5, 9509' 0"	274
Fig. 21: Core Plug/Chip Atlas: WD-5, 9509' 5"	275-276
Fig. 22: Core Plug/Chip Atlas: WD-7, 7962' 6"	277-278
Fig. 23: Core Plug/Chip Atlas: WD-7, 7981' 6"	279-280
Fig. 24: Core Plug/Chip Atlas: WD-7, 8452' 5"	281-282
Fig. 25: Core Plug/Chip Atlas: WD-7, 8471' 1"	283-284
Fig. 26: Core Plug/Chip Atlas: WD-7, 8497' 9"	285-286
Fig. 27: Core Plug/Chip Atlas: WD-7, 8524' 7"	287
Fig. 28: Core Plug/Chip Atlas: V-1, 11765' 9"	288
Fig. 29: Core Plug/Chip Atlas: V-1, 11787' 7"	289
Fig. 30: Core Plug/Chip Atlas: V-1, 11790' 9"	290 - 291
Fig. 31: Core Plug/Chip Atlas: V-1, 11797' 7"	292
Fig. 32: Core Plug/Chip Atlas: V-1, 11902' 3"	293-294
Fig. 33: Core Plug/Chip Atlas: V-1, 11904' 3"	295-297
Fig. 34: Core Plug/Chip Atlas: V-1, 11909' 7"	298
Fig. 35: Core Plug/Chip Atlas: V-1, 11914' 6"	299
Fig. 36: Core Plug/Chip Atlas: V-2, 12582' 7"	300-301
Fig. 37: Core Plug/Chip Atlas: V-2, 12584' 8"	302-303
Fig. 38: Core Plug/Chip Atlas: V-2, 12585' 8"	304-305
Fig. 39: Core Plug/Chip Atlas: V-2, 12594' 4"	306-307

Fig. 40: Core Plug/Chip Atlas: V-2,	12600' 3"	308-309
Fig. 41: Core Plug/Chip Atlas: V-2,	12757' 6"	310-311
Fig. 42: Core Plug/Chip Atlas: V-2,	12865' 7"	312-313
Fig. 43: Core Plug/Chip Atlas: V-2,	12901' 5"	314-315
Fig. 44: Core Plug/Chip Atlas: V-2,	13020' 6"	316-318
Fig. 45: Core Plug/Chip Atlas: V-2,	13025' 6"	319-321
Fig. 46: Core Plug/Chip Atlas: V-2,	13030' 1"	322-324
Fig. 47: Core Plug/Chip Atlas: V-7,	13118' 3"	325-326
Fig. 48: Core Plug/Chip Atlas: V-7,	13123' 8"	327
Fig. 49: Core Plug/Chip Atlas: V-7,	13136' 10"	328-329
Fig. 50: Core Plug/Chip Atlas: V-7,	13143' 6"	330
Fig. 51: Core Plug/Chip Atlas: V-7,	13152' 5"	331-333
Fig. 52: Core Plug/Chip Atlas: V-10,	3944.43 m	334-336
Fig. 53: Core Plug/Chip Atlas: V-10,	3947.64 m	337-339
Fig. 54: Core Plug/Chip Atlas: V-10,	3954.46 m	340-342
Fig. 55: Core Plug/Chip Atlas: V-10,	3965.57 m	343-345
Fig. 56: Core Plug/Chip Atlas: V-10.	3966.82 m	346-348
Fig. 57: Core Plug/Chip Atlas: V-10.	3967.10 m	349-351
Fig 58: Core Plug/Chip Atlas: V-10.	4021.25 m	352-353
Fig. 59: Core Plug/Chip Atlas: V-10.	4021.86 m	354
Fig. 60: Core Plug/Chip Atlas: V-10.	4022.20 m	355
Fig 61: Core Plug/Chip Atlas: V-10,	4025 08 m	356
Fig. 62: Core Plug/Chip Atlas: V-10	4025 80 m	357
Fig. 63: Core Plug/Chip Atlas: V-10,	4025 98 m	358
Fig. 64: Core Plug/Chip Atlas: V-10,	4026.18 m	359-361
Fig. 65: Core Plug/Chip Atlas: V-10	4028 15 m	362
Fig. 66: Core Plug/Chip Atlas: V-10,	4029 58 m	363
Fig. 67: Core Plug/Chip Atlas: V-10,	4029 70 m	364
Fig. 68: Core Plug/Chip Atlas: V-10,	4031 55 m	365-366
Fig. 69: Core Plug/Chip Atlas: V-10,	4034 51 m	367-369
Fig. 70: Core Plug/Chip Atlas: V-10,	4035 40 m	370
Fig. 71: Core Plug/Chip Atlas: V-10,	4036 23 m	371
Fig. 72: Core Plug/Chip Atlas: V-10,	4030.25 m	372_373
Fig. 72: Core Plug/Chip Atlas: V-10,	4040 20 m	372-375
Fig. 74: Core Plug/Chip Atlas: V-10,	4042.62 m	376 377
Fig. 75: Core Plug/Chip Atlas: V-10,	4044 81 m	378-379
Fig. 76: Core Plug/Chip Atlas: V-10,	4045.02 m	380-381
Fig. 77: Core Plug/Chip Atlas: V-10,	4049.72 m	387-383
Fig. 78: Core Plug/Chip Atlas: V-10,	4049.40 m 4052 13 m	384 385
Fig. 70: Core Plug/Chip Atlas: V-10,	4052.15 m	206 207
Fig. 80: Core Plug/Chip Atlas: V-10,	4056 02 m	200-207
Fig. 81: Core Plug/Chip Atlas: V-10,	4050.02 m	380
Fig. 82: Core Plug/Chip Atlas: V-10,	4057.52 m	200
Fig. 82. Core Plug/Chip Atlas. V-10,	4050.56 m	201
Fig. 85. Core Flug/Chip Atlas. V-10,	4059.20 III 4060.00 m	202
Fig. 64: Core Plug/Chip Atlas: V-10,	4000.90 III 4063 45 m	392 202
Fig. 65: Core Plug/Chip Atlas: V-10,	4003.43 III 4067.60 m	393 204
Fig. 87: Core Plug/Chip Atlas: V-10,	4007.00 III 4068.50 m	394 205
Fig. 87: Core Flug/Chip Atlas: V-10,	4008.30 III 4076.20 m	206 207
Fig. 88: Core Plug/Chip Atlas: V-10,	40/0.30 m	396-39/
Fig. 89: Core Plug/Chip Atlas: V-10,	4081.32 m	398-399

Fig. 90: Core Plug/Chip Atlas: V-10, 4082.85 m	400-401
Fig. 91: Core Plug/Chip Atlas: V-10, 4090.85 m	402-403
Fig. 92: Core Plug/Chip Atlas: V-10, 4093.80 m	404-405
Fig. 93: Core Plug/Chip Atlas: V-10, 4095.50 m	406
Fig. 94: Core Plug/Chip Atlas: V-10, 4101.30 m	407-408
Fig. 95: Core Plug/Chip Atlas: V-10, 4117.70 m	409-410
Fig. 96: Core Plug/Chip Atlas: V-10, 4126.30 m	411-412
Fig. 97: Core Plug/Chip Atlas: V-10, 4126.69 m	413-414
Fig. 98: Core Plug/Chip Atlas: V-10, 4128.92 m	415-417
Fig. 99: Core Plug/Chip Atlas: Fractured & Faulted Cores of Seals	418-419
Fig. 100: Core Plug/Chip Atlas Guide	420