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ABSTRACT 
Hydraulic conditions (velocity, depth, turbulence) strongly influence the distribution and 
abundance of organisms in rivers. A diverse hydraulic environment should foster 
biodiversity, because organisms have different hydraulic preferences. In fact, the 
relationship between spatial hydraulic diversity and biodiversity is largely presumed, and 
not well-supported by empirical studies, but it underpins efforts in river restoration and 
conservation. This is particularly so at the reach scale, indicating a stream- or river-section 
with large-scale homogeneous geomorphic and hydrological conditions and smaller-scale 
habitat patches, as perceived by organisms in the community under study. 

This thesis considers the factors that create spatial hydraulic diversity, and the ways that 
fish respond. It presents a method to characterise hydraulic diversity, and uses this to 
describe temporal and spatial changes between reaches. It also demonstrates the use of 
hydraulic modelling for comparing reaches. Finally, it assesses the Acoustic Doppler 
Current Profiler (ADCP) as a method to describe hydraulic conditions in a large, open river 
channel. 

Swimming ability tests were applied to three small freshwater fish, the pelagic Australian 
smelt (Retropinna semoni) and common galaxias (Galaxias maculatus ) and the demersal 
flathead gudgeon (Philypnodon grandiceps). The latter species was the weaker swimmer, 
but the tests indicated that behaviour also should be considered.  

A laboratory experiment was designed to investigate how two species with contrasting 
ecological habits (common galaxias, flathead gudgeon) behave in a diverse hydraulic 
environment. Habitat choices and activity were monitored in a constructed sinuous channel 
at three discharges over a 3-hour period. The galaxias favoured the pelagic habitat, and 
spent 20-60% of the time cruising, whereas the flathead gudgeon preferred the demersal 
habitat and spent <6% of the time cruising. The flathead gudgeons could access their 
preferred habitat at all discharges, but the common galaxias were limited by their 
swimming ability at the highest discharge.  

Several methods to characterise reaches were compared for eight 3-D model reaches 
representing the effects of channel form, wood and aquatic plants. The variogram (a 
measure of the variance between samples as a function of distance) emerged as a superior 
method because it indicates hydraulic diversity, incorporates the spatial arrangement of 
hydraulic patches, and facilitates comparisons between reaches. 

The ADCP proved a quick, reliable means to measure depth and 3-D velocity in rivers. It 
was effective only in depths >1.5 m, but modified instrumentation may overcome this 
limitation. 
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Six reaches, including weir-pool and free-flowing sections, were compared at two 
discharges in the River Murray, Australia. Variograms derived from the ADCP data clearly 
demonstrated spatial differences between the sections, but temporal differences were less 
well-defined, suggesting that reaches may retain characteristic hydraulic patterns despite 
changes in discharge.  

Opportunities for further research include: the issue of optimal levels of hydraulic diversity 
for fish and other biota; use of variograms as a tool for field studies of aquatic biota; and 
measuring reach-scale hydraulic diversity and biodiversity before and after reach 
manipulation (e.g. the placement of wood), to elucidate the effects of changes in spatial 
hydraulic diversity on reach biodiversity. 
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