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Abstract

An important research area in computer vision is parameter estimation. Given a mathemati-

cal model and a sample of image measurement data, key parameters are sought to encapsulate

geometric properties of a relevant entity. An optimisation problem is often formulated in order

to find these parameters. This thesis presents an elaboration of fundamental numerical algo-

rithms for estimating parameters of multi-objective models of importance in computer vision

applications. The work examines ways to solve unconstrained and constrained minimisation

problems from the view points of theory, computational methods, and numerical performance.

The research starts by considering a particular form of multi-equation constraint function that

characterises a wide class of unconstrained optimisation tasks. Increasingly sophisticated cost

functions are developed within a consistent framework, ultimately resulting in the creation of

a new iterative estimation method. The scheme operates in a maximum likelihood setting and

yields near-optimal estimate of the parameters. Salient features of the method are that it has sim-

ple update rules and exhibits fast convergence. Then, to accommodate models with functional

dependencies, two variant of this initial algorithm are proposed. These methods are improved

again by reshaping the objective function in a way that presents the original estimation prob-

lem in a reduced form. This procedure leads to a novel algorithm with enhanced stability and

convergence properties.

To extend the capacity of these schemes to deal with constrained optimisation problems, several

a posteriori correction techniques are proposed to impose the so-called ancillary constraints.

This work culminates by giving two methods which can tackle ill-conditioned constrained func-

tions. The combination of the previous unconstrained methods with these post-hoc correction

schemes provides an array of powerful constrained algorithms.

The practicality and performance of the methods are evaluated on two specific applications. One

is planar homography matrix computation and the other trifocal tensor estimation. In the case

of fitting a homography to image data, only the unconstrained algorithms are necessary. For the

problem of estimating a trifocal tensor, significant work is done first on expressing sets of usable

constraints, especially the ancillary constraints which are critical to ensure that the computed

object conforms to the underlying geometry. Evidently here, the post-correction schemes must

be incorporated in the computational mechanism. For both of these example problems, the

performance of the unconstrained and constrained algorithms is compared to existing methods.

Experiments reveal that the new methods perform with high accuracy to match a state-of-the-art

technique but surpass it in execution speed.
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Chapter 1

Introduction

M
odern computer vision systems need to process considerable amounts of data to

perform several tasks almost simultaneously. Many of the applications are con-

cerned with scene geometry estimation, object detection, trajectory estimation,

online 3-D localisation, tracking, or some related sub-problems. Typically any such applica-

tion is modelled mathematically by some algebraic constraints which establish a relationship

between an underlying geometric problem and some image measurement data. Often the geo-

metric problem can be summarised by key parameters. So, central to many vision applications

is the problem of estimating parameters from given image features. This task puts a heavy toll

on algorithms and numerical methods which are required to be more precise, more robust, and

execute faster in order to serve the higher level purpose of the application.

The mathematical model underpinning a parameter estimation problem is generally multi-

objective in character in its dealing with a system of equations and combines both the sought

parameters and the image data. In some applications, the parameters are subject to ancillary

constraints not involving image tokens. In this case, a parameter vector solution must satisfy

both the principal multi-equation system and the ancillary constraints.

When prior knowledge about the measurement errors is available, covariance matrices can be

incorporated in the estimation process to weight the observed data according to their degree of

reliability. A statistical noise model suitable in this situation is the so-called errors-in-variables

model. An estimator capable of such informed weighting can be formally derived from the

principle of maximum likelihood (ML). This procedure allows for an optimal estimation of the

parameters. Since the constraints are geometric in nature, the problem is regarded as an instance

of geometric fitting.

One of several drawbacks with ML estimation is that the dimensionality of the parametric

model increases with each new measurement. The associated optimisation problem can quickly

become intractable. This thesis presents fundamental algorithms based on an approximated

maximum likelihood formulation of the underlying estimation task. The parameter estimates

generated exhibit nearly optimal statistical behaviour and—unlike the maximum likelihood

estimate—are relatively inexpensive to compute.
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1.1 Thesis outline

1.1 Thesis outline

Often in optimisation or estimation problems researchers focus on formulating cost functions

to minimise some algebraic or geometric error and then employ well-established numerical

schemes to perform the minimisation. These methods can sometimes involve significant over-

head and be more sophisticated than necessary which comes at an expensive computational

cost.

The next chapter in this thesis presents a progressive elaboration of specifically designed algo-

rithms for solving a class of general constrained parameter estimation problems encountered

in geometric computer vision and pattern recognition. The remaining chapters exemplify the

proposed techniques in the context of realistic vision applications.

In more detail, Chapter 2 introduces necessary theoretical material for discussing parameter

estimation and sets forth a parametric model applicable to a wide range of underlying vision

problems. The first couple of sections deal with the topic of unconstrained estimation, when the

ancillary constraints on the parameters are ignored. Increasingly sophisticated cost functions

are developed, including a maximum likelihood cost function but special emphasis is given

to an approximated maximum likelihood (AML) cost function. Using an AML cost function

over an ML one has significant benefits provided some care is taken. First, a series of three

algorithms are devised for minimising the AML function when the parametric model suffers

from functional dependencies or none. Second, a reformulation of the multi-objective AML

function leads to the development of a novel algorithm which operates in a reduced space than

the original three schemes. This algorithm enjoys better stability and convergence properties.

The second part of the chapter is then dedicated to post-hoc correction techniques to enforce

ancillary constraints to the result of the previous unconstrained minimisation. Several methods

with various degrees of complexity are proposed. Specific algorithms are also given to tackle

ill-posed constrained problems.

Chapter 3 provides an empirical evaluation of the linear and nonlinear optimisation methods

developed for unconstrained parameter estimation. The application chosen is that of comput-

ing a planar homography. It will be assumed throughout this thesis that the system of cameras

is uncalibrated and that each camera captures the scene under a general projective projection

model. Extended Euclidean geometry is then employed to represent the natural geometric rela-

tionships between a scene and its projections, or those between corresponding image features

across images. Now, because the homography model is described by a multi-component objec-

tive vector with linear dependencies, accuracy of the solutions and behaviour of the three AML

estimators is examined thoroughly. Experiments are also conducted to compare the accuracy

and computational efficiency of other estimation techniques including the ML estimator.
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An intermediate chapter is then devoted to expose some theoretical material about the trifo-

cal tensor relating three views of a scene. Following a brief overview of the perspective camera

model and the epipolar geometry between a stereo pair of images, Chapter 4 provides a substan-

tial, self-contained study on trifocal geometry. A review of the trilinear relations between image

features (lines and/or points) and the trifocal tensor is given. Special care is taken to translate

the geometrical relationships into algebraic formulae in a clear and concise manner. The back-

ground work on the trifocal tensor establishes notations and relations which lead ultimately to

the presentation of the most common internal trifocal constraints.

In a natural extension of this work, an experimental chapter provides details about trifocal tensor

computation. The post-hoc correction schemes presented in Chapter 2 are applied and their per-

formance evaluated through both simulated and real image sequences. The trifocal constraints

elaborated in the previous chapter are used in two ways, either directly in some of the adjust-

ment techniques or to provide accuracy measures on the final constrained estimate generated.

To complete the analysis, optimal fundamental matrices are computed between pairs of images

and the accuracy of the resulting estimates compared with that of trifocal tensors.

A final chapter summarises the findings in this thesis. It also opens up several avenues for future

research.

1.2 Thesis contributions

This thesis has drawn on expertise from various research disciplines and integrated the knowl-

edge into one piece of work. On one hand there is theoretical material regarding general opti-

misation techniques and, on the other hand, theory and applications related to computer vision

with special attention given to effective computation of the trifocal tensor.

The development of cost functions leading to accurate unconstrained estimators and post-

correction methods is exposed neatly within an explicitly defined mathematical model and con-

sistent framework. This presentation aims to facilitate understanding and contributes to a wider

effort to place a variety of methods within a global, common context. The parametric model

considered in this thesis describes a multi-objective vector-valued principal constraint function,

generalising the single-equation case investigated in earlier work [33]. A similar upgrade was

achieved when considering ancillary constraints on the parameters. The previous approach was

restricted to incorporate a single ancillary constraint so multiple constraints had to be included

by summing up the contributions of the squared individual constraints, which is not optimal.

In this thesis, proper multi-objective cost functions are defined to tackle problems with several

ancillary constraints.
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The adoption of a two-stage approach to solving constrained estimation problems offers several

advantages. Firstly, it permits to easily discard the ancillary constraints enforcement process

if the problem is unconstrained. Secondly, the individual methods, for constrained or uncon-

strained estimation, can be subject to various standard or customised performance tests, thus

facilitating subsequent analysis, comparative studies, and possible refinement. Overall, the new

proposed estimators have the advantage of dealing with multi-objective (principal and ancillary)

constraint functions, are simply expressed, precise, and computationally efficient. Additionally,

they are fairly robust in their ability to cope with linearly dependent cost functions, degenerate

camera configurations, and ill-posed problems.

While devising our own algorithms, we also review, improve, or shed new lights on the work of

several key contributors to the fundamental algorithmic theories in computer vision. Although

the separate development of these algorithms has been reported in earlier work, the originality

here comes from describing them in a unified framework. This allows us to put everyone’s work

into perspective with respect to one another. It is hoped that the contributions from all parties

are also better appreciated this way.

Algorithms developed in this thesis are applied to two example problems: planar homography

computation and trifocal tensor estimation. With regards to homography fitting, minimisation

techniques are evolved from cost functions built from different matrix generalised inverses. The

value of the experimental section in Chapter 3 is to show that the selection of an appropriate type

of matrix generalised inverse is critical to generate good-quality parameter estimates. Although

the cost functions are connected through the use of different generalised inverses, the obtained

solutions are not guaranteed to be equivalent. Some of the experiments address this question

specifically and reveal that the final estimate of a given estimator is the minimiser not only of

its own cost function but also of other functions as long as the cost functions are differentiable

or rendered continuous via regularisation.

One major difficulty when dealing with the trifocal tensor is to understand the many different

relations and constraints imposed by the trifocal tensor on image measurements, and then realise

the connections between these relations. To help with this, we have chosen to expose the trifocal

tensor by considering its contractions with an increasing number of image tokens, from a single

point/line feature to a combination of three points/lines across the views. Although the work

reproduces well-known results, the approach is innovative in that trilinear relations are tackled

from an uncommon but consistent manner.

The power of the trifocal tensor comes from its roots in multilinear algebra. In that respect,

once defined, it can be manipulated or decomposed in a multitude of ways, or combined with

various other entities. One major inconvenience stemming from the generality of the algebra

is that there is no unique definition to characterise the trifocal tensor from camera projection

Page 4



Chapter 1 Introduction

matrices. A considerable amount of literature covers results, rules, constraints, proofs on the

trifocal tensor but connections between them are not obvious and one must penibly start from

the supplied definition of the tensor and proceed with the analysis.

In this thesis, we have adopted the definition proposed by Hartley [37]. All the main trilinear

constraints known to date are then expressed within a common framework based on this par-

ticular characterisation of the trifocal tensor. While giving the transfer equations in the usual

tensorial notation (with covariant and contravariant indices), a novelty is also to represent them

in vector or matrix form. It is hoped that these results elevate the general understanding—and

take away some of the burden of dealing with tedious index manipulations. In turn, this work

encourages implementation because it is easier in practice to operate at the feature level (using

lines and points coordinates) rather than defining every rule or transfer equation through indices,

which is more error-prone.

A further area of contributions comes from the work on expressing the ancillary constraints on

the trifocal tensor. The original sets of constraints were all described starting from a different

definition of the trifocal tensor. Here, all constraints are expressed within a common context,

edified from Hartley’s trifocal tensor description. The analysis and derivations help discovering

their origin, relating them, and ultimately comparing their effect in practice. Literature which

provides such detailed and comprehensive summary of the trifocal constraints, for both principal

and ancillary constraints, is almost non-existent. This part of the thesis is essential to gather

knowledge into one body of work.

It is believed that further contributions come from the methodology employed in the experi-

ments. Often the unconstrained and constrained estimation stages are tested on separate sets of

data. Only with real image sequences the computation of both entities is carried out consecu-

tively from one sample data. In this case, there is often no feedback on the accuracy of the un-

constrained estimate since the focus is centred exclusively on the quality of the final constrained

tensor. In each of our synthetic test, the same data were used to estimate both unconstrained and

constrained trifocal tensors. This strategy allows to apply performance measures on both types

of estimates and compare the results. For instance, a constrained estimate should typically give

a slightly higher cost function value compared to an unconstrained one. So the benefit can be

seen to occur at two levels. One is that it permits checking theoretical properties and the other

is about testing the performance of individual constrained and unconstrained algorithms.

To conclude, it is recognised that a trifocal tensor provides more accuracy than a fundamental

matrix, however, little study or none has been done to show how much gain there is and where

the gain takes place exactly. This sort of analysis is quite vital when one needs to decide whether

utilising a trifocal tensor or not. This issue is addressed in the experiments carried out on real

image data. In general, the simplicity and efficiency of a fundamental matrix is preferred to
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a trifocal tensor which is complex to first understand and then compute stably. These major

hurdles make it unpopular and abandoned. It is hoped that the results presented in Chapters 4

and 5 will convince and encourage the vision community to use it more often, and believe in

the validity of the algorithmic theories set forth in Chapter 2.

Page 6



Chapter 2

Towards Constrained
Parameter Estimators

D
etermining a global, constrained minimiser is a difficult task which often depends

on the characteristics of the objective function, for instance its continuity, convex-

ity, linearity or nonlinearity. This chapter presents several estimation methods, or

estimators, capable of minimising objective functions derived for a particular parametric model

underlying a wide class of problems in computer vision and pattern recognition. The first sec-

tion describes in detail a class of specific type of parametric model considered in this thesis.

The remaining sections will then focus on developing appropriate cost functions and estima-

tion techniques to minimise these functions. Advantages and drawbacks of each technique will

be discussed. It is important to understand the limitations of the presented algorithms because

knowledge of such limitations will guide their improvement.

2.1 Parametric model

Fitting parametric models to data is a ubiquitous task in computer vision. A parametric model

combines parameters and image features to reflect a particular geometric relationships of inter-

est. Image features are typically low-level descriptors of an image contents, for instance the

locations of corresponding 2-D points and/or lines in images. Similar features across images

can be assembled in a vectorx = [x1, . . . , xk]
T and considered as a single element of data.

Typically, a parameter vectorθ = [θ1, . . . , θl]
T and image data pertaining to a model are

described by a system of equations

f(x, θ) = 0, (2.1)

where

f(x, θ) = [f1(x, θ), . . . , fm(x, θ)]T,

is a vector ofmulti-objective constraints. Here, the label “multi-objective” is used because the

range space of functionf will be assumed to have dimensionm greater than one. The case

investigating a single objective function was the subject of previous studies [15, 23, 33, 49].
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Models with a multi-component constraint vector of type (2.1) include ones in which param-

eters describe such entities as a planarhomography[13, 51, 100], a3-D rotation matrix[68],

a camera projection matrix[62], and an aggregate of affine subspaces[19, 91]. A vast class

of computer vision models, including those mentioned above, employs a constraint vector in

which the parameters are bound linearly with the measurements as per

fi(x, θ) = ui(x)Tθ,

where ui(x) is a polynomial function in[xT, 1]T. In this case, the constraint vector can

succinctly be written as

f(x, θ) = U(x)Tθ, (2.2)

whereU(x) = [u1(x), . . . ,um(x)] is anl ×m carrier matrix encapsulating the nonlinearity in

the data. It is worth noting the fact that the constraint vector depends linearly onθ implies that

equation (2.1) is invariant to the multiplication ofθ by a non-zero scalar. This in turn entails that

any useful cost functionJ for generating estimates ofθ has to be insensitive to scale change,

or θ-homogeneous, satisfyingJ(tθ) = J(θ) for every non-zero scalart. Clearly, an estimate

embodied by the minimiser of aθ-homogeneous cost function is determined only up to a scalar

factor.

Noise model

We assume the most general situation where measurement data are affected by anisotropic

and inhomogeneous, that is, heteroscedastic, noise. More precisely, we adopt a noise model

whereby a datumxi is assumed to result from a perturbation of some unobservableideal value

xi such that

xi = xi + δxi
, (2.3)

whereδxi
is seen as a sample from a set of errors distributed according to the Gaussian law with

mean zero andcovariance matrixΛxi
a proviso that the distributions associated with different

pointsxi are independent.

Each ideal point has the property that it satisfies exactly the multi-objective constraints,

U(xi)
Tθ = 0, for a common value ofθ. The set

Mθ = {x ∈ R
k | f(x, θ) = 0}

forms a manifold which we term amodel manifold.

Ancillary constraints

In many vision applications the system (2.1) does not encompass all of the constraints that

apply to the problem. These equations which relate data to parameters often constitute a set of
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principal constraintsin the model. It turns out that the parameters can exhibit some intrinsic

properties which are completely independent of any image feature but which must be accounted

for in order to conform to the underlying geometry. These additional requirements are described

by ancillary constraintsof the form

Φ(θ) = 0, (2.4)

whereΦ = [φ1(θ), . . . , φq(θ)]
T is a nonlinear, vector-valued function of the parameter vec-

tor θ only. In general, each sub-constraint functionφj is homogeneousof degreeκj , or

κj−homogeneous, with the property that

φj(λθ) = λκjφj(θ), λ 6= 0.

In this thesis, it will be assumed that each functionφj is smooth enough to satisfy

φj(θ + h) = φj(θ) + hTaj(θ) +
1

2
hT

Aj(θ)h + O(‖h‖3),

whereaj(θ) = ∂θφj(θ)
T andAj(θ) = ∂2

θθφj(θ) are the gradient and Hessian ofφj respectively,

for j = 1, . . . , q. The notationO(‖h‖3) stands for an entity that, when divided by‖h‖3, remains

bounded as‖h‖ → 0.

When combined with the principal constraints, the ancillary constraints may restrict the solu-

tion to curves, surfaces (or other submanifolds) of lower dimensionality than the unconstrained

solution space. Basic examples of models involving principal and ancillary constraints include

the stereo and motion problems of estimating the fundamental matrix [1, 17, 84], flow fun-

damental matrix [52], and coefficients of the differential epipolar equation [14], conic fitting

problems [8, 50, 55, 60], and multiple-view structure from motion problems with estimation of

thetrifocal andquadrifocal tensors[24,26,27,37,79].

2.2 Cost functions and estimators

Given a collection(x1, . . . ,xn) of image data, we aim to determinêθ 6= 0 satisfying (2.4)

such that (2.1) holds for each image datumxi, wherex in (2.1) is now replaced byxi for

1 ≤ i ≤ n. Our approach to solve this type of constrained optimisation problem is first to

design good quality unconstrained estimators and then employ a post-hoc adjustment procedure

to accommodate for the ancillary constraints.

We shall usecost functionsto measure the extent to which the data and candidate estimates fail

to adhere to (2.1). Specifically we will consider cost functions that exhibit nonlinearity in both

the data and the parameters. It will be assumed that any such functionJ is smooth enough for

the following Taylor expansion to hold

J(θ + h) = J(θ) + hTg(θ) +
1

2
hT

H(θ)h + O(‖h‖3).
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Hereg(θ) andH(θ) represent the gradient and Hessian ofJ respectively,

g(θ) = ∂θJ(θ)T, H(θ) = ∂2
θθJ(θ).

If the ancillary constraints are set aside, then a globalunconstrainedminimiser θ̂
u

of a cost

functionJ = J(θ;x1, . . . ,xn) is defined by

θ̂
u

= arg min
θ ∈ Rl

J(θ;x1, . . . ,xn).

When the ancillary constraints are taken into account, then the problem becomes

θ∗ = arg min
θ ∈ V

J(θ;x1, . . . ,xn)

such thatV = {θ ∈ R
l |Φ(θ) = 0}.

Clearly, the condition thatθ must belong to the set offeasible vectorsV restricts further the

solution space. Theθ-vector satisfying this requirement and for which the cost function value

is minimal is the globalconstrainedminimiser ofJ , denotedθ∗. Figure 2.1 shows two contour

plots of a typical quadratic optimisation problem with and without an ancillary constraint.

unconstrained

principal constraints

p
rin

ci
p

al
co

n
st

ra
in

ts

minimiser

θ̂
u

θ1

θ2

(a)

ancillary constraintφ1(θ)=0

feasible vectors

vector
optimal

θ∗

θ̂
u

θ1

θ2

(b)

Figure 2.1. Contours of a quadratic in R
2: (a) with its global unconstrained minimiser

θ̂
u
; (b) with ancillary constraint φ1 and global constrained minimiser θ∗.

The next couple of sections will introduce several cost functions with different algebraic and

geometric properties. The minimisation algorithms associated with these functions will find an

unconstrainedθ-estimate. The second half of the chapter will then present several constraint-

enforcement techniques which can be applied to the result of these unconstrained estimators to

obtain a final constrained minimiser.
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2.2.1 Algebraic least squares

A simple cost function results from considering the system

U(xi)
Tθ = 0 (i = 1, . . . , n),

where thei-th equation is a copy of (2.2) in whichxi replacesx. This system can be expressed

as

M
Tθ = 0, (2.5)

whereM = [U(x1), . . . , U(xn)] is an l × mn design matrix. Whennm > l, equation (2.5) is

over-constrained and, typically, does not admit a non-zero solution. A non-trivial approximate

solution in the least-squares format can be obtained by applying the following optimisation rule:

minimise‖MTθ‖ subject to‖θ‖ = 1. Here‖ · ‖ denotes the Euclidean norm. Given that

‖MTθ‖2 =
n∑

i=1

‖U(xi)
Tθ‖2 =

n∑

i=1

f(xi, θ)
Tf(xi, θ),

the solution coincides with the minimiser of thealgebraic least-squares(ALS) cost function

JALS(θ;x1, . . . ,xn) = ‖θ‖−2
n∑

i=1

f(xi, θ)
Tf(xi, θ) = ‖θ‖−2θT

Sθ, (2.6)

whereS =
∑n

i=1 U(xi)U(xi)
T is thescatter matrix. The label ‘algebraic least-squares’ is rem-

iniscent of thealgebraic distancebetween a data pointx and a normalised parameter‖θ‖−1θ,

defined as‖f(x, ‖θ‖−1θ)‖ = ‖θ‖−1(f(x, θ)Tf(x, θ))1/2, instantiations of which, in the form

of the‖f(xi, ‖θ‖−1θ)‖2 terms, appear in the expression forJALS.

It is easily seen that the ALS estimate,θ̂ALS, coincides, up to scale, with an eigenvector of

S associated with the smallest eigenvalue, and this can be found by performingsingular value

decomposition(SVD) onST [54,92]. The ALS method exploiting SVD is essentially equivalent

to the Direct Linear Transformation algorithm described in [37].

2.2.2 Generalised total least squares

A generalised total least-squares(GTLS) estimator was originally proposed for problems de-

scribed by a single-objective principal constraint function [55]. A key feature of this estimator

is that it utilises a common covariance matrix that weights the carrier vectorsui. This work was

later extended to the multi-objective case [58,61] and is exposed next.

For eachi = 1, . . . , n, andj = 1, . . . , m, let

Σ̂ji = [∂xuj ]x=xi
Λxi

[(∂xuj)
T]x=xi
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be thel × l matrix which is the result of propagatingΛxi
by the mappingx 7→ uj(x). Suppose

that Σ̃ is an approximate solution of the equation

Σ̂ji = γji Σ̃, γji > 0, i = 1, . . . , n, j = 1, . . . , m,

obtained by minimising
n∑

i=1

m∑

j=1

‖Σ̂ji − γji Σ̃‖2
F
,

where‖A‖
F

denotes the Frobenius norm of the matrixA. The solution to this problem is

characterised by

Σ̃ =

∑n
i=1

∑m
j=1 γji Σ̂ji∑n

i=1

∑m
j=1 γ

2
ji

and γji =
tr(Σ̃ Σ̂ji)

tr(Σ̃2)
,

wheretr(A) stands for the trace of the matrixA. These equations cannot be solved in closed

form. However, a short procedure can be implemented to obtain an estimate ofΣ̃ (starting from

γji = 1) andγji by iterating over the above expressions. Now, define aweighted scatter matrix

S̃ =
n∑

i=1

U(xi) Υ
−1
i U(xi)

T,

whereΥi = diag(γ1i, . . . , γmi). The GTLS estimate, denoted̂θGTLS, can then be expressed as

the minimiser of

JGTLS(θ;x1, . . . ,xn) =
θT

S̃θ

θT
Σ̃θ

. (2.7)

Like standard ALS, the solution of the above problem can also be expressed in closed form, in

this case requiring a generalised eigendecomposition of(S̃, Σ̃). The GTLS estimate can be found

directly as the generalised eigenvector corresponding to the smallest generalised eigenvalue of

S̃θ = λΣ̃θ.

It should be noted that no prior estimate ofθ is required here to solve the eigenproblem since it

relies on the pair of matrices̃S andΣ̃. As a result, this method is often used as initialisation of

more sophisticated iterative algorithms.

2.2.3 Maximum likelihood

The ALS cost function is introducedad hocand is lacking a satisfactory statistical basis. A

statistically viable cost function can be derived by adopting a stochastic model for the data

generation process. It is natural to assume that the data have been created by choosing a model

manifold, selecting points on it, and perturbing these points using Gaussian noise. The observed

data pointsx1, . . . ,xn can then be viewed as a sample drawn from random variablesx1, . . . , xn
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Chapter 2 Towards Constrained Parameter Estimators

whose joint distribution is labelled by anextendedparameter vectorψ = (θ;x1, . . . ,xn),where

θ is theprincipal part ofψ representing a particular geometric primitive and(x1, . . . ,xn) is the

subsidiarypart representing a specific selection of points on the primitive. The two components

of ψ are such thatθ 6= 0 and

f(x1, θ) = · · · = f(xn, θ) = 0. (2.8)

Using (2.3), the distribution associated with a particularψ can be described by the probability

density function (pdf)

p(x1 + δx1 , . . . ,xn + δxn
|ψ) = (2π)−kn/2

n∏

i=1

det(Λxi
)−1/2 × exp

{
−1

2

n∑

i=1

δT

xi
Λ
−1
xi
δxi

}
.

Here, k is the common length of thexi, for eachi = 1, . . . , n, Λxi
is a k × k symmetric

covariance matrix, assumed to be known, that quantifies errors in the measurement of the data

point xi. The above pdfs constitute all the essential ingredients needed for deciding which

extended parameter labels the distribution that has most likely produced the data, provided that

there are no special preferences as to how a particular geometric primitive and points on it have

been chosen. According to theprinciple of maximum likelihood, the optimal extended parameter

vector is the one that maximises thelikelihood functionψ 7→ p(x1, . . . ,xn |ψ). In view of the

specific form of the (logarithm of the) likelihood function, thismaximum likelihood estimateof

ψ, ψ̂ML, can alternatively be characterised as the extended parameter vector whose subsidiary

part minimises the squaredMahalanobis distancefrom the data. The squared Mahalanobis

distance between the data points(x1, . . . ,xn) and model points(x1, . . . ,xn) is given by

d2
Mahal(x1, . . . ,xn;x1, . . . ,xn) =

n∑

i=1

(xi − xi)
T
Λ
−1
xi

(xi − xi). (2.9)

For eachθ 6= 0, when restricted to the set of those(x1, . . . ,xn) for which (2.8) holds, the

function

d2
Mahal(x1, . . . ,xn; •) : (x1, . . . ,xn) 7→ d2

Mahal(x1, . . . ,xn;x1, . . . ,xn)

attains a constrained minimum at some point(xθ
1 , . . . ,x

θ
n). All these minima can be assembled

into a cost function to yield

JML(θ;x1, . . . ,xn) = d2
Mahal(x1, . . . ,xn;xθ

1 , . . . ,x
θ
n). (2.10)

Denote byθ̂ML the minimiser ofJML. Clearly, JML(θ̂ML) is the smallest of all the values

thatd2
Mahal(x1, . . . ,xn; •) attains at the subsidiary parts of extended parameter vectors. Conse-

quently,θ̂ML and(xθ̂ML
1 , . . . ,xθ̂ML

n ) are the principal and subsidiary parts ofψ̂ML. This justifies

calling JML the maximum likelihood cost function forθ-estimation, and̂θML the maximum
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2.2 Cost functions and estimators

likelihood estimate ofθ. Of all candidate parameter vectors,θ̂ML is the preferred vector that

makes the observed data as likely as possible. The ML function shown in (2.10) provides an

optimal estimator under the defined parametric model of Section 2.1.

The demand for optimality introduces some major drawbacks though. Firstly, an explicit ex-

pression forJML must be derived for each problem specifically. In chapters 3 and 5 we give

its form relevant to homography and trifocal tensor estimation respectively. Secondly, finding

(xθ
1 , . . . ,x

θ
n) for eachθ is a difficult task. Each new measurementxi requires the addition of a

correspondingxi to the optimisation set. As a result, the ML estimator effectively operates over

a search space of dimension
∑n

i=1 dim(xi) + dim(θ) = kn + l. The parameters(x1, . . . ,xn)

are only of intermediate use to obtain̂θML and not required as final output. For this reason,

they are often called thenuisance parameters. In practical applications, minimisation ofJML is

possible but restricted to relatively small data sets, as the problem quickly becomes intractable.

Sparse matrix techniques may be employed to alleviate the computational load, however, this

usually complicates greatly the algorithm. A more feasible approach is to seek to minimise an

appropriate approximation ofJML that captures near-optimality and which does not optimise

over the nuisance parameters. One such approximation is indicated next.

2.2.4 Approximated maximum likelihood

Sampson [75] first proposed and Kanatani [49] next popularised a first-order approximation to

JML defined by

JAML(θ;x1, . . . ,xn) =
n∑

i=1

f(xi, θ)
T[∂xf(xi, θ)Λxi

∂xf(xi, θ)
T]−1f(xi, θ). (2.11)

Sometimes we may abbreviate this function toJAML(θ) sinceθ is the only unknown. Evidently,

the dimension of the search space is now that ofθ, as desired. Underlying thisapproximated

maximum likelihood(AML) cost function is the assumption that the system of model equations

is of full rank, ensuring in particular that∂xf(x, θ)Λx∂xf(x, θ)
T is invertible for anyx and

θ satisfying (2.1). Here we give a general form of a AML cost function pertinent to models

described by rank-deficient systems of equations. Our development will critically rely on the

notion of a generalised inverse of a matrix.

Given anm × n matrix A, a generalised inverse, or g-inverse, ofA is anyn × m matrix A−

satisfying

AA
−
A = A.

Such matrices are sometimes calledone conditiong-inverses orequation solvingg-inverses

because of their use in solving systems of linear equations. Consider the following conditions

for a (real) matrixX:
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Chapter 2 Towards Constrained Parameter Estimators

(1) AXA = A,

(2) XAX = X,

(3) (AX)T = AX,

(4) (XA)T = XA.

(5) AX = XA provided thatA is square.

Let A(i,j,...,l) be any matrix that satisfies conditions(i), (j), . . . ,(l) of the above itemised condi-

tions. Such matrices are termed(i, j, . . . , l) g-inverses ofA. Particular cases include:

• A(1,2), a reflexiveg-inverse, denoted alsoA−r ;

• A(1,4), aminimum normg-inverse, denoted alsoA−m;

• A(1,3), a least-squaresg-inverse, denoted alsoA−l ;

• A(1,2,3,4), theMoore–Penroseg-inverse, orpseudo-inverse, denoted alsoA+ or A†;

• andA(1,2,5), thegroupor Drazing-inverse, denoted alsoA# or AD.

Except forA(1,2,3,4) andA(1,2,5), g-inverses are, in general, not unique.

In view of (2.9) and (2.10), to develop an AML function, we need an approximate expression

for

(xi − x̌θ
i )

T
Λ
−1
xi

(xi − x̌θ
i ).

To this end, note that when applied to the constrained minimiser(x̌θ
1 , . . . , x̌

θ
n), the method of

Lagrange Multipliers implies that, for eachi = 1, . . . , n, the gradient (the column vector of

the partial derivatives) of(xi − y)TΛ−xi
(xi − y) with respect toy is a linear combination of the

gradients of the components of (the row vector)f(y, θ)T with respect toy, provided that all the

gradients are evaluated atx̌θ
i . Since the first gradient is equal to−2Λ−xi

(xi−y) and the gradients

of the components off(y, θ)T coincide with the columns of(∂xf(x̌
θ
i , θ))

T, it follows that

Λ
−1
xi

(xi − x̌θ
i ) = (∂xf(x̌

θ
i , θ))

Tλi (2.12)

for some length-m vector of Lagrange multipliersλi. By Taylor expandingy 7→ f(y, θ) to first

order arounďxθ
i

f(xi, θ) − f(x̌θ
i , θ) = ∂xf(x̌

θ
i , θ)(xi − x̌θ

i )

and noting thatf(x̌θ
i , θ) = 0, we obtain the approximate equality

f(xi, θ) = ∂xf(x̌
θ
i , θ)(xi − x̌θ

i ).

This together with (2.12) yields the approximation

(xi − x̌θ
i )

T
Λ
−1
xi

(xi − x̌θ
i ) = (xi − x̌θ

i )
T(∂xf(x̌

θ
i , θ))

Tλi = f(xi, θ)
Tλi. (2.13)
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2.2 Cost functions and estimators

Now, using (2.12) restated as

xi − x̌θ
i = Λxi

(∂xf(x̌
θ
i , θ))

Tλi,

we find that

f(xi, θ) = Σ(x̌θ
i , θ)λi, (2.14)

where

Σ(x̌θ
i , θ) = ∂xf(x̌

θ
i , θ)Λxi

(∂xf(x̌
θ
i , θ))

T.

For notational convenience, we contract momentarilyf(xi, θ) andΣ(x̌θ
i , θ) to fi andΣi, respec-

tively. Then (2.13) reads

(xi − x̌θ
i )

T
Λ
−1
xi

(xi − x̌θ
i ) = fT

i λi (2.15)

and (2.14) reads

fi = Σiλi. (2.16)

Clearly,

λi = Σ
−
i Σiλi + (I− Σ

−
i Σi)λi,

whereI = Im×m is them×m identity matrix. This combined with (2.16) yields

λi = Σ
−
i fi + (I− Σ

−
i Σi)λi.

Hence, again by (2.16),

fT

i λi = fT

i (Σ−i fi + (I− Σ
−
i Σi)λi)

= fT

i Σ
−
i fi + fT

i (I− Σ
−
i Σi)λi

= fT

i Σ
−
i fi + λT

i Σ
T

i (I− Σ
−
i Σi)λi.

Now taking into account thatΣi is symmetric and using the definition of a generalised inverse,

we see that

Σ
T

i (I− Σ
−
i Σi) = Σi(I− Σ

−
i Σi) = 0

Therefore

fT

i λi = fT

i Σ
−
i fi

which, in view of (2.15), can be rewritten as

(xi − x̌θ
i )

T
Λ
−1
xi

(xi − x̌θ
i ) = f(xi, θ)

T
Σ(x̌θ

i , θ)
−f(xi, θ). (2.17)

Note that the above equality is only approximate so that each particular g-inverseΣ(x̌θ
i , θ)

−

leads to a separate first-order approximation of(xi − x̌θ
i )

TΛ−1
xi

(xi − x̌θ
i ), with any pair of such

approximations differing by second-order entities.
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Chapter 2 Towards Constrained Parameter Estimators

In a last step we substituteΣ(x̌i, θ)
− for Σ(x̌θ

i , θ)
− in (2.17). For this to be meaningful, it is

necessary to assume thatΣ(x̌i, θ)
− be close toΣ(x̌θ

i , θ)
−. Importantly, this requirement is not

automatically satisfied. It can be fulfilled by either selecting a g-inverse which is continuous

or by regularising appropriately the g-inverse at hand to make it effectively continuous. More

details on both approaches will be given later. WhenΣ− is chosen to be effectively continuous

at (x̌θ
i , θ), the final approximation reads

(xi − x̌θ
i )

T
Λ
−1
xi

(xi − x̌θ
i ) = f(xi, θ)

T
Σ(x̌i, θ)

−f(xi, θ).

It is clear from the above discussion that a meaninful AML cost function is given by

JAML(θ;x1, . . . ,xn) =
n∑

i=1

f(xi, θ)
T[∂xf(xi, θ)Λxi

∂xf(xi, θ)
T]−f(xi, θ),

provided thatΣ− is effectively continuous at all the(x̌θ
i , θ).

2.2.5 Equivalent form of the AML cost function

The AML cost function can efficiently be optimised by two closely related procedures. For the

presentation of these techniques, an alternative expression forJAML is needed, and this will be

given next.

Recall that, for anm× n matrixA = [aij ] and ap× q matrixB, theKronecker product[54] of

A andB, A⊗ B, is themp× nq matrix

A⊗ B =




a11B . . . a1nB

...
...

am1B . . . amnB


 .

For anm × n matrix A = [a1, . . . , an] with aj thej-th column vector of lengthm, let vec(A)

denote thevectorisationof A, that is the column vector of lengthmn defined byvec(A) =

[aT

1 , . . . , a
T

n ]T. Since (2.2) can be reformulated as

f(x, θ) = (Im×m ⊗ θT) vec(U), (2.18)

with vec(U) = [uT

1 , . . . ,u
T

m]T, we have

∂xf = (Im×m ⊗ θT)∂xvec(U),

whereIm×m is them × m identity matrix and∂xvec(U) = [(∂xu1)
T, . . . , (∂xum)T]T. Conse-

quently, for eachi = 1, . . . , n,

∂xf(xi, θ)Λxi
(∂xf(xi, θ))

T = (Im×m ⊗ θT)Bi(Im×m ⊗ θ),
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2.2 Cost functions and estimators

where

Bi = [∂xvec(U(x))]x=xi
Λxi

[(∂xvec(U(x)))T]x=xi
.

Now, with Ui = U(xi),

JAML(θ;x1, . . . ,xn) =
n∑

i=1

θT
Ui [(Im×m ⊗ θT)Bi(Im×m ⊗ θ)]−1

U
T

i θ

and this is the required expression forJAML.

2.2.6 Optimisation of the AML cost function

The minimiser̂θu
AML satisfies the necessary optimality condition

[∂θJAML(θ;x1, . . . ,xn)]θ=θ̂u
AML

= 0T (2.19)

with ∂θJAML the row vector of the partial derivatives ofJAML with respect toθ. We term this

thevariational equation. With the aid of (2.18), it can be shown that

[∂θJAML(θ;x1, . . . ,xn)]T = 2Xθθ, (2.20)

whereXθ is anl × l symmetric matrix given by

Xθ = Mθ − Nθ, (2.21a)

Mθ =
n∑

i=1

UiΣ
−1
i U

T

i , (2.21b)

Nθ =

n∑

i=1

(ηT

i ⊗ Il×l)Bi(ηi ⊗ Il×l), (2.21c)

Bi = ∂xi
vec(Ui)Λxi

[∂xi
vec(Ui)]

T, (2.21d)

Σi = (Im×m ⊗ θT)Bi(Im×m ⊗ θ), (2.21e)

ηi = Σ
−1
i U

T

i θ. (2.21f)

The variational equation (2.19) can accordingly be rewritten as

Xθθ = 0, (2.22)

where the evaluation at̂θu
AML is dropped for clarity. In this form the variational equation will

serve as a basis for isolatinĝθu
AML.

Two iterative methods for solving this equation have recently been developed. Thefundamental

numerical scheme(FNS), originally designed for optimisation of a single-objective AML cost
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Chapter 2 Towards Constrained Parameter Estimators

function [15], exploits the fact that a vectorθ satisfies (2.22) if and only if it is a solution of the

ordinaryeigenvalue problem

Xθξ = λξ

corresponding to the eigenvalueλ = 0. This suggests an iterative method for solving (2.22)

whereby ifθk is a current approximate solution, then an updated solutionθk+1 is a vector

chosen from that eigenspace ofXθk
which most closely approximates the null-space ofXθ; this

eigenspace is, of course, the one corresponding to the eigenvalue closest to zero in absolute

value. The algorithm can be seeded with an estimate produced by some non-iterative method

such as ALS or GTLS presented in Sections 2.2.1 and 2.2.2 respectively. The overall procedure

is summarised in Algorithm 3, assuming an ALS initialisation.

Algorithm 3 Fundamental Numerical Scheme I

Steps to compute an estimateθ̂FNS of the minimiser ofJAML given in (2.11) :

1. Find an initial estimateθ0 = θ̂ALS and setk = 0.

2. Compute the matrixXθk
as per (2.21a).

3. Takeθk+1 as the normalised eigenvector ofXθk
associated with the eigenvalue closest to

zero (in absolute value).

4. If θk+1 is sufficiently close toθk, then terminate the procedure and setθ̂FNS = θk+1;

otherwise incrementk and return to step 2.

In view of the representationXθ = Mθ − Nθ, equation (2.22) can also be written as

Mθθ = Nθθ. (2.23)

Theheteroscedastic errors-in-variables(HEIV) scheme [55, 59] is based upon the observation

that a vectorθ satisfies (2.23) if and only if it is a solution of thegeneralisedeigenvalue problem

Mθξ = λNθξ

corresponding to the eigenvalueλ = 1. Given a current approximate solutionθk, HEIV in

its basic form takes for an updated solutionθk+1 a normalised eigenvector of the eigenvalue

problemMθk
ξ = λNθk

ξ corresponding to the eigenvalue closest to1. Again the iterative process

can be seeded witĥθALS.

FNS and the HEIV schemes are locally convergent—to work they require an initial estimate

sufficiently close to a solution of the equation underlying a particular method. More stable ver-

sions of the algorithms, able to cope with less accurate initial estimates, result from selecting at
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2.3 Coping with linear dependencies

each iteration the eigenvector corresponding to the smallest eigenvalue instead of the eigenvec-

tor corresponding to the eigenvalue closest to 0 in the case of FNS, and closest to 1 in the case

of HEIV. Typically, the minimal eigenvalue computed after a few iterations is also the closest

to 0 or 1 depending on the method, and once this stage is reached the modified algorithms act

exactly as their original versions. Without these modifications, the schemes may exhibit slow

convergence or even divergence.

2.3 Coping with linear dependencies

For some models, like those pertaining to a homography or a camera matrix, the system (2.1) is

linear inθ and consists oflinearly dependentequations. In this situation, some gradients of the

sub-constraint functions can be expressed as a linear combination of other gradients. Figure 2.2

gives an illustration for two gradients.

f1

f2

g2

g1

(a)

f2
f1

g2

g1 = λg2

(b)

Figure 2.2. Intersection of sub-constraint functions f1 and f2 in R
2 when both gradients

g1 and g2 are (a) linearly independent; (b) proportional. In the latter case

this implies that there exists a non-zero scalar λ such that g1 = λg2.

It turns out that for any such model the matrices∂xf(xi, θ)Λxi
∂xf(xi, θ)

T, the inverses of which

enter the AML cost function, are ill-conditioned and the AML estimates ofθ are, as a rule,

inaccurate when noise in the data is small. The purpose of this section is to demonstrate that

this deficiency can be overcome if either the cost function or its Jacobian is suitably modified.

In general, many modifications are possible. For example, the constraint vectorf(x, θ) can

be curtailed, in a multitude of ways, so that (2.1) becomes a linearly independent system of

equations—a system giving rise to a well-behaved AML cost function. Another possibility is

to replace the inverses of the∂xf(xi, θ)Λxi
∂xf(xi, θ)

T by truncated versions of the Moore–

Penrose generalised inverses. One of the contributions of this work is putting various forms

of cost-function modification within a unifying framework. A key concept in this context is

a generalised inverse of a matrix. It emerges that any useful variant ofJAML is the result of

replacing the inverses of the∂xf(xi, θ)Λxi
∂xf(xi, θ)

T by suitable generalised inverses.

Page 20



Chapter 2 Towards Constrained Parameter Estimators

2.3.1 Problem description

We now consider a model in which, for any data pointx, the carrier matrixU(x) is not of full

rank, having linearly dependent columns. Examples of such a model include the homography

and camera matrix models, where in each case the carrier matrix has three linearly dependent

components, with only pairs of columns being linearly independent. As we shall see shortly,

the problem with any non-full-rank model is that, for small measurement errors in the data,

the AML cost function is a poor approximation of the ML cost function and, consequently, the

AML estimates of the parameter vector may be unreliable. The difficulty in finding an estimate

in this case is depicted in Figure 2.3.

θ̂
u

θ1

θ2

(a)

θ̂
u

θ1

θ2

(b)

Figure 2.3. Contours of a quadratic in R
2 when the problem is: (a) well-conditioned; (b)

ill-conditioned. The valley around θ̂
u

becomes longer and narrower as the

problem becomes ill-conditioned. This creates some trouble for any method

that tries to find the unconstrained minimiser.

A fundamental consequence of the rank deficiency of the carrier matrix is that, for eachideal

data pointx and each parameter vectorθ matchingx, the matrix∂xf(x, θ)Λx∂xf(x, θ)
T

is

singular. Indeed, the linear dependence of the columns ofU(x) means that, for eachx, there

existsα(x) = [α1(x), . . . αm(x)]T 6= 0 such that
∑m

i=1 αi(x)ui(x) = 0, or, more compactly,

U(x)α(x) = 0. It follows that, for eachθ,

α(x)T
U(x)Tθ = α(x)Tf(x, θ) = 0

whence, upon differentiating with respect tox,

∂xα(x)T
f(x, θ) + ∂xf(x, θ)

T
α(x) = 0. (2.24)

Combining this withf(x, θ) = 0 yields

∂xf(x, θ)
T

α(x) = 0.
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2.3 Coping with linear dependencies

Consequently,∂xf(x, θ)Λx∂xf(x, θ)
T

hasα(x) in its null-space and as such is singular.

Now, if x is a noisy variant ofx and θ is close toθ, then, as a rule,f(x, θ) in (2.24)

will not vanish and∂xf(x, θ)Λx∂xf(x, θ)
T will be full-rank (invertible, to be more pre-

cise). However, the singularity of∂xf(x, θ)Λx∂xf(x, θ)
T

will influence the behaviour of

∂xf(x, θ)Λx∂xf(x, θ)T. If noisy data points are close to ideal data points, which typically

happens when the noise level is low, and if the parameter vector is close to the parameter vector

matching the ideal data points, then the latter matrix will be ill-conditioned. In particular, for

data exhibiting small errors,JAML will be a poor approximation ofJML.

2.3.2 Sub-constraint vectors and generalised inverses

One way to overcome the deficiency stemming from the presence of ill-conditioned matrices

in the expression forJAML is to form a shorter constraint vectorf ′(x, θ) = U(x)′Tθ, where

U(x)′ is formed by a linearly independent set of columns ofU(x). The number of columns

of U(x)′, or equivalently the length of the sub-constraint vectorf ′(x, θ), is set to be equal

to the column rank ofU(x). Any sub-constraint vector of this form will be termed abasic

sub-constraint vector. Iff ′(x, θ) is a basic sub-constraint vector, then, under favourable con-

ditions,∂xf
′(x, θ)Λx∂xf

′(x, θ)
T

will be invertible. Various basic sub-constraint vectors can be

generated from a full constraint vector. For example, for the homography and camera matrix

models, three basic sub-constraint vectors can be formed, each comprising a pair of components

of the original constraint vector. Given a basic sub-constraint vectorf ′(x, θ), one can define a

modified AML cost function by setting

JAML(θ;x1, . . . ,xn) =
n∑

i=1

f ′(xi, θ)
T[∂xf

′(xi, θ)Λxi
∂xf

′(xi, θ)
T
]−1f ′(xi, θ). (2.25)

As we shall show next, the multitude of cost functions arising from different basic sub-constraint

vectors can be viewed from a unifying perspective once these functions are characterised in

terms of ageneralised inverseof a matrix [11].

Suppose that the constraint vectorf is partitioned as[f ′T, f ′′T]T, wheref ′ = [f1, . . . , fr] is a basic

sub-constraint vector andf ′′ = [fr+1, . . . , fm]T is the complementary vector. Then associated

with f ′ there is a g-inverse of∂xf(x, θ)Λx∂xf(x, θ)
T, namely

[∂xf(x, θ)Λx∂xf(x, θ)
T]−r =

[
[∂xf

′(x, θ)Λx∂xf
′(x, θ)T]−1 0

0 0

]
. (2.26)

In terms of this g-inverse, the AML cost function based onf ′, as given in (2.25), can be written

as

JAML(θ;x1, . . . ,xn) =
n∑

i=1

f(xi, θ)
T[∂xf(xi, θ)Λxi

∂xf(xi, θ)
T]−r f(xi, θ).
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Note a similarity with formula (2.11) —the standard inverse appearing there is now replaced by

the g-inverse associated withf ′.

Different AML cost functions can be obtained by selecting different sub-constraint vectors. To

wit, let σ be a permutation of{1, 2, . . . , m} and letfσ be the result of rearranging the entries

of f according toσ, that is,fσ = [fσ(1), . . . , fσ(m)]
T. Suppose that in the representationfσ =

[f ′Tσ , f
′′T
σ ]T, wheref ′σ = [fσ(1), . . . , fσ(r)]

T and f ′′σ = [fσ(r+1), . . . , fσ(m)]
T, f ′σ is a basic sub-

constraint vector. Then the following AML cost function can now be defined

JAML(θ;x1, . . . ,xn) =
n∑

i=1

fσ(xi, θ)
T[∂xfσ(xi, θ)Λxi

∂xfσ(xi, θ)
T]−r fσ(xi, θ).

Given that fσ = Pσf , where Pσ is the m × m permutation matrixdefined byPσ =

[eT

σ(1), . . . , e
T

σ(m)]
T, with ei the i-th row vector ofIm×m, the above formula can be rewritten

as

JAML(θ;x1, . . . ,xn) =

n∑

i=1

f(xi, θ)
T[∂xf(xi, θ)Λxi

∂xf(xi, θ)
T]−r,σf(xi, θ), (2.27)

where

[∂xf(x, θ)Λx∂xf(x, θ)
T]−r,σ = P

T

σ [Pσ∂xf(x, θ)Λx∂xf(x, θ)
T
P

T

σ ]−r Pσ (2.28)

is the g-inverse associated withf ′σ. Note that, similarly as before, the g-inverse in the AML

cost function (which is now based onf ′σ) plays the role of the inverse in the formula for the

standard AML cost function. Note also thatJAML given in (2.27) is differentiable. This follows

from (2.26), (2.28) and the fact that the mapping sending an invertible matrix to its inverse is

differentiable. The differentiability property guarantees that the function can be optimised by

using FNS or HEIV.

In summary, a first solution to bypass problems engendered by the linear dependency of some

components of the objective vectorf is to evolve a cost function based on a sub-constraint

vectorf ′. Adapting the original FNS (Algorithm 3) to the present context leads to the procedure

outlined in Algorithm 4.

2.3.3 Enter all constraints

An obvious aesthetical, though not fundamental from the point of view of theory, shortcoming

of the AML cost functions based on sub-constraint vectors is the asymmetry with which various

components of the original constraint vector are treated. Each of these cost functions uses some

components and ignore others. It would be more desirable to see all components incorporated

into a valid cost function. One conceivable way to achieve this is to use the pseudo-inverse and

let

JAML(θ;x1, . . . ,xn) =
n∑

i=1

f(xi, θ)
T[∂xf(xi, θ)Λxi

∂xf(xi, θ)
T]+f(xi, θ). (2.29)
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2.3 Coping with linear dependencies

Algorithm 4 Fundamental Numerical Scheme II

Steps to compute an estimateθ̂FNS of the minimiser ofJAML given in (2.25) :

1. Find an initial estimateθ0 = θ̂ALS and setk = 0.

2. Compute the matrixXθk
based on a chosenf ′ vector instead of the fullf vector.

3. Takeθk+1 as the normalised eigenvector ofXθk
associated with the eigenvalue closest to

zero (in absolute value).

4. If θk+1 is sufficiently close toθk, then terminate the procedure and setθ̂FNS = θk+1;

otherwise incrementk and return to step 2.

This, however, is not a satisfactory choice—the proposed function is prone to numerical insta-

bility, as we now explain.

The point is that the pseudo-inverse may fail to be continuous when the limit matrix is not of full

rank. A simple example illustrating this phenomenon is this: LetTn =
[

1 0
0 1/n

]
andT = [ 1 0

0 0 ] .

ThenT+
n = [ 1 0

0 n ] andT = T+ = [ 1 0
0 0 ] , soTn → T while T+

n diverges asn increases. Note thatT

is rank deficient, while all theTn are full rank. Given that∂xf(x, θ)Λx∂xf(x, θ)
T

is singular, the

lack of continuity of the pseudo-inverse implies that, for small noise,[∂xf(x, θ)Λxi
∂xf(x, θ)T]+

is ill-conditioned. This drawback can be overcome if the formula (2.29) is modified to read

JAML(θ;x1, . . . ,xn) =

n∑

i=1

f(xi, θ)
T[∂xf(xi, θ)Λxi

∂xf(xi, θ)
T]+r f(xi, θ). (2.30)

Herer is the column rank ofU(x) andA+
r denotes ther-truncated pseudo-inverseof them×m

matrixA defined as follows: ifA = UDVT is the SVD ofA, with D = diag(d1, . . . , dm), thenAr =

UDrV
T with Dr = diag(d1, . . . , dr, 0, . . . , 0) is ther-truncated SVD ofA, andA+

r = VD+
r U

T with

D+
r = diag(d+

1 , . . . , d
+
r , 0, . . . , 0), whered+

i = d−1
i whendi 6= 0 andd+

i = 0 otherwise, is the

pseudo-inverse ofAr. The truncated SVD forces theexactrank of∂xf(xi, θ)Λxi
∂xf(xi, θ)

T to

be reduced to the more adequatenumericalrank, this being defined as the rank of the underlying

matrix∂xf(xi, θ)Λx∂xf(xi, θ)
T

. The rank suppression enforces continuity of the g-inverse and

is an example of aregularisationtechnique [21].

The modified AML cost function, as specified in (2.30), is still not entirely satisfactory. It is

not obvious whether it is differentiable and, even if it is, whether its Jacobian∂θJAML can be

calculated straightforwardly. One troublesome fact is that the singular values of a matrix are not

differentiable functions of the matrix. For example, ifA = a is a1 × 1 matrix, then its singular

value is|a| and the functiona 7→ |a| is not differentiable at0. To bypass this difficulty, we

choose, following Kanatani [49], to regularise the Jacobian rather than the function itself. The
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Chapter 2 Towards Constrained Parameter Estimators

key ingredients of the regularised Jacobian take the form

Mθ =

n∑

i=1

Ui [(Im×m ⊗ θT)Bi(Im×m ⊗ θ)]+r U
T

i ,

Nθ =
n∑

i=1

(θT
Ui [(Im×m ⊗ θT)Bi(Im×m ⊗ θ)]+r ⊗ Il)

× Bi([(Im×m ⊗ θT)Bi(Im×m ⊗ θ)]+r U
T

i θ ⊗ Il).

(2.31)

Now, with Xθ = Mθ − Nθ, the AML estimate ofθ, θ̂u
AML, based on the full constraint vector can

be defined as the solution toXθθ = 0 to be found in the vicinity of̂θALS. The computation of

this estimate can again be done with the aid of either FNS or HEIV.

Recapitulating the findings, we propose a second method to tackle objective functions with

linearly dependent components. The method involves employing a truncated pseudo-inverse of

rank r suitable for the problem at hand. A modification of the original FNS (Algorithm 3) is

presented next.

Algorithm 5 Fundamental Numerical Scheme III

Steps to compute an estimateθ̂FNS of the minimiser ofJAML given in (2.30) :

1. Find an initial estimateθ0 = θ̂ALS, setk = 0 and the rankr.

2. Compute the matrixXθk
from the matricesMθk

andNθk
as per (2.31).

3. Takeθk+1 as the normalised eigenvector ofXθk
associated with the eigenvalue closest to

zero (in absolute value).

4. If θk+1 is sufficiently close toθk, then terminate the procedure and setθ̂FNS = θk+1;

otherwise incrementk and return to step 2.

2.3.4 General recipe

The previous considerations lead to the following general recipe for generating AML cost func-

tions for models with linear dependencies. The starting point is the standard AML cost func-

tion as given in (2.11). This function is modified, the inverses of the matrices of the form

∂xf(x, θ)Λx∂xf(x, θ)
T being replaced by generalised inverses of some type. Various types of

g-inverse can be used for the process. If a particular inverse chosen turns out not to be con-

tinuous, then it is next appropriately regularised. If now the resulting AML cost function is
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2.4 Reduced fundamental numerical scheme

differentiable, then a corresponding optimisation condition is evolved straightforwardly by cal-

culating the Jacobian of the cost function and setting this Jacobian to zero. If the AML cost

function is not differentiable, then an optimisation condition is derived based on a regularised

Jacobian. Once the optimisation condition is set forth, the computation of AML parameter

estimates proceeds by utilising either FNS or HEIV.

Algorithm 3 may be adapted such that the AML cost function is either the one given by (2.25)

or (2.30). When a sub-constraint vectorf ′ is selected, matrixXθ is derived based on the matrix

U(x)′ associated withf ′. If function (2.30) is employed, thenXθ is formed fromMθ andNθ as

described in (2.31).

2.3.5 Equivalence problem

Given the multitude of AML cost functions and related optimisation conditions that can be

obtained with use of various g-inverses, it is natural to ask how different AML estimates ofθ

relate to one another. Bearing in mind the natural way in which g-inverses arise, one can expect

that in terms of accuracy all AML estimates will be essentially equivalent. Chapters 3 and 5 on

homography and trifocal tensor estimation will provide some experimental evidence in support

of this claim.

A notable implication of this finding is that for the purpose of effective estimation, it suffices to

use a simple, differentiable AML cost function such as any one based on a basic sub-constraint

vector. More complicated AML cost functions, like the one involving a truncated pseudo-

inverse, can safely be ignored.

2.4 Reduced fundamental numerical scheme

The previous sections showed that when the systemf(x, θ) = 0 consists of linearly dependent

equations two general techniques were available to regularise the associated AML objective

function. One approach is to curtail the vectorf so that it includes only linearly independent

equations. The second option keeps the original vectorf , however, provides a modification

of the AML function as follows. When the lengthm of the f(xi, θ) surpasses the common

codimensionr of the submanifolds of the form{x ∈ R
k | f(x, θ) = 0} with θ representing

idealparameters that might have generated the data, the inversesΣ(xi, θ)
−1 in expression (2.11)

are replaced by ther-truncated pseudo-inversesΣ(xi, θ)
+
r .

Although these modifications improve the robustness of FNS and broaden its range of appli-

cability, the method may show some signs of instability for difficult sets of data. This sec-

tion will present a reduced form of FNS, where only a subset of the total parameter vector is
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Chapter 2 Towards Constrained Parameter Estimators

estimated iteratively and the remaining parameters are recovered in a single step based on the

result of the earlier iterative process. The reduced algorithm in effect replaces the original esti-

mation problem with a couple of problems of lower dimension. The algorithm is an extension

to the multi-objective setting of the reduced FNS in the single-objective case given in [16]. The

process of dimension reduction leads to significant benefits. Compared to the full form, the

reduced form of the algorithm requires a less accurate initial estimate and enjoys better conver-

gence properties. While the work here is primarily concerned with FNS, the optimality condi-

tion which underlies the reduced form of this algorithm can readily be exploited to advance a

reduced form of HEIV.

2.4.1 Problem reformulation

The starting point for the development of the new algorithm isthe constraint functionf given

in (2.2). Suppose that the carrier matrixU(x) can be written as

U(x) =

[
Z(x)

W

]
=

[
z1(x) . . . zm(x)

w1 . . . wm

]
, (2.32)

whereZ(x) is an(l−m)×m matrix that depends onx (a “pure measurement” matrix) andW is

anm×m invertiblematrix that does not depend onx. Corresponding to this splitting ofU(x),

the parameter vectorθ will be subdivided as

θ =

[
µ

α

]
, (2.33)

whereµ andα are vectors of lengthl − m andm respectively. The partitioning ofU(x) and

θ reflects that fact that some components ofθ, considered as indeterminates, appear in each

of the equations of (2.2) only with constant coefficients. The vectorα collects together those

components ofθ that appear in (2.2) with pure constant coefficients. For eachi = 1, . . . , m, the

non-zero entries of thei-th column ofW represent the constant coefficients of the components of

α in thei-th equation of (2.2). If, for instance, every equation of (2.2) has exactly one parameter

with a unity coefficient, then, after reordering of the equations of (2.2) if necessary, it can be

assumed thatW = Im×m. Notice that matrixW does not depend on datumx, so its derivative

with respect tox, ∂xvec(W), is anms × k zero matrix. One of the motivations behind the

new algorithm is to eliminate these non-informative rows from the estimation process. Upon
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2.4 Reduced fundamental numerical scheme

differentiation with respect tox,

vec(U(x)) =




z1(x)

w1

...

zm(x)

wm




, (2.34)

so one may see that the derivative matrix does not have all the elements of the lastms rows

vanishing because some of these rows correspond to the derivatives of somezi’s. Therefore,

matrixU, as it stands in (2.32), is not an adequate representation.

The shortcoming ofU may be overcome by introducing them× l measurement matrix

V(x) = U(x)T. (2.35)

Now,

vec(V(x)) =

[
vec(Z(x)T)

vec(WT)

]
(2.36)

and differentiating this expression with respect tox gives a matrix with the lastms rows

vanishing, as desired. The adoption of this new measurement matrix means a reformulation

of the objective functionf defined in (2.2) and associated expressions. This is shown next.

The particular relationshipV = UT permits to write

vec(U) = Kml vec(V), (2.37)

whereKml denotes the squarecommutation matrixof sizeml × ml [57]. It follows naturally

that

f = (Im×m ⊗ θT) vec(U) = (Im×m ⊗ θT)Kml vec(V).

By property of commutation matrices,

(Im×m ⊗ θT)Kml = (θT ⊗ Im×m), (2.38)

hence

f(x, θ) = (θT ⊗ Im×m) vec(V). (2.39)

If this identity is used in calculating(∂θJAML)T instead of (2.18), then the ensuing expression

for Mθ will be identical with the one given in (2.21b), but the expression forNθ will change as

described next.

Inspired by the form of matrixBi in (2.21d), let

B
∗
i = ∂xi

vec(Vi)Λxi
[∂xi

vec(Vi)]
T, (2.40)
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whereVi is short forV(xi). The derivative ofU with respect tox = [x1, . . . , xk] takes the form

∂xvec(U) = [∂x1vec(U), . . . , ∂xkvec(U)]

and applying rule (2.37) to each of its columns, we deduce that

∂xvec(U) = Kml ∂xvec(V).

Starting from (2.21e) and using the previous identity, we can write

Σi = (Im×m ⊗ θT)Kml∂xi
vec(Vi)Λxi

[∂xi
vec(Vi)]

T
K

T

ml(Im×m ⊗ θ).

Simplifying with (2.38) and (2.40) gives

Σi = (θT ⊗ Im×m)B∗i (θ ⊗ Im×m) (2.41)

for eachi = 1, . . . , n. Recalling (2.21c) and given the fact that

(ηT

i ⊗ Il×l)Kml = (Il×l ⊗ ηT

i ),

it follows that

Nθ = (Il×l ⊗ ηT

i )B∗i (Il×l ⊗ ηi). (2.42)

The matrixXθ composed fromMθ and Nθ based onV gives a neat formula for the gradient

of the cost function proposed by Matei and Meer [62], where the “scatter matrix” isMθ =
∑n

i=1 V
T

i Σ
−1
i Vi and the “weighted covariance matrix” isNθ =

∑n
i=1(Il ⊗ηT

i )B∗i (Il ⊗ηi). While

equation (2.21c) forNθ arises more frequently in the literature, equation (2.42) will prove more

useful in what follows.

2.4.2 Reduced variational equation

We shall now present a system of two equations that jointly areequivalent to the variational

equation (2.22). One of these equations involves onlyµ and can be solved separately, and the

other expressesα in terms ofµ. We begin by noting that, in view of (2.36),

∂xvec(V(x)) =

[
∂xvec(Z(x)T)

0m2×k

]
.

Hence, for eachi = 1, . . . , n, thelm× lm matrixB∗i can be represented as

B
∗
i =

[
B′i 0(l−m)m×m2

0m2×(l−m)m 0m2×m2

]
, (2.43)
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2.4 Reduced fundamental numerical scheme

whereB′i is the(l −m)m× (l −m)m matrix given by

B
′
i = ∂xi

vec(ZT

i )Λxi
[∂xi

vec(ZT

i )]T, Zi = Z(xi).

It is worth noting that this partitioning ofB∗i , crucial to the subsequent development, results

from taking (2.39) rather than (2.18) as a point of departure. It may be difficult to compute the

matrix∂xvec(Z(x)T) directly. An alternative could be to start from an easier expression such as

∂xvec(Z(x)) =




∂xz1(x)
...

∂xzm(x)




and use the identity

∂xvec(Z(x)T) = K(l−m)m ∂xvec(Z(x)).

As is easily seen from (2.43), the null-space of each matrixB∗i is spanned by the lengthlm

canonical vector[0, . . . , 0, 1]T, where1 denotes a lengthm2 vector of ones. Consequently,Nθ

is singular and solving the eigenvalue problem associated with (2.22) is susceptible to numerical

instability [70]. This difficulty is overcome by reducing the eigenvector problem to a similar

problem involving a positive definite matrix replacingNθ. Such a reduction relies on matrixB′i
and is exposed next.

Define anm×m matrixΣ′i by

Σ
′
i = (µT ⊗ Im×m)B′i(µ⊗ Im×m). (2.44)

Clearly,Σ′i is positive semidefinite and depends only on thei-th element of data, its covariance

Λxi
, and the parameter vectorµ. Assume henceforth that eachΣ′i is positive definite and hence

invertible. The inversesΣ′−1
i can now be used as matricial weights to define a “centroid” of the

Zi as follows:

Z̃ =
n∑

i=1

ZiΣ
′−1
i

[ n∑

i=1

Σ
′−1
i

]−1

. (2.45)

Here
∑n

i=1 Σ
′−1
i is invertible because a sum of positive definite matrices is also positive definite.

For eachi = 1, . . . , n, let

Z
′
i = Zi − Z̃ (2.46)

be thei-th pure measurement vector relative toZ̃. Letting

η′
i = Σ

′−1
i Z

′T
i µ, (2.47)
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define the following(l −m) × (l −m) matrices

M
′
µ =

n∑

i=1

Z
′
iΣ

′−1
i Z

′T
i , (2.48a)

N
′
µ =

n∑

i=1

(I(l−m)×(l−m) ⊗ η′T
i )B′i(I(l−m)×(l−m) ⊗ η′

i), (2.48b)

X
′
µ = M

′
µ − N

′
µ. (2.48c)

A fundamental result that can now be established is thatθ = [µT,αT]T satisfies the variational

equation (2.22) if and only if the following system of equations holds:

X
′
µµ = 0, (2.49a)

α = −(Z̃W−1)Tµ. (2.49b)

A proof can be found in Appendix A.1. The first equation constrains solelyµ and, therefore,

can be solved separately. Onceµ is determined,α is readily prescribed by the second equation.

Of the two constraints, the first plays a leading role and will be termed thereduced variational

equation. A salient feature of this equation is that the matrixN′µ, unlike Nθ, is generically

positive definite ifn ≥ l −m in which case the eigenvalue problem associated with (2.49a) is

nondegenerate.

With thereduced AML cost functiondefined by

J ′
AML(µ;x1, . . . ,xn) =

n∑

i=1

µT
Z
′
iΣ

′−1
i Z

′T
i µ, (2.50)

(2.49a) can be viewed as the variational equation for an optimiser ofJ ′
AML. This formula also

reveals that the new estimation problem has a smaller search space, of dimensiondim(µ) <

dim(θ). Interestingly, theµ-part ofθ̂u
AML, which satisfies (2.49a) aŝθu

AML satisfies (2.22), turns

out to be the minimiser ofJ ′
AML, denoted̂µu

AML, not just a critical point ofJ ′
AML. Moreover,

bothJAML andJ ′
AML attain a common minimum value atθ̂u

AML and µ̂u
AML, respectively (see

Appendix A.2). One noteworthy consequence of this link is that the reduced AML cost function

can be minimised by any algorithm and the result (aµ-vector) can first be fed into (2.49b) to

produce a partial estimate (anα-vector) and further combined with this partial estimate (as per

(2.33)) to produce the minimiser of the full AML cost function.

2.4.3 Algorithm details

A modification of FNS based on the reduced variational system (2.49a) and (2.49b) is the

reduced fundamental numerical scheme(RFNS). Its steps are summarised in Algorithm 6.
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Given a current approximate solutionµk, the technique takes for an updated solutionµk+1

a normalised eigenvector ofXµk
corresponding to the smallest eigenvalue. Vectorα is calcu-

lated from the limiting value ofµk+1 obtained upon convergence when solving (2.49a). The

iterative process can be started by computing the ALS estimate,µ̂ALS.

Algorithm 6 Reduced Fundamental Numerical Scheme

Steps to compute an estimateθ̂RFNS of the minimiser ofJ ′
AML given in (2.50):

1. Find an initial estimateµ0 = µ̂ALS and setk = 0.

2. Compute the matrixX′µk
as per (2.48c).

3. Takeµk+1 as the normalised eigenvector ofX′µk
associated with the eigenvalue closest to

zero (in absolute value).

4. If µk+1 is sufficiently close toµk, then terminate the procedure; otherwise incrementk

and return to step 2.

5. Computeα as per (2.49b) using the limiting valueµk+1 and the corresponding value

Z̃(µk+1) from the previous step. Setθ̂RFNS = [µT

k+1,α
T]T.

In the case that the matricesΣ−1
i are replaced by the matrices(Σi)

+
r in the expression forJAML,

a similar change also affects the matricesXθk
of FNS. Moreover, asΣi = Σ′i for i = 1, . . . , n

(see Appendix A.1), the(Σ′i)
+
r supercede theΣ′−1

i in the expression forJ ′
AML and in theX′µk

of

RFNS.

Finally, we remark that a vectorθ satisfying (2.22) can alternatively be viewed as a solution

of the generalisedeigenvalue problemMθξ = λNθξ corresponding to the eigenvalueλ = 1.

This observation provides a starting point for the development of the HEIV scheme in both full

and reduced versions [16]. Each version solves successively generalised eigenvalue problems

analogous to the ordinary eigenvalue problems solved by a corresponding version of FNS.

2.5 Incorporating ancillary constraints

All of the estimators presented so far, with the exception of the ML one, aim to find a minimiser

with no particular restriction on the parameter space other than the requirement thatθ has

unit norm. In general these methods will return an estimate which does not satisfy the ancillary

constraints. The remaining part of this chapter is dedicated to address this deficiency. Assuming

that we have an unconstrained estimate, we propose several cost functions, each leading to a

post-hoc correctionscheme, to enforce the ancillary constraints.
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The procedures we are about to present are all iterative and typically employed to solve (uncon-

strained) nonlinear optimisation problems. By providing these methods with an adequate cost

function, they are used here to produce a constrained parameter vector.

2.5.1 Gauss-Newton correction

One way to obtain an estimate consistent with the ancillary constraints is to minimise the

geometric distance between a sought vectorθ and the unconstrained estimateθ̂u
AML. Under

the assumption thatθ lies close tôθu
AML, this problem can be formulated as a standard least-

squares problem of the form

arg min
θ

F (θ) =
1

2
r(θ)Tr(θ) =

1

2
‖r(θ)‖2,

wherer(θ) = (θ − θ̂u
AML)/‖θ‖ is called theresidual function. In numerous 3-D computer

vision problems [61, 62],θ is often parameterised through a nonlinear functiong acting on a

length-s vectorβ such thatθ = g(β). So, the residual vector is redefined as

r(β) = (g(β) − θ̂u
AML)/‖g(β)‖, (2.51)

and the minimisation criterion becomes anonlinear least-squaresproblem

arg min
β

F (β) =
1

2
‖r(β)‖2. (2.52)

Newton’s method is a natural choice for solving the above nonlinear problem. From an initial

valueβ0, the method constructs a sequence of vectorsβ1,β2, . . . , such that at stepk

βk+1 = βk + pk, (2.53)

wherepk, a vector controlling the search direction, satisfies theNewton’s equations

(JT

k Jk + Bk)pk = −J
T

k rk, (2.54)

where rk = r(βk), Jk = J(βk) is the Jacobian matrix ofr(β) evaluated atβk, and

Bk =
∑l

i=1 ri(βk)Gi(βk), with Gi(βk) the Hessian matrix ofri(β) evaluated atβk. When the

residualsri(βk) are small, the quantity‖Bk‖ is small compared to‖JT

kJk‖. In such situations,

Bk is typically discarded from (2.54) which gives rise to the so-callednormal equations

J
T

k Jkpk = −J
T

k rk. (2.55)

Rearranging this expression, the search direction vector is readily prescribed by

pk = −[JT

k Jk]
−1
J

T

k rk. (2.56)
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The Gauss-Newton method is a procedure which updates the search direction in the fashion

described by (2.56). Its popularity comes from the fact that the method ultimately converges to

a solution at the same (quadratic) rate as Newton’s method, however, relying on first derivative

information only—encoded in the JacobianJk. The value ofpk in (2.56) can be used in (2.53)

to find an update forβk.

Under a model employing a quadratic function, the search direction vector given in (2.56)

enforces thedescentconditionF (βk+1) < F (βk). This requirement is a safety measure to

prevent convergence towards a maximiser or a saddle point of the function. Note thatF will

be monotonically decreasing only if certain favorable conditions are present. This topic is dis-

cussed next.

Given a suitable starting point, convergence to a minimiser ofF is guaranteed provided that the

JacobianJk has full rank in all steps. Unfortunately, this is not the case for the function in (2.52).

In general, the problem can be remedied by taking the pseudo-inverse of the quantityJT

k Jk. If

a current approximate solutionθk = g(βk) is known, another way to improve performance is

to compute an updated estimateθk+1 as the normal to the hyperplane tangent atθk [61]. When

θk has unit norm, this condition is equivalent to requiring thatθk+1 also lies in the unit sphere,

see Figure 2.4. For a length-l vectorθ, this is ensured by using aprojection matrix

P(θ) = Il×l − Q(θ) = Il×l − ‖θ‖−2θθT. (2.57)

We show next that, withθ = g(β), this matrix is given by

P(β) = Is×s −
(∂g(β)/∂β)Tg(β)g(β)T(∂g(β)/∂β)

‖(∂g(β)/∂β)Tg(β)‖2
, (2.58)

wheres refers to the length ofβ.

Let ∆θ be a small pertubation ofθ and, for simplicity, letPθ andQθ be short forP(θ) andQ(θ),

respectively. Ideally,∆θ should be such that

Qθ ∆θ = 0, (2.59)

or equivalently,

Pθ ∆θ = ∆θ. (2.60)

If (2.59) (or (2.60)) is not satisfied, then∆θ is replaced by

∆′
θ = Pθ ∆θ
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O

Pθk
∆θk

θk
θk+1

∆θk

Figure 2.4. Action of the projection matrix on a parameter estimate.

so that∆′
θ now satisfiesQθ ∆′

θ = 0 andPθ ∆′
θ = ∆′

θ. In trying to satisfy (2.59), we try to ensure

that

‖θ + ∆θ‖ = ‖θ‖

up to second order in∆θ. Taking into account thatθ = g(β) gives
∥∥∥∥g(β) +

∂g(β)

∂β
∆β

∥∥∥∥ = ‖g(β)‖. (2.61)

Since ∥∥∥∥g(β) +
∂g(β)

∂β
∆β

∥∥∥∥
2

= ‖g(β)‖2 + 2gT(β)
∂g(β)

∂β
∆β + O(‖∆β‖2),

condition (2.61) can be rewritten as

gT(β)
∂g(β)

∂β
∆β = 0

when neglecting the second order term. By analogy to (2.59), this expression is equivalent to

Qβ ∆β = 0, where

Qβ =
(∂g(β)/∂β)Tg(β)g(β)T(∂g(β)/∂β)

‖(∂g(β)/∂β)Tg(β)‖2
.

The associated projection matrix then takes the form (2.58).

The preceding remarks are included in the final version of the Gauss-Newton method outlined

in Algorithm 7. It is assumed that the unconstrained estimator was initialised with the ALS

method presented in Section 2.2.1. This implies that an estimateβ̂ALS exists such that̂θALS =

g(β̂ALS). A constrained estimate is then evolved from̂θ
u

AML and β̂ALS. Sinceg is problem

specific, we omit the details of computinĝβALS here. Examples will be given in Section 4.2.2

when examining different parameterisations of the trifocal tensor. Clearly, if the unconstrained

scheme is initialised with a different method, then the correspondingβ-vector must be used in

place ofβ̂ALS.
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Algorithm 7 Gauss-Newton correction scheme

Steps to correct an unconstrained estimateθ̂u
AML :

1. Setk = 0 andβk = β̂ALS.

2. Compute

βk+1 = βk − [PkJ
T

kJkP
T

k ]+ PkJ
T

k rk,

wherePk = P(βk) as per (2.58).

3. Computeθk+1 = g(βk+1)/‖g(βk+1)‖.

4. If θk+1 is sufficiently close toθk, then terminate the procedure and setθ̂GN = θk+1;

otherwise incrementk and return to step 2.

2.5.2 Weighted nonlinear least-squares correction

The Gauss-Newton method can be improved by including information about the covariances

of parameters. Given a parameter estimate represented by a length-l vectorθ, let Cθ denote

the l × l covariance matrixof θ. The aim now is to minimise the geometric distance between

θ and θ̂u
AML under the Mahalanobis metric induced byCθ. The problem becomes aweighted

nonlinear least-squares(WNLS) optimisation

arg min
β

F (β) =
1

2
r(β)T

Wr(β) =
1

2
‖Lr(β)‖2 (2.62)

with W = C
+
g(β) andLTL = W. Letting

‖r(β)‖2
Cg(β)

= r(β)T
C

+
g(β)r(β) = ‖Lr(β)‖2,

problem (2.62) can be rewritten as

arg min
β

F (β) =
1

2
‖r(β)‖2

Cg(β)
=

1

2

∥∥∥(g(β) − θ̂u

AML )/‖g(β)‖
∥∥∥

2

Cg(β)

. (2.63)

The above expression emphasises the fact that the residual functionr(β) is optimised in the

metric induced by the parameter covariance matrixCg(β). This formulation will turn out useful

in Chapter 5 when compared to another cost function underlying a particular method for trifocal

tensor estimation. At each iteration step the search direction vector associated with (2.62) is

calculated as

pk = −[JT

k WJk]
−1
J

T

k Wrk. (2.64)

This expression can be substituted in (2.53) to obtain an updated value ofβk.
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Candidate parameter covariance matrices

Two choices of parameter covariance matrix can be used in problem (2.62). First, the minimisa-

tion may be carried out optimally in the metric induced by the covariance matrix ofθ̂
u

AML [49]:

C
θ̂

u

AML
=
[
X

θ̂u
AML

]−
l−1

. (2.65)

Here constraining the rank of the matrix is needed to ensure thatC
θ̂

u

AML
obtained numerically is

positive semi-definite. In this case, it will be shown next that the variational equation (2.22),

written explicitly as

X
θ̂

u

AML
θ̂u

AML = 0, (2.66)

leads to a simplification of the WNLS problem.

Consider the following first order Taylor expansion ofg(βk+1) in a neighbourhood ofβk

g(βk+1) = g(βk) +
∂g(βk)

∂βk

(βk+1 − βk).

Since
∂r(β)

∂β
=
∂r(θ)

∂θ

∂θ

∂β
=
∂θ

∂β
=
∂g(β)

∂β
,

we have

Jk =
∂r(βk)

∂βk

=
∂g(βk)

∂βk

,

hence we may write

g(βk+1) = g(βk) + Jk(βk+1 − βk) = g(βk) + Jkpk. (2.67)

Recalling (2.51) and simplifying (2.64) with (2.65) and (2.66) yields

pk = −[JT

k WJk]
+
J

T

k Wg(βk)/‖g(βk)‖.

Note that the pseudo-inverse ofJT

k WJk must be employed because matrixW = X
θ̂

u

AML
is rank-

deficient and so is the product withJk. Substituting this form ofpk in (2.67) shows thatg(βk+1)

is fully expressed in terms ofg(βk). Therefore, (2.67) turns out to be a special case of lineari-

sation ofr(βk+1) in a neighbourhood ofβk arising from the choice of covariance matrix in

(2.65).

Another candidate parameter covariance matrix isM
θ̂

u

AML
whose form was originally intro-

duced in (2.21b). This matrix is a good approximation ofX
θ̂

u

AML
and has the advantage of

being generically positive definite, and therefore invertible, providedn ≥ l. The general

case of the weighted nonlinear least-squares correction scheme is shown in Algorithm 8 for

W = X
θ̂

u

AML
. Note that the Gauss-Newton method which solves problem (2.52) can now be seen

as a particular case of the WNLS method where the parameter covariance matrixW is set to the

identity, meaning that no weights are applied to the residual vector.
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Algorithm 8 Weighted Nonlinear Least-Squares correction scheme

Steps to correct an unconstrained estimateθ̂u
AML :

1. Setk = 0, βk = β̂ALS, andW = X
θ̂

u

AML
.

2. Compute

βk+1 = βk − [PkJ
T

k WJkP
T

k ]+ PkJ
T

k Wrk,

wherePk = P(βk) as per (2.58).

3. Computeθk+1 = g(βk+1)/‖g(βk+1)‖.

4. If θk+1 is sufficiently close toθk, then terminate the procedure and setθ̂WNLS = θk+1;

otherwise incrementk and return to step 2.

Further analysis

Recall the cost functionF (β) given in (2.62) which underpins the WNLS correction scheme.

WhenW = X
θ̂

u

AML
, we demonstrate next that this function enters the expression of a second-order

approximation of the unconstrained cost functionJAML in the neighbourhood of̂θ
u

AML .

Writing out (2.62) explicitly gives

F (β) =
1

2‖g(β)‖2
(g(β) − θ̂u

AML )T
C

+
g(β)(g(β) − θ̂u

AML),

whereθ = g(β) belongs to the region of theθ-manifold where the constraints imposed byg

are satisfied. From (2.65) and (2.66), the above expression reduces to

F (β) =
1

2‖g(β)‖2
g(β)T

X
θ̂

u

AML
g(β). (2.68)

Now, leth = θ− θ̂u

AML and suppose thatθ = g(β) lies in the vicinity ofθ̂
u

AML . A second-order

Taylor expansion ofJAML(θ) aroundθ̂u
AML is given by

JAML(θ) = JAML(θ̂u
AML) + hTg(θ̂u

AML) +
1

2
hT

H(θ̂u
AML)h + O(‖h‖3),

whereg(θ) = ∂θJAML(θ)T andH(θ) = ∂2
θθJAML(θ) are the gradient and Hessian ofJAML

respectively. Given thatg(θ̂u
AML) = 0 andH(θ̂u

AML)θ̂u
AML = 0, we have

JAML(θ) ≈ JAML(θ̂u
AML) +

1

2
hT

H(θ̂u
AML)h,

= JAML(θ̂u
AML) +

1

2
θT

H(θ̂u
AML)θ.

Defining the function

JH(β) =
1

2
g(β)T

H(θ̂u
AML)g(β), (2.69)
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and expressingJAML in terms ofβ, it follows that

JAML(g(β)) ≈ JAML(θ̂
u

AML ) + JH(β).

For difficult problems, the Hessian of second derivatives may not be available. Various choices

are possible to approximate it. One such choice is∂2
θθJAML(θ) = Xθ. This with (2.68) and

(2.69) givesJH(β) = ‖g(β)‖2F (β), therefore

JAML(g(β)) ≈ JAML(θ̂
u

AML ) + ‖g(β)‖2F (β).

This analysis shows that functionF contributes to the overallJAML cost value. Ifβ∗ is the

minimiser ofF (β) and given thatJAML(θ̂u
AML) ≤ JAML(θ), we expectJAML(g(β∗)) to be

slightly higher thanJAML(θ̂u
AML). This fact will be confirmed in the experimental chapters.

2.5.3 Kanatani-like correction

Although the previously described methods do not utilise thevalues of the ancillary constraints,

they produce a constrained estimate by minimising a cost function based on a parameterisation

of theθ-manifold where these constraints are satisfied. As an alternative to these techniques,

Kanatani [49] proposed a first-order correction scheme which employs a single ancillary con-

straint directly in its adjustment mechanism. The correction effectively applies to the full length

vectorθ rather thanβ. Below, Kanatani’s original work is expanded to deal with multiple

ancillary constraints.

In spirit of Kanatani’s writing, the covariance matrix ofθ̂u
AML is assumed to take the form given

in (2.65). Note that Kanatani never definesC
θ̂u

AML
as he prefers working with renormalisation

estimates instead of AML estimates.

Recalling the form ofP(θ) given in (2.57), define atangentialcovariance matrix atθ by

Tθ = P(θ) C
θ̂u
AML

P(θ). (2.70)

The matrixTθ is guaranteed to carry no information in the direction ofθ, so that the scale ofθ

does not matter.

Let Φ = [φ1, . . . , φp]
T be a length-p column vector of constraints. The ancillary constraints are

then given by the system of equations

Φ(θ) = 0. (2.71)

Let

Dθ = [∇θφ1, . . . ,∇θφp] =



∂θ1φ1 . . . ∂θ1φp

. . . . . . . . . . . . . . . . .

∂θl
φ1 . . . ∂θl

φp



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2.6 Coping with rank-deficient Jacobian and Hessian

be thel × p gradient matrix ofΦ (the transpose of the Jacobian matrix ofΦ). A Kanatani-like

correction scheme is shown in Algorithm 9. The method assumes that the rank ofDθ is t for θ

satisfying (2.71), in other words,t is the number of algebraically independent constraints.

Algorithm 9 Kanatani-like correction scheme

Steps to correct an unconstrained estimateθ̂u
AML :

1. Setk = 0 andθk = θ̂
u

AML .

2. Compute the matrixTθk
as per (2.70).

3. Compute

θ̃k+1 = θk − Tθk
Dθk

[DT

θk
Tθk

Dθk
]−t Φ(θk).

4. Computeθk+1 = θ̃k+1/‖θ̃k+1‖.

5. If θk+1 is sufficiently close toθk, then terminate the procedure and setθ̂KK = θk+1;

otherwise incrementk and return to step 2.

2.6 Coping with rank-deficient Jacobian and Hessian

One common issue with optimisation techniques isstability. Quite often, the stability of a

method is affected if the solution is either not unique or very sensitive to noise or measurement

errors in the input data of the problem. The success of the Gauss-Newton method is closely

related to the sign of the quantityδ = pTGp, wherep denotes a search direction vector and

G = (JTJ+B) is the Hessian matrix ofF appearing in Newton’s equations (2.54). To guarantee

a decrease in the cost function and therefore convergence to a minimiser ofF , δ needs to be

positive, which is guaranteed whenG is positive definite [92]. When the JacobianJ is rank-

deficient in a neighbourhood of a local minimum,G is also rank-deficient,p is not unique and

this causes the Gauss-Newton method to fail producing a reliable descent direction. In this

situation, the matrixJTJ is no longer a good approximation ofG. In this case, two approaches

are possible. One is to incorporate the second-order matrixB in G or an approximation to it.

The other is to advance a novel formulation of the problem that deals directly with the rank-

deficient Jacobian. Next, we expose two methods which implement each of these strategies.

The proposed techniques provide a regularisation of the standard Gauss-Newton algorithm.
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2.6.1 The Levenberg-Marquardt method

The Levenberg-Marquardt (LM) algorithm [92] implements adamped Gauss-Newtonmethod

where the search direction is defined by the following modification of (2.55)

(JT

kJk + µIn×n)pk = −J
T

k rk, (2.72)

whereµ > 0 is adamping parameter. The behaviour (and stability) of LM is controlled by the

value ofµ. This parameter ensures that the algorithm stays within a certaintrust regionat each

iteration. WhenJk is rank-deficient,µmust be sufficiently large value to assure that the Hessian

matrix Gk = (JT

k Jk + µIn×n) is positive definite. It is only in this case thatpk is well-defined

(unique) and can be stably estimated. By analogy to (2.54), the matrixµIn×n may be thought as

an approximation of matrixBk to ensure thatGk is positive definite. The value ofµ is computed

dynamically at each iteration and several rules may be implemented to update it. The interested

reader can find more details in [92]. When information aboutW, the inverse covariance matrix

of θ, is available, minimising (2.62) may proceed by using the LM algorithm applied to the

residual vector

r′(β) = L r(β)/
√

2. (2.73)

Recall thatL is “half” the covariance matrixW such thatLTL = W. Judicious choices forW are

X
θ̂

u

AML
or M

θ̂
u

AML
, as mentioned in Section 2.5.2. In the simplest scenario, one may takeL = Il×l

in which case LM solves the minimisation problem (2.52). A programming package such as

MATLAB already provides an implementation of LM so the work is limited to defining the

residual vectorr′(β) as input to the built-in function.

2.6.2 The truncated Gauss-Newton method

The cost function given in (2.52) may be modified to accommodate the situation where the

Jacobian ofr is rank-deficient. For ill-posed problems of this type, the search direction vector

is no longer unique and the computed estimatesβk tend to get excessively large. To avoid these

situations, a new function can be evolved to solve aminimum norm nonlinear least-squares

problem defined by coupling two optimisation problems as follows

β∗ = arg min
β ∈ B

1

2
‖β − ζ‖2 (2.74)

such thatB = {β ∈ R
s | β = arg min

β̃

1

2
‖r(β̃)‖2 }.

Hereζ corresponds to a natural centre for the problem and therefore is application dependent.

It is either chosen a priori from some reasonable approximation of the solution or set to zero.
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2.6 Coping with rank-deficient Jacobian and Hessian

The criteria in (2.74) intend to provide some regularisation to the starting ill-conditioned

problem in order to achieve a solution of practical value. Similar to the way the original least-

squares problem (2.52) can be resolved at each step by determining a search direction vectorpk

using the normal equations (2.55), the minimum norm problem (2.74) can be stated equivalently

as

pk = arg min
p ∈ Pk

1

2
‖βk − ζ + p ‖2 (2.75)

such thatPk = {p ∈ R
s | p = arg min

p̃

1

2
‖ r(βk) + Jkp̃ ‖2 }.

To derive an expression for the search direction vector which satisfies the above conditions, it

is necessary to consider the SVD decomposition of the Jacobian matrixJk.

Suppose that at stepk the following SVD decomposition ofJk holds

Jk = EDK
T = (E1, E2)

(
D1

D2

)
(K1, K2)

T, (2.76)

whereETE = Il×l, KTK = Is×s, D1 = diag(σ1, . . . , σt), andD2 = diag(σt+1, . . . , σs) with the

singular valuesσi sorted in decreasing order. This splitting of the Jacobian gives

Jk = J1 + J2 = E1D1K
T

1 + E2D2K
T

2 .

For rank-deficient problems, there exists a clear gap in the SVD-spectrum betweenσt andσt+1,

which allows for such a partitioning to take place. The entityt is called thegradeof Jk. Since

J2 is negligible or zero, an (approximate) solution to (2.75) is given by

pk = −(J+
1 , PN1)

(
r(βk)

βk − ζ

)
, (2.77)

wherePN1 is the orthogonal projection on the null-space ofJ1. Since we require that at the

solution

PN1(βk − ζ) = 0,

(2.77) reduces to

pk = −K1D
−1
1 E

T

1 r(βk). (2.78)

The obtained search direction vector is such that both minimisation criteria in (2.75) are satisfied

in limit as k → ∞, and so are those in (2.74). Thetruncated Gauss-Newton(TGN) method

which solves the minimum norm problem (2.74) is detailed in Algorithm 11. If parameter

covariance information is available, thenr(βk) in (2.78) may be replaced byr′(βk) in (2.73).
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Algorithm 11 Truncated Gauss-Newton correction scheme

Steps to correct an unconstrained estimateθ̂u
AML :

1. Setk = 0 andβk = β̂ALS.

2. Computeβk+1 = βk + pk, wherepk is given in (2.78).

3. Computeθk+1 = g(βk+1)/‖g(βk+1)‖.

4. If θk+1 is sufficiently close toθk, then terminate the procedure and setθ̂TGN = θk+1;

otherwise incrementk and return to step 2.

2.7 Conclusion

The work presented in this chapter relied on a parametric model in which the relationship

between parameters and image features is expressed as a system of equations. In a first stage,

several multi-objective cost functions were conceived based on this model and used to create

unconstrained estimators.

The most ordinary cost functions considered minimising algebraic residual errors. Although

their minimiser can be expressed in closed form, these functions exhibit a statistical bias. To

overcome this, a maximum likelihood (ML) cost function was evolved and lead to a statistically

optimal estimator. In this framework the presence of nuisance parameters create a significant

barrier to the scalability of the algorithm to large data sets. Consequently, the approach taken

was to generate an approximation to the ML cost function whereby the nuisance parameters are

eliminated and only the principal parameters are considered in the estimation. The concocted

AML cost function fullfills these criteria and therefore exhibit a much smaller search space,

of dimension equal to the size ofθ. This distinction considerably reduces the computational

complexity of its associated estimator, FNS.

For a sub-class of the parametric model the objective function consists of linearly dependent

components. The standard AML cost function corresponding to any of such model involves

inverses of ill-conditioned matrices and is not well suited for generating accurate estimates

when noise in the data is small. A solution to these deficiencies was to replace the inverses of

the critical matrices by generalised inverses. Two variants of FNS were proposed, one relies on

a curtailed objective function with linearly independent components, and the other uses the full

objective function combined with a rank-constrained pseudo-inverse.

FNS is a local minimiser and so provides a function value which is minimal inside a feasible

neighbourhood. The scheme often necessitates a good initialisation and a relatively small noise

in the data in order to converge to a minimiser of the AML cost function. The algorithm was
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robustified by decoupling the estimation process into two problems of lower dimension. First,

a subset of the total parameter vector is estimated iteratively and then the remaining parameters

are recovered in a single step based on the result of the earlier iterative process. It will be

shown in the experimental chapters that the reduced form of FNS, RFNS, enjoys better converge

properties. Finally, it was noted that a companion scheme, RHEIV, can be evolved in a similar

fashion to that of RFNS. Subsequent tests will confirm that the performance of RHEIV matches

that of RFNS.

The second part of the chapter explored various post-correction techniques to adjust for any

ancillary constraints that may apply. The weighted nonlinear least-squares (WNLS) method,

which generalised the Gauss-Newton (GN) method, and a Kanatani-like method are classical

schemes which accomplish a first-order correction of the constraints. A common feature be-

tween the WNLS and GN correction schemes is that they do not handle the ancillary constraints

directly because they are based on minimising a cost function. This is a major advantage for

applications in which the ancillary constraints are difficult to express in a concise and efficient

manner. The Kanatani-like method is the only one to truly involve the value of the ancillary

constraints.

For some problems, the solution is not well-defined when the Jacobian and Hessian of the

constraint objective functionF are rank-deficient. Two other methods were proposed to deal

with such cases. One is the Levenberg-Marquardt method and the other is a truncated Gauss-

Newton method. In general, these methods attempt to guarantee a positive definite Hessian

matrix in order to obtain a search direction with no ambiguity.

The following chapters put these algorithms into practice, first on the unconstrained minimisa-

tion problem of fitting a homography to data and then on the constrained problem of estimating

a trifocal tensor between three views of a scene.
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Chapter 3

Application I:
Homography Matrix

Estimation

T
he unconstrained estimation of parameters plays a very important role in deriving

optimal constrained parameters. This chapter examines the behaviour and solutions

produced by the three Fundamental Numerical Schemes presented in Chapter 2. The

core of these schemes relies on an AML cost function which takes various forms depending on

the type of generalised inverse used. Adopting the homography model, which is naturally de-

scribed by a linearly dependent system of three equations, we demonstrate empirically that the

choice of a particular type of generalised inverse is irrelevant as long as the inverse is either con-

tinuous or is rendered continuous via regularisation. Modified AML cost functions involving

continuous generalised inverses are shown to lead to good-quality parameter estimators of com-

parable accuracy. Our simulations also reveal that a cost function employing a discontinuous

generalised inverse can produce a poorly-behaved estimator. To complete the analysis, tests are

carried out on real image sequences and computed homographies are used to create panoramic

mosaics. In both synthetic and real data experiments, the performance of the AML estimators

is compared to that of existing methods.

3.1 Introduction

To evaluate the quality of various types of AML estimates ofθ, we have performed a number of

experiments on the computation of a homography. This section provides necessary prerequisites

concerning homography estimation. A detailed description of experiments and their results will

be deferred until the next section.
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3.1.1 Two types of homography

If two overlapping images of aplanar scene are taken from different camera positions and/or

orientations, or if a single camera undergoespure rotation, then the images are linked via a

planar projective transformation, or homography. A homography is described by a non-singular

3 × 3 matrix, sayH, in terms of which the action of the homography on a 2-D homogeneous

pointm = [u, v, 1]T to produce a 2-D homogeneous pointm′ = [u′, v′, 1]T is given by

m′ ≃ Hm, (3.1)

where≃ denotes equality up to scale. To define the homography uniquely,H needs to be

specified only up to scale—matrices differing by a non-zero scalar factor encode the same

transformation. With the common notational conventions as established in [37], the matrix

for a homography induced by a scene planeΠ is given by the following generalisation of a

formula derived by Faugeras and Lustman [25]:

H = K2R2[I3×3 − (nTC̃1 + d)−1(C̃1 − C̃2)n
T]R−1

1 K
−1
1 . (3.2)

Here the indicesi = 1 and i = 2 refer to the left and right cameras, respectively,Ki andRi

denote the calibration and rotation matrices, andC̃i is the inhomogeneous 3-vector representing

the camera centre in the world coordinate system. Furthermore,n is the unit outward normal of

Π andd is the Euclidean distance betweenΠ and the origin of the world frame, taken with the

minus sign. When a homography arises from a rotation of a single camera, the corresponding

matrix is given by

H = K2R2R
−1
1 K

−1
1 . (3.3)

The derivation of both (3.2) and (3.3) can be found in Appendix B.

3.1.2 Homography model and associated cost functions

The model pertaining to a homography described by a matrixH is expressed by

m′ × Hm = 0. (3.4)

This vector equation is an immediate consequence of (3.1) —since the vectorsm′ andHm differ

only by a non-zero scalar, their cross product vanishes. WithHT = [h1, h2, h3], (3.4) expands to

v′hT

3 m− h
T

2 m = 0,

h
T

1 m − u′hT

3 m = 0,

u′hT

2 m− v′hT

1 m = 0.

(3.5)
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This system can be brought into the form given in (2.1) by first concatenating the inhomoge-

neous coordinates ofm andm′ to obtain a single item of datax = [u, v, u′, v′]T, and then letting

θ = vec(HT) andf(x, θ) = [ f1(x, θ), f2(x, θ), f3(x, θ) ]T, wheref1, f2 andf3 are the corre-

sponding expressions on the left-hand side of (3.5). Furthermore, we havef(x, θ) = U(x)Tθ,

whereU(x) = [u1(x),u2(x),u3(x)] with

u1(x) = [0, 0, 0,−u,−v,−1, uv′, vv′, v′]T,

u2(x) = [u, v, 1, 0, 0, 0,−uu′,−vu′,−u′]T,
u3(x) = [−uv′,−vv′,−v′, uu′, vu′, u′, 0, 0, 0]T.

As a system of linear equations inθ, (3.5) is linearly dependent. Moreover, each of the three

possible pairs of equations deriving from (3.5) are linearly independent and can serve as basic

sub-constraints, see Section 2.3.2. Accordingly, one can form three AML cost functions cor-

responding to the three sub-constraint vectors. In addition, one can also form an AML cost

function based on all three constraints, as described in Section 2.3.3.

3.1.3 Normalised algebraic least-squares estimate

Four different ALS estimates of a homography can straightforwardly be evolved starting from

(3.4): three based on sub-constraint vectors and one derived from the full constraint vector. As

pointed out by Hartley [36], the accuracy of each of these estimates can be greatly enhanced if

image coordinates are normalised before the estimates are actually computed. Here we briefly

describe how to generate improved ALS estimates.

Let

m̌ = [m̌1, m̌2, 1]T =
1

n

n∑

i=1

mi,

m̌′ = [m̌′
1, m̌

′
2, 1]T =

1

n

n∑

i=1

m′
i

be thecentroidsand let

s =
[ 1

2n

n∑

i=1

(ui − m̌1)
2 + (vi − m̌2)

2
]1/2

,

s′ =
[ 1

2n

n∑

i=1

(u′i − m̌′
1)

2 + (v′i − m̌′
2)

2
]1/2

be thescalesof themi = [ui, vi, 1]T and them′
i = [u′i, v

′
i, 1]T, respectively. Following Hartley

[36], define thenormaliseddata by

m̃i = [(ui − m̌1)/s, (vi − m̌2)/s, 1]T,

m̃′
i = [(u′i − m̌′

1)/s
′, (v′i − m̌′

2)/s
′, 1]T.
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This amounts to setting̃mi = Tmi andm̃′
i = T′m′

i, where

T =



s−1 0 −s−1m̌1

0 s−1 −s−1m̌2

0 0 1


 and T

′ =



s′−1 0 −s′−1m̌′

1

0 s′−1 −s′−1m̌′
2

0 0 1


 . (3.6)

Let x̃i = [ũi, ṽi, ũ
′
i, ṽ

′
i]

T be the result of concatenation ofm̃i andm̃′
i. Fixing a particular ALS

method, letH̃ALS be the ALS homography estimate based on thex̃i. Then thenormalised

algebraic least-squares(NALS) estimate ofH, ĤNALS, is defined bŷHNALS = T′−1H̃ALST. This

estimate is the sought-after enhanced version ofĤALS.

3.2 Experimental evaluation

The remaining part of this chapter is now dedicated to the development and analysis of tests on

homography computation.

3.2.1 Experiments with synthetic image data

Repeated experiments were performed in order to collect results of statistical significance. The

regime adopted was to generate a planar scene visible by two perspective cameras and project

the scene points onto two500 × 500 pixel images to provide “true” matches. Each image point

was then perturbed by homogeneous Gaussian noise of preset level and the resulting noise-

contaminated pairs of corresponding points were used as input to several algorithms.

Scene and camera set-up

The development of a scene and camera set-up for our experimentation relied heavily upon

the formula for a plane-induced homography, as given in (3.2). This formula is, as it were, a

powerful modelling tool. It enables one to choose freely the position of a plane in 3-D space

and permits realistic visualisation of the scene. In addition, with the aid of this formula, camera

centres and intrinsic parameters can be set adequately so that scene points, all lying in the plane,

are in front of the cameras and within the cameras’ fields of view.

In our experiments, the scene and cameras were arranged as follows. After fixing a world

coordinate system, we chose for a planar scene the plane parallel to thex–y plane, positioned6

units away from the world origin. We assumed that1 unit is equivalent to250 pixels.60 points

were randomly selected from the scene plane and then viewed by two perspective cameras

placed atC̃1 = [−1.5,−0.1, 0]T andC̃2 = [1.5, 0.1, 0]T. The right camera had a−1◦ rotation

about itsx-axis and a4◦ rotation about itsy-axis to look inwards at the scene. The left camera
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was subject to a5◦ rotation about itsy-axis. In radians, the rotation angles for the left camera

areα1 = 0 andβ1 = −5 × 180/π. For the right camera, the corresponding angle values

areα2 = −1 × 180/π andβ2 = 4 × 180/π. All rotations are counterclockwise about the

respective axes and relative to the camera coordinate system. For each view, a rotation was first

applied about they-axis followed by one about thex-axis (there was noz-axis rotation). The

composition of the two transformations gave the final rotation matrices

Ri =




1 0 0

0 cosαi − sinαi

0 sinαi cosαi







cos βi 0 sin βi

0 1 0

− sin βi 0 cos βi


 .

For both cameras, the focal lengthf was set to250 pixels which allowed a90◦ viewing angle.

The origin of the image coordinate system was set at the lower left corner of the image as in [37].

The principal point was assumed to be located in the centre of the image (x0 = 250, y0 = 250)

and the skew factors was taken to be zero. So, both cameras used the common calibration

matrix

K =



f s x0

0 f y0

0 0 1


 . (3.7)

The scene planeΠ had outward unit normaln = [0, 0, 1]T and offsetd = 1500. Figure 3.1

depicts the scene and camera setup just described. The projection of the scene onto a left and

right image provided true matches shown in Figure 3.2. The “true” homography relating the

noise-free image points was computed using (3.2) and the aforementioned information.

The need for a truncated g-inverse

We first demonstrate that if the constraint vectorf(x, θ) is built from all three scalar constraints

as per (3.5), then, in the presence of very small noise in the data, the matricesΣ(xi, θ) =

∂xf(xi, θ)Λxi
∂xf(xi, θ)

T cannot be reliably inverted with the standard inverse operation. We

also show that the problem is remedied when the 2-truncated Moore-Penrose g-inverse ofΣ,

Σ
+
2 , replaces the ordinary inverse. More specifically, we show that, with a particular estimate

θ̂ taken as a seed for FNS, ifΣ(xi, θ̂) is properly inverted for all data pointsxi, then FNS

converges and produces a genuine AML estimate. However, if the inverse of someΣ(xi, θ̂) is

ill-conditioned, then FNS is unable to produce a stable estimate.

We conducted several series of200 experiments, where ideal image data were corrupted by

small homogeneous Gaussian noise with standard deviationσ varying in steps between0 and

0.3 pixels. In each experiment we recorded whether or not FNS converged when allΣ(xi, θ̂ALS)

were inverted using the standard inverse, the Moore-Penrose g-inverse or the 2-truncated

Moore-Penrose g-inverse. Figure 3.3 provides histograms of the results.
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Figure 3.1. A synthetic planar scene of random points photographed by a pair of

cameras with non-parallel optical axes.
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Figure 3.2. Left and right noise-free images acquired by the two cameras shown in

Figure 3.1.

For a noise level less than0.01, the standard inverse applied to theΣ(xi, θ̂ALS) alwaysfailed

to produce a well-conditioned matrix and FNS diverged. As the noise level increased, the

Σ’s became more often invertible and FNS converged more frequently. In contrast, when the

2-truncated Moore–Penrose g-inverse was employed, theΣ’s based on three equations were

alwaysinvertible. The Moore–Penrose g-inverse yielded similar results to those obtained with
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Figure 3.3. Histograms showing the number of times FNS converged over 200 trials

at several small noise levels when all Σ(xi, θ̂ALS) were derived from: (a)

all three constraint vectors; (b) any choice of two constraint vectors.

the 2-truncated version, which is not surprising given the fact that the MATLAB implementation

of the Moore–Penrose g-inverse involves truncation of small singular values. On the other hand,

for any choice of pairs of equations of (3.5), theΣ’s were always invertible irrespective of the

inverse function used or the noise level, and FNS converged to a genuine AML estimate every

time.

In each experiment we also tested whether the inversions of theΣ’s were affected by the pa-

rameter estimate used. More specifically, we invertedΣ(xi, θ̂NALS) andΣ(xi, θ̂
u
AML

1−2) with

the three previously described inverse functions; hereθ̂u
AML

1−2 is the AML estimate obtained

by choosing the first two equations of (3.5). Results were similar to those shown in Figure 3.3,

meaning that the inversion of theΣ’s does not depend on the parameter estimate but rather is an

intrinsic characteristic of theΣ’s.

Performance evaluation

We now present the results of comparative tests carried out toevaluate the accuracy of various

AML estimates. The covariances of data were assumed to be the default4 × 4 identity matrix

(Λxi
= I4×4 for all i) corresponding to isotropic homogeneous noise in image point measure-

ment. The basic estimation methods considered were:

• ALS = Algebraic Least Squares,

• NALS = Normalised Algebraic Least Squares,
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• FNS = Fundamental Numerical Scheme,

• HEIV = Heteroscedastic Errors-In-Variables scheme,

• GS = Gold Standard.

To describe the GS method, we first note that, with the default covariances, the maximum

likelihood cost function given in (2.10) simplifies to

JML(θ;x1, . . . ,xn) =

n∑

i=1

‖xi − xθ
i ‖2. (3.8)

Recalling thatxi = [ui, vi, u
′
i, v

′
i] andxθ

i = [uθ
i , v

θ
i , u

′θ
i , v

′θ
i ] are the concatenation ofmi =

[ui, vi, 1]T andmi = [u′i, v
′
i, 1]T, andmθ

i = [uθ
i , v

θ
i , 1]T andm′θ

i = [u′θi , v
′θ
i , 1]T, respectively,

we see that (3.8) can be written as

JML(θ;x1, . . . ,xn) =
n∑

i=1

(ui − uθ
i )

2 + (vi − vθ
i )

2 + (u′i − u′θi )2 + (v′i − v′θi )2

=

n∑

i=1

d(mi,m
θ
i )

2 + d(m′
i,m

′θ
i )2,

(3.9)

whered(a,b) is the Euclidean distance between the pointsa andb expressed in inhomoge-

neous coordinates. The right-hand side of (3.9) is the familiarreprojection error. GS is an

advanced method [37] for minimising the expression given in (3.9). The scheme seeks to min-

imise
∑n

i=1 d(mi, m̂i)
2 + d(m′

i, m̂
′
i)

2 over all pointsm̂i and matriceŝH, with them̂′
i uniquely

determined bŷm′
i ≃ Ĥm̂i. Our implementation of GS uses the Levenberg-Marquardt algorithm

to carry out the minimisation.

FNS and HEIV minimised an AML cost function which incorporated the 2-truncated Moore–

Penrose g-inverse function when the full system (3.5) was used or the standard inverse function

for any combination of two equations. Both FNS and HEIV estimates were obtained using

the stable versions of the algorithms as described in Section 2.2.6 or [18]. The three itera-

tive schemes were initialised witĥθNALS and operated on raw image data (no Hartley data

normalisation applied). It should also be noted that the iterative methods were supplied with

similar stopping conditions so as to enable fair comparison.

In each of200 experiments, one ML estimate was computed as well as four sets of ALS, NALS,

AML, and HEIV estimates, each set comprising four different estimates corresponding to the

selection of either all three equations of (3.5) or any particular combination of two equations.

Figure 3.4 shows the average values of the AML cost function based on three constraint vectors

and involving the 2-truncated Moore–Penrose g-inverse, attained at various types of estimate.

Our tests revealed that, when evaluated at the estimates delivered by the iterative schemes, the

average values ofJAML based on three equations, the average values ofJAML based on any

combination of two equations, and the average values ofJML are practically identical.
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Figure 3.4. Cost values of the JAML function based on three constraint vectors and

a 2-truncated g-inverse for: (a) very small noise levels; (b) larger noise

levels.

For illustrative purposes, we provide tables of the average performance of the methods when

the data were corrupted with1 pixel of noise.

Table 3.1 shows that the fourJAML cost functions achieved very similar values when evaluated

at their corresponding minimisers.

Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 113.28 113.28 113.28 113.28

ALS 146.38 115.44 247.08 407.74

NALS 114.99 113.29 117.90 119.76

HEIV 113.28 113.28 113.28 113.28

FNS 113.28 113.28 113.28 113.28

Table 3.1. Average JAML cost values for various selection of equations.

On the other hand, Table 3.2 presents the cost values of one particularJAML function evaluated

at the four AML estimates. It is seen that each estimate yielded the same cost value. This

observation was typical, irrespective of which one of the four AML cost function was selected.

Perhaps the most critical test came from using the maximum likelihood function,JML. For

an estimatêθ obtained by a method other than GS,JML(θ̂) was calculated by minimising
∑n

i=1 d(mi, m̂i)
2 + d(m′

i, m̂
′
i)

2 over all pointsm̂i, with the m̂′
i uniquely determined by the

relationm̂′
i ≃ Ĥm̂i andĤ, representinĝθ, being kept fixed. Note the difference with GS where

the m̂i and Ĥ were allowed to vary simultaneously. Inspecting Table 3.3, we see that FNS
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Homography equations

Function 1 − 2 − 3 1 − 2 1 − 3 2 − 3

J1−2
AML 113.28 113.28 113.28 113.28

Table 3.2. Average cost values of JAML based on the first two equations of

(3.5) and standard inverse.

estimates produced very competitive cost values in comparison to the GS estimate. Now, if

Table 3.1 is re-examined, it can be observed thatJAML exactly approximatedJML for all types

of iterative and non-iterative estimates. Note also that the values of the AML (or ML) function

revealed that the data normalisation in the NALS method provided a significant advantage com-

pared to plain ALS. For any combination of equations, the cost values were much lower for the

NALS estimates than the ALS ones, and relatively close to that of GS.

Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 113.28

ALS 146.38 115.44 247.08 407.74

NALS 114.99 113.29 117.90 119.76

HEIV 113.28 113.28 113.28 113.28

FNS 113.28 113.28 113.28 113.28

Table 3.3. Average JML cost values for simulated data.

A timing test is presented in Table 3.4. Unsurprisingly, GS turned out to be by far the slowest

of the methods. While it may have been speeded up via the incorporation of sparse-matrix

techniques, it was intrinsically slow given the high-dimensionality of its search strategy.

Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 1.7

ALS 0.004 0.004 0.004 0.004

NALS 0.004 0.004 0.004 0.005

HEIV 0.066 0.049 0.049 0.050

FNS 0.093 0.067 0.067 0.067

Table 3.4. Average computation time per homography (in seconds).
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3.2.2 Experiments with real image data

Three sequences of images were acquired by rotating a camera about its centre and correspond-

ing points were identified manually. For each sequence, we computed a homography between

each pair of consecutive images using five algorithms: ALS, NALS, HEIV, FNS, and GS. As

in the simulated experiments of Section 3.2.1, one ML estimate and four sets of ALS, NALS,

AML, and HEIV estimates were computed every time, each set comprising four different es-

timates corresponding to the selection of either all three equations of (3.5) or any particular

combination of two equations.

To assess the quality of the various homographies,JML andJAML cost values were evaluated

for the obtained estimates. The algorithms’ computation time and number of iterations were

also recorded. The three iterative schemes were set as in our synthetic experiments. Note

that their timing did not include the initialisation stage. Here, we only report the results for

the first homography of each sequence, that is the one computed between the first two views,

because the same observations could be made for homographies relating other pairs of images.

As illustration, we have used the homographies computed with FNS III (forJAML based on all

three equations) to compose panoramic mosaics of the sequences.

IMAX theatre sequence

The three images shown in Figure 3.5 were used to compute a homography. Each input image

is 680 × 450 pixels in size. Starting from the leftmost image, consecutive pairs of images have

258 and173 matches, respectively.

Figure 3.5. Images of the IMAX theatre sequence.

Numerous contemporary vision applications require real-time processing. To check the poten-

tial suitability of FNS for such tasks, another performance indicator that we have examined was

the convergence rate of FNS. The convergence rate of an iterative method may be assessed by

calculating the relative error

ek =
‖θk − θ∗‖

‖θk‖
,
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whereθk stands for a parameter estimate at stepk andθ∗ is a local minimiser of the cost

function underlying the problem of interest. In our tests,θ∗ was taken as the final estimate

produced by the FNS method. An algorithm shows linear convergence provided

ek+1 ≤ a ek whenek is small; 0 < a < 1.

Superlinear convergence is recognised when

ek+1/ek → 0 for k → ∞,

and quadratic convergence if

ek+1 = O(e2k) whenek is small.

Table 3.5 provides information about each iteration step in the FNS minimisation process by

listing theJAML residual, the relative norm difference between two successive iterates, and

the convergence rate. These results are typical whether all three equations (FNS III) or any two

equations (FNS II) were used to compute an AML estimate. It can be seen that the AML residual

and the norm difference decreased rapidly. The values of the relative error (third column) indi-

cate that FNS converged quadratically to the solution.

Step JAML ‖θk+1 − θk‖ ek+1/ek

0 224.80 133 1.50 × 10−6

1 197.76 2.00 × 10−4 1.40 × 10−3

2 197.74 2.80 × 10−7 0.00

Table 3.5. FNS convergence characteristics when computing the first

homography in the IMAX sequence. Step 0 gives the initial values

for the seed θ0 = θ̂NALS.

When comparing the performance of several methods, Table 3.6confirms that FNS and HEIV

produced estimates on par with GS. Notice that all four FNS estimates yielded almost identical

residual values. TheJML cost was computed for each estimate as described in Section 3.2.1. The

values were found to match those of their AML counterparts given in Table 3.6. Surprisingly,

the NALS method generated a good estimate only when the first two equations of (3.5) were

used. For other selections of equations, the NALS solutions were of inferior quality to those of

ALS.

GS performed five iterations in total whereas both FNS and HEIV did only two (no matter

if two or three equations were employed in the estimation). Timings to compute the various

homographies appear in Table 3.7.
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Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 197.74 197.74 197.74 197.74

ALS 215.60 198.83 292.15 217.65

NALS 224.80 197.76 301.67 226.45

HEIV 197.74 197.74 197.73 197.74

FNS 197.74 197.74 197.73 197.74

Table 3.6. JAML residuals for several homographies between the first two

images.

Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 46.34

ALS 0.06 0.03 0.03 0.03

NALS 0.03 0.05 0.05 0.03

HEIV 0.36 0.25 0.23 0.23

FNS 0.51 0.33 0.31 0.33

Table 3.7. Computation time for various homographies (in seconds).

To give a visual appreciation of the accuracy of the AML estimates, we assembled a panorama

using the computed homographies derived from all three equations of (3.5), see Figure 3.6.

Figure 3.6. IMAX theatre panoramic mosaic.
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Adelaide convention centre sequence

Figure 3.7 shows the images for this sequence. Each image is640 × 426 pixels in size. Con-

secutive pairs of images have50 and54 matches, respectively.

Figure 3.7. An Adelaide convention centre sequence.

Some information about each step of FNS III was recorded as themethod computed the first

homography in this sequence, see Table 3.8. Choosing any pairs of equations (as in FNS II)

yielded similar results. Convergence was again quadratic and so only a couple of iterations

were needed to reach a solution.

Step JAML ‖θk+1 − θk‖ ek+1/ek

0 116.55 115 3.23 × 10−5

1 107.68 3.69 × 10−3 7.60 × 10−3

2 107.62 2.82 × 10−5 0.00

Table 3.8. FNS convergence characteristics when computing the first

homography in the Adelaide convention centre sequence. Step 0

gives the initial values for the seed θ0 = θ̂NALS.

Table 3.9 confirms that FNS generated as good estimates as GS and HEIV. Note that all four

AML estimates yielded closely identical residual values. The value of the reprojection error

(from theJML function) was also checked and found to match its corresponding AML value for

each computed estimate. NALS again performed poorer than ALS except when the first two

equations of (3.5) were employed. Using a reduced set of equations permits a fractional gain in

computation time (Table 3.10) without affecting the accuracy of the solution.

Figure 3.8 shows the mosaic composed from the input images of Figure 3.7.
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Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 107.63 107.63 107.63 107.63

ALS 112.26 117.36 117.80 112.16

NALS 116.57 107.63 208.48 121.71

HEIV 107.62 107.62 107.62 107.61

FNS 107.62 107.62 107.62 107.61

Table 3.9. JAML residuals for several homographies between the first two

images.

Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 1.61

ALS 0.02 0.01 0.00 0.01

NALS 0.02 0.01 0.01 0.00

HEIV 0.09 0.06 0.06 0.05

FNS 0.11 0.06 0.06 0.06

Table 3.10. Computation time for various homographies (in seconds).

Figure 3.8. Panorama of the Adelaide convention centre.

Page 59



3.2 Experimental evaluation

War memorial sequence

The final image sequence considered is shown in Figure 3.9. Each image is429× 640 pixels in

size. Consecutive pairs of images have35, 80, and67 matches, respectively.

Figure 3.9. Images of the war memorial sequence.

As in previous example sequences, Table 3.11 looks at the behaviour of FNS III when com-

puting the homography between the first two views. Choosing pairs of equations again yielded

very similar results to the three-equations case. Only two iterations were necessary for FNS III

to attain a solution. The method showed a quadratic convergence rate when applied to these

image data.

Step JAML ‖θk+1 − θk‖ ek+1/ek

0 125.58 125 1.28 × 10−5

1 108.14 1.56 × 10−3 2.39 × 10−2

2 108.12 3.83 × 10−5 0.00

Table 3.11. FNS convergence characteristics when computing the first

homography in the war memorial sequence. Step 0 gives the

initial values for the seed θ0 = θ̂NALS.

Compared to other iterative methods, FNS produced estimatesof similar quality to those of

HEIV, and most importantly, to those of GS, see Table 3.12. TheJML values were also found

to match those obtained withJAML revealing once more thatJAML is a good approximation to

JML. For this particular sequence, NALS always improved on the results of ALS irrespectively

of the combination of equations chosen.

In terms of computation time (Table 3.13), HEIV and FNS were the most effective schemes to

generate fast solutions while reaching the accuracy of a proper maximum likelihood one.

Figure 3.10 shows the mosaic composed from the input images of Figure 3.9.
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Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 108.17 108.17 108.17 108.17

ALS 284.90 108.83 285.19 586.43

NALS 125.62 108.14 143.95 256.17

HEIV 108.17 108.12 108.14 108.03

FNS 108.12 108.12 108.14 108.03

Table 3.12. JAML residuals for several homographies between the first two

images.

Homography equations

Methods 1 − 2 − 3 1 − 2 1 − 3 2 − 3

GS 1.08

ALS 0.05 0.01 0.00 0.00

NALS 0.02 0.00 0.01 0.01

HEIV 0.07 0.05 0.04 0.04

FNS 0.10 0.05 0.04 0.04

Table 3.13. Computation time for various homographies (in seconds).

Figure 3.10. War memorial panoramic mosaic.
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3.3 Visualising the AML cost function

3.3 Visualising the AML cost function

This section aims at visualising the form of theJAML cost function in vicinity of the AML esti-

mate. The overall plot of the function and its slices are shown through specifically constructed

parameter vectors. This analysis can be seen as a safety measure to verify that the solution

produced by FNS is indeed the minimiser of the AML cost function. We have decided to use

the AML estimate relating the first two images in the Adelaide convention centre sequence to

carry out the work. The graphs of other estimates were generated and found to exhibit similar

characteristics.

3.3.1 Bracketing the AML minimiser

To see the shape ofJAML aroundθ̂u
AML a new parameter vector̃θ may be defined as

θ̃(α) = (1 − α) θ̂u
AML + α θ̂NALS.

Note thatJAML(θ̂u
AML), the cost value at the estimated AML solution, is obtained whenα = 0.

Here, both vectorŝθu
AML andθ̂NALS are set to unit norm. Choosing the range ofα values must

be done with care. One might naively think that the minimiserθ̂u
AML could be bracketed in a

range as small as(1 − ε) θ̂u
AML < θ̂u

AML < (1 + ε) θ̂u
AML, whereε is a tolerance value close

to machine floating-point precision. This is not the case! The shape of the AML function near

θ̂u
AML is mandated by its Taylor expansion

JAML(θ̃) ≈ JAML(θ̂u
AML) +

1

2
θ̃

T

H(θ̂u
AML)θ̃.

If the required toleranceε is too small, there will be no gain in bracketingθ̂u
AML closer [92, Chap.

10]. We now outline a procedure to set upper and lower bounds onα.

Suppose we wish to have a point at a distancek from θ̂u
AML, that is,

‖ [(1 − α)θ̂u
AML + αθ̂NALS] − θ̂u

AML ‖ = k

‖ α(θ̂NALS − θ̂u
AML) ‖ = k

|α| ‖θ̂NALS − θ̂u
AML‖ = k

|α| =
k

‖θ̂NALS − θ̂u
AML‖

so

−k
‖θ̂NALS − θ̂u

AML‖
≤ α ≤ k

‖θ̂NALS − θ̂u
AML‖

. (3.10)

Page 62



Chapter 3 Application I: Homography Matrix Estimation

Let

f(α) = JAML(θ̃(α)) (3.11)

be the graph ofJAML in vicinity of the AML estimate. The form off is shown in Figure 3.11

wherek = 0.11 andα belongs to the interval[−9.6×10−4, 9.6×10−4] using the bracketing rule

(3.10). For this range ofα values, the difference in function values between any two successive

points on the curve was very small, about5 × 10−5, and matched the termination condition

used to computêθu
AML. As expected, the shape ofJAML turned out to be a parabola in the

neighbourhood of̂θu
AML, which confirms the quadratic nature of the function. Clearly,θ̂u

AML is

the lowest point on the curve, and therefore the minimiser ofJAML.

Figure 3.11. Graph of f(α).

It is possible to view 2-D cross-sections of the cost functionby varying one component of̃θ and

fixing others. The search space for the homography fitting problem is9-dimensional so there

are nine graphs, one for each element ofθ̃. Thej-th graph shows the value ofJAML(θ̃) where

thek-th component of̃θ is given by

θ̃
k
(α) =





(1 − α) θ̂u
AML + α θ̂NALS if k = j,

θ̂u
AML otherwise.

(3.12)

The resulting cross-sections are presented in Figure 3.12. The same value ofk = 0.11 was also

used here to find a range forα automatically. Each graph shows a parabola with minimum at

α = 0, that is, wherêθu
AML is located.
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3.3 Visualising the AML cost function

Figure 3.12. Cross-sections of f(α).

3.3.2 Examining the derivative of the AML cost function

We extend the previous work to study the derivative of the AML cost function.

Given a vector̃θ satisfying (3.12), the derivative off can be obtained by applying the chain

rule to the right-hand side of (3.11), that is,

f ′(α) = ∂θ̃JAML(θ̃)∂αθ̃,

hence,

f ′(α) = ∂θ̃JAML(θ̃)(θ̂NALS − θ̂u
AML), (3.13)

where

∂θ̃JAML(θ̃) = 2(Xθ̃θ̃)
T

is the Jacobian ofJAML at θ̃ obtained from (2.20). We chose to plotJAML based on all three

homography equations, soXθ̃ = Mθ̃ − Nθ̃, whereMθ̃ andNθ̃ were computed from (2.31) with the

rankr set to2.
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The graph of the AML cost function derivative is shown in Figure 3.13 wheref ′(α) was written

asdf/dα for clarity. Since the minimum of a function is an inflection point, the derivative

changes sign. To locate this point easily on the graph, we have plotted the absolute value of the

function derivatives. Upon examination, we see that an inflection occurs atα = 0, that is at

θ̂u
AML, the minimiser ofJAML.

Figure 3.13. Graph of the absolute value of f ′(α).

Another formula should be used if we want to examine 2-D cross-sections of the AML cost

function derivative. At the difference with (3.13) the derivative applies to a component of the

vector θ̃ and not the whole vector. The expression for the Jacobian∂θ̃JAML(θ̃) remains the

same, however∂αθ̃ has nowk-th component

∂αθ̃
k
(α) =




θ̂NALS − θ̂u

AML if k = j,

0 otherwise.

Figure 3.14 shows the cross-sections of the absolute value off ′(α). The minimum on each

graph occurs at̂θu
AML whenα = 0.
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Figure 3.14. Cross-sections of the absolute value of f ′(α).

3.4 Conclusion

The aim of this chapter was to demonstrate empirically the validity of the theory put forward

when developing the Fundamental Numerical Schemes in Chapter 2. Choosing the homography

estimation model, it was shown that the difficulty stemming from the presence of ill-conditioned

matrices in the standard AML cost function can be eliminated if the ordinary inverses of the ill-

conditioned matrices are replaced by generalised inverses that are continuous. Tests revealed

that no specific generalised inverse, as long as it is continuous, is particularly favoured as far as

the accuracy of the solution is concerned. This finding lent a particular prominence to cost func-

tions involving generalised inverses that correspond to a minimum number of linearly indepen-

dent equations, as these functions are differentiable and can be optimised with well-established

methods of the likes of FNS or HEIV. It was seen that the modified FNS methods, FNS II and

FNS III, produced solutions of similar accuracy and matched that of a maximum likelihood

estimate while being faster techniques than GS.
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Chapter 4

Geometry and Algebra of
the Trifocal Tensor

I
f we picture the same scene from different viewpoints, we expect the various images

to be related in some ways, even if the position, orientation and nature of the cameras

differ a lot. The aim of this chapter is to expose the underlying relationships linking three

partially overlapping views of a scene. It turns out that a certain valence-3 tensor, the trifocal

tensor, serves as an adequate descriptor of the inter-image geometry. This tensor allows the

recovery of the scene up to a projective transformation in 3-D and is computable from image

correspondences alone without requiring knowledge of the motion between views or calibration

of the cameras.

The higher accuracy achieved by using the trifocal tensor of three views compared to a funda-

mental matrix of a pair of views makes it a powerful tool especially in the domain of structure-

and-motion recovery. Applications include accurate camera motion estimation [94, 96], radial

distortion [85], augmented reality [95, 99], camera calibration and self-calibration [2, 22, 34],

robot navigation [20], scene reconstruction [6, 32, 67, 71], motion segmentation [87, 90, 97],

image stabilization [74], novel view synthesis [3], and more.

At the beginning, we briefly expose the perspective camera model and the epipolar geometry

which underlie the intrinsic projective geometry of one and two views of a scene respectively.

The rest of this chapter is then dedicated to the study of three-view geometry and the presenta-

tion of the trifocal tensor. This tensor will be decomposed into smaller, matricial objects called

the tensorial slices. These slices are effectively matrices embodying certain geometric opera-

tions between canonical basis vectors in the images. We will show that these matrices provide a

genuine canonical representation of the trifocal geometry because any general inter-view map-

ping can be expressed as their linear combination. The intrinsic properties of the slices will

then be turned into useful sets of algebraic constraints that must be satisfied to guarantee a con-

sistency between the computed tensor and the underlying trifocal geometry. Our investigation
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of the internal trifocal constraints will primarily review the contributions of Hartley, Faugeras,

Canterakis, and Ressl on this topic.

An overlap with existing literature is inevitable, however the main value of this chapter is to

show a systematic way to derive the tensorial slices and to examine the geometric and algebraic

properties of the trifocal tensor by gradually contracting it with one, two, and three image

features. The most tangible contribution comes from the work on expressing the various internal

constraints in one common framework, the one proposed by Hartley [37], in order to see and

understand these constraints from a unified viewpoint.

4.1 Monocular vision and stereo vision

The first section introduces the framework of projective geometry through a presentation of the

single image geometry and the perspective camera model. This is extended in the next section

where stereo vision is tackled—the case when two perspective views of a scene are available.

The first two sections review some of the key concepts while establishing the projective frame-

work necessary to discuss the third and main part of this chapter about trinocular vision.

4.1.1 Single view and the perspective camera

A view is a two-dimensional snapshot of the world taken by a camera at a given time. Mathe-

matically, a camera is a genuine geometric device which constructs planar images of the three-

dimensional world by a projection through an optical centre. In the sequel, an image is consid-

ered as a two-dimensional projective spaceP2 and the scene as a three-dimensional projective

spaceP3. The phenomenon of projection from 3-D to 2-D can be modelled by the action of a

perspectivecamera expressed in the form of a3 × 4 matrix

P = KR[I3×3 | −C̃], (4.1)

whereK is a3 × 3 calibration matrix as introduced in (3.7) andR is a3 × 3 matrix representing

counterclockwise rotations about the three principal axes with origin the optical centreC̃ of the

camera. The same projection matrix can be written as

P =



Γ1

Γ2

Γ3


 , (4.2)

whereΓi is thei-th row vector ofP. Geometrically, each of these vectors represents the coordi-

nates of a plane in 3-D space. These three planes are called theprincipal planes, or projection
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Chapter 4 Geometry and Algebra of the Trifocal Tensor

planes, of cameraP and are depicted in Figure 4.2(b). These planes will play an important role

when deriving internal constraints of the trifocal tensor. With matrixP, the central projection

from a scene pointM to its image pointm, both represented by homogeneous vectors, is given

by

m ≃ PM.

The symbol≃ indicates that the equality is true up to a non-zero scalar factor. Note that pro-

jection matrixP and world pointM are always defined up to a4 × 4 non-singular homography

matrix transformationH, often referred to as the3-D projective ambiguity, which leave the

image point unchanged

m ≃ PM ≃ PH
−1
HM ≃ P

′M′. (4.3)

These relations show that different pairs of projection and world point can give the same image

point if they transform according toP′ ≃ PH−1 andM′ ≃ HM. The remaining part of this section

is devoted to the study of several properties of principal planes which will become relevant in

Section 4.4.

First, note that the back-projection of an image linel is a planeΠ defined by the camera centre

C̃ and the linel as shown in Figure 4.1.

C̃

Π

m

l
M

Figure 4.1. An image line back-projects to a plane in space.

A scene pointM lies on a planeΠ of homogeneous coordinatesπl if and only if MTπl = 0.

Under this assumption the projected pointm ≃ PM belongs to the image linel. This means

thatmTl = MTPTl = 0, which suggests that the projection planeΠ of line l has coordinates

πl = P
Tl. (4.4)

We now show a particular application of this result. Consider the length-3 canonical basis

vectorsei (i = 1, 2, 3) of R3, which have theiri-th entry unital and all other entries zero.

Suppose the linel in (4.4) has homogeneous coordinates given by one of these vectors. Back-

projectingl gives the plane

ΓT

i = P
Tei.
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4.1 Monocular vision and stereo vision

This simple arithmetic demonstrates that the canonical vectorei interpreted as an image line be-

longs to the principal planeΓi, or alternatively, the back-projection of the lineei is the principal

planeΓi. This is summarised in the next proposition.

Proposition 1 The principal planeΓi intersects the image plane in the line with homogeneous

coordinates given by the vectorei in the canonical basis ofR3.

The optical centre is the unique pointC̃ which satisfiesP C̃ = 0. Therefore, this point lies at

the intersection of the three planesΓi. In the Grassmann-Cayley algebra, the intersection of

projective subspaces is defined by the meet operator△ [5,24,77]. So, the optical centrẽC may

be computed asΓ1 △Γ2 △Γ3, see Figure 4.2(b).

It is essential for later work to also consider the intersection of pairs of projection planes. These

intersections give rise to three special world lines,

R1 = Γ2 △Γ3, R2 = Γ3 △Γ1, R3 = Γ1 △Γ2, (4.5)

called theprincipal rays, or projection rays, of cameraP. These three lines meet at the optical

centreC̃ and exhibit the following property.

Proposition 2 The principal rayRi intersects the image plane at the point with homogeneous

coordinates given by the vectorei in the canonical basis ofR3.

Proof. A general scene pointM, distinct from the optical centrẽC, belongs to thei-th princi-

pal planeΓi if and only if MTΓi = 0. Thus, the image pointm ≃ PM has itsi-th coordinate

equal to zero. Suppose that the zero entries of basis vectorei are designated by the indicesj

andk, thei-index accounting for the unital entry, such thati, j, k take distinct values in the set

{1, 2, 3}. With this convention, it follows that vectorei, viewed as an image point, corresponds

to the projection of a 3-D pointM belonging to both principal planesΓj andΓk since itsj and

k entries are zero. WithM 6= C̃, this situation is only possible ifM lies on the intersection of

both planes, that is, the principal rayRi by definition.�

An alternative understanding of this propositon is that the optical ray back-projected from the

camera centrẽC through the image pointei is the principal rayRi. Figure 4.2 illustrates how

the geometrical entities presented in Propositions 1 and 2 arise in the camera system.

The geometric interpretations of the canonical vectorsei are listed in Table 4.1. Although these

considerations seem rather trivial at this stage, they will be important in Section 4.4 as they

underpin the geometric properties of the tensorial slices.
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Image

R2

R1

R3

e3

C̃

(a)

Γ1

Γ3

R3

R2

R1

Γ2

C̃

(b)

Figure 4.2. The perspective camera model with (a) principal rays Ri;

(b) principal planes Γi.

Vector Image point Image line

e1 = [1, 0, 0]T on the line R1 on the plane Γ1

e2 = [0, 1, 0]T on the line R2 on the plane Γ2

e3 = [0, 0, 1]T on the line R3 on the plane Γ3

Table 4.1. Geometric interpretation of the canonical basis vectors of R
3.

4.1.2 Stereo vision and the fundamental matrix

A ubiquitous task in computer vision is the computation of theprojections that gave rise to a

sequence of images. Often it is assumed that the sequence is acquired by a single perspective

camera moving along some trajectory in space. Stereo vision is the first instance of multiple

view geometry, where a scene is pictured by two cameras. The inherent geometric constraints

between image points across the two views are described by the so-calledepipolar geometry.

Assuming a perspective camera model as introduced in the previous section, suppose that the

left and right images arise from projection matricesP andP′ with origin the camera centres̃C

andC̃′ respectively. A homogeneous 3-D pointM is projected onto the left image plane withP

to give an image pointm, and onto the right image withP′ to givem′. The pair of image points

m andm′ are said to be in correspondence as they are both projections of the same 3-D point

M. This is shown in Figure 4.3.

The projection in one view of the camera centre of the other view is a point known as the

epipole. We define the left-image epipole ase ≃ PC̃′ and the right-image one ase′ ≃ P′C̃. The

epipoles may or may not lie in the images depending on the spatial distribution of the cameras.

The optical ray going through camera centreC̃ and image pointm, denoted(C̃m), projects
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l′

C̃′
e

m

l

m′

C̃

M

e′

Figure 4.3. Epipolar geometry between two views.

into a line l′ in the second view, theepipolar lineassociated withm. Since this line is the

projection of bothC̃ andm, l′ joins the pointm′ and the epipolee′. A similar relation applies

to the epipolar linel in the first view which is the image of the ray(C̃′m′) joining the pointm

and epipolee.

The next two sections will present an algebraic derivation of the fundamental matrix which

embodies the mapping between the pointm and its epipolar linel′. Elements in this derivation

will come useful later in the chapter.

Point transfer via a plane

Consider a planeΠ in 3-D space not passing through either of the camera centresC̃ andC̃′.

The optical ray back-projected from̃C through the image pointm meets the planeΠ in a point

M, which is then projected into a pointm′ in the second image. This procedure is known as

a point transfer via the planeΠ and is depicted in Figure 4.4. SinceM lies on the optical ray

throughm, the projected pointm′ must lie on the epipolar linel′ corresponding to the image of

that ray. When both pointsm andm′ are in homogeneous coordinates, the mapping fromm to

m′ is given by a3 × 3 homographyHΠ induced by the planeΠ such thatm′ ≃ HΠm.

Constructing epipolar lines

Because the exact depth of world pointM is not known, it is not possible to predict the position

of the correspondentm′ of m. However, geometrically, the location ofM is not arbitrary:M

has to lie on the optical ray(C̃m) and thereforem′ is on the projection of that ray in the second

image, the epipolar linel′. Since the epipolee′ also belongs tol′, we can write this line as

l′ ≃ e′ × m′ ≃ [e′]×m′, (4.6)

where the definition and properties of the matrix[.]× can be found in Appendix D. Substituting

m′ with HΠm, we obtain

l′ ≃ [e′]×HΠm.
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l′

C̃′
eC̃

m′

e′

m

M

Π

HΠ

Figure 4.4. Two-view point transfer via a plane in space.

The mapping

F21 ≃ [e′]×HΠ

is a3 × 3 matrix of rank2 termed thefundamental matrix. It follows that

l′ ≃ F21m. (4.7)

With m′ being onl′, we havem′Tl′ = 0 and theepipolar constraint

m′T
F21m = 0. (4.8)

Interchanging the role of the images, a right-image pointm′ has associated epipolar linel ≃
F12m

′, whereF12 is the fundamental matrix from view2 to view1, and epipolar constraint

mT
F12m

′ = 0.

Comparison of this expression with (4.8) shows that one equation is the transpose of the other,

therefore

F21 = F
T

12. (4.9)

In practice, the epipolar constraint is a central element in many algorithms designed to accu-

rately estimate the fundamental matrix [17, 23, 36, 48, 59, 66, 86, 98]. Two compelling reasons

to solve for this matrix are that it reduces the search space form′ along the linel′ using (4.7)

and also that both scene projections can be retrieved from it.

It is worth noting that if only measurements data are available, then it is not possible to recover

the true projections that gave rise to the images. This is prevented by the inherent ambiguity

of 3-D space whereby projections are defined up to a common projective transformation as de-

scribed in (4.3). A standard technique to eliminate this problem is to set the projection matrices

in canonical formsuch that the first projection has the form

P̄ = [I3×3 | 0].
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ProjectionsP andP′ are always amenable to canonical form by carrying out the operationP̄ ≃
PH−1 andP̄′ ≃ P′H−1 for

H =

[
P

w

]
(4.10)

andw a non-zero row vector of length4. The matrixH is a4 × 4 matrix defined up to a scale

factor and so has15 degrees of freedom. Each projection matrix represents anuncalibrated

camera with11 degrees of freedom accounting for the12 elements of the interior and exterior

orientations modulo an overall scale. Because the same projective transformation applies to

each of the two projections, the degrees of freedom of two cameras are

11 × 2 − 15 = 7. (4.11)

This result may be generalised to an arbitrary number of cameras more than two.

Choosing the first projection in canonical form constrains the form of the second to comply to

the epipolar geometry. It can be checked in [7, Chap. 4] or [37, Chap. 8] that the following

proposition holds.

Proposition 3 WhenP = [I3×3 | 0] andP′ = [Q | q], then the fundamental matrix for such a

pair of projections is

F = [q]×Q. (4.12)

Conversely, ifP = [I3×3 | 0] andF = [q]×Q, then the second projection has the form

P
′ = [Q | q]. (4.13)

4.2 Trinocular vision and the trifocal tensor

Suppose that we acquire a third view of the same scene and labelthe images from left to right

by Ψ1 to Ψ3. It seems a priori sufficient to describe the geometry of three views, ortrifocal

geometry, from the perspective of two views by considering the epipolar geometry between each

of the three pairs of images. However, it turns out that the number of situations where the scene

points cannot be recovered grow rapidly and this causes problems to predict the location of some

image points. An interesting analysis of the restrictions of fundamental matrices to describe the

trifocal geometry is available in [24, Chap. 8]. The quest for a more global descriptor of the

trifocal geometry leads back to analysing the intrinsic relations between image features.

In difference to the case of two cameras, the richness of the trifocal geometry comes from

its capacity to capture line correspondences. Relations between triplets of image points or

combinations of lines and points spawn from the more general incidence between lines.
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Original work on line correspondences appeared in [82, 93] for the special case of calibrated

cameras and was further developed in [39] for the uncalibrated case.

In the sections that follow we present a standard derivation of the trifocal tensor edified on the

relations between a triplet of image lines and their corresponding world primitive. In addition,

we show three parameterisations of the tensor which will serve to derive techniques relevant to

its computation.

4.2.1 Parameterisation from three projections

The trifocal tensor naturally arises by considering triplets of lines in correspondence across the

images. Consider a world lineL imaged in three views in the linesl, l′, andl′′ as illustrated

in Figure 4.5. Each scene projection is defined up to a 3-D homography as seen in (4.3). This

implies that, if we knew the set of projections which gave rise to the imagesΨ1 to Ψ3, we could

apply a4 × 4 non-zero transformation in the style of (4.10) to obtain a set in canonical form

without changing the original images or their relationships. So, without loss of generality, we

may choose the camera projections for the three views as

P = [I3×3 | 0], P′ = [A | e′] = [aj
i ], andP′′ = [B | e′′] = [bki ]. (4.14)

Elementsaj
i andbki denote the entries(j, i) and(k, i) in the second and third projections respec-

tively. QuantitiesA andB are3×3 matrices describing infinite homographies (see Appendix B.2)

from the first to the second and third images respectively. Note that, with the first projection

in canonical form, the left camera centre expressed in homogeneous coordinates is given by

C̃ = [0, 0, 0, 1]T. So, we haveP′C̃ ≃ e′ andP′′C̃ ≃ e′′, that is, the fourth column of the second

and third projections readily provide the coordinates of the epipoles in these views.

In light of result (4.4), the three world planes obtained by back-projecting the camera centres

through their respective image lines have coordinates

π1 = P
Tl = [lT, 0]T,

π2 = P
′Tl′ = [aj

1l
′
j, a

j
2l

′
j, a

j
3l

′
j, a

j
4l

′
j ]

T,

π3 = P
′′Tl′′ = [bk1l

′′
k , b

k
1l

′′
k, b

k
3l

′′
k , b

k
4l

′′
k ]

T.

The above expressions make use of Einstein’s summation convention to the effect that a repeated

index which appears once as a superscript and once as a subscript implies summation over the

range of the index. For instance,aj
1l

′
j is short for

∑3
j=1 a

j
1l

′
j. This convention will be used

throughout this chapter.
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C̃′′

l

l′

l′′

L

C̃

C̃′

Figure 4.5. Lines l, l′, and l′′ are the images of a world line L into three distinct views.

In the classical case, three planes intersect in a 3-D point. The situation depicted in Figure 4.5

shows that the planes meet in space in a common lineL. This particular intersection constrains

the planes coordinates in a special way as exposed next.

LetM = λ1M1+λ2M2 be a world point on lineL whereM1,M2 are two linearly independent

points onL andλ1, λ2 two scalars. Such a pointM lies on all three planes so it satisfies the

relationsMTπ1 = MTπ2 = MTπ3 = 0. With the 4 × 3 matrix Z = [π1, π2, π3], these three

conditions can be written asMTZ = 0T, revealing thatZ has a two dimensional null-space

becauseMT

1 Z = 0T andMT

2 Z = 0T. Therefore, matrixZ has rank2 and so the coordinates of

the three planes must be linearly dependent. We may write

π1 = απ2 + βπ3,

for α, β scalars, which gives the coordinates ofl as

li = α(aj
i l

′
j) + β(bki l

′′
k). (4.15)

The last coordinate ofπ1 being zero, we have0 = α(aj
4l

′
j) + β(bk4l

′′
k), which is satisfied when

α ≃ (bk4l
′′
k) andβ ≃ −(aj

4l
′
j). Substituting these values in (4.15) and rearranging yields

li ≃ l′jl
′′
k(a

j
i b

k
4 − aj

4b
k
i ).

Defining the3 × 3 × 3 tensor

T jk
i = aj

ib
k
4 − aj

4b
k
i , i, j, k = 1, 2, 3, (4.16)

now gives

li ≃ l′jl
′′
kT jk

i . (4.17)
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Note that, in tensor notation, the order of the elements is not important, only the placement of

indices so the previous relation can also be written asli ≃ l′′kT jk
i l′j . The tensor introduced in

(4.16) is known in computer vision as thetrinocular or trifocal tensor. This equation provides

an explicit parameterisation in terms of the three image projections. Given the range of the

indicesi,j,k, the trifocal tensor is defined by27 scalar coefficients. A common visualisation of

this tensor is as a3× 3× 3 cube of numbers, as drawn in Figure 4.6. The tensorial elements on

the cube can be worked out by looking at the orientation of the coordinate system.

j

i

k

T 23
2

T 13
3T 21

1

T 33
1

Figure 4.6. A representation of the trifocal tensor as a cube of numbers.

It will be convenient in the sequel to operate on the tensorialcoefficients when they are assem-

bled in a vector. Since each index inT jk
i ranges from 1 to 3, we may list the elements using a

polynomial in base3. For instance, one possibility is to takeT jk
i for the(32i+ 3j+ k)-th entry

in a vectorθ. However, this rule predicts the first elementT 11
1 as the13-th entry in the vector

so we must substract12. In short, we adopt the convention

T jk
i = θ9i+3j+k−12. (4.18)

We conclude this section by outlining two different, but intimately related, techniques to derive

the trifocal tensor from three general projections, not necessarily assuming thatP = [I3×3 | 0].

One method relies on the formalism of Grassmann-Cayley algebra [24, 27]. In essence, this

method expresses the line relation (4.17) by the meet of principal planes originating from the

three images. This procedure relies on three3× 3 critical matrices, the trifocal matrices, which

implicitly define the trifocal tensor. Each entry in these matrices is obtained by calculating the

meet of four planes: two principal planes from the first view and one principal plane from the

second and third views. This particular choice of planes will be explained in Section 4.3.3.

Using definition (4.2), this is carried out by computing the4 × 4 determinant made from two

rows of the first projection and one row from the second and third projections. A remarkable fact

is that coefficientsT jk
i can be written directly in terms of these4×4 determinants. This method

describes the trifocal tensorexplicitly [40]. To summarise the argumentation, one method de-

rives the tensor indirectly, from geometric considerations, whereas the second does it directly,

from algebraic manipulations.
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4.2 Trinocular vision and the trifocal tensor

4.2.2 Parameterisation from two projections

The first projection being in the formP = [I3×3 | 0] may be discarded to leave a reduced

parameterisation which only considers the remaining projectionsP′ andP′′. The complete27-

dimensional parameterisation (4.18) can be curtailed to a24-dimensional one by vectorising the

second and third projections as in

β =

[
vec(P′)

vec(P′′)

]
. (4.19)

This parameterisation will be used in the implementation of most correction schemes proposed

in Section 2.5. Only Kanatani’s method does not exploit any parameterisation of the tensor

manifold as it operates with the full, unconstrained parameter vectorθ.

Now, notice that (4.16) provides a mapping from elements of the second and third projections

to the trifocal tensor. Let this mapping be defined by a functiong : R24 7→ R27 such that

g(β) = T , whereβ takes the form (4.19). This function is quadratic and its Jacobian is given

by the24 × 27 matrix

∂g

∂β
=




I3×3 ⊗ e′′T

I3×3 ⊗ e′′T

I3×3 ⊗ e′′T

I3×3 ⊗−bT

1 I3×3 ⊗−bT

2 I3×3 ⊗−bT

3

−e′T ⊗ I3×3

−e′T ⊗ I3×3

−e′T ⊗ I3×3

aT

1 ⊗ I3×3 aT

2 ⊗ I3×3 aT

3 ⊗ I3×3




, (4.20)

where the vectorsai,bi are thei-th columns of the projectionsP′, P′′, ande′, e′′ are the epipoles

in imagesΨ2,Ψ3 respectively. The position of zero elements has been left blank for clarity.

In some situations, the epipolese′ ande′′ may be known. This information yet allows another

parameterisation of the tensor. This time, we may define a linear transformationg̃ : R18 7→ R27

such that̃g(β̃) = T , with β̃ obtained by vectorising the inner3 × 3 matrices ofP′ andP′′ as in

β̃ =

[
vec(A)

vec(B)

]
. (4.21)

This partial paramameterisation (of a subset of the trifocal tensor manifold) is18-dimensional.

In this case, transformatioñg is given by a27×18 matrixE such thatT = E(e′, e′′)β̃, and since
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g̃ is linear,

E(e′, e′′) =

(
∂g̃

∂β̃

)
T

.

One may use (4.20) and remove the rows corresponding to derivatives∂T /∂e′ and∂T /∂e′′ to

obtain

E(e′, e′′) =
[
I3×3 ⊗ I3×3 ⊗ e′′, I3×3 ⊗−e′ ⊗ I3×3

]
. (4.22)

Hartley has used this type of parameterisation to impose some linear constraints on the trifocal

tensor. Details are deferred to Section 5.2.3.

4.3 Contractions of the trifocal tensor

Geometric relations between features in correspondence or features “transferred” from one

view(s) to another are related to algebraic operations on the tensor. Since the trifocal tensor

is a mixed tensor, its valence can be reduced by multiplying it with lines (covariant vectors)

and/or points (contravariant vectors). This reduction of the tensor is formally known as acon-

tractionof the tensor. The various combinations of features across three views produce several

incidence relations, which can all be captured by a single trifocal tensor. We can distinguish

several levels of contraction of the trifocal tensor depending on the number and type of features

(line or point) employed. The next sections will present each type of contraction in turn and

their associated image geometry.

4.3.1 Single contraction: the tensorial slices

A contraction of the trifocal tensor by one image token reduces its overall valence by one. This

operation amounts to fixing one of the indicesi, j, or k of the tensorT jk
i . Fixing a particular

index isolates three3 × 3 matrices from the tensor and, depending on which index is selected,

we can imagine the cube being cut in three principal directions: horizontal, vertical, and lateral.

This procedure yields three different kinds of matrices called thetensorial slices. It will be

shown that each type of slices corresponds to a specific image operation. Ultimately, these

slices will play an important role in deriving sets of constraints to estimate the trifocal tensor

from image measurements.

The correlation slices

Recall that{ei}3
i=1 is a set of canonical basis vectors forR3. With respect to this basis, any

image pointm can be expressed in homogeneous coordinates by a set of contravariant scalar

Page 79



4.3 Contractions of the trifocal tensor

coordinates{mi}3
i=1 such thatm = miei. Similarly, any image linel can be defined in the

contravariant basis{ǫi}3
i=1 asl = liǫ

i with li also representing scalar coordinates.

The contraction of the trifocal tensorT jk
i with an image pointm in the reference view

eliminates (or fixes) thei-index in T jk
i by performing the operationmiT jk

i . Whenm = ei,

this contraction gives a special matrix

I i = T jk
(i) = a

j
(i)b

k
4 − a

j
4b

k
(i),

where the notation(i) emphasises the fixation of thei-index. The quantityT jk
(i) can be inter-

preted as a3 × 3 matrix I i for which the entries are ordered by thej-index for the rows and

thek-index for the columns. Cycling through different values of thei-index gives three matri-

ces referred to as thetrifocal matricesor correlation slicesof the trifocal tensor. We will see

in Section 4.4.1 that these matrices are correlations [77] because they embody mappings from

lines to points, hence their name.

In vector notation,

I i = (Aei)b
T

4 − a4(Bei)
T = aib

T

4 − a4b
T

i , (4.23)

which, in terms of the trifocal coefficients, corresponds to

I i =



T 11

i T 12
i T 13

i

T 21
i T 22

i T 23
i

T 31
i T 32

i T 33
i


 =



θ(9i−8) θ(9i−7) θ(9i−6)

θ(9i−5) θ(9i−4) θ(9i−3)

θ(9i−2) θ(9i−1) θ(9i)


 . (4.24)

The definition of the projections matrices in (4.14) sets a particular orientation for the coordinate

system of the trifocal tensor (refer to Figure 4.6). In this system, the trifocal matrices correspond

to vertical slices of the trifocal cube. A representation is given in Figure 4.7. It turns out

that the order of the coefficientsT jk
i on the slices matches the order of the coefficients in the

matrices (4.24). For instance, elementT 21
1 is in position(2, 1) in matrixI1 and similarly on the

first slice of Figure 4.7. The same remark will hold for the other two types of slices that will be

examined in the next section.

It will become useful to specify the column and row vectors of the trifocal matrices as follows

I1 = [a′
1, a

′
2, a

′
3], I2 = [b′

1,b
′
2,b

′
3], I3 = [c′1, c

′
2, c

′
3], (4.25)

and

I
T

1 = [d′′
1,d

′′
2,d

′′
3], I

T

2 = [e′′
1, e

′′
2, e

′′
3], I

T

3 = [f ′′1 , f
′′
2 , f

′′
3 ]. (4.26)

The trifocal tensor can be recovered from the correlations slices defined in (4.24) by setting

θ =




vec(IT

1 )

vec(IT

2 )

vec(IT

3 )


 . (4.27)
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i

T 12
3j

k

I1 I2

T 21
2T 21

1

I3

Figure 4.7. A representation of the three correlation slices I i and some of their

elements.

This reassembling of the tensor from the correlation slices ensures a similar ordering of the

trifocal coefficients as that proposed in (4.18).

In general, the contraction of the tensor by an arbitrary image pointm = miei in the reference

image is a3 × 3 matrix

Im = miT jk
i = m1

I1 +m2
I2 +m3

I3.

As it can be seen, this matrix is a linear combination of the trifocal matrices. Using (4.23), we

havemiI i = (Amiei)b
T

4 − a4(Bm
iei)

T, thus

Im = (Am)bT

4 − a4(Bm)T. (4.28)

Clearly, if m = ei, thenIei
= I i, as given initially in (4.23). The image geometry associated

with matrixIm will be described in Section 4.3.2.

The homography slices

Thej-index (resp.k-index) of the tensorT jk
i is contravariant which implies that the tensor must

be contracted with a covariant vector, that is, a line in the second (resp. third) view.

To begin, consider a contraction of the trifocal tensor (4.16) with an image linel′ = [l′j ] in the

second view. This operation amounts to fixing thej-index inT jk
i by carrying outl′jT jk

i . When

the image linel′ is a canonical basis vectorej, we obtain a3 × 3 matrix

J j = T (j)k
i = a

(j)
i bk

4 − a
(j)
4 bk

i . (4.29)

Here, indicesk andi refer to the entry(k, i) in the matrix. It will be shown in Section 4.4.2 that

matrixJ j represents a homography mapping from points in imageΨ1 to points in imageΨ3 via

thej-th principal plane in imageΨ2. Accordingly, these matrices are calledhomography slices

or intrinsic planar morphismsof the trifocal tensor. They are associated with the horizontal
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slices of the cube as depicted in Figure 4.8. Generally, these matrices are regular with rank

three but may be singular for particular camera configurations [73]. Equation (4.29) can be

formulated in terms of basis vectors as

J j = b4(e
T

j A) − (aT

4 ej)B, (4.30)

or explicitly, in terms of the tensorial coefficients, as

J j =



T j1

1 T j1
2 T j1

3

T j2
1 T j2

2 T j2
3

T j3
1 T j3

2 T j3
3


 =



θ(3j−2) θ(3j+7) θ(3j+16)

θ(3j−1) θ(3j+8) θ(3j+17)

θ(3j) θ(3j+9) θ(3j+18)


 . (4.31)

These matrices have elements in common with the trifocal matricesI i. One may check that

J 1 = [d′′
1, e

′′
1, f

′′
1 ], J 2 = [d′′

2, e
′′
2, f

′′
2 ], J 3 = [d′′

3, e
′′
3, f

′′
3 ]. (4.32)

For convenience, we observe the following convention for the row vectors of theJ j matrices:

J
T

1 = [r1, r2, r3], J
T

2 = [s1, s2, s3], J
T

3 = [t1, t2, t3]. (4.33)

k

j

J 2

J 1

J 3

T 33
2

T 22
3

T 11
3

i

Figure 4.8. A representation of the three homography slices J j and some of their

elements.

Analogously to the case of matrixIm in (4.28), the contraction of the trifocal tensor by an

arbitrary image linel′ = l′jǫ
j in the second view is a3 × 3 matrix

J l′ = l′jT jk
i = l′1J 1 + l′2J 2 + l′3J 3, (4.34)

which is a linear combination of the homography slicesJ j . Using (4.30), we havel′jJ j =

b4(l
′
je

T

j A) − (aT

4 l
′
jej)B, thus

J l′ = b4(l
′T
A) − (aT

4 l
′)B.
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An analysis of the image geometry associated with matrixJ l′ is deferred to Section 4.4.2.

Finally, the contraction of the trifocal tensor with an image line in the third view fixes the

k-index inT jk
i . Choosing lines with canonical coordinates yields three3 × 3 matrices of the

form

Kk = T j(k)
i = a

j
ib

(k)
4 − a

j
4b

(k)
i ,

where indicesi andj refer to the entry(j, i) in each matrixKk. It will be shown in Section 4.4.2

that matrixKk represents a homography mapping from points in imageΨ1 to points in image

Ψ2 via thek-th principal plane in imageΨ3. These matrices yet constitute another type of

homography slices of the trifocal tensor and relate to the lateral slices of the cube, as shown in

Figure 4.9. In terms of basis vectors,

Kk = (bT

4 ek)A− a4(e
T

k B) (4.35)

or, in terms of the tensorial coefficients,

Kk =



T 1k

1 T 1k
2 T 1k

3

T 2k
1 T 2k

2 T 2k
3

T 3k
1 T 3k

2 T 3k
3


 =



θ(k) θ(k+9) θ(k+18)

θ(k+3) θ(k+12) θ(k+21)

θ(k+6) θ(k+15) θ(k+24)


 . (4.36)

These matrices have elements in common with bothI i andJ j matrices. One may check that

K1 = [a′
1,b

′
1, c

′
1], K2 = [a′

2,b
′
2, c

′
2], K3 = [a′

3,b
′
3, c

′
3], (4.37)

and

K
T

1 = [r1, s1, t1], K
T

2 = [r2, s2, t2], K
T

3 = [r3, s3, t3]. (4.38)

T 12
2

i

k

j

K2

K1

K3

T 11
3

T 23
3

Figure 4.9. A representation of the three homography slices Kk and some of their

elements.
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The contraction of the tensor by an arbitrary image linel′′ = l′′kǫ
k in the third view is a3 × 3

matrix

Kl′′ = l′′kT jk
i = l′′1K1 + l′′2K2 + l′′3K3. (4.39)

Using definition (4.35) forKk and simplifying gives

Kl′′ = (bT

4 l
′′)A− a4(l

′′T
B).

The geometric interpretation of these matrices is also postponed until Section 4.4.2.

4.3.2 Two contractions: transfer between views

We now consider the effect of using two image tokens to simultaneously contract the trifocal

tensor. We will see that given a pair of corresponding features in two views, the tensor will give

their matching counterpart in the third view [30]. This property of the tensor is widely used in

recognitionapplications where it is necessary to predict the location of a feature in one image

from its positions in two other images. This problem is sometimes described as thefeature

transferproblem.

Transferring two image lines

The most natural use of the trifocal tensor is to transfer image lines. The situation was first

presented in Section 4.2.1 when we derived a parameterisation of the tensor in terms of three

camera projections. The primitive that arises in the first view by transferring the pair of lines

(l′, l′′) is a linel given by the equations

li ≃ l′jl
′′
kT jk

i . (4.40)

It turns out that these relations can be written asl ≃ T (l′, l′′), where the applicationT :

P2∗ × P2∗ → P2∗ such that

T (l′, l′′) = [l′TI1l
′′, l′TI2l

′′, l′TI3l
′′]T (4.41)

is the trifocal tensor expressed as a bilinear map acting on two lines to produce a third line. This

expression will be proved shortly as a consequence of Proposition 5.

A particular case of this transfer occurs when the linesl′ andl′′ are in correspondence with a

pointm on linel in the reference image, that is, for a point-line-line incidence in three views.

Predicting the pointm cannot be achieved in one tensor contraction as per (4.40). Further

information is needed, like its corresponding pointm′ on l′ in view 2.
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Transferring an image point and an image line

Another possible situation is when the tensor is contracted by an image point and an image line

in two separate views. The geometric relationships take place as follows.

Suppose that a scene pointM projects into three views in the pointsm, m′ andm′′, and that

l′ is a line throughm′. Althoughl′ may not be an epipolar line, its back-projected plane still

contains the scene pointM. Without loss of generality, we may assume that the first camera

projection is in canonical form, so the ray of sight observingm gives directly the position ofM

in the world frame. Consequently, pointM can be parameterised by the equation

M = C̃ + ρP+m, (4.42)

whereρ is a non-zero scalar indicating the depth ofM in space andP+ = [I | 0]T is the pseudo-

inverse matrix of the canonical projection in the first view. Featuresm′ andl′ in the second

view satisfy the relation

l′Tm′ = l′TP′M = l′T(e′ + ρAm) = 0. (4.43)

This formula fixes the value of parameterρ in (4.42), hence the location of the scene point.

Now, projectingM in the third view gives

m′′ ≃ P
′′M ≃ e′′ + ρBm,

and substituting the value ofρ from (4.43) leads to

m′′ ≃ e′′(l′TAm) − (l′Te′)Bm.

Given thatl′TAm = (Am)Tl′ andl′Te′ = e′Tl′, we find that

m′′ ≃
[
e′′(Am)T − (Bm)e′T

]
l′.

The expression between the brackets is the transpose of the3 × 3 matrix Im in (4.28), hence

we can write

m′′ ≃ I
T

ml
′ ≃
[
mi

I
T

i

]
l′.

This expression reveals that matrixI
T

m acts as a correlation mapping from the lines in image

Ψ2 to the points in imageΨ3. Rearranging this equation gives

m′′ ≃
[
I

T

1 l
′, I

T

2 l
′, I

T

3 l
′
]
m.

In this form, we see that pointm in the first view is transferred to its correspondentm′′ in the

third view, and so the3 × 3 matrix [IT

1 l
′, I

T

2 l
′, I

T

3 l
′] is a homography. This is summarised in

the following proposition.
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Proposition 4 The3 × 3 homography matrixhk
i , induced by the plane back-projected from a

line l′ going throughm′ in the second image, describes a mapping fromm in the reference

image tom′′ in the third image such that

m′′k ≃ hk
im

i, wherehk
i = [IT

1 l
′, I

T

2 l
′, I

T

3 l
′]. (4.44)

Now, rearranging (4.40) asli ≃ l′′k(l
′
jT jk

i ) shows that the quantityl′jT jk
i acts as a mapping

between lines from the third view to the first. This together with relation (4.44) proves that

the result of the contractionl′jT jk
i is the homographyhk

i , that is,l′jT jk
i ≃ hk

i . Substituting in

(4.44) gives

m′′k ≃ mil′jT jk
i . (4.45)

The geometric situation is depicted in Figure 4.10. The mapping fromm to m′′ in (4.44) is a

point transfer via a plane as described in Section 4.1.2; here the plane is readily identified as the

back-projection of a linel′ in the second view. When the linel′ does not go through the point

m′, hk
i is still a homography, however, it maps the pointm to a pointm̃′′ on the epipolar line

containingm′′ [65,79–81].

C̃′′

C̃

C̃′

l′ m′′

View 3

View 2

M

m

View 1

Figure 4.10. Three-view point transfer via a plane in space [37].

Likewise, there exists a homography which mapsm to m′ via the projection plane of a linel′′

going throughm′′ in the third view. Projecting the pointM of (4.42) into the second view and

substituting the value ofρ from (4.43) gives

m′ ≃ e′ + ρAm ≃ (l′′Te′′)Am− e′(l′′TBm).

Sincel′′TBm = (Bm)Tl′′ andl′′Te′′ = e′′Tl′′, we obtain

m′ ≃
[
(Am)e′′T − e′(Bm)T

]
l′′,

where the expression between the brackets is exactly the3 × 3 matrix in (4.28). Thus, we have

m′ ≃ Iml
′′ ≃

[
mi

I i

]
l′′. (4.46)
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This result shows that matrixIm acts as a correlation mapping from the lines in imageΨ3 to

the points in imageΨ2. After rearranging,

m′ ≃ [I1l
′′, I2l

′′, I3l
′′]m, (4.47)

which permits to state the next proposition.

Proposition 5 The3 × 3 homography matrixhj
i , induced by the plane back-projected from a

line l′′ going throughm′′ in the third image, provides a mapping fromm in the reference image

to m′ in the second image such that

m′j ≃ hj
im

i, wherehj
i = [I1l

′′, I2l
′′, I3l

′′]. (4.48)

Here,hj
i corresponds to the contractionl′′kT jk

i , hence

m′j ≃ mil′′kT jk
i . (4.49)

The proof of (4.41) follows directly from the above results and is exposed next.

If l′ is a line through the pointm′ in the second view, we have thatl′Tm = 0. Substituting (4.47)

for m′ givesl′T[I1l
′′, I2l

′′, I3l
′′]m = 0. This relation suggests thatl′T[I1l

′′, I2l
′′, I3l

′′] can

be viewed as the coordinates of a linel going thoughm in the first view. Now, the vectorl′T

can be inserted in each of the components within the brackets and taking the transpose of the

resulting expression yields (4.41), the linel in the first view expressed as a column vector.

In practice, the transfer operations (4.44) and (4.48) are the most useful because they allow to

predict the location of corresponding points in images further along in the sequence. It should

be noted that, in contrast with using a fundamental matrix, the location of the 3-D pointM

needs not be computed to find a corresponding image point. This is a significant advantage with

the trifocal tensor.

For completeness, we show next how a point or a line can be obtained in the first view given a

point and a line in the second and third views. These situations correspond to yet other possible

geometric incidence relations between features in three views and, as before, are associated

with specific algebraic contractions of the trifocal tensor.

Suppose that we have a pair of features(m′, l′′), and thatm′ = [u′, v′, 1]T. The pointm′ can be

obtained in infinitely many ways by taking the cross product of any two distinct lines from the

pencil of lines passing throughm′. Now, any linel′ in the pencil can be expressed as a linear

combination of two arbitrary, but fixed lines in that pencil, see Figure 4.11. With rectangular

images, a natural choice is the horizontal linel′h and the vertical linel′v passing throughm′:

l′h ≃ [0,−1, v′]T and l′v ≃ [1, 0,−u′]T.
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4.3 Contractions of the trifocal tensor

It turns out that the coordinates of these lines may be expressed in terms ofm′ as

l′hj ≃ m′qǫqj1 and l′vj ≃ m′qǫqj2, (4.50)

whereǫqjs, s = 1, 2, are the coordinates of a covariant kronecker tensorǫ [53,56].

l′

l′v

l′hm′

Figure 4.11. Any line l′ in the pencil of lines through the image point m′ can be

expressed a linear combination of the lines l′h and l′v.

A line l in the first view is now easily obtained using (4.40) with the linesl′′ and either one

of l′h or l′v. For instance, choosingl′h givesli ≃ (m′qǫqj1)l
′′
kT jk

i , or simply l ≃ T (l′h, l′′).

Note that the computed linel goes through the pointm corresponding tom′. If m needs to

be found explicitly, the tranfer cannot be realised in one operation and both linesl′h andl′v are

required. Pointm in the reference image can be computed as the intersection of the transferred

linesl1 ≃ T (l′h, l′′) andl2 ≃ T (l′v, l′′) given by

m ≃ l1 × l2. (4.51)

Figure 4.12 illustrates the situation. For a pair of features(l′,m′′), one may follow a similar

approach to find two lines throughm′′ and transfer them withl′ to a line or a point in the first

view.

m

l′v
T (l′h, l′′)

View 2 View 3

l′′

View 1

T (l′v, l′′)
m′ l′h

Figure 4.12. Trifocal tensor T transferring point m′ in view 2 and line l′′ in view 3 to

point m in view 1.
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Transferring two image points

This section will conclude the study of trifocal tensor contractions from two image tokens.

Here, we assume that the locations of two matching points in distinct views are known and we

aim to find their point correspondent in the third view. There are three possibilities depending

on which two data points are transferred to another view.

First, suppose that we have identified the pair of matches(m,m′) and wish to obtainm′′ in the

third image. The trifocal tensor cannot be contracted directly withm′ so one must find a line

through this point. Such a line may be taken asl′h in (4.50) which gives

m′′k ≃ mi(m′qǫqj1)T jk
i . (4.52)

Similarly, if we have a pair of matches(m,m′′), their corresponding pointm′ in the second

view can be computed as

m′j ≃ mi(m′′qǫqj1)T jk
i . (4.53)

On the other hand, if we have a pair(m′,m′′), we must computem as the intersection of two

transferred lines corresponding tom′ andm′′ respectively. There are infinitely many ways to

choose the lines going through these points. A trivial choice is to takel1 ≃ T (l′h, l′′h) with

l′hj ≃ m′qǫqj1 andl′′hk ≃ m′′qǫqj1, andl2 ≃ T (l′h, l′′v) with l′′vk = m′′qǫqj2. Pointm can then be

computed as in (4.51). Figure 4.13 illustrates this transfer.

m

m′′
T (l′h, l′′v)

T (l′h, l′′h)

View 2 View 3View 1

l′′h

m′
l′h

l′′v

Figure 4.13. Trifocal tensor T transferring points m′ in view 2 and m′′ in view 3 to

point m in view 1.

The above considerations show that image point relations form a subset of image line relations

since transferring points can only be done by resorting to lines first. The line transfer technique

is used when the three camera centres are aligned, or close to be aligned, thus allowing pointm

to be determined. This is not possible from intermediate fundamental matrices between views.

More details on point and line transfers can be found in [24, 27, 41]. As in the fundamental

matrix case, there exist particular camera configurations and scene structures for which the

trifocal tensor is ill-defined. Often these situations appear in the form of critical sets of lines

and surfaces in space which give rise to ambiguous or even undefined reconstructions [9,10,43,

63,83].
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4.3 Contractions of the trifocal tensor

4.3.3 Three contractions: the trilinearities

Since the trifocal tensor is a valence-3 tensor, it can be reduced to a scalar by using three

image tokens. When the image features are in correspondence across the views, the systems

of equations describing the various incidence relations can be deduced from the transfer equa-

tions elaborated in the previous section. These systems exhibit linear relationships between

the image tokens and the trifocal tensor and so are calledtrilinearities. Given enough image

measurements, it is possible to estimate the trifocal tensor based on these systems. This topic

will be covered in chapter 5.

In this section, we focus on deriving the trilinear systems corresponding to the various possible

cases of incidence relations between image features in three views. It will be assumed that lines

l, l′, and l′′ are in correspondence across the images and that pointsm,m′, andm′′ are the

respective matches on these lines.

Point-line-line correspondence

The trifocal tensor has the formT jk
i which suggests that it can be fully contracted by using a

point in the first view and a line in the second and third views. Geometrically, the two image

lines back-project to planes which intersect in a world line and the optical ray back-projected

from the image point intersects this line in a 3-D point. This point-line-line incidence represents

the fundamental trifocal constraintunderpinning all relations between triplets of image points

and/or lines. It is the equivalent for the trifocal tensor over three views of what the epipolar

constraint is for the fundamental matrix over two views. It will be shown in subsequent sections

that the algebraic constraints describing other trinocular incidence relations are variants of this

particular one.

In this situation, one may noted that the optical ray in the first view may be obtained as the

intersection of two principal planes in this view. Algebraically, this corresponds to selecting

two rows from the first projection matrix. Each plane from the back-projected lines in the

second and third views contributes one row from the respective projections in these images.

This argument justifies the specific choice of four planes used to describe a general trifocal

tensor whenP 6= [I3×3 | 0] as discussed at the end of Section 4.2.1.

To establish the trilinear constraints for the point-line-line relation, recall that, ifl′ andl′′ are

two corresponding lines in the second and third views respectively, then their matching linel

in the reference view is given by (4.40). Any pointm on l satisfies the relationmili = 0 and

substituting the definition ofli from (4.40) yields the trilinear relation

mil′jl
′′
kT jk

i = 0. (4.54)
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This formula can also be derived using (4.45) and the fact thatm′′kl′′k = 0, or using (4.49) with

m′jl′j = 0. Moreover, notice that (4.46) gives the matrix representation of (4.49). Therefore,

using the relationl′Tm′ = 0, (4.54) can be written in matrix form as

l′T
[
mi

I i

]
l′′ = 0. (4.55)

Point-point-line correspondence

Suppose that the coordinates of pointsm,m′, and line l′′ are known. In order to identify the

algebraic constraints which bind these entities, it is necessary to convert the information about

point m′ into lines passing through it. A particular linel′ can be expressed in terms ofm′

as l′j ≃ m′qǫqjs for each fixed value ofs = 1, 2, 3. Substituting forl′j in (4.54) gives three

trilinearities

mi(m′qǫqjs)l
′′
kT jk

i = 0s. (4.56)

Whens = 1 (resp.s = 2), the above equation can be obtained from the transfer equation (4.52)

using linel′h (resp. l′v) and the fact thatm′′kl′′k = 0. Since the linesl′h andl′v are sufficient

to describe the pencil of lines throughm′, the quantitym′qǫqj3, whens = 3, defines a line

containingm′ which can be obtained from a linear combination ofl′h and l′v as depicted in

Figure 4.12. Therefore, the three equations in (4.56) must be linearly dependent and only two

are independent.

Point-line-point correspondence

The incidence between image features is similar to the previous one except that entities in the

second and third views are interchanged. In this case, insertingl′′k ≃ m′′qǫqks in (4.54) yields

the relations

mil′j(m
′′qǫqks)T jk

i = 0s, (4.57)

Again, only two of these three equations are linearly independent. Alternatively, they may be

obtained from (4.53) whens = 1 ands = 2 and the fact thatm′jl′j = 0.

Point-point-point correspondence

This image correspondence is considered as the most particular case of the trifocal geometry

since no lines are known but three points instead. The algebraic constraints which relate a point

triplet can be worked out by first considering the lines through pointsm′ andm′′. Three lines

supporting each of these points may be defined by the coordinatesl′j ≃ m′qǫqjs andl′′k ≃ m′′rǫrkt

respectively, fors, t = 1, 2, 3. Substituting these definitions in (4.54) and taking all possible

combinations of indicess andt give a total of nine equations

mi(m′qǫqjs)(m
′′rǫrkt)T jk

i = 0st. (4.58)
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4.3 Contractions of the trifocal tensor

These trilinearities were first proposed by Shashua in relation to visual recognition tasks [78].

Only four of these equations are linearly independent since each pencil of lines passing through

the pointsm′ andm′′ contributes two independent constraints.

Line-line-line correspondence

Any line l in a projective plane is represented by a3-vector so one may form the3 × 3 skew-

symmetric matrix[l]×. By duality, a pointm belonging to a linel may be written asmi ≃
lqǫ

qis, for fixed values ofs = 1, 2, 3, andǫqis is the length-3 contravariant kronecker tensor

corresponding to lines. It follows that the (matrix) equations[l]×m = 0 becomelilqǫqis = 0s

in tensor notation. Using (4.40) or replacingmi in (4.54) by its line equivalent, we obtain three

trilinearities of the form

(lqǫ
qis)l′jl

′′
kT jk

i = 0s, (4.59)

where only two of these three equations are linearly independent. If only the linesl andl′ are

known, thenl′′ may be computed by solving the set of equations (4.59), hereby transferringl

into the third image. A similar technique can be used to transfer lines to the second image.

Summary

One may have realised that not all the points and/or lines in three views are related by a trifocal

tensor, only those that are in correspondence and satisfying the trilinear relations summarised

in Table 4.2.

Correspondence Trilinearities Indep. Eqs.

Point-point-point mi(m′qǫqjs)(m
′′rǫrkt)T jk

i = 0st 4

Point-point-line mi(m′qǫqjs)l
′′
kT

jk
i = 0s 2

Point-line-point mil′j(m
′′qǫqks)T jk

i = 0s 2

Point-line-line mil′jl
′′
kT

jk
i = 0 1

Line-line-line (lqǫ
qis)l′j l

′′
kT

jk
i = 0s 2

Table 4.2. Trilinearities and associated number of independent equations.

The27 entries of the tensor are defined up to a common scale, so they may be computed pro-

vided at least26 equations. Adapting the result in (4.11), the trifocal tensor associated with

three uncalibrated cameras has11 × 3 − 15 = 18 degrees of freedom. This implies that the

27 tensorial coefficients have to fulfil9 constraints between themselvesin additionto satisfying

the trilinearities. One of these constraints can be eliminated by fixing the scale of the tensor.
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This condition can be achieved by requiring that the vectorised form of the tensor, as defined in

(4.18), has unit norm. Therefore,8 constraints are essentially to be considered. Because these

constraints apply exclusively to the trifocal elements and do not involve any data, they are re-

ferred to asancillary or internal constraints, to be distinguished from theprincipal constraints

expressed by the trilinearities.

Irrespective of the computation method used, a trifocal tensor which does not satisfy the internal

constraints is termed anunconstrainedtensor. For a point correspondence across three views,

such a tensor gives projections for which the back-projected rays through the image points do

not intersect in a precise 3-D point, see Figure 4.14(a). Constraining the tensor ensures that the

rays intersect in space. Such a constrained tensor is said to begeometrically validand allows a

correct triangulation as in Figure 4.14(b).

C̃′′

m′′

M?

m

C̃
m′

C̃′

(a)

M

m′

m′′

m

C̃′

C̃

C̃′′

(b)

Figure 4.14. A triangulation example for: (a) an unconstrained tensor; (b) a geometrically valid

tensor. In case (a), point M is not at the intersection of the three back-projected

rays but lies in the region delimited by these rays. This uncertainty gives a poor

reconstruction.

4.4 Properties of the tensorial slices

This section establishes properties of the tensorial sliceswhich are fundamental to subsequently

identify sets of ancillary constraints on the trifocal tensor. First, some notation must be intro-

duced.

By analogy to (4.2), let the projection matrices of three views be defined in terms of their

principal planes as

P =



Γ1

Γ2

Γ3


 , P′ =



Γ′

1

Γ′
2

Γ′
3


 , andP′′ =



Γ′′

1

Γ′′
2

Γ′′
3


 .
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In view of (4.5), the principal rays corresponding to the intersection of pairs of projection planes

will be denoted byRh, R
′
h, andR

′′
h (h = 1, 2, 3). Exact definitions are provided for conve-

nience in Table 4.3.

Image Principal rays

Ψ1 R1 ≃ Γ2 △Γ3, R2 ≃ Γ3 △Γ1, R3 ≃ Γ1 △Γ2

Ψ2 R′
1 ≃ Γ′

2 △Γ′
3, R′

2 ≃ Γ′
3 △Γ′

1, R′
3 ≃ Γ′

1 △Γ′
2

Ψ3 R′′
1 ≃ Γ′′

2 △Γ′′
3, R′′

2 ≃ Γ′′
3 △Γ′′

1 , R′′
3 ≃ Γ′′

1 △Γ′′
2

Table 4.3. Principal rays as intersection of principal planes.

In addition, we observe the naming convention of Table 4.4 to designate the epipolar lines

obtained by projecting the principal rays of one image into the other two images. Several

comments must be added regarding the information in this table.

Epipolar lines Geometric incidence

L2j ≃ F
T

21ej Mapping of rays R′
j of image Ψ2 into image Ψ1

L3k ≃ F
T
31ek Mapping of rays R′′

k of image Ψ3 into image Ψ1

L′
1i ≃ F21ei Mapping of rays Ri of image Ψ1 into image Ψ2

L′
3k ≃ F

T
32ek Mapping of rays R′′

k of image Ψ3 into image Ψ2

L′′
1i ≃ F31ei Mapping of rays Ri of image Ψ1 into image Ψ3

L′′
2j ≃ F32ej Mapping of rays R′

j of image Ψ2 into image Ψ3

Table 4.4. Mapping of the principal rays of one image into epipolar lines in

the other two images.

First, the principal raysRh in the first image are special optical lines going through the canoni-

cal pointseh and not arbitrary image points (recall Table 4.1). This is also true for principal rays

R
′
h andR

′′
h, so the convention set forth in Table 4.4 applies to specific, “canonical”, epipolar

lines. It is hoped that this remark will clarify any confusion when we derive properties of the

trifocal matrices in Proposition 6 which apply to general epipolar lines. Second, by analogy

to (4.7), the canonical epipolar lines in viewj may be expressed by the fundamental matrix

Fji acting on pointseh in view i. Therefore, the column vectors ofFji give the coordinates of

these lines. A similar argument to the derivation of (4.9) establishes that fundamental matrix

Fij(= FT

ji) sends points in viewj to epipolar lines in viewi.
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Finally, two more notations are necessary. One isjch to refer to theh-th column of homography

J
T

j , or h-th row ofJ j . For instance,r3 andt2 in (4.33) are represented by1c3 and3c2 respec-

tively. And the other notation iseji to represent the epipole obtained by projecting the camera

centre of imagei into imagej. Examples of common epipoles includee′ = e21 ande′′ = e31.

4.4.1 The trifocal matrices

Evolved as special instances of matrixIm in (4.28), the trifocal matricesI i are the first type

of tensorial slices to be considered. This section provides details about the interframe geometry

and 3-D incidence that occur when these correlation transformations are used. Their general

properties are first uncovered, followed by some specialisations needed later to deduce internal

constraints on the trifocal tensor.

Suppose that we have a pointm in the first view and its corresponding epipolar linel′ in the

second view. The epipolar planeΠ′ back-projected froml′ passes through the first two camera

centresC̃ andC̃′ and therefore contains the optical line(C̃m). Additionally, the plane back-

projected from any linel′′ in the third view intersectΠ′ in a 3-D lineL. Since the ray(C̃m)

lies entirely inΠ′, it must intersect the lineL, which means thatm, l′, andl′′ constitute a point-

line-line correspondence satisfying the constraintl′T [miI i] l
′′ = 0, see (4.55) in Section 4.3.3.

This is true forany line l′′ in the third view, consequentlyl′T [miI i] = 0T. In turn, this relation

implies that epipolar linel′ belongs to the left null-space of matrixIm = miI i. A similar

reasoning applied to linel′′ demonstrates that[miI i] l
′′ = 0. Thus,l′′ is in the right null-space

of matrixIm. The next proposition summarises these properties.

Proposition 6 If m = [mi] is a point in the first view with corresponding epipolar linesl′ and

l′′ in the second and third views respectively, thenl′ and l′′ are members of the left and right

null-spaces of the matrixIm = miI i, that is,

l′T
[
mi

I i

]
= 0T and

[
mi

I i

]
l′′ = 0.

Three particular instantiations of this proposition occur when pointm is chosen to have coor-

dinatese1 = [1, 0, 0]T, e2 = [0, 1, 0]T, ande3 = [0, 0, 1]T. In this setting, the epipolar lines

in the left and right null-spaces of matrix[miI i] are readily computable from the trifocal ma-

tricesI1,I2, andI3 respectively. These lines originate as the projection in the second and

third views of the principal raysR1,R2,R3 because these rays are the optical lines through

the pointse1, e2, e3 in the first image. Referring to Table 4.4, these epipolar lines areL
′
1i and

L
′′
1i respectively.
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Proposition 7 When pointm is represented by homogeneous coordinatesei, i = 1, 2, 3, we

have

L
′T
1iI i = 0T and I iL

′′
1i = 0.

Since all epipolar lines pass through an epipole, this is true for the linesL
′
1i andL

′′
1i which go

throughe21 = e′ ande31 = e′′. A direct implication of this result is that both of these epipoles

can be computed as the intersection of their respective epipolar lines. We can express these

intersections using the conditions thate′TL
′
1i = 0 ande′′TL

′′
1i = 0 for all i = 1, 2, 3.

Proposition 8 Epipole e′ in the second view is the common intersection of epipolar lines

L
′
11,L

′
12, andL

′
13, that is,

e′T[L′
11,L

′
12,L

′
13] = 0.

Similarly, epipolee′′ is the common intersection of epipolar linesL
′′
11,L

′′
12, andL

′′
13, that is,

e′′T[L′′
11,L

′′
12,L

′′
13] = 0.

To summarise, it was shown that epipolee′ (resp.e′′) is in the null-space of the epipolar lines

L
′
1i (resp.L′′

1i), which themselves are in the left (resp. right) null-space of the trifocal matrices

I i. The previous two propositions were originally established by Hartley [37] but also appeared

under a different form in [29]. They outline two important properties of the trifocal matrices

which will be investigated further in the remaining part of this section.

The relationL′T
1iI i = 0T implies that the columns of matrixI i are three points in the second

view1 lying on epipolar lineL′
1i (as the product of each column vector ofI i with L

′T
1i vanishes).

Now, thek-th column of the trifocal matrices can be obtained by carrying out the operation

I iek, whereek is a canonical basis vector. This vector may be viewed as representing the

coordinates of a particular linel′′ in the relationl′T [miI i] l
′′ = 0. From Table 4.1, the back-

projection of pointei in the first image is the principal rayRi and the back-projection of line

ek in the third image is the principal planeΓ′′
k. Therefore, thek-th column of matrixI i is an

image point which is the projection in the second view of the intersection ofRi andΓ′′
k, see

Figure 4.15.

Analogously, the fact thatI iL
′′
1i = 0 means that the rows of matrixI i are three points in

the third view lying on epipolar lineL′′
1i. The j-th row vector of the trifocal matrices can be

obtained asIT

i ej , whereej is a canonical basis vector representing a line in the second view.

1This result justifies notation (4.25) for the columns of the trifocal matrices denoted with one prime as for

entities in the second view.
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The lineej back-projects as principal planeΓ′
j. Therefore, thej-th row of matrixI i is an image

point which is the projection in the third view of the intersection ofRi andΓ′
j . The findings

are summarised in Proposition 9.

L
′

1i

ek

C̃′′

C̃
ei

C̃′

Γ′′
k

Ri

Figure 4.15. Geometric construction to interpret a column vector of matrix Ii.

Proposition 9 The column vectors of eachI i matrix are three distinct points in the second view

lying on epipolar lineL′
1i, whereas the row vectors of these matrices are three distinct points in

the third view lying on epipolar lineL′′
1i.

A further interpretation of this proposition is that theh-th column vector of matricesI1,I2,I3

represents the vertex of a triangleT′
h in the second view for each value ofh = 1, 2, 3, refer to

Figure 4.16. A similar remark can be made about the rows of each matrixI i. Theh-th row of

the trifocal matrices represents the vertex of a triangleT′′
h in the third view. An illustration of

this geometry is given later in Figure 4.19(b) when investigating matricesKk.

T′
3

L
′
13

L
′
11

c′3

c′2

c′1

b′
1

T′
2

e21

a′
3

a′
2

a′
1

b′
3

b′
2

L
′
12T′

1

Figure 4.16. Geometric interpretation of the columns of matrices I i.

Some general properties of the trifocal matrices can now be stated.
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Proposition 10 Matrix I i describes a correlation between lines in the third view and points in

the second view induced by the principal planes in the third view. MatrixI
T

i maps lines in the

second view to points in the third view via the principal planes in the second view.

Clearly, sinceIm is a linear combination of the trifocal matrices, it ought to perform the same

geometrical action. For instance, one may deduce that the operationIml
′′ gives a pointm′ in

Ψ2 (as per (4.46)) which is the projection of the intersection of the optical ray(C̃m) of Ψ1 and

the plane back-projected from linel′′ in Ψ3. A formal algebraic proof can be found in [73].

4.4.2 The homography matrices

We now proceed to analyse the properties of homography slicesJ j . Derivations related to

homographiesKk are similar and have been placed in Appendix C to avoid redundancy in the

chapter.

To begin, note that a special case of Proposition 4 occurs when the linel′ is one of the canonical

basis vectorseh (h = 1, 2, 3) of R
3. From Table 4.1, we know that each vectoreh can be thought

of as a line belonging to theh-th principal plane of viewΨ2. Whenl′ = [1, 0, 0]T we have

hk
i = [IT

1 e1, I
T

2 e1, I
T

3 e1] = J 1.

The above equality can be checked by constructing a matrix with the first column of each of the

matricesIT

1 ,I
T

2 , andI
T

3 as given in (4.26) and compare it with the matrixJ 1 in (4.32). This

result shows that matrixJ 1 represents a point homography from viewΨ1 to view Ψ3 induced

by the first principal plane in viewΨ2. Furthermore,J T

1 maps lines inΨ3 to lines inΨ1 via the

first principal plane. Usingl′ = e2 (resp.e3) selects the second (resp. third) principal plane in

view Ψ2 so

J 2 = [IT

1 e2, I
T

2 e2, I
T

3 e2]
(
resp.J 3 = [IT

1 e3, I
T

2 e3, I
T

3 e3]
)
.

This leads to the following proposition.

Proposition 11 Matrix J j describes a homography between points in the first view and points

in the third view induced by thej-th principal plane in the second view. MatrixJ T

j maps lines

in the third view to lines in the first view via the same principal plane.

This proposition sheds light on the underlying geometic transfer implied by matrixJ l′, the

linear combination of slicesJ j , introduced in (4.34). The operationJ l′m gives a pointm′′ in

Ψ3 via the plane back-projected from linel′ in Ψ2.
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Now, considere1 as a point on the first principal rayR1 of the imageΨ1. Applying Propo-

sition 11 to transfere1 with the homographyJ j gives a point in the third image via thej-th

principal plane in viewΨ2. The particular coordinates ofe1 implies that the transferred point

is given by the first column of matrixJ j. A generalisation of this result is straightforward: the

homographyJ j acting on the canonical pointeh produces a point in imageΨ3 with coordinates

given as theh-th column ofJ j .

Referring to Proposition 11 again,J T

j is a line homography from viewΨ3 to view Ψ1.

Considering vectorseh as homogeneous lines in viewΨ3, it can be deduced that the columns

of J
T

j , or equivalently the rows ofJ j , are lines in the reference view. These properties are

recapitulated below.

Proposition 12 The column vectors of eachJ j matrix are three distinct points in the third

view, whereas the row vectors of these matrices are three distinct lines in the first view.

The remaining part of this section establishes further properties of matricesJ j based on the

work done so far.

By definition, the principal rays of one image are mapped to epipolar lines in the other images.

Now, consider the pointei on principal rayRi in the first view. The intersection in space of

the lineRi with the three principal planesΓ′
j of view Ψ2 gives three distinct world pointsVij,

where indexi is fixed by choosing the rayRi andj varies from1 to 3 corresponding to the

planesΓ′
j of Ψ2. An example is shown in Figure 4.17 forR1.

C̃

R1

C̃′′

e1

e2 e3

L
′′

11

C̃′

e′′

Γ′
1

V13

V11
V12

Γ′
3 Γ′

2

Figure 4.17. Point transfer via the principal planes Γ′
j in view Ψ2.

Since all three world points lie onRi, they are collinear and so must be their projections in view

Ψ3. From Table 4.4, the rayRi maps to the epipolar lineL′′
1i in Ψ3 where the corresponding

point of ei lies. EmployingΓ′
j , the j-th principal plane ofΨ2, to transferei means that
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homographyJ j carries out the point transfer between the views. Moreover, thei-th coordinate

of ei being unital implies that thei-th column ofJ j gives the coordinates of the corresponding

point inΨ3. This result is stated in the next proposition and algebraic details appear in Table 4.5.

Proposition 13 The three image points obtained by selecting thei-th column vector of matrices

J 1,J 2, andJ 3 are collinear and lie on the epipolar lineL′′
1i in the third view.

A consequence of this proposition is that the three columns of a particular matrixJ j repre-

sent points (by Proposition 12) lying on different epipolar lines in imageΨ3, namely the lines

L
′′
11,L

′′
12, andL

′′
13. Therefore, for a given matrixJ j , its column vectors define the vertices of a

triangleT′′
j in Ψ3. Since all epipolar lines meet at the epipole, it follows that the triangles asso-

ciated withJ 1,J 2, andJ 3 are in perspective from the epipolee31 = e′′. This is illustrated in

Figure 4.19(b).

Image points in Ψ3 On epipolar line From world points

d′′
j ≃ J je1 L′′

11 V1j ≃ R1 △Γ′
j

e′′j ≃ J je2 L′′
12 V2j ≃ R2 △Γ′

j

f ′′j ≃ J je3 L′′
13 V3j ≃ R3 △Γ′

j

Table 4.5. Algebraic and geometric properties of the columns of matrices J j .

Now, recall from Proposition 12 that the row vectors of a particular matrixJ j represent distinct

lines in the first image, hencejc1,
jc2, andjc3 define a triangleTj in Ψ1. Geometrically, these

lines correspond to the images of three world linesLj1,Lj2, andLj3 arising as the intersection

of the j-th principal planeΓ′
j of view Ψ2 with the principal planesΓ′′

1,Γ
′′
2, andΓ′′

3 of view

Ψ3 respectively. Figure 4.18 depicts the situation whenΓ′
j meets with one of the planesΓ′′

k.

Algebraically, linesjch (for h = 1, 2, 3) are obtained by applying homographyJ
T

j to the three

canonical lineseh in Ψ3.

Looking at the vertices of triangleTj, one may compute them as the intersection of two lines

of Tj , effectively by cross product of two rows ofJ j. A particular vertex cannot be calculated

from any two arbitrary rows though. Vertexvjk corresponds to the projection of a world point

V′′
kj, which emanates as the intersection of the rayR

′′
k and the planeΓ′

j . From Table 4.3,

R
′′
k is the meet of the planesΓ′′

α andΓ′′
β, wherek, α, andβ take distinct values in the range

{1, 2, 3}. Hence, we can writeV′′
kj ≃ Γ′

j △R
′′
k ≃ Γ′

j △Γ′′
α △Γ′′

β. Proposition 14 recapitulates

these remarks. Of more practical interest, Table 4.6 gives details about the various algebraic

operations and associated geometry which can be elaborated from the rows of matricesJ j .
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C̃′′

C̃′

vjk

e13

L3k
eα

ejC̃

R
′′
k

Γ′
j

Ljα

V′′

kj
Γ′′

α

Figure 4.18. Vertex vjk arises in the first view by projecting the world point V′′
kj

obtained as the meet of the principal ray R′′
k ≃ Γ′′

α △Γ′′
β and the

world line Ljα ≃ Γ′
j △Γ′′

α.

Proposition 14 The three image lines given by the row vectors of matrixJ j form a triangle

Tj in the first view. Verticesvj1,vj2, andvj3 of Tj can be computed as the cross product of

two lines represented by the appropriate rows ofJ j , see Table 4.6.

Triangle Edges From world lines Vertices From world points

jc1 ≃ J T

j e1 Lj1 ≃ Γ′
j △Γ′′

1 vj1 ≃ jc2 × jc3 V′′
1j ≃ Γ′

j △R′′
1

Tj
jc2 ≃ J T

j e2 Lj2 ≃ Γ′
j △Γ′′

2 vj2 ≃ jc3 × jc1 V′′
2j ≃ Γ′

j △R′′
2

jc3 ≃ J T

j e3 Lj3 ≃ Γ′
j △Γ′′

3 vj3 ≃ jc1 × jc2 V′′
3j ≃ Γ′

j △R′′
3

Table 4.6. Algebraic and geometric properties of the rows of matrices J j.

Further geometric relations can be inferred from the rows ofJ j. We show next that corre-

sponding vertices of different triangles are aligned.

First, recall from the derivation preceding Proposition 14 that the verticesvj1,vj2, andvj3

are the mappings of world points obtained by fixing a planeΓ′
j in Ψ2 and intersecting it with

the three raysR′′
k in Ψ3. Since these 3-D points belong to three different rays in space, their

projections in the first image are three non-collinear points which constitute a triangleTj . Now,

suppose that we fix the rayR′′
k in Ψ3 and intersect it with the three planesΓ′

j of Ψ2. The world

points in this case are all collinear on the rayR
′′
k, hence they project to three vertices which lie

on the image of that ray inΨ1, that is, the epipolar lineL3k going through the epipolee13. By

construction of the world points and definition of vertexvjk, we deduce that the vertices onL3k

arev1k,v2k, andv3k. Table 4.6 readily provides rules for computation of these points from the

rows of matricesJ j . These results are illustrated in Figure 4.19(a) and summed up as follows.
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4.4 Properties of the tensorial slices

Proposition 15 Verticesv1k,v2k, andv3k of trianglesT1,T2, andT3 are collinear and lie on

the epipolar lineL3k in the first view.

v33

L31

L32 T3

L33

e13T2

r3

r1

r2

s3

s1

s2

v11
v21

v31

T1

t3

t1

t2

v23

v13

(a)

T′′
1

L
′′
13

L
′′
11

f ′′3

f ′′2

f ′′1

e′′
1

T′′
2T′′

3

e31

d′′
3

d′′
2

d′′
1

e′′
3

e′′
2

L
′′
12

(b)

Figure 4.19. Geometric interpretation of the (a) rows and (b) columns of matrices J j.

The next series of properties are derived from an applicationof Proposition 11 using the epipoles

in the first image.

When the cameras are in general position, the three homographiesJ j relate epipolese13 in the

first image toe31 in the third image according to

e31 ≃ J je13 j = 1, 2, 3. (4.60)

Given thate31 is the image ofe13 by any of the three transformationsJ j , we may choose two

of these homographies and reformulate (4.60) as a generalised eigenvalue problem of the form

(J p − κJ q)x = 0, (4.61)

whereκ is a non-zero scalar representing the generalised eigenvalue associated with pointx

in the first image. By construction, the solutionx = e13 is a generalised eigenvector for this

problem. More details are given in the proposition below. These properties were defined by

Ressl [73] but originally proposed by Canterakis [12].

Proposition 16 The generalised eigenvalue problem(J p − κJ q)x = 0, with x a point in the

first image and regular homographyJ q, p 6= q, has the following general eigenvalues:

1. κ2 = e
p
21/e

q
21 is a double generalised eigenvalue with corresponding two-dimensional

eigenspace spanned by the epipolar lineL2r, where{p, q, r} is a permutation of{1, 2, 3}.

2. κ1 = e
p
23/e

q
23 is a single generalised eigenvalue with corresponding one-dimensional

eigenspace spanned by the epipolee13.
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Proof. To begin, we show thatep
21/e

q
21 is a double eigenvalue. Upon replacing slicesJ p and

J q by their algebraic expression evolved from (4.30) and adapting the notation for the epipoles,

we obtain

J p − κJ q = e31(ep − κeq)
T
A− eT

21(ep − κeq)B. (4.62)

Whenκ = e
p
21/e

q
21, the factor preceding matrixB vanishes so (4.61) reduces to

e31(ep − κeq)
T
Ax = 0. (4.63)

It turns out that this equation can be simplified by identifying the quantity(ep − κeq)
TA with

the epipolar lineLT

2r. This is shown next.

Consider the equality

(ep − κeq) = − 1

e
q
21

[e21]
T

×er, (4.64)

where the indicesp, q, r take distinct values in the set{1, 2, 3} ander is a 3-vector withr-th

entry equal to1 and other entries zero. One may check that the right-hand side of this equality,

which can be rewritten as(e21 × er)/e
q
21, produces the same result as the left-hand side for any

choice of{p, q, r} taken as a permutation of{1, 2, 3}. Now, using (4.12) in Proposition 3 with

P = [I3×3 | 0] andP′ = [A | e21], the fundamental matrix between views one and two is given

by

F21 ≃ [e21]×A. (4.65)

Multiplying (4.64) on the left byAT and simplifying with (4.65) shows that

A
T(ep − κeq) ≃ A

T[e21]
T

×er = F
T

21er.

From Table 4.4, vectorFT

21er gives the coordinates of epipolar lineL2r, the image of the ray

R
′
r of the imageΨ2 into the imageΨ1. With this, (4.63) can be written as

e31L
T

2rx = 0. (4.66)

As long asC̃ 6= C̃′′, the epipolee31 exists and is non-zero. Pre-multiplying byeT

31 gives

eT

31e31L
T

2rx = ‖e31‖2
L

T

2rx = 0,

henceL
T

2rx = 0. This means that the one-dimensional epipolar lineL2r represents a two-

dimensional eigenspace inR3 associated with a double generalised eigenvalueκ = κ2 =

e
p
21/e

q
21. In other words, the pointsx∗ on epipolar lineL2r are generalised eigenvectors for

the pair of homographic slicesJ p andJ q. They span an eigenspace that is orthogonal to the

r-th column of the fundamental matrixF12(= FT

21) sinceL
T

2rx
∗ = (F12er)

Tx∗ = 0.

In general, the epipolee13 does not lie on the lineL2r becauseL2r is independent of the third

image so(J p − κJ q)e13 does not vanish forκ = κ2. Multiplying (4.62) on the right bye13

gives

e31(ep − κeq)
Te23 (4.67)
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4.5 Ancillary constraints on the trifocal tensor

sinceAe13 ≃ e23 andBe13 = 0. This expression vanishes whenκ = κ1 = e
p
23/e

q
23. Soκ1 is the

generalised eigenvalue corresponding to the eigenvectore13. �

It should be noted that each matrixJ q must have maximum rank because the denominator

in all generalised eigenvalues must be non-zero. Furthermore, the eigenspaces of the matrices

(J p − κiJ q), i = 1, 2, represent the null-spaces of these matrices. Indeed, these eigenspaces

satisfy the relations(J p−κiJ q)ξi = 0, whereξi here stands for the eigenspace corresponding

to κi. Proposition 16 indicates that the eigenspaces/null-spaces are nontrivial so the matrices

(J p − κiJ q) must be rank deficient. In addition, the fact that a particular null-space has

dimension equal to the multiplicity of its corresponding eigenvalue suggests that matrices(J p−
κ1J q) and(J p −κ2J q) have rank two and one respectively. It will be proved in Section 4.5.2

that if the conditions of Proposition 16 are met, then the27 numbers of theJ j slices constitute

a geometrically valid trifocal tensor.

The numerous results derived in this section (and Appendix C) show that the tensorial matrices

I i,J j, andKk act asgeneratorsof the trifocal geometry because they underpin any general

inter-image relations expressed by the matricesIm,J l′, andKl′′. Furthermore, the tensorial

matrices are defined from and apply to canonical basis vectors representing either lines or points

in the images, so they intrinsically give a canonical representation of the trifocal geometry.

Applying constraints on these slices would automatically restrain the entire trinocular geometry

underlying the relationships between general line and point matches in three views. This is why

they are so important to consider in order to ensure a geometrically valid tensor.

Formulating ancillary constraints on the trifocal tensor now comes as a natural extension af-

ter considering the properties of the tensorial matrices. The next section presents the most

important sets of algebraic constraints which have been proposed to date in the literature. The

description follows their chronological order of appearance and reveals a shift in research focus,

from correlation to homography slices, necessary to identify minimal sufficient sets. From an

application viewpoint, taking ancillary constraints into account is a mantatory step to compute

a final tensor of practical use.

4.5 Ancillary constraints on the trifocal tensor

Although multiple-view geometry is well established [88,89], its conversion into usable sets of

algebraic constraints has turned out to be a majorly difficult task. In the case of three views,

some researchers have proposed simplified versions of the full projective trifocal tensor to re-

duce the number of ancillary constraints. For instance, an affine tensor (corresponding to a weak

perspective camera model) can be used in some situations to approximate a generic tensor [64].
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The following sections consider the general projective case and describe ancillary constraints

underpinning three perspective views of a scene.

4.5.1 Papadopoulo-Faugeras’ constraints

Papadopoulo and Faugeras were perhaps the first to propose twosets of equations which fully

characterize the trifocal tensor manifold. Both sets are derived from the correlation slices and

contain constraints which are neither minimal (≥ 12) nor independent. All constraints hold

under the general viewpoint assumption that the three camera centres are not aligned.

It is known from Proposition 9 that the column vectors of the trifocal matrices are three collinear

points on the linesL′
1i. This collinearity property implies that the columns of each correlation

matrix must be linearly dependent so the determinant of matricesI1,I2, andI3 must vanish.

Proposition 17 The trifocal tensorT satisfies three constraints of degree3, called the trifocal

rank constraints

det(I i) = 0 i = 1, 2, 3. (4.68)

These conditions on the tensor components are generic, that is, independent of the coordinate

systems in the images. In other words, constraints (4.68) remain valid if the trifocal matrices

are multiplied by non-zero scalarsλi for i = 1, 2, 3. Because the trifocal matrices are3 × 3

matrices with vanishing determinants, they must have rank at most equal to2. It turns out that

the sum of the trifocal matrices is also a rank deficient matrix [28, 69]. A generalisation of the

rank constraints is stated as follows.

Proposition 18 The trifocal tensorT satisfies the tenextended rank constraints

rank

(
3∑

i=1

λiI i

)
≤ 2 ∀λi 6= 0, i = 1, 2, 3. (4.69)

These constraints are equivalent todet
(∑3

i=1 λiI i

)
= 0. To see that (4.69) enforces ten con-

ditions on the tensorial elements, we have to expand the previous determinant with respect to

the three unknownsλi. The resulting equations are polynomial constraints of order three in the

unknownsλi. In the determinant expansion, the coefficients of the cubic termsλ3
1, λ

3
2, andλ3

3

correspond to the determinantsdet(I1), det(I2), anddet(I3) respectively. So the extended

rank constraints contain the rank constraints.

An interesting result which follows from Proposition 8 is that the3×3 matrices[L′
11,L

′
12,L

′
13]

and[L′′
11,L

′′
12,L

′′
13] have rank exactly equal to2 because they span a one-dimensional null-space

given by the epipolese′ ande′′ respectively. This simple observation allows to identify another

two internal constraints on the trifocal tensor.
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Proposition 19 The trifocal tensorT satisfies two constraints of degree6, called trifocalepipo-

lar constraints, given by

det([L′
11,L

′
12,L

′
13]) = 0, (4.70)

and

det([L′′
11,L

′′
12,L

′′
13]) = 0. (4.71)

Constraint (4.71) on epipolar linesL′′
1i was also proposed by Heyden in the context of mul-

tiple view tensors [44–46]. His approach was very much algebraic and relied on dependen-

cies of determinants characterising the tensorial components, formally known as thequadratic

p-relations[47].

We now define the first set of algebraic constraints that fully characterises a trifocal tensor.

Theorem 1 A bilinear mappingT fromP2∗×P2∗ to P2∗ is a genuine trifocal tensor of the form

(4.41) if and only if T satisfies the following twelve dependent constraints: the ten extended

rank constraints(4.69)and the two epipolar constraints(4.70)and (4.71).

Other intrinsic properties of the trifocal tensor may be deduced by considering the 3-D incidence

of principal planes in two images and the projection of their intersection in a third view. Suppose

that ej = eαj
and ek = eβk

represent canonical lines in the second and third views with

j = αj , k = βk, andj, k = 1, 2, 3. Let Ljk be the 3-D line of intersection of planesΓ′
j and

Γ′′
k, andljk ≃ T (ej, ek) its image line in the first view. Now, consider the four lineslα1α2 ≃

T (eα1 , eα2), lβ1α2 ≃ T (eβ1, eα2), lα1β2 ≃ T (eα1 , eβ2), andlβ1β2 ≃ T (eβ1, eβ2), such that the

pairs of indices(α1, α2) and(β1, β2) are different andα1 6= β1, α2 6= β2, otherwise identical

lines are produced. Clearly, the corresponding world lines areLα1α2 ≃ Γ′
α1

△Γ′′
α2
,Lβ1α2 ≃

Γ′
β1
△Γ′′

α2
,Lα1β2 ≃ Γ′

α1
△Γ′′

β2
, andLβ1β2 ≃ Γ′

β1
△Γ′′

β2
. An example was shown in Figure 4.18

of Section 4.4.2. From Table 4.6 the image lines can be expressed in terms of the rows of

matricesJ j asljk ≃ jck ≃ J
T

j ek. Furthermore, using definitions (4.31) and (4.33), we have

that ljk ≃
[
T jk

1 , T jk
2 , T jk

3

]
T

. There are nine possible tuples of such four lines obtained by

selecting different basis vectorsej andek. Each4-line tuple satisfies some algebraic constraints

detailed in the next proposition.

Proposition 20 The trifocal tensorT satisfies ninevertical constraints of degree6 given by

det([lα1α2 , lα1β2, lβ1β2]) det([lα1α2 , lβ1α2 , lβ1β2 ])

− det([lβ1α2 , lα1β2, lβ1β2]) det([lα1α2 , lβ1α2 , lα1β2]) = 0.

(4.72)
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A proof of this proposition can be found in [69]. The vertical constraints express the fact that a

line joining two corresponding points envelops a degenerate conic whose determinant is given

in (4.72). The advantage of showing the representation with principal planes is that it reveals

the connection between image features and the 3-D primitive they originate from. Enforcing

conditions (4.72) on the image lines constrains the intersection of the principal planes in space

and ultimately the form of the projection matrices. A second set of algebraic constraints can

now be described. This will conclude the overview of Papadopoulo-Faugeras’ constraints.

Theorem 2 A bilinear mappingT fromP2∗×P2∗ to P2∗ is a genuine trifocal tensor of the form

(4.41) if and only if T satisfies the following fourteen dependent constraints: the three rank

constraints(4.68), the two epipolar constraints(4.70), (4.71), and the nine vertical constraints

(4.72).

4.5.2 Canterakis’ constraints

Canterakis was the first to propose a minimal set of eight constraints to describe the intrinsic

relationships between the27 coefficients of the trifocal tensor [12]. His constraints rely upon

the properties of homography slicesJ j presented in Proposition 16 and revisited next.

Recall that the matrix(J p − κiJ q) has a nontrivial null-space for any of the two generalised

eigenvaluesκi. It follows that det(J p − κiJ q) = 0 so the generalised eigenvaluesκi can

be seen as the roots of a cubic polynomial given bydet(J p − κJ q). For reasons that will be

explained shortly, we may only consider two out of three polynomials which can be generated

by selecting different pairs of homographiesJ p andJ q. Consequently, the requirements of

Proposition 16 on the trifocal coefficients are essentially that

1. The cubic polynomialdet(J 2 − κJ 1) has a single rootκ1 and a double rootκ2 with

matrix (J 2 − κ2J 1) having rank one.

2. The cubic polynomialdet(J 3 − κJ 1) has a single root̄κ1 and a double root̄κ2 with

matrix (J 3 − κ̄2J 1) having rank one.

3. The general eigenvectors of the single rootsκ1 andκ̄1 are the same (equal toe13) modulo

a scalar.

We now show how these conditions can be expressed algebraically. A first group of constraints

is obtained by defining a third degree polynomial which possesses a double root. Representing

the polynomialdet(J 2 −κJ 1) asp(κ) = aκ3 + bκ2 + cκ+ d, wherea, b, c, d are scalars made
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from the trifocal coefficients of matricesJ 1 andJ 2, the requirement thatp(κ) has a double

root is satisfied provided

B2 − 4AC = 0, (4.73)

whereA = b2 −3ac, B = bc−9ad, C = c2 −3bd. When condition (4.73) holds, the single root

κ1 and the double rootκ2 are given by

κ1 =
B

A
− b

a
and κ2 = − B

2A
.

Two constraints similar to the one given in (4.73) can be derived by demanding a double root

for the polynomialsdet(J 3 − κJ 1) anddet(J 3 − κJ 2). Thanks to Proposition 16, the two-

dimensional eigenspaces of the matrices(J p − κJ q) are readily recognised as the epipolar

linesL21,L22, andL23. Geometrically, all three lines intersect at the epipolee12 but only two

of these lines are truly needed to identify the location of this point. So, at best, we can only

obtain two independent (internal) constraints of the trifocal tensor by deriving (4.73) for any two

of the three matrices(J p − κJ q). Using all three matrices would generate a set of dependent

constraints.

Another essential requirement is that the matrix(J 2−κ2J 1) has rank one. When this condition

is satisfied, we know from Proposition 16 that the eigenspace of this matrix is represented by

the epipolar lineL23. The generalised eigenvalue problem(J p − κJ q)x = 0 then reduces to

(4.66) and becomes

J 2 − κ2J 1 = e31L
T

23.

One may see from this relation that any pointx which does not lie on the lineL23 is mapped to

the epipolee31 by the matrix(J 2 − κ2J 1), otherwisee31L
T

23x = 0. One such point could be

x = L
∗
23 (the dual ofL23) because it does not lie onL23. Now, from the homography-epipole

relation (4.60), we also know thate13 is sent toe31 by any regular matrixJ j. Therefore,

altogether, the rank-1 condition can be imposed by demanding

(J 2 − κ2J 1)L23 ≃ J 1e13.

These equations may be expressed in terms of a vector cross product as

(J 2 − κ2J 1)L23 × J 1e13 = 0, (4.74)

which provides two independent constraints on the matricesJ 1 andJ 2. Considering the matrix

(J 3 − κ̄2J 1), another two constraints can be found in the same way using

(J 3 − κ̄2J 1)L22 × J 1e13 = 0. (4.75)
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Finally, Proposition 16 also requires equality (up to scale) for the two one-dimensional

eigenspaces corresponding to the single rootsκ1 andκ̄1. Again, using the homography-epipole

relation (4.60), this condition may be enforced by the equations

J 1e13 × J 2e13 = 0, (4.76)

which yield two independent constraints. Any pair of matricesJ j could be used to derive such

relations. The constraints proposed by Canterakis can now be summarised.

Theorem 3 A bilinear mappingT fromP2∗×P2∗ to P2∗ is a genuine trifocal tensor of the form

(4.41)if and only ifT satisfies the following eight independent constraints:

• Two constraints of the form(4.73) by demanding a double root for the polynomials

det(J 2 − κJ 1) anddet(J 3 − κJ 1);

• A total of four constraints from(4.74)and (4.75)to compel matrices(J 2 − κ2J 1) and

(J 3 − κ̄2J 1) to have rank one;

• Two constraints from(4.76)to compel matrices(J 2 − κ1J 1) and(J 3 − κ̄1J 1) to have

the same eigenspace.

Since the second and third images play analogous roles with respect to the trifocal tensor, similar

constraints can be derived from the homography slicesKk.

4.5.3 Ressl’s constraints

Substantial work has also been done by Ressl [73] to formulatea minimal set of ancillary

constraints on the trifocal tensor. Similar to the elaboration of equation (4.72), his set is derived

by drawing on the properties of 3-D points and lines that arise as the meet of principal rays and

planes from the images. As seen in Section 4.4, these canonical relations are encapsulated by

the rows and columns of the tensorial slices. Despite considering the correlation slices, much

emphasis is dedicated to the homography slices, yet in a different way than Canterakis’. The

final constraints impose that the principal rays of one image project into concurrent lines in the

other two images. These constraints form a minimal set and are independent.

One inconvenience however is that Ressl’s constraints apply to a different tensor than the “stan-

dard” ones proposed by Hartley [37] or Faugeras [24]. A significant part of the work in Sec-

tion 4.4 was realised with the aim to express these constraints in the more familiar framework

proposed by Hartley, which is the one chosen in this thesis for trifocal tensor estimation.
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4.5 Ancillary constraints on the trifocal tensor

Three of the eight constraints are already known and consist of the rank constraints given in

(4.68). The second constraint is not entirely new and corresponds to a reformulation of epipolar

constraint (4.70) in terms of the correlation slices. A new expression for constraint (4.71) is

provided here as a byproduct. The remaining four conditions are founded on properties of

trianglesT1,T2,T3 defined in Section 4.4.2. These conditions are also a reformulation of the

original constraints suggested by Ressl. We begin by revisiting the epipolar constraints.

Epipolar constraints in the second and third views

The inconvenience with epipolar constraints (4.70) and (4.71) comes from the difficulty to write

them explicitly in terms of the tensorial components.

Considering the first epipolar constraint, we know from Proposition 8 that the3 × 3 matrix

[L′
11,L

′
12,L

′
13] has a one-dimensional null-space, the epipolee′. In light of Proposition 9,

the epipolar lineL′
1i may be computed from any two column vectors of trifocal matrixI i.

Therefore, constraintdet([L′
11,L

′
12,L

′
13]) = 0 may be reformulated by selecting, for instance,

the first two columns of matricesI i. Using convention (4.25), the new form of this constraint

is

det([a′
1 × a′

2, b′
1 × b′

2, c′1 × c′2]) = 0. (4.77)

A similar reasoning can be applied to epipolar linesL
′′
1i. We deduce from Proposition 9 that

each lineL
′′
1i may be obtained as the cross product of any two row vectors of the trifocal

matrices. Choosing the first two rows of these matrices and following convention (4.26), the

constraintdet([L′′
11,L

′′
12,L

′′
13]) = 0 becomes

det([d′′
1 × d′′

2, e′′
1 × e′′

2, f ′′1 × f ′′2 ]) = 0. (4.78)

Collinearity constraints

The next series of constraints develops from Proposition 15 and expresses the fact that vertices

v1k,v2k, andv3k of trianglesT1,T2, andT3 lie on epipolar lineL3k for k = 1, 2, 3, as illus-

trated in Figure 4.19(a). The collinearity property of these vertices means that the3 × 3 matrix

formed by these points has rank two and therefore may be expressed as a determinant constraint

in the style of equation (4.78) but involving linesL3k. According to Proposition 14, the triangle

vertices can be computed in terms of the rows of matricesJ j. Using Table 4.6, the collinearity

of verticesv11,v21, andv31 on lineL31 implies the constraint

det([r2 × r3, s2 × s3, t2 × t3]) = 0. (4.79)

Similarly, verticesv12,v22, andv32 on lineL32 give the constraint

det([r3 × r1, s3 × s1, t3 × t1]) = 0, (4.80)
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and verticesv13,v23, andv33 on lineL33 mean

det([r1 × r2, s1 × s2, t1 × t2]) = 0. (4.81)

Papadopouloet al. already discovered the role of the vertices entering the above constraints

when they derived the vertical constraints in (4.72). However, the authors miss to evolve any

conditions from their collinearity property. The new constraints are stated in the following

proposition.

Proposition 21 Trifocal tensor T satisfies three constraints of degree6, called trifocal

collinearity constraints, given by the equations(4.79), (4.80), and(4.81).

Epipolar constraints in the first view

If the essence of epipolar constraint (4.70) (resp. (4.71)) is that epipolar linesL′
1i (resp.L′′

1i)

go through the epipolee′ (resp.e′′), then the essence of epipolar linesL3k is to go through the

epipolee13. This latter remark implies that

det([L31,L32,L33]) = 0. (4.82)

From Proposition 15, we know that epipolar linesL3k can be computed from any two of the

three verticesv1k,v2k, andv3k, k = 1, 2, 3. Moreover, these vertices can themselves be com-

puted from the rows of matricesJ j as claimed in Proposition 14. Therefore, we can write

L31 ≃ v11 × v21 ≃ (r2 × r3) × (s2 × s3),

L32 ≃ v12 × v22 ≃ (r3 × r1) × (s3 × s1),

L33 ≃ v13 × v23 ≃ (r1 × r2) × (s1 × s2).

Altogether, it follows that epipolar constraint (4.82) is given by

det([r23 × s23, r31 × s31, r12 × s12]) = 0, (4.83)

whererij = ri × rj andsij = si × sj . Here, we have chosen the first two vertices on each line

L3k (using the rows ofJ 1 andJ 2), but in general this constraint can be set up with any two

vertices on these lines (using any two of the three matricesJ j). This constraint is summarised

in the next proposition.

Proposition 22 Trifocal tensorT satisfies anepipolar constraint of degree12 given by the

equation(4.83).
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4.6 Recovering 3-D information from the trifocal tensor

The conditions on the tensor proposed by Ressl can be summarised in the following theorem.

This will conclude our presentation of the internal constraints on the trifocal tensor.

Theorem 4 A bilinear mappingT from P2∗ × P2∗ to P2∗ is a genuine trifocal tensor of the

form (4.41)if and only ifT satisfies the following eight independent constraints: the three rank

constraints(4.68), the epipolar constraint(4.77), the three collinearity constraints(4.79) to

(4.81), and another epipolar constraint of the form(4.83).

It is possible to find sets with less than8 constraints, however, these sets are derived by direct

computation of the projections from a minimum of six point correspondences [72, 76]. These

constraints are useful in methods such as RANSAC to eliminate outliers in the data by iteratively

testing the quality of tensors computed from sets of six points at a time. This type of algebraic

constraints were not considered here because they do not give any indication on how to correct

an unconstrained tensor.

4.6 Recovering 3-D information from the trifocal tensor

One of many objectives behind computing the trifocal tensor is to recover the projectivity of

the scene and the camera centres. We have seen in equation (4.16) that the trifocal tensor

may be computed from three camera projection matrices. We now show the converse, that

projection matrices may be computed from the tensor up to projective equivalence. Knowledge

of the projections will then allow the relative camera positions to be worked out. We begin by

showing how the epipoles and fundamental matrices can be obtained from the trifocal tensor.

4.6.1 Retrieving the epipoles

Suppose that we have a trifocal tensorθ as given in (4.16). Its corresponding trifocal matrices

I i are readily obtained from expression (4.24). Letwi be the unit vector that minimises‖I iwi‖,

that is,wi is the eigenvector corresponding to the third column ofVi in the SVD decomposition

of I i = UiDiV
T

i . LetW be the matrix withi-th row made ofwT

i . The epipolee′′ is the unit vector

that minimises‖We′′‖, that is,e′′ is the eigenvector corresponding to the third column ofV′ in the

SVD decomposition ofW = U′D′V′T [37]. The epipolee′ can be computed in a similar manner,

starting fromI
T

i in place ofI i. This method works well in the case of general motion. If the

camera displacement is degenerate, the trifocal matrices have rank less than2, which means

that the epipoles must be estimated from a more robust method as outlined in [73, Chap. 7].
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4.6.2 Retrieving the fundamental matrices

With knowledge of the epipolese′ ande′′, it is an easy task to work out the fundamental matrices

F21 andF31 from the trifocal tensor.

Recalling formula (4.48), a linel′′ in the third view back-projects to a plane in space which

induces a homography such thatm′ ≃ [I1l
′′, I2l

′′, I3l
′′]m. Substituting this result in (4.6)

gives

l′ ≃ [e′]×[I1l
′′, I2l

′′, I3l
′′]m

and now comparison with (4.7) shows that

F21 ≃ [e′]×[I1l
′′, I2l

′′, I3l
′′].

Sincel′′ is arbitrary, Hartley recommands to usel′′ = e′′ to avoid a critical situation wherel′′

lies in the null-space of any of the trifocal matrices. Therefore,

F21 ≃ [e′]×[I1e
′′, I2e

′′, I3e
′′]. (4.84)

A similar proof can be evolved forF31 using homographyhk
i in (4.44). Settingl′ = e′ produces

F31 ≃ [e′′]×[IT

1 e′, I
T

2 e′, I
T

3 e
′]. (4.85)

Fundamental matrixF32 between imagesΨ2 andΨ3 is not as straightforward to compute but

a couple of methods exist. One technique which utilises the formalism of Grassmann-Cayley

algebra [27] allows to express and recoverF32 in terms of the trifocal tensor [26]. A second

method proposes to compute this matrix linearly from six matching points across three views

given fundamental matrixF21 and tensorial coefficientsT jk
i [4]. Perhaps an easier method than

the previous two is to compute homographyH32 and epipolee32 such thatF32 ≃ HT

32[e32]×. The

interested reader is conferred to [73, Chap. 7] for more details.

4.6.3 Retrieving the projections and camera centres

Because projections are defined only up to a projective 3-D transformation, the first projection

may be chosen asP = [I3×3 | 0]. Applying (4.13) in Proposition 3 to matrixF21 in (4.84) gives

the second projection as

P
′ = [[I1e

′′, I2e
′′, I3e

′′] | e′].

Fixing the first and second projections in this manner defines a specificprojective frame. The

third projection cannot be derived from (4.85) directly because the final triplet of camerasP,

P′, andP′′ is not expressed in the same world coordinate system and therefore isinconsistent.
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4.7 Conclusion

Setting the scale of both epipolese′ ande′′ so that they have unit norm, Hartley showed that the

third projection must be taken as

P
′′ = [(e′′e′′T − I3×3)[I

T

1 e
′, I

T

2 e
′, I

T

3 e′] | e′′]

to ensure projective consistency between all three projections. This is summarised next.

Proposition 23 When the epipolese′ ande′′ are normalised to unit norm, 3-D information can

be retrieved from the trifocal tensor in the form of a set of three consistent projections

P = [I3×3 | 0],

P
′ = [[I1e

′′, I2e
′′, I3e

′′] | e′],

P
′′ = [(e′′e′′T − I3×3)[I

T

1 e
′, I

T

2 e
′, I

T

3 e
′] | e′′].

Given the special form of matrixP, the first camera centre is located at(0, 0, 0)T. As mentioned

in Section 4.1.1, an optical centre is the (unique) point at the intersection of the principal planes

of a projection matrix. So, centres̃C′ andC̃′′ may be computed as the null-spaces of the second

and third projections. More details can be found in [37, Chap. 5].

4.7 Conclusion

The description of three-view geometry can be approached from the standpoint of two-view

geometry, with fundamental matrices as bindings between points of each image pairs. However,

the restrictions of fundamental matrices to properly encompass the multilinear relations between

three images have lead to the elaboration of a new object, the trifocal tensor. A valuable feature

of this tensor is its ability to handle point as well as line correspondences across the views.

If the essence of stereo vision is the epipolar constraint, then the essence of trinocular vision

is the point-line-line trilinear constraint. In general, information about a point must first be

converted into lines passing through that point before it can be handled by the trifocal tensor.

The various incidence relations between lines and points over three views give different, but

intimately related, trilinear expressions. These matching constraints tell whether features in

different images could possibly be the projections of a single world primitive.

A fundamental result is that the geometric notion of transfer between views is captured by the

algebraic contraction of the trifocal tensor. A single contraction of the tensor with canonical

basis vectors gives rise to tensorial slices, which are groups of three3×3 matrices representing

either correlations or homographies between pairs of images. A contraction with an arbitrary
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image point or line produces a matrix which is a linear combination of the slices in one group

and so exhibits similar geometric properties than its canonical constituents. The consecutive

contraction of the tensor by two feature matches across two views permits finding a corre-

sponding feature in the third view. The trilinearities come as natural extensions of two-feature

transfer equations, when the tensor is fully contracted by three corresponding image tokens.

Because the tensorial slices may be seen as canonical representatives of the trinocular geometry,

they are ideal to characterise ancillary constraints that the trifocal tensor is subject to. Initial

work by Hartley and Faugeraset al. focused on the correlation matrices and established several

sets of dependent constraints. In recent years, Canterakis first, and Ressl later, utilised the

homography matrices to derive minimal sets of eight independent constraints. This number

of constraints matches the expected theoretical value. The various sets of constraints were

examined in turn and expressed in one common framework.

The next chapter provides an implementation and testing of many results established here.

Page 115



Page 116



Chapter 5

Application II: Trifocal
Tensor Estimation

T
his chapter is devoted to the estimation of the trifocal tensor from triplets of cor-

responding image points. The computation process is very sensitive to noise and

outliers in the data. Only an estimate which satisfies the internal constraints is accu-

rate enough to be usable in any application. It is highly probable that the initial approximation

of the trifocal tensor, arising exclusively from solving the incidence relations between views,

does not adhere to the ancillary constraints. A refinement of the tensor must be carried out as

a post-process to enforce these conditions. The corrected estimate will then be consistent with

the underlying trifocal geometry.

For this task, general estimation methods described in Chapter 2 are employed and combined

with the trinocular constraints derived in Chapter 4. An additional non-iterative method is pre-

sented whereby a trifocal tensor is computed by imposing linear constraints. The FNS and

RFNS algorithms will be the major tools to generate accurate unconstrained estimates. The

trifocal tensors obtained are then corrected a posteriori using the schemes presented in Sec-

tion 2.5. Various performance measures of the devised (constrained) estimators are evaluated

through experiments on both simulated and real image data, and compared to that of other

existing methods.

5.1 Point incidence

Throughout the chapter estimation of the trifocal tensor will be based on the case of a point

incidence in three views. In general, there are two courses of action available. The estimation

problem may be modelled by an objective function which includes all nine equations generated

from each correspondence triplet or a minimum selection of four independent and orthonormal

equations.
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5.2 Hartley’s method

Including all nine equations improves the conditioning of the system [40] but increases the

complexity of the solution. It was shown that the trilinear equations correspond to depth errors

weighted by a function of the data [31]. For an uncalibrated image sequence, the weights vary

substantially for different equations. Pre-normalising the data and selecting a minimum of four

equations helps reducing the variation between weights. This is the approach we will follow.

A typical triplet of corresponding points is assumed to have the formm = [m1, m2, m3]T,

m′ = [m′1, m′2, 1]T, andm′′ = [m′′1, m′′2, 1]T. The points are related through the trifocal

tensor by the four trilinear constraints [79]:

3∑

i=1

(miT 11
i −mim′1T 31

i +mim′1m′′1T 33
i −mim′′1T 13

i ) = 0,

3∑

i=1

(miT 12
i −mim′1T 32

i +mim′1m′′2T 33
i −mim′′2T 13

i ) = 0,

3∑

i=1

(miT 21
i −mim′2T 31

i +mim′2m′′1T 33
i −mim′′1T 23

i ) = 0,

3∑

i=1

(miT 22
i −mim′2T 32

i +mim′2m′′2T 33
i −mim′′2T 23

i ) = 0.

(5.1)

This system will be used as a basis for computation of the trifocal tensor. Lettingm3 = 1, the

system can be brought into the form given in (2.2) by first concatenating the inhomogeneous

coordinates ofm, m′, andm′′ to obtain a single item of datax = [m1, m2, m′1, m′2, m′′1, m′′2],

next rearranging the tensor entries into a length-27 vectorθ, and then setting

f(x, θ) = [f1(x, θ), . . . , f4(x, θ)]
T, (5.2)

wheref1, . . . , f4 are the corresponding expressions on the left-hand side of the above system.

5.2 Hartley’s method

This section will show that a trifocal tensor can be estimatedby an equivalent procedure to that

of the normalised eight-point algorithm for the essential matrix [36]. An unconstrained estimate

is first generated using the NALS method and then corrected usinglinear constraints. In a final

step, the algorithm requires transformation rules to express the computed tensor back into the

original space of measurements. These transformations are stated in the next section before

presenting the algorithm’s details. We will refer to this method asHartley’s method, named so

after its inventor.
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5.2.1 Trifocal tensor normalisation

Suppose that triplet of corresponding pointsmi,m
′
i, andm′′

i are normalised using transforma-

tionsT, T′, andT′′ as in (3.6) such that̃mi = Tmi, m̃′
i = T′m′

i, andm̃′′
i = T′′m′′

i . Denoting

the original tensorial coefficients byT jk
i for i, j, k = 1, 2, 3, the trifocal tensor relating the

normaliseddata points is expressed as

T̃ st
r = (T−1)i

r T
′s
j T

′′t
k T jk

i r, s, t = 1, 2, 3. (5.3)

Here summations over the indicesi, j, andk are implicit. A more compact (and perhaps con-

venient) way to perform this operation is by acting on the trifocal matrices directly. Expression

(5.3) becomes

T̃r = T
′

(
3∑

i=1

(T−1)i
r Ti

)
T
′′T r = 1, 2, 3.

The original tensor can be recovered from its normalised version by applying the transformation

T jk
i = T

r
i (T′−1)j

s (T′′−1)k
t T̃ st

r , (5.4)

or equivalently,

Ti = T
′−1

(
3∑

r=1

T
r
i T̃r

)
T
′′−T i = 1, 2, 3.

In general, trifocal tensors (5.3) and (5.4) do not have unit norm.

5.2.2 Normalised algebraic least-squares estimate

As in the case of homography or fundamental matrix computation, the accuracy of the ALS

estimate can be greatly enhanced if image coordinates are normalised before the estimate is

actually computed. The normalisation ensures that the entries of the design matrixM are of

comparable size.

Suppose that the original 2-D homogeneous pointsmi, m′
i, andm′′

i of the left, central and

right images respectively are converted tonormalised2-D homogeneous points̃mi, m̃′
i, and

m̃′′
i as described in Section 5.2.1. Moreover, letx̃i = [ũi, ṽi, ũ

′
i, ṽ

′
i, ũ

′′
i , ṽ

′′
i ]

T be the result of

concatenating the inhomogeneous coordinates ofm̃i, m̃′
i, andm̃′′

i . If T̃ st
r designates the ALS

trifocal tensor estimate based on thex̃i, then the correspondingnormalised algebraic least-

squares(NALS) estimate ofθ, θ̂NALS, is defined by

θ̂NALS = T jk
i = T

r
i (T

′−1)j
s(T

′′−1)k
t T̃ st

r . (5.5)
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5.2 Hartley’s method

5.2.3 Imposing linear constraints

The27 entries of the tensor are defined up to a common scale so they may be computed given

at least26 equations involving points and lines as data input such that

2 #lines+ 4 #points≥ 26.

Originally, solutions were computed from a set of7 point matches or13 line correspondences

in three views. Hartley was first to propose a linear algorithm allowing for a mixture of both

points and lines [38].

The NALS estimate obtained in the previous step does not satisfy the ancillary constraints for

the trifocal tensor. This means that the projections recovered from this tensor would give a crude

3-D reconstruction of the scene. Imposing the constraints ensures that the rays back-projected

in space from each triplet of image points intersect in a single 3-D point, as seen in Figure 4.14.

To guarantee such a geometrically valid tensor, Hartley proposed a scheme which applieslinear

constraints on to the NALS estimate (5.5). This method is exposed next.

Having isolated epipolese′ ande′′ from θ̂NALS (see Section 4.6.1), one may solve the following

quadratic minimisation problem with linear constraints

θ̂HRT = arg min
β̃ ∈ V

‖ M E β̃ ‖2 (5.6)

such that V = {β̃ ∈ R
w | Cβ̃ = 0}, (5.7)

whereM is the design matrix given in (2.5),E = E(e′, e′′) is the transformation (4.22) and̃β is

the associated length-18 vector containing the inner3 × 3 matricesA andB of the second and

third projections as defined in (4.21).

The constraintsCβ̃ = 0 in (5.7) represent the three conditions

3∑

i=1

ai
ja

i
4 = 0, (5.8)

which is the requirement that the4-th column ofP′ is orthogonal to all other columns. It is

preferable to enforce these constraints, otherwise performing minimisation (5.6) alone may be

unstable due to the fact thatE does not have full rank [35, 41]. The estimate resulting from

this minimisation process will be referred to as theHartley trifocal tensor estimate and denoted

θ̂HRT.

The SVD ofC = ÛD̂V̂T enables to express̃β as a linear combination of the columns ofV̂, that

is, β̃ = V̂ŷ. The diagonal matrix̂D has the property that itsr non-zero diagonal entries precede

the zero ones; for constraints (5.8),r = 3. Consequently,Cβ̃ = 0 may be written aŝUD̂ŷ = 0,
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which in turn is equivalent tôDŷ = 0 sinceÛ is orthogonal. This last constraint is satisfied

only if ŷ hasr leading zeros. In this case, we may writeβ̃ = V̂ŷ = Ṽỹ, whereỹ is the vector

created from̂y by discarding the leadingr zeros and̃V is formed fromV̂ by omitting the first

r columns. SincêV is orthogonal, the condition‖ Ṽỹ ‖ = 1 is equivalent to‖ ỹ ‖ = 1 and the

original problem comprising (5.6) and (5.7) is reduced to a standard least-squares minimisation

β̃HRT = arg min
ỹ∈Rw−r

‖ M E Ṽ ỹ ‖2 with ‖ ỹ ‖ = 1. (5.9)

The solutionβ̃HRT can be found by computing the SVD of the matrixM E Ṽ and choosing the

eigenvector corresponding to the smallest singular value. Finally,θ̂HRT = Ṽβ̃HRT.

Levenberg-Marquardt correction

The epipoles, which serve to compute the constrained tensor,are fixed and not updated in the

minimisation (5.6). This can be remedied by applying the Levenberg-Marquardt algorithm to

minimise the function

(e′, e′′) 7→ ‖ M E β̃ ‖ with ‖ E β̃ ‖ = 1. (5.10)

The steps of the overall estimation procedure are as follows:

Algorithm 14 Hartley-LM algorithm

Steps to compute an estimateθ̂HRT−LM which minimises (5.9) and (5.10) :

1. Compute the trifocal tensor̂θNALS and retrieve the epipolese′ ande′′; setk = 0.

2. Solve problem (5.9) for the current epipoles and letβ̃k = β̃HRT.

3. Compute the norm of the residual error vectorǫk = M E β̃k.

4. If ‖ǫk‖ is greater than a user-defined threshold, then apply the Levenberg-Marquardt al-

gorithm to find new values for the two epipoles, incrementk and go back to step 2.

Otherwise, terminate the procedure.

5. ComputêθHRT−LM = E β̃k whereE is made from the final estimates of the epipoles and

the limiting value ofβ̃k.

This minimisation problem is of modest size since only six parameters, the homogeneous coor-

dinates of the two epipoles, are involved so the computational cost remains small. The improved

epipoles yield an optimal estimate of the trifocal tensor in terms of algebraic error associated

with the input data [42].
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5.3 FNS: Full and reduced forms

Discussion

Compared to the minimisation problem (2.63), the problem (5.9) involves the metric induced

by the identity covariance matrix of the parameter vector. Moreover, note thatθ̂u
AML in (2.63)

acts as a centre for the estimated entityg(β) in the same way thatζ is a centre forβ in (2.74).

In contrast, (5.9) can be interpreted as minimising the quantity(M E Ṽ ỹ) with no centering, that

is, the centre isalwaysthe null vector. The advantage however in Hartley’s formulation resides

in the fact that the ancillary constraints are linear and therefore can be expressed conveniently

in matrix form. After some algebraic manipulations, these constraints can be included in the

main objective function and solved at once to yield the inner (constrained) projections.

As we saw in Chapter 4 the elements of the trifocal tensor must satisfy8 nonlinear internal

constraints to represent a geometrically valid entity. These constraints are only partially met by

Hartley’s linear solution and a major drawback of this solution is that the (geometric) reprojec-

tion error is not fully reduced. Nevertheless, the method is fast and can be a good precursor for

an iterative procedure. In some instances, it can even produce an estimate which is competitive

with nonlinear solutions. The real image sequences we have considered give an example of

both possibilities, when Hartley’s method produces some results which are “far” from those of

the iterative techniques and some which are of comparable quality.

5.3 FNS: Full and reduced forms

Hartley’s estimation method is simple but from its simplicity raises its imperfection. The fun-

damental numerical scheme (FNS) and its reduced version (RFNS) offer a good alternative as

they produce near-optimal unconstrained solutions and are also fast. It will be shown through

experiments that when combined with post-correction methods they form good constrained es-

timators.

The implementation of the FNS method was analogous to that for estimating homography ma-

trices. The only difference was to supply the scheme with a carrier matrixU relevant to the

trifocal tensor and adopt the appropriate gradient matrix∂xvec(U). Elements relevant to RFNS

can be derived from those of FNS by selecting the appropriate rows in the matrices. The fol-

lowing sections give technical details specific to the estimation of the trifocal tensor with both

methods.

5.3.1 Parameterisation for FNS and RFNS

The objective functionf(x, θ) is taken as specified in Section 5.1. For FNS, the entries in

θ are chosen such thatT jk
i is the (9i + 3j + k − 12)-th component ofθ as set initially in
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(4.18). For RFNS,U(x) and θ can be partitioned as in (2.32) and (2.33) withW = I4×4,

α = [ T 11
3 , T 12

3 , T 21
3 , T 22

3 ]T, and

µ = [ T 13
1 , T 23

1 , T 31
1 , T 32

1 , T 33
1 , T 13

2 , T 23
2 , T 31

2 , T 32
2 , T 33

2 , T 13
3 ,

T 23
3 , T 31

3 , T 32
3 , T 33

3 , T 11
1 , T 12

1 , T 21
1 , T 22

1 , T 11
2 , T 12

2 , T 21
2 , T 22

2 ]T.

5.3.2 Curtailing or truncating ?

The linear dependency of the gradients∂xfj of the objective function (5.2) means that the

length of thef(xi, θ) surpasses the common codimension of the submanifolds of the form{x ∈
R6 | f(x, θ) = 0} with θ representingideal parameters that might have generated the data.

Curtailing the objective vector is not an acceptable compromise because the correspondingθ-

parameterisation does not encompass all of the sought tensorial coefficients.

The linear dependency is tackled in this case by using FNS III (Algorithm 5). The singularity

is accommodated by replacing the4 × 4 matricesΣ−1
i andΣ′−1

i by their 3-truncated pseudo-

inverses(Σi)
+
3 and (Σ′i)

+
3 in the expressions forJAML andJ ′

AML, respectively, and in related

corresponding entities.

5.3.3 Data covariances

Given a data set{xi}n
i=1, the covariance of each datumxi takes the form of a symmetic matrix

Λxi
=



Λmi

0 0

0 Λm′

i
0

0 0 Λm′′

i


 ,

whereΛmi
, Λm′

i
, andΛm′′

i
are2× 2 symmetric covariance matrices associated with the inhomo-

geneous coordinates of the pointsmi, m′
i, andm′′

i respectively.

Although noise information was available in our synthetic tests, data covariance information

was not exploited. In experiments involving real imagesΛxi
was taken to be the default6 × 6

identity matrix corresponding to isotropic homogeneous noise in image point measurement.

5.4 Gold Standard method

Optimal results can be obtained by utilising the maximum likelihood (ML) estimator. When all

data covariances are assumed to be the default identity matrix, the ML cost function (2.10) is

given by the reprojection error
n∑

i=1

(
d(mi, m̂i)

2 + d(m′
i, m̂

′
i)

2 + d(m′′
i , m̂

′′
i )

2
)
, (5.11)

Page 123



5.5 Experiments with synthetic data

where pointsm̂i = N (PMi), m̂′
i = N (P̂′Mi), andm̂′′

i = N (P̂′′Mi) and P̂′ and P̂′′ are the

second and third projection matrices retrieved from the trifocal tensor estimateθ̂ as described

in Section 4.6.3. HereN (a) = a/a3 is a normalisation procedure whose application ensures

that the third (homogeneous) coordinate of a given planar point is unity, andd(a,b) denotes the

Euclidean distance between the image pointsa andb that have been normalised in the above

sense. TheMi are initially obtained by triangulating from themi,m
′
i, andm′′

i , and are then

recomputed in each optimisation step of an iterative scheme (typically, and in our case, the

Levenberg-Marquardt algorithm) that minimises the reprojection error. The overall procedure

constitutes the Gold Standard (GS) method.

For a trifocal tensor estimatêθ obtained by a method other than GS,JML(θ̂) is calculated by

minimising (5.11) over the3n reprojected pointŝmi, m̂′
i, andm̂′′

i and keeping the projections

fixed. Note the difference with the GS algorithm, in which—for findingθ̂ that minimises the

reprojection error—thêmi, m̂
′
i, m̂

′′
i , and P̂′ andP̂′′ are allowed to vary simultaneously.

A commonly used accuracy measure which can be derived from (5.11) is the root-mean-squared

(RMS) error. Given a trifocal tensor̂θ it is taken to be

RMS =

√
JML(θ̂)/(6n),

with 6 representing the number of elementary degrees of freedom expressible in units of length:

(three images)× (two image dimensions). For an optimal estimateθ̂, its value is a good indica-

tion of the average noise contained in the data.

5.5 Experiments with synthetic data

Repeated experiments were performed in order to collect results of statistical significance. The

regime adopted was to generate a 3-D scene visible by three perspective cameras and project

the scene points onto images to provide “true” matches. Each image point was then perturbed

by homogeneous Gaussian noise of two pixels and the resulting noise-contaminated triples of

corresponding points were used as input to several algorithms.

5.5.1 Scene and camera configuration

In a standard experiment, the scene and cameras were arrangedas follows. After fixing a world

coordinate system, a set of 3-D points were synthetised in a cuboid of dimensions3 × 1.5 × 3

m3 with 5 points equally spaced along each direction. The images were3000 × 2000 pixels,

with a pixel size of9 × 9 µm2. The centre of the cuboid was first located5m away from the
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world origin. We then applied a15◦ rotation about the point[1.5, 0.75, 4.5]T (front lower right

corner of the cuboid) to all 3-D points.

The 125 (rotated) world points were captured by three perspective cameras placed atC̃1 =

[−5, 3, 1.5]T, C̃2 = [0, 0, 0]T, and C̃3 = [3, 3, 1.5]T. The right camera was rotated by

−31◦,−36◦, and−5◦ about thex, y, andz-axis, respectively. The central camera only had

a 10◦ rotation about itsy-axis. The left camera was subject to rotations of−32◦, 35◦, and5◦

about itsx, y, andz-axis in that order. All rotations were counterclockwise about the respective

axes and relative to the camera coordinate system. For each view, rotations were applied about

thez, y, andx-axis consecutively.

The three cameras used a common calibration matrix. The focal lengthf was set to3600

pixels (about32mm) which allowed an approximate45◦ × 31◦ viewing angles in thex and

y-direction respectively. The origin of the image coordinate system was set in the centre of the

image where the principal point was assumed to be located and the skew factor was taken to

be zero. Figure 5.1 shows the simulated 3-D scene and camera configuration just described.

The projection of the scene onto a left, central and right image provided true matches shown in

Figure 5.2. The “true” trifocal tensor relating the noise-free image points was computed using

(4.16) based on the knowledge of the camera projections for each of the three views.

Figure 5.1. A synthetic 3-D scene made of equally spaced points inside a cuboid and

three cameras viewing the scene.

To determine the difference in accuracy and computational efficiency between different algo-

rithms, each unconstrained and constrained stage was examined. The methods’ performance
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Figure 5.2. Noise-free images acquired by the three cameras shown in Figure 5.1.

was assessed through two types of measures. One type includederror measures based on cost

functions and the other includedcomputationalmeasures such as number of iterations, conver-

gence rate, and timing.

5.5.2 Performance measures part I: Unconstrained estimatio n

The performance of the estimators was evaluated over a seriesof 200 experiments to check their

average statistical behaviour in the long term.

Table 5.1 shows averages over the total number of trials for five unconstrained schemes: NALS,

GTLS, FNS, RFNS, and RHEIV. The three iterative schemes were seeded with a GTLS estimate

obtained as described in Section 2.2.2. The first two columns consider theJAML andJ ′
AML

objective functions respectively. To calculateJ ′
AML residuals for the non-reduced methods, the

µ-component of each finalθ-vector was retrieved and plugged into theJ ′
AML expression.

Methods JAML J ′
AML Iter. Time (sec)

NALS 1415.4 1415.3 1 0.05

GTLS 1415.4 1415.3 1 0.36

FNS 1398.1 1398.1 7.8 2.41

RFNS 1398.1 1398.1 1.5 1.02

RHEIV 1398.1 1398.1 1.5 1.2

Table 5.1. Average residual errors and computational performance of five unconstrained

algorithms.

It is clearly seen that the estimates produced by the iterative schemes give all similar values of

JAML andJ ′
AML residuals. This in particular provides an empirical confirmation of the identity

JAML(θ) = J ′
AML(µ) (see Appendix A.2). RFNS and RHEIV achieved a better convergence

rate over FNS—the last scheme was almost three times slower and required about five times
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as many iterations compared to the two other schemes. It can also be seen that the iterative

methods are tangibly more accurate than the basic non-iterative NALS and GTLS procedures.

This suggests potential utility of the iterative methods, as only accurate unconstrained estimates

can be upgraded to accurate constrained estimates suitable for practical applications.

Figure 5.3. Histograms of JAML values for five unconstrained methods.

To complete the analysis, Figure 5.3 shows histograms ofJAML values for each estimator over

the200 simulations (the average value appears in the top right corner of each histogram). Two

distinct groups of histogram profiles can be distinguished. One profile corresponds to NALS and

GTLS estimates (top two histograms) whereas FNS, RFNS, and RHEIV estimates generated

another type of distribution (bottom three histograms).

5.5.3 Performance measures part II: Constrained estimation

This section shows the results of testing the constraint adjustment schemes presented in Sec-

tion 2.5. The following acronyms will designate the type of post-correction employed: LM for

Levenberg-Marquardt, GN for Gauss-Newton, TGN for Truncated Gauss-Newton, and WNLS

for Weighted Nonlinear Least-Squares. Thus, the composition of FNS and LM correction will

be denoted by FNS-LM. To use Kanatani’s extended method, let

Φ(θ) = [φ1(θ), . . . , φ8(θ)]T , (5.12)
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whereφ1, . . . , φ8 are the values of the constraints (4.68), (4.77), (4.79) to (4.81), and (4.83)

respectively.

With the exception of GN, all other techniques can be supplied with a non-identity covariance

matrix for θ. This covariance matrix effectively induces a different metric in the parameter

space. The choice of such a matrix is therefore important since different covariances may lead

an algorithm to different solutions. Two main questions arise. One is to determine whether a

particular choice of covariance matrix leads to a better and/or faster correction of the parameters.

Secondly, given a covariance matrix, do the correction schemes converge, and if they do, is it to

the same solution ? The next section presents the experimental results of this investigation.

Influence of the parameter covariance matrix in estimation

Since FNS and RHEIV produced equivalent estimates to those ofRFNS, results in this sec-

tion concern correction of the RFNS estimates only. The five constraint methods were applied

to each of the200 θ̂RFNS estimates to assess the effect of incorporating different parameter

covariances in the correction mechanism. Apart from GN, the methods were run on three input

covariance matrices: a “default” identity matrixI27×27, M
θ̂RFNS

, andX
θ̂RFNS

. Recall that GN is a

simplified version of WNLS where, by definition, the covariance matrix is fixed toW = I27×27.

Several outcomes were immediately observable. The matrixX
θ̂RFNS

was not often positive defi-

nite and therefore made every algorithm diverge.

Kanatani’s extended method turned out to be inadequate to correct an unconstrained trifocal

tensor, irrespective of the covariance matrix used. For low levels of noise in the data (less

than0.2 pixels), the value of the constraintΦ was systematically small so the method reached

machine accuracy in one or two steps without providing much correction to the input estimate.

The result of this operation remained very much an unconstrained vector. For higher noise

levels, the method diverged as the iterations progress. Although the technique is efficient for

simpler problems such as ellipse fitting or fundamental matrix estimation [49], the degree of

difficulty involved in correcting an unconstrained trifocal tensor revealed to be too significant

for the method to work properly.

Table 5.2 presents the averageJAML residuals for the various methods set with either the default

matrix I27×27 or matrixM
θ̂RFNS

. Clearly, whenever the identity matrix was used, the final con-

strained estimates were of mediocre quality no matter which method performed the correction.

Although the algorithms converged, they all reached a distant local minimum where theJAML

cost value is significantly high. On the other hand, when the metric was induced by the matrix

M
θ̂RFNS

, all methods yielded equivalent constrained vectors. It will be shown in Section 5.5.3

that these solutions are commensurate in quality with GS’s solutions.
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Covariance GN WNLS LM TGN

I27×27 5544.1 − 5496.3 5655.8

M
θ̂RFNS

− 1427.6 1427.6 1427.6

Table 5.2. Mean JAML values when using different parameter covariances.

Perhaps a more appealing test comes from looking at the RMS error in Table 5.3. This error

approximately doubled whenever the identity matrix was used.

Covariance GN WNLS LM TGN

I27×27 2.53 − 2.52 2.56

M
θ̂RFNS

− 1.38 1.38 1.38

Table 5.3. Mean RMS errors when using different parameter covariances.

To summarise the findings, matrixX
θ̂RFNS

was unusable as parameter covariance. The Kanatani-

like method was an inefficient post-correction scheme for the trifocal tensor. The default identity

matrix induced an inadequate metric to adjust the parameters so the methods either diverged or

found a distant local minimum of the function. Best corrections were obtained when the matrix

M
θ̂RFNS

was used. Operated with this covariance, WNLS, LM, and TGN converged to a similar

solution.

Experimental results

We now compare the accuracy of the previous corrected estimates to optimal constrained vectors

obtained from GS. Results for Hartley’s method are also given for reference. In this method, no

iterative correction of the epipoles was performed, this is deferred until using real image data

where the benefit is more noticeable. Table 5.4 provides feedback on the algorithms perfor-

mance. Every correction scheme which could use a non-identity parameter covariance matrix

was supplied withM
θ̂RFNS

.

Upon inspection, it is immediately apparent that RFNS-GN produced estimates with high cost

function values. For any other combination of RFNS with a correction scheme, the cost values

of the computed estimates were of comparable accuracy to the GS estimates. These values

were all very similar, if slightly higher than those for the estimates generated by the respective

unconstrained schemes (Table 5.1), as expected. Hartley’s method yielded reasonable results

and was especially fast.

The RMS error (fourth column) can be derived from theJML cost value and so, not surprisingly,

values for theM-based correction methods match those of GS. The fifth column indicates the
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Methods JAML J ′
AML JML RMS Iter. Time (sec)

Hartley 1442.6 1442.5 1442.6 1.39 1 0.05

RFNS-GN 5544.1 3580.9 5543.9 2.53 2.7 1.47

RFNS-WNLS 1427.6 1427.5 1427.6 1.38 2.5 1.45

RFNS-LM 1427.6 1427.5 1427.6 1.38 4.3 1.08

RFNS-TGN 1427.6 1427.5 1427.6 1.38 6.22 1.69

GS 1427.8 1427.7 1433.5 1.38 12.4 22.37

Table 5.4. Average residual errors and computational performance of several constrained

algorithms. Hartley and GS methods are added for reference.

number of iterations achieved in the constrained minimisation stage of the specified method.

WNLS performed the least amount of iterations followed by LM and then TGN. The sixth

column corresponds to the overall timing to produce a constrained parameter vector, that is, the

times for both unconstrained and constrained stages were added together. Timing for a specific

constraint adjustment scheme may be deduced by calculating the time difference with the results

given in Table 5.1.

LM turned out to provide faster correction than WNLS. This result may be explained by the

fact that LM relies on an termination condition based on the difference of successive estimates

whereas WNLS (and other post-correction schemes) uses cost function values, which need to

be computed at each iteration. We found experimentally that this latter choice was safer to

guarantee a good constrained estimate.

Overall, RFNS followed by any post-correction operated very quickly compared to GS. Note

that the search space for GS has dimension125 × 3 + 27 = 402, whereas the search space

for RFNS has dimensions23—since the method does not optimise over the data points. The

post-corrections typically involved a few steps and therefore executed rapidly too.

Figure 5.4 shows histograms ofJAML values for the constrained methods. The RFNS-based

estimators and GS produced identical profiles whereas Hartley’s histogram shows some dif-

ferences particularly around the1400 mark and above1550. Compared to the histograms of

the unconstrained estimators (Figure 5.3), these ones are more compact. TheJAML cost func-

tion and its slices were also examined; results were similar to those for homography estimation

shown in Section 3.3.

We performed a metric reconstruction of the cuboid from the RFNS-TGN trifocal tensor.

Figure 5.5(a) shows the corners of both the original object (red) and its reconstruction obtained

from the projective tensor (blue). The “projective” cuboid is clearly different from the original

one. After metric reconstruction (Figure 5.5(b)), the final object is very much aligned with the
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Figure 5.4. Histograms of JAML values for five constrained methods. Not shown are

the values for RFNS-GN and RFNS-KK, as they are off the scale.

(a) (b)

Figure 5.5. Cuboid 3-D models. The red cuboids are the original objects whereas the blue

ones represent computed cuboids from the (a) projective and (b) metric RFNS-

TGN trifocal tensor estimates.

starting cuboid. The mixture of red and blue edges is due to thescene viewing angle as the two

cuboids are now very similar.

Page 131



5.6 Considering real images

The values of the ancillary constraints are of great interest but will be omitted in this section.

Details are delayed until Section 5.6.1 and 5.6.2 when working with real image data. This

information may be more pertinent then and was found to agree with the results for synthetic

data.

5.6 Considering real images

We now extend the algorithms test framework to perform experiments on data collected from

two real image sequences.

5.6.1 Chemistry department sequence

Three images were acquired by a hand-held camera and44 corresponding points were manu-

ally identified as shown in Figure 5.6. Due to a small baseline distance between any two camera

positions, the trifocal plane here is not firmly defined and has potential to trigger numerical

instabilities. The problem is often due to several small eigenvalues being close to zero when

solving the eigenvalue problemXθξ = λξ. The eigenvector associated with the smallest eigen-

value is no longer the sought solution and actually yields to a drastic increase in the objective

function. In turn, this typically makes the algorithm diverge. A similar behaviour is observable

when the noise in the data is high or outliers are present.

Figure 5.6. Chemistry department sequence. Each image is 600 × 800 pixels in size.
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To ensure convergence, a modification of FNS in step3 of Algorithm 5 became necessary.

With vi,k the normalised eigenvector corresponding to thei-th smallest eigenvalue ofXθk−1
, the

updateθk was defined as the result of normalising
∑3

i=1(θ
T

k−1vi,k)vi,k. A similar adjustment

was made in Algorithm 6 describing RFNS. As far as projections onmulti-dimensionalrather

thanone-dimensionaleigenspaces are concerned, it should be stressed that FNS, RFNS, or any

similar scheme involving such projections converge to a solutiondifferent from the solution

obtained by using the respective methods in their original form. The point here is that the multi-

dimensional eigenspaces bring stability but potentially loose accuracy. For this reason, the

dimensionality of the space spanned by the eigenvectorsvi,k should be kept as low as possible.

In particular, if there are no essential gains in stability, the multi-dimensional eigenspaces should

be abandoned.

Both unconstrained and constrained algorithms were run on Hartley-normalised data and nor-

malised trifocal tensor respectively. GS was the only method to operate on the original (un-

normalised) measurement data. The various iterative methods were seeded with the GTLS

estimate,̂θGTLS, except the Hartley-LM method which, by definition, used an NALS estimate.

Performance results part I: Unconstrained estimation

To begin, Table 5.5 shows the results of applying five unconstrained algorithms to the image

data points. In each class of iterative and non-iterative estimators the methods produced very

closeJAML andJ ′
AML values for both functions, and, given anyθ-vector and itsµ-component

coming from a particular method, the two functions attained a similar cost. FNS and RFNS

performed the same number of iterations and executed in about the same time. RHEIV lagged

fractionally behind.

Methods JAML J ′
AML Iter. Time (sec)

NALS 33.2 33.2 1 0.08

GTLS 33.8 33.8 1 0.23

FNS 28.5 28.3 3 0.48

RFNS 28.6 28.6 3 0.58

RHEIV 28.7 28.6 5 0.64

Table 5.5. Residual errors and computational performance of five unconstrained schemes.

As for homography matrix estimation in Chapter 2, we examine the methods convergence rates,

more particularly those of FNS and RFNS listed in Table 5.6 below. TheJAML cost value is

given at each step as well as the relative norm difference between two successive iterates. Note

here that, although FNS and RFNS operated on Hartley-normalised data, the cost values are

Page 133



5.6 Considering real images

given for the original measurement data so that they can be compared to the final values in

Table 5.5.

FNS RFNS

Step JAML ‖θk+1 − θk‖ ek+1/ek JAML ‖θk+1 − θk‖ ek+1/ek

0 33.8 0.433 0.53 33.8 1.180 0.43

1 36.2 0.217 0.36 34.2 0.232 0.41

2 28.7 0.072 0.17 29.1 0.098 0.39

3 28.5 0.011 0.00 28.7 0.059 0.00

Table 5.6. FNS and RFNS convergence characteristics when computing a trifocal tensor from

to the chemistry department data. Step 0 gives the initial values corresponding to

the seed θ0 = θ̂GTLS.

The norm difference between successive estimates is tangibly smaller for RFNS and clearly

decreases as the iterations progress. FNS exhibits a much more steady pace. This behaviour is

typical in optimisation methods where the seedθ0 is far from the solution. In this situation, the

methods produce iterates which move steadily towards the local minimum and it is common that

the error increases in the very first step(s). This last remark is applicable to both FNS and RFNS

here. It was already noted in the case of ellipse fitting and fundamental matrix estimation [33]

that FNS was not producing monotonically decreasingJAML values for successive estimates.

Overall, both FNS and RFNS showed a modest linear convergence. RFNS proved to have

faster convergence rate than FNS, as expected, despite a slightly higher finalJAML cost. In

the next section, we will see that the constrained vectors produced by these two methods are

commensurate in accuracy so the slightly inferior RFNS estimate has not adversely affected the

constraint correction stage.

Performance results part II: Constrained estimation

The solutions delivered by FNS, RFNS, and RHEIV were then corrected with the constraint

adjustment schemes presented in Section 2.5. As for synthetic data, the extended Kanatani

method failed to converge, irrespective of the covariance matrix used,W = I27×27, Mθ̂u
AML

, or

X
θ̂u

AML
, whereθ̂u

AML was an AML estimate generated from the above three iterative schemes.

To facilitate reading, the results are split up into several tables. Each one highlights an (iterative)

unconstrained scheme followed by a post-hoc correction. The three methods, WNLS, TGN, and

LM were supplied with parameter covarianceM
θ̂u

AML
coming from the unconstrained estimator

they were combined with.

Page 134



Chapter 5 Application II: Trifocal Tensor Estimation

First, Table 5.7 gives the results of constrainingθ̂FNS. For clarity, the fifth column indicates

the number of iterations achieved in the constrained minimisation stage of the specified method

and the timing result (sixth column) encompasses both unconstrained and constrained stages.

Methods JAML J ′
AML JML RMS Iter. Time (sec)

FNS-GN 131.5 112.9 131.6 0.70 4 0.62

FNS-WNLS 37.2 37.2 37.2 0.37 7 0.70

FNS-LM 37.2 37.2 37.2 0.37 13 0.90

FNS-TGN 37.2 37.2 37.2 0.37 6 0.62

Table 5.7. Residual errors and computational performance of FNS followed by four post-

correction schemes.

Not surprisingly, GN provided a limited correction to the parameters. Although the algorithm

converged, and quite rapidly, it had reached a distant local minimum of the function. Other

schemes performed well and matched each other in all tests that measured accuracy of the final

(constrained) solutions. The fastest method was TGN, followed by WNLS, and then LM.

Methods JAML J ′
AML JML RMS Iter. Time (sec)

RHEIV-GN 154.5 143.9 154.6 0.76 4 0.73

RHEIV-WNLS 37.5 37.3 37.5 0.38 10 0.86

RHEIV-LM 37.4 37.3 37.3 0.38 9 0.67

RHEIV-TGN 37.3 37.3 37.3 0.38 7 0.81

Table 5.8. Residual errors and computational performance of RHEIV followed by four post-

correction schemes.

The same correction procedures were carried out after RHEIV estimation. Results appear in

Table 5.8. As before, GN turned out to be the weakest constraining scheme with even higher

cost values and RMS error than when coupled with FNS. The residual errors for other correction

types are good but slightly higher than those obtained with FNS indicating that the marginally

inferior unconstrained estimate did influence in this case the performance of the adjustment

schemes.

The final and best results were obtained for the RFNS estimate, shown in Table 5.9. Perfor-

mance of Hartley, Hartley-LM, and GS methods are also included for comparison. Despite that

GN produced its best results here, the error values remain significant. The other correction pro-

cedures performed very well with TGN being the fastest again, seconded by WNLS, and LM

in third place. Compared to Hartley’s method, the three RFNS-corrected estimates from these
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Methods JAML J ′
AML JML RMS Iter. Time (sec)

Hartley 57.1 57.1 57.1 0.46 1 0.08

Hartley-LM 37.3 37.3 37.3 0.38 3 0.61

RFNS-GN 116.9 105.5 116.9 0.66 5 0.66

RFNS-WNLS 37.2 37.2 37.2 0.37 7 0.69

RFNS-LM 37.2 37.2 37.2 0.37 15 0.59

RFNS-TGN 37.2 37.2 37.2 0.37 6 0.67

GS 37.2 37.2 37.2 0.37 233 43.16

Table 5.9. Residual errors and computational performance of RFNS followed by four post-

correction schemes. Hartley, Hartley-LM, and GS results are added for reference.

schemes yielded marquedly better constrained solutions which are actually inseparable from

that of GS. One noticeable difference is that GS’s larger search space meant that the method run

considerably slower than any of the three correction schemes combined with FNS, RFNS, or

RHEIV. For this sequence, Hartley-LM method produced excellent results compared to its basic

form with no epipole correction. Its results are close to those of the optimal iterative schemes.

The benefit of using a parameter covariance matrix is clearly visible. This is best noted in

situations where any estimate resulting from applying a WNLS correction achieved optimal

results compared to their GN-corrected counterpart.

Another important factor to check is the effectiveness of the correction schemes in enforcing the

multi-objective constraints and ancillary constraints. For each of the final estimates obtained,

the following constraints were evaluated:

1. ψ(xi, θ̂) =
∑4

j=1 |fj(xi, θ̂)|, the sum of the absolute value of the principal constraints

fj given in (5.1). This is approximately the equivalent of the epipolar constraint for the

fundamental matrix.

2. ϕ(θ̂) =
∑8

i=1 φ
2
i (θ̂), whereφ1, . . . , φ8 were defined in (5.12).

3. Faugeras’s epipolar constraints (4.70) and (4.71) which will be denoted byξ1 and ξ2
respectively.

Table 5.10 shows example values of the above constraints for RFNS-TGN and GS parameter

vectors. Combinations of FNS and RHEIV with the available constrained estimators, except

with the Gauss-Newton scheme, achieved similar performance. We also give the values for

θ̂FNS andθ̂RFNS so that the accuracy of the final constrained vectors can be contrasted to some

AML unconstrained estimates. The results forθ̂FNS and θ̂RFNS give an appreciation of how
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much correction was needed to get a fully constrained vector. GS is an ultimate benchmark to

compare the efficiency of the post-correction methods.

Methods ψ(xi, θ̂) ϕ(θ̂) ξ1 ξ2

FNS 0.230 4.20 × 10−6 2.78 × 10−3 1.29 × 10−4

RFNS 0.197 1.70 × 10−5 1.97 × 10−2 1.61 × 10−2

RFNS-TGN 0.059 5.76 × 10−37 1.71 × 10−19 4.62 × 10−19

GS 0.058 1.17 × 10−38 6.92 × 10−19 1.08 × 10−22

Table 5.10. Some constraint values for two unconstrained and two constrained estimates.

An important fact to note in these results is that the value ofϕ for the unconstrained esti-

mates is relatively small. This explains why the Kanatani-like scheme struggled to provide

any substantial correction. That it is for the constraintϕ, ξ1, or ξ2, the difference in magni-

tude between unconstrained and constrained estimates is significant, hence the need to apply

a powerful post-correction to reach an adequate accuracy. Although FNS and RFNS should

theoretically produce equivalent estimates, these tests reveal that their respective output vectors

are not guaranteed to satisfy the constraints in the same way.

Finally, to get a visual impression of the accuracy of the tested methods, the three input images

of Figure 5.6 were registered using the RFNS-TGN trifocal tensor. A 3-D model was then built

as shown in Figure 5.7.

Performance results part III: Accuracy of fundamental matri ces

We now carry out a qualitative comparison between the fundamental matrices which can be

retrieved from the trifocal tensor and an optimum estimate coming from applying GS to pairs

of feature points.

In the following, fundamental matriceŝF21 andF̂31 were computed from the RFNS-TGN tensor

as explained in Section 4.6.2. For comparison, optimum fundamental matricesF̃21 andF̃31 were

computed with GS applied to each pair of views1−2 and1−3 respectively. GS was seeded with

a GTLS estimate to match the initialisation condition of the RFNS-TGN trifocal tensor. The

resulting four estimates were SVD-corrected to ensure that they satisfy the rank-two constraint.

Given an estimated fundamental matrixF̂, we then computed the reprojection error (ML cost),

the epipolar errorδ = m′TF̂m, and the absolute value of the ancillary constraint̺(F̂) = det(F̂).

Results are presented in Table 5.11.

The fundamental matrices of corresponding views have a similar ML residual and an ancillary

constraint value. The matrices retrieved from the trifocal tensor seemed to be more advanta-

geous though since they produced lower epipolar error than those of GS.
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Figure 5.7. Two views of the 3-D model obtained from the RFNS-TGN trifocal

tensor estimate.

F-matrix JML δ |̺|

F̃21 9.5 0.129 1.59 × 10−22

F̂21 9.6 0.095 2.65 × 10−23

F̃31 13.2 0.225 4.23 × 10−22

F̂31 13.2 0.054 2.12 × 10−22

Table 5.11. Reprojection error and constraint values for various fundamental matrices.

A visual appreciation of the accuracy ofF̂21 and F̂31 can be attained by inspecting Figure 5.8.

Depicted is a typical set of epipolar lines obtained from transferring an image point from one

view to another via these matrices. In addition, the epipolar lines fromF̃21 andF̃31 are drawn. To

contrast the difference with a trifocal tensor which does not satisfy the ancillary constraints, a

third final set of lines was drawn, coming from fundamental matrices associated with the NALS

trifocal tensor. The distinction between GS and RFNS-TGN epipolar lines is not visible and

GS’s lines are occluded by those of RFNS-TGN. The view is improved in Figure 5.9 which

shows the images at sub-pixel accuracy, focusing around the feature point.
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Figure 5.8. An example of epipolar lines for a particular data point. The blue and

green lines are obtained from fundamental matrices retrieved from the

NALS and RFNS-TGN trifocal tensors respectively. The yellow epipolar

lines from GS fundamental matrices are not visible here because they lie

underneath the green epipolar lines.

Figure 5.9. Epipolar lines of Figure 5.8 viewed at sub-pixel level. The same magnifi-

cation factor has been used in all three images. The difference between

RFNS-TGN and GS starts to show up but is negligible. The lines from the

NALS fundamental matrices do not fit the feature point in any image; the

line is even out of sight in the third image.
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5.6.2 Dredger sequence

Another three images were acquired by a hand-held camera and127 corresponding points were

manually selected as shown in Figure 5.10. Once again, the trifocal tensor is not well defined

because the three camera centres are close to be aligned which made the estimation process

unstable. We have used the same modification as in the previous image sequence. Withvi,k the

normalised eigenvector corresponding to thei-th smallest eigenvalue ofXθk−1
, the updateθk

was defined as the result of normalising
∑5

i=1(θ
T

k−1vi,k)vi,k. A similar adjustment was made in

RFNS.

For this sequence, FNS, RFNS, RHEIV, and GS were initialised with the NALS estimate,

θ̂NALS. Algorithms for both stages were supplied with Hartley-normalised data and normalised

trifocal tensor respectively. GS was again the only method to execute on un-normalised data.

Figure 5.10. Dredger sequence. Each image is 720 × 576 pixels in size.

Performance results part I: Unconstrained estimation

Five unconstrained algorithms were also applied to the imagepoints of this sequence. RHEIV

did not converge, irrespective of the seed used, so it does not appear in Table 5.12.

Unlike in the previous sequence, there is more variability in the accuracy of the estimates

generated. RFNS performed much less iterations than FNS but its performance, in terms of

cost function values, is somewhat lower than expected. The effect of projecting on multi-

dimensional eigenspaces may have lead to this poorer performance. Overall, for any of the

estimates,JAML andJ ′
AML residuals matched, which agrees with our expectations.

Similar convergence tests to those in Section 5.6.1 were also carried out. Results are sum-

marised in Table 5.13. RFNS demonstrated fast convergence obtaining a small norm difference

in a single step. The fact that the method quickly reached a solution indicates that the esti-

mate obtained from the initialisation procedure was in vicinity of a local minimum ofJ ′
AML.
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Methods JAML J ′
AML Iter. Time (sec)

NALS 176.9 176.9 1 0.11

GTLS 185.4 185.4 1 0.48

FNS 172.9 172.9 3 1.23

RFNS 175.4 175.4 1 1.11

Table 5.12. Residual errors and computational performance of four unconstrained schemes.

However, this solution is not an optimal minimiser ofJAML. Started with the same seed, FNS

behaved differently. The method first showed an increase in function value then steadily moved

towards a local minimum. In this case, the solution yielded lowerJAML residual than RFNS

final estimate. The algorithm’s behaviour is reminescent of the steps it followed earlier when

applied to the chemistry department data.

FNS RFNS

Step JAML ‖θk+1 − θk‖ ek+1/ek JAML ‖θk+1 − θk‖ ek+1/ek

0 176.9 0.257 0.15 176.9 0.150 0.01

1 182.1 0.075 2.39 175.4 7.61 × 10−4 0.00

2 174.3 0.101 0.08

3 173.4 0.008 0.00

Table 5.13. FNS and RFNS convergence characteristics when computing a trifocal tensor from

to the dredger data. Step 0 gives the initial values corresponding to the seed θ0 =

θ̂NALS.

Performance results part II: Constrained estimation

Attention is now focused on constraining the previously obtained AML solutions. Kanatani’s

extended method was once again to no avail and so four correction schemes remained to be

tested: GN, WNLS, LM, and TGN. Table 5.14 gives the results of coupling the FNS estimate

with these schemes.

As noted in the experiments of Section 5.6.1, GN converged but produced a poor constrained

solution. The other adjustment schemes performed equally well across all tests.

Table 5.15 summarises the results of constrainingθ̂RFNS. The table also includes the perfor-

mance of Hartley, Hartley-LM, and GS methods. For this sequence, Hartley’s method per-

formed exceptionally well both in terms of accuracy and execution speed. Note here that the
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Methods JAML J ′
AML JML RMS Iter. Time (sec)

FNS-GN 614.4 587.7 614.4 0.90 3 1.30

FNS-WNLS 177.2 177.2 177.2 0.48 1 1.22

FNS-LM 177.1 177.1 177.1 0.48 4 1.67

FNS-TGN 177.3 177.3 177.3 0.48 3 1.67

Table 5.14. Residual errors and computational performance of FNS followed by four post-

correction schemes.

epipole correction with LM did not improve the quality of the estimates generated. In separate

tests, it actually turned that a slightly lower termination condition value and a Hartley estimate

as initialisation for FNS produced an unconstrained estimate which, after correction, yielded

results that matched those of the corresponding corrected RFNS estimates. Nevertheless, con-

sidering the number of matching points, the difference in the results compared to FNS seeded

with θ̂NALS (Table 5.14) is negligible.

Methods JAML J ′
AML JML RMS Iter. Time (sec)

Hartley 177.9 177.9 177.9 0.48 1 0.11

Hartley-LM 177.9 177.9 177.9 0.48 2 0.61

RFNS-GN 179.5 178.8 179.5 0.48 1 1.22

RFNS-WNLS 177.0 177.0 177.0 0.48 1 1.26

RFNS-LM 177.0 177.0 177.0 0.48 3 1.03

RFNS-TGN 177.0 177.0 177.0 0.48 4 1.41

GS 176.7 176.7 179.3 0.48 576 625.12

Table 5.15. Residual errors and computational performance of RFNS followed by four post-

correction schemes. Hartley, Hartley-LM, and GS results are added for reference.

RFNS was very competitive with GS in terms of cost function values, reprojection error and

RMS error. Although GS’s stopping condition was very low (1 × 10−14), the method could

not reduce theJML residual further which resulted in a discrepancy with theJAML andJ ′
AML

residuals. Setting a lower termination condition did not help because function values and norm

differences became close to the machine precision and the method started behaving erratically.

A striking observation in these results come from the methods’ execution time. GS converged

very slowly compared to the other techniques. In addition to its high-dimensional search space,

GS here made very small steps towards a solution and therefore used up many iterations—a

well known phenomenon of the Levenberg-Marquardt method when the estimation process is

unstable. This behaviour was avoided in FNS and RFNS, and subsequent correction of the

parameters delivered optimal constrained estimates in considerably less time.
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Once again, in light of these experiments, there is no doubt that employing a non-identity

parameter covariance matrix provides a distinctive advantage. Any estimate resulting from a

WNLS correction achieved better accuracy than a GN-corrected one. The difference margin

between their respective residuals was not as significant as for the chemistry data though.

Finally, we have checked the contraint values produced by the solutions of FNS, RFNS, RFNS-

TGN, and GS. The statistics obtained are recapitulated in Table 5.16. Any corrected FNS esti-

mate, except the one based on a Gauss-Newton correction, achieved similar accuracy. For these

images the unconstrained estimates are less disparate from one another and their constraint val-

ues are of smaller order of magnitude than for the previous sequence. The amount of correction

required to get a constrained vector is visibly substantial.

Methods ψ(xi, θ̂) ϕ(θ̂) ξ1 ξ2

FNS 0.190 7.34 × 10−6 4.68 × 10−4 3.62 × 10−4

RFNS 0.088 2.27 × 10−6 1.01 × 10−3 2.59 × 10−4

RFNS-TGN 0.060 7.35 × 10−38 3.48 × 10−19 7.38 × 10−20

GS 0.057 2.94 × 10−39 9.90 × 10−20 5.24 × 10−19

Table 5.16. Some constraint values for two unconstrained and two constrained estimates.

As for the image sequence in Section 5.6.1, the three input images of Figure 5.10 were registered

and a 3-D model was built using the projections retrieved from the RFNS-TGN trifocal tensor

estimate, see Figure 5.11.

Performance results part III: Accuracy of fundamental matri ces

In this last section, we investigate the precision of fundamental matrices retrieved from the

RFNS-TGN trifocal tensor. Fundamental matrices computed with GS (seeded with an NALS

estimate) were also used for comparison - results were no better if GS was initialised with a

GTLS seed. All estimates were rank-two corrected. The notation convention is kept identical

to that in Section 5.6.1. Results appear in Table 5.17.

F-matrix JML δ |̺|

F̃21 49.4 0.082 1.22 × 10−25

F̂21 50.6 0.090 0

F̃31 71.7 0.42 2.65 × 10−22

F̂31 71.7 0.066 3.18 × 10−22

Table 5.17. Reprojection error and constraint values for various fundamental matrices.
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Figure 5.11. Two views of the 3-D model obtained from the RFNS-TGN trifocal tensor

estimate.

For the first two views, results from GS are closely related to those of RFNS-TGN. The main

discrepancy occured in the epipolar error for views1 − 3, where the trifocal tensor clearly

minimised this error better. It is obvious in this example that the trifocal tensor encapsulates

fundamental matrices which are approximately of equal quality as far as ancillary constraints are

satisfied. This may not be true for separate fundamental matrices, even when they are computed

with GS, hence the advantage of using a trifocal tensor.

We have also looked at the fit of several sets of epipolar lines through the image data. An

example for a specific point is shown in Figure 5.12 and at sub-pixel accuracy in Figure 5.13.
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Figure 5.12. An example of epipolar lines for a particular data point. The blue and

green lines are obtained from fundamental matrices retrieved from the

NALS and RFNS-TGN trifocal tensors respectively and the yellow lines

are from GS. In this case all three lines are distinct except in the third

view where they are grouped closer together.

Figure 5.13. Epipolar lines of Figure 5.12 viewed at sub-pixel level. The same mag-

nification factor has been used in all three images. The epipolar lines

from GS do not superimpose on those of RFNS-TGN but still provide an

excellent fit to the feature point. The lines from NALS miss the point in

every image.
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5.7 Conclusion

This chapter offered an application of the unconstrained minimisation algorithms and constraint

post-correction schemes in the realm of trifocal tensor estimation. It was first shown through

experiments on simulated data that the parameter covariance matrix plays an important role in

finding a good constrained solution. TakingM
θ̂u

AML
for a parameter covariance matrix revealed

to be an adequate choice.

Supplied with this parameter covariance, the Truncated Gauss-Newton (TGN) scheme provided

the most efficient constraint correction for the experimental data considered. It was optimal in

terms of accuracy as it generated constrained vector of quality equivalent to that of GS. Two

other post-hoc corrections, Weighted Nonlinear Least-Squares and Levenberg-Marquardt, also

produced remarkably accurate and consistent results and were practically as good as TGN. The

fourth adjustment scheme considered was Gauss-Newton. Although the method converged, it

suffered from utilising a basic identity parameter covariance matrix. Its final solution vector was

not a good constrained estimate in any of the two image sequences considered. The last method

implemented and tested was Kanatani’s extended method. This was the only correction scheme

to act directly on the ancillary constraints and not on the projection matrices. Unfortunately,

the method failed to converge in every situation because the constraint values were small and

therefore prevented any substantial correction to be made.

Overall, FNS and RFNS algorithms coupled with adequate post-correction schemes were shown

to produce optimal constrained solutions. These methods have simple update rules, are inexpen-

sive to compute and therefore provide significant speed-up over traditional parameter estimation

methods like the GS method.
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Chapter 6

Conclusion

T
he thesis has described some minimisation techniques to solve a wide class of

parameter estimation problems in geometric computer vision. For each method

exposed or proposed, the motivating ideas were discussed, analytical calculations

were presented, and final algorithmic steps were detailed. In example applications the numer-

ical performance of the new estimators was discussed and compared to existing methods. The

next sections summarise the main conclusions from each chapter and highlight a number of

future research areas.

6.1 Thesis review

Initially, a specific form of a parametric model was defined. The relationships between image

data and parameters pertaining to the model were expressed through a multi-objective principal

constraint function. To accomodate the case where model parameters are further subject to

ancillary constraints, a second constraint function was presented for use in conjunction with the

principal constraints. The parametric model thus defined permits covering both unconstrained

and constrained optimisation tasks. The applications considered in this thesis, homography

fitting and trifocal tensor estimation, are instances of each type of problem respectively.

The development of constrained parameter estimators comprises two main stages. In the first

part, an approach was adopted to solve the principal system of equations in terms of an un-

constrained minimum of a cost function. The estimate generated was then used as input to an

adjustment procedure which aimed to enforce the ancillary constraints. In this setting, it is as-

sumed that the sought constrained vector lies close to the unconstrained minimum and therefore

that it would be a good estimate of a global constrained minimum for the problem.

Several cost functions and associated estimation techniques have been exposed. A framework

was established where objective functions and estimators could be built and analysed system-

atically. It started with classical least squares methods such as TLS, NTLS, and GTLS, which

minimise some image algebraic error, to progress towards more statistically sophisticated func-

tions like the maximum likelihood (ML) cost function measuring geometric errors in images.
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The minimiser of the ML cost function is typically isolated by the Levenberg-Marquardt (LM)

algorithm. In computer vision, LM, under the label of the Gold Standard (GS) scheme, is

a pivotal procedure to compute optimal parameters by minimising maximum likelihood cost

functions. The high dimensionality of the search space combined with a subtle iterative up-

date strategy typically makes LM operate fairly slowly. These considerations led to the study

of an alternative cost function. Through a variational argument, the approximated maximum

likelihood (AML) cost function was proposed. Critically, the gradient of the AML function was

shown to have a special form. This was exploited to compute its minimiser by a specifically

devised fundamental numerical scheme (FNS).

Next, the original AML cost function was refined to cope with situations where the principal

objective function has linearly dependent components. Analysis revealed that the deficiency

could be overcome by the use of generalised inverses. In turn, these inverses were shown to

act effectively as regularisation tools. Each type of generalised inverse gave rise to a different

AML cost function and consequently to a variant of the original FNS.

Motivated by the desire to robustify these schemes even further, a reformulation of the main

constraint function led to a reduced form of FNS, RFNS. The new algorithm replaces the orig-

inal (unconstrained) estimation problem by two problems of lower dimension. A first iterative

procedure computes only a subset of the parameters and the remaining parameters are recovered

in a final single step based on the result of the earlier process. RFNS offers better convergence

properties and requires a less accurate initial estimate. It was shown that the optimality con-

dition underlying this scheme is based on a reduced AML cost function,J ′
AML. It was further

demonstrated that the minimiser ofJ ′
AML could be used to produce a minimiser of the full AML

cost function. While the emphasis was primarily on FNS, it was seen that a vector satisfying

the reduced variational equation could alternatively be viewed as a solution of a generalised

eigenvalue problem. This observation was readily exploited to advance a reduced form of the

HEIV scheme.

Until this point, ancillary constraints were ignored. A new section then explored ways of inte-

grating these constraints in an adjustment mechanism to produce constrained parameters. Novel

cost functions were devised, again, within a consistent framework. A simple residual function

was first proposed and immediately refined to accomodate problems where a linear relationship

exists between the complete set of parameters and a subset of it. This change only affects the

dimensionality of the solution space but not the constraint correction process. So, if no subset

can be identified, the overall correction procedure can be applied directly to the full set of pa-

rameters. On the other hand, if a subset exists, then the linear relationship between the two sets

must be taken advantage of.
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The first method proposed to minimise the residual function was the Gauss-Newton (GN)

method. It was shown that GN represents a particular case of a weighted nonlinear least squares

(WNLS) method where the covariance matrix of the parameters is the identity. Several examples

of parameter covariances were mentioned. Radically differing from the previous two methods

is Kanatani-like (KK) correction scheme. The method properly uses the ancillary constraints

in its adjustment mechanism. A common feature of the methods so far is that they are based

only on the Jacobian of the constraints to find the next best estimate. To handle situations

where the ancillary objective function is ill-conditioned, more powerful methods need to be

employed. It was shown how the LM method could be applied to a suitable residual function

to produce a constrained estimate. Another method capable of tackling rank-deficient function

is the Truncated Gauss-Newton (TGN) method. In this case, a splitting of the Jacobian allows

annihilation of elements which cause instability in the algorithm. Any of these five post-hoc cor-

rection schemes can be combined with the previous unconstrained methods to create genuine

constrained estimators.

As a first application, the unconstrained algorithms were used to the computation of a planar

homography. Initial synthetic experiments were conducted to check the ability of the FNS

methods to deal with objective functions with linearly dependent components. These estimators

were tested on data corrupted by increasingly larger noise levels, starting with a very small noise

of less than a hundredth of a pixel. The influence of the initial estimate on the inversion of the

problematic matrices was also measured. The results revealed that good-quality AML estimates

were obtained when an adequate generalised pseudo-inverse was used. It was seen that the

standard inverse failed systematically and typically made FNS diverge. Subsequent experiments

on different sequences of images compared the accuracy of the AML estimates to those of

existing methods. Across all sequences, it was observed that AML solutions commensurate in

quality with maximum likelihood ones. A distinct advantage of FNS was that it converged at a

quadratic rate and produced estimates marginally faster than GS. A confidence region around

the AML solution was also visualised to check that FNS computed a minimiser of the AML

function.

The second application considered was that of the estimation of the trifocal tensor. This is a

much harder problem than fitting a homography to data. The difficulty might be attributed to the

fact that the (standard) parameterisation of the trifocal tensor manifold is given by a nonlinear

(quadratic) mapping and also to the higher number of ancillary constraints compared to the

number of principal constraints. The trifocal tensor was first defined geometrically from line

correspondences across three images. The trilinear constraints were then derived progressively

starting from a contraction of the tensor with a single image feature, then two, and finally three

image features. Geometric and algebraic properties of the tensorial slices were presented to pro-

vide necessary background before considering the ancillary constraints on the tensor. The work
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of Hartley, Faugeras et al., Canterakis, and Ressl on this topic were examined. The different

sets of constraints were all expressed within a common framework. The chapter concluded with

practical information about recovering 3-D structure from the tensor.

The majority of the trifocal constraints derived were then employed in the unconstrained AML

estimators and post-hoc correction techniques to either compute trifocal tensors or test the accu-

racy of given such entities. One additional method, the Hartley-LM method, was also presented

as a specific technique devoted to the estimation of the trifocal tensor. The method is non-

iterative, imposes linear constraints on the tensorial coefficients, and is reasonably accurate. It

can therefore complement the array of precursor methods for the non-iterative schemes. In sim-

ulated tests, we began by evaluating the performance of unconstrained estimators, namely TLS,

GTLS, FNS, RFNS, and RHEIV. This was followed by a similar analysis for the adjustment

schemes, GN, WNLS, KK, TGN, and LM. For the latter algorithms we showed the importance

of the parameter convariance matrix on the estimation. The synthetic tests already provided a

statistical appreciation of the robustness of the correction schemes. Experiments on real image

data confirmed earlier deductions. Convergence of FNS was linear for the sequences tested but

rapid nonetheless since only a few steps were necessary. As for homography, accuracy of the

resulting constrained estimates were compared to that of several other estimators, including GS.

For the cost functions used and ancillary constraints considered, the results of the AML-based

constrained estimates matched those of the ML estimates. Again, the FNS and RFNS-based

constrained estimators executed tangibly faster than GS. The RFNS-TGN estimator turned out

to be the best combination scheme in terms of accuracy and execution speed. Finally, for each

image sequence, an interesting analysis was also carried out to compare the accuracy of RFNS-

TGN trifocal tensors to that of optimal fundamental matrices between intermediate views.

In general, FNS and RFNS are geared to find (local) minimisers of differentiable cost functions

or functions that can be rendered smooth via regularisation. These methods were designed to

operate with a minimum number of elements. FNS and RFNS are Newton-Raphson-like itera-

tive methods where each step is equivalent to solving a quadratic optimisation problem with the

help of first derivative information only. Upon careful initialisation, they yield a minimiser of

the AML cost functions which commensurate in accuracy with a maximum likelihood solution.

Other salient features of the methods are that they have simple update rules and exhibit fast con-

vergence. This was demonstrated here on homography fitting and trifocal tensor estimation and

is in accord with earlier findings concerning such estimation problems as ellipse fitting, funda-

mental matrix estimation, camera resectioning, or constrained generalised principal component

analysis.
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6.2 Future research

Since FNS and RFNS are fast and accurate methods, an immediateextension of this work could

be to incorporate them as modules in tracking algorithms or robust outlier rejection estimators.

A lot of these methods rely currently on fundamental matrices to establish cross-correlation

measures between images. By means of the estimators developed here, the inter-image con-

nectors could be upgraded to trifocal tensors. This would result in stronger image geometry

and increased efficiency in various applications, especially if object occlusions are a frequent

problem. The capacity of the trifocal tensor to handle line correspondences could be relevant

in these circumstances. Note that FNS and RFNS-based constrained algorithms could also be

applied to estimate a quadrifocal tensor connecting four views of a scene. This would complete

the task of computing the major building blocks of image sequences.

On a more theoretical level, desirable properties of numerical methods can be summarised in the

adjectives reliable, accurate, and fast. These three aspects may all be seen to have a common de-

nominator that relates to the convergence of the algorithm. Although rules were given to ensure

convergence of FNS and RFNS, reliability may be improved by incorporating Hessian infor-

mation in the minimisation process. The search direction of the next iterate would be defined

more precisely which would increase the stability of the estimators. In turn, higher accuracy

of the computed solution would be guaranteed. It may be envisaged that, for an application

such as trifocal tensor estimation, this strategy would boost convergence to superlinear or even

quadratic. A subsequent analysis could examine whether the gain in convergence speed would

reduce the number of iterations. The tradeoff is to identify whether the enhanced numerical

robustness compensates for the higher computational cost of calculating the Hessian ofJAML.

Certainly for relatively simple applications like homography fitting, this addition is superfluous

and should be discarded.

Regarding the post-hoc correction schemes, a line search strategy could be implemented in GN

and WNLS method although our expectation is that it would provide limited benefit for the

increased computational load. Now, when an unconstrained trifocal tensor is corrected with the

TGN scheme, the grade of the JacobianJk is set manually. A convenient arrangement would

be to automatically and reliably determine its value. Further attention could also be given to

improve the Kanatani-like correction scheme. This work would require a deeper mathematical

analysis and may lead to a novel algorithm.

Having identified many of the pitfalls in dealing with an AML cost function and ill-conditioned

ancillary constraint function, it is possible to contemplate integrating the ancillary constraints

into a single optimisation problem. This extension is already available in the form of the Con-

strained Fundamental Numerical Scheme for problems described by a single-objective principal

function with a single ancillary constraint. The task would be to generalise this procedure to
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6.2 Future research

the case of multiple constraints for both principal and ancillary functions. By construction, a

single constrained estimator searches through a smaller parameter space and therefore may be

prone to isolating a local extremum of the cost function rather than a global minimum, espe-

cially if the objective function is complex. The two-stage approach adopted in this thesis was

chosen deliberately as a safety precaution to avoid such situations and unravel some of the nu-

merical complications that arise when dealing with multi-equation functions. The accumulated

knowledge should now permit to devise a fully integrated estimator.
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Appendix A

Complementary Proofs for
Reduced FNS

This appendix provides further proofs involved in the derivation of the Reduced Fundamental

Numerical Scheme presented in Section 2.4 of Chapter 2.

A.1 Problem equivalence

We begin by showing the equivalence of (2.22) and the system which comprises (2.49a) and

(2.49b). Recalling definitions (2.41) and (2.44), first note that, by (2.33) and (2.43),

Σi = Σ
′
i (A.1)

for eachi = 1, . . . , n. Consequently, definition (2.21b) can be rephrased as

Mθ =

n∑

i=1

UiΣ
′−1
i U

T

i . (A.2)

Again by (2.43), for eachi = 1, . . . , n,

(Il×l ⊗ ηT

i )B∗i (Il×l ⊗ ηi) =

[
I(l−m)×(l−m) ⊗ ηT

i 0(l−m)×m2

0m×m(l−m) Im×m ⊗ ηT

i

]

×
[

B′i 0m(l−m)×m2

0m2×m(l−m) 0m2×m2

]

×
[
I(l−m)×(l−m) ⊗ ηi 0m(l−m)×m

0m2×(l−m) Im×m ⊗ ηi

]

=

[
(I(l−m)×(l−m) ⊗ ηT

i )B′i(I(l−m)×(l−m) ⊗ ηi) 0(l−m)×m

0m×(l−m) 0m×m

]
.

It follows thatNθ given in (2.42) takes the form

Nθ =

[
N′θ 0(l−m)×m

0m×(l−m) 0m×m

]
, (A.3)
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A.1 Problem equivalence

where

N
′
θ =

n∑

i=1

(I(l−m)×(l−m) ⊗ ηT

i )B′i(I(l−m)×(l−m) ⊗ ηi). (A.4)

Now, if θ satisfies (2.22), then, in view of (2.32), (A.2), and (A.3), the equivalent condition

Mθθ = Nθθ onθ can be written as

n∑

i=1

[
Zi

W

]
Σ
′−1
i [ZT

i , W
T]

[
µ

α

]
=

[
N′θ 0

0 0

][
µ

α

]
, (A.5)

which in turn expands into the system

n∑

i=1

ZiΣ
′−1
i (WTα+ Z

T

i µ) = N
′
θµ, (A.6a)

n∑

i=1

WΣ
′−1
i (WTα+ Z

T

i µ) = 0. (A.6b)

By our standing assumption thatW is invertible, the second of the above equations reduces to

n∑

i=1

Σ
′−1
i (WTα+ Z

T

i µ) = 0. (A.7)

Now, since theΣ′i and hence theΣ′−1
i are symmetric, it immediately follows from (2.45) that

Z̃T = (
∑n

i=1 Σ
′−1
i )−1

∑n
i=1 Σ

′−1
i ZT

i . Hence (A.7) can be rewritten as

( n∑

i=1

Σ
′−1
i

)
(WTα+ Z̃

Tµ) = 0

and further as

W
Tα+ Z̃

Tµ = 0. (A.8)

As W is invertible, this immediately implies (2.49b).

To show that (2.49a) also holds, note that, by (2.32) and (2.33), for eachi = 1, . . . , n,

U
T

i θ = W
Tα+ Z

T

i µ,

and by (2.46) and (A.8),

W
Tα+ Z

T

i µ = W
Tα+ (Z′Ti + Z̃

T)µ = Z
′T
i µ,

whence

U
T

i θ = Z
′T
i µ. (A.9)

Recalling definitions (2.21f) and (2.47), we see that (A.9) combined with (A.1) implies that

ηi = η′
i. Comparison of (2.48b) and (A.4) now yieldsN′θ = N′µ. Thus, in particular,

N
′
θµ = N

′
µµ. (A.10)
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Furthermore, in view of (2.46),
n∑

i=1

ZiΣ
′−1
i (WTα+ Z

T

i µ) =

n∑

i=1

(Z′i + Z̃)Σ′−1
i (WTα+ Z

T

i µ).

By (A.7),
n∑

i=1

Z̃ Σ
′−1
i (WTα+ Z

T

i µ) = Z̃

n∑

i=1

Σ
′−1
i (WTα+ Z

T

i µ) = 0,

and by (2.46), (2.48a), and (A.8),
n∑

i=1

Z
′
iΣ

′−1
i (WTα+ Z

T

i µ) =
n∑

i=1

Z
′
iΣ

′−1
i (WTα+ Z̃

Tµ+ Z
′T
i µ)

=

n∑

i=1

Z
′
iΣ

′−1
i Z

′T
i µ = M

′
µµ.

Putting the last three expressions together, we see that the left-hand side of (A.6a) is equal to

M′µµ. This jointly with (A.10) yields (2.49a), as required.

Working backwards, one can easily infer that ifµ andα satisfy (2.49a) and (2.49b) respectively,

thenθ = [µT,αT]T satisfies the original expression (2.22).

A.2 Common minimisers

Let µ
θ̂u

AML
andα

θ̂u
AML

be the parts of̂θu
AML as per (2.33). Here we show thatµ

θ̂u
AML

can be

identified with µ̂u
AML, and, moreover, that bothJAML andJ ′

AML attain a common minimum

value at̂θu
AML andµ̂u

AML, respectively.

First note that, in view of (A.1), the expression forJAML given by

JAML(θ) =

n∑

i=1

θT
UiΣ

−1
i U

T

i θ

can be restated as

JAML(θ) =

n∑

i=1

θT
UiΣ

′−1
i U

T

i θ. (A.11)

Next, given an arbitraryµ, letα be such that (2.49b) holds, and letθ = [µT,αT]T. Then, as the

calculation in Appendix A.1 immediately preceding (A.9) reveals, (A.9) holds, and this equality

combined with (2.50) and (A.11) yields

JAML(θ) = J ′
AML(µ). (A.12)

SinceJAML(θ̂u
AML) ≤ JAML(θ), we see thatJAML(θ̂u

AML) ≤ J ′
AML(µ), and sinceµ can in

particular be taken to bêµu
AML, we have

JAML(θ̂u
AML) ≤ J ′

AML(µ̂u
AML). (A.13)
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On the other hand, as (2.49b) holds forµ
θ̂u

AML
andα

θ̂u
AML

(recall thatθ̂u
AML satisfies (2.22),

which, as shown earlier in Appendix A.1, implies (2.49b)), (A.12) can be explicitly written is

this case as

JAML(θ̂u
AML) = J ′

AML(µ
θ̂u

AML
). (A.14)

But J ′
AML(µ̂u

AML) ≤ J ′
AML(µ) for all µ, so in particular

J ′
AML(µ̂u

AML) ≤ J ′
AML(µ

θ̂u
AML

). (A.15)

Putting (A.13), (A.14), and (A.15) together, we obtain

J ′
AML(µ̂u

AML) = J ′
AML(µ

θ̂u
AML

) = JAML(θ̂u
AML).

Hence it first follows that̂µu
AML is equal toµ

θ̂u
AML

(up to scale), as, generically, the minimiser of

J ′
AML is uniquely defined (up to scale). Furthermore, we see thatJAML andJ ′

AML attain a com-

mon minimum value at̂θu
AML andµ̂u

AML, respectively. Our claims have thus been established.
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Homography Types

It is possible to distinguish between two types of homographymatrix depending on the camera

configuration capturing the scene. Algebraic details of their derivation are presented next.

B.1 Plane-induced homography

Suppose that a scene planeΠ is imaged from two viewpoints. LetPi = KiRi[I3×3| − C̃i],

i = 1, 2, be the projection matrices for the two views. Assume thatΠ does not contain either of

the camera centres̃C1 or C̃2. We shall show that corresponding image points are related by a

homography.

Let X be a point onΠ, and letx andx′ be its left and right images. Consider the projection ray

in 3D passing throughx andC̃1. Any pointX′ = [X̃′T, 1]T along this ray satisfies

K1R1[I3×3| − C̃1]

[
X̃′

1

]
= λx

for some scalarλ, implying that

X̃′ = C̃1 + λR−1
1 K

−1
1 x.

If the scene planeΠ has unit outward normaln and is situated at a distance−d from the origin

of the world coordinate system, then any pointX′′ = [X̃′′T, 1]T on the plane satisfies

nTX̃′′ + d = 0.

The pointX = [X̃T, 1]T lies at the intersection of the ray and the plane. Hence

nTX̃ + d = 0

and the value ofλ for X can now be read off from the equation

nT(C̃1 + λR−1
1 K

−1
1 x) + d = 0,
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B.2 Rotation-induced homography

the result being

λ = − nTC̃1 + d

nTR
−1
1 K

−1
1 x

.

Consequently,

X̃ = C̃1 −
nTC̃1 + d

nTR
−1
1 K

−1
1 x

R
−1
1 K

−1
1 x.

As C̃1 /∈ Π, we havenTC̃1 + d 6= 0, implying λ 6= 0. Now the projection ofX in the right

image satisfies

x′ ≃ K2R2[I3×3| − C̃2]

[
C̃1 + λR−1

1 K
−1
1 x

1

]
.

This relation does not change if the right-hand side is multiplied by the scalar1/λ. Putting

vT = nT/(nTC̃1 + d), we have

X/λ =

[
R
−1
1 K

−1
1 x − vTR

−1
1 K

−1
1 xC̃1

−vTR
−1
1 K

−1
1 x

]
,

whence

x′ ≃ K2R2[I3×3| − C̃2]

[
R
−1
1 K

−1
1 x − vTR

−1
1 K

−1
1 xC̃1

−vTR
−1
1 K

−1
1 x

]

= K2R2[(R
−1
1 K

−1
1 x − vT

R
−1
1 K

−1
1 xC̃1) + vT

R
−1
1 K

−1
1 xC̃2],

= K2R2[R
−1
1 K

−1
1 x − (C̃1 − C̃2)v

T
R
−1
1 K

−1
1 x],

= K2R2[I3×3 − (C̃1 − C̃2)v
T]R−1

1 K
−1
1 x,

= K2R2[I3×3 − (nTC̃1 + d)−1(C̃1 − C̃2)n
T]R−1

1 K
−1
1 x. (B.1)

SinceC̃2 /∈ Π, we also havenTC̃2 + d 6= 0. A simple calculation now shows that

[I3×3 − (nTC̃1 + d)−1(C̃1 − C̃2)n
T]

× [I3×3 − (nTC̃2 + d)−1(C̃2 − C̃1)n
T] = I3×3.

Hence the matrix

H = K2R2[I3×3 − (nTC̃1 + d)−1(C̃1 − C̃2)n
T]R−1

1 K
−1
1

is invertible. Finally, rewriting (B.1) asx′ ≃ Hx, we see thatx′ is the image ofx by the

homography associated withH.

B.2 Rotation-induced homography

A homography of simpler form is applicable in the situation when both cameras have a common

centre. Such a configuration of cameras arises, for example, when a single camera rotates, possi-

bly changing its intrinsics during the motion—the two cameras then represent the rotating cam-

era at two different instants. With̃C the cameras’ common centre, we havePi = KiRi[I3×3|−C̃],
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Appendix B Homography Types

and so

P2 = K2R2(K1R1)
−1
K1R1[I3×3| − C̃] = K2R2R

−1
1 K

−1
1 P1,

or P2 = HP1, where

H = K2R2R
−1
1 K

−1
1

is an invertible3 × 3 matrix. If a pointX in the 3D scene gives rise to two imagesx andx′,

thenx ≃ P1X and

x′ ≃ P2X = HP1X ≃ Hx,

showing thatx′ is the image ofx via the homography associated withH. Note thatH in this case

is the limit of the plane-induced homography matrices asd tends to−∞ with nT, C̃1, andC̃2

kept fixed. Thus the rotation-induced homography described byH from (3.3) coincides with the

homography induced by the plane at infinity and is therefore termed theinfinite homography.
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Appendix C

Trifocal Tensor
Homography Matrices

Additional material is now presented to complete the work in Section 4.3.1 on the trifocal tensor

homography matrices. Here, homography slicesKk are considered and analogous results to

Propositions 11 to 15 are derived specifically for these slices. Proofs will be succint because the

rôle of matricesJ j andKk is similar, they are both point homographies, except for the views

where they map.

C.1 Column properties

A particular instantiation of Proposition 5 occurs when the line l′′ = [1, 0, 0]T, which yields

hj
i = [I1e1, I2e1, I3e1] = K1.

Choosingl′′ = e1 reveals that matrixK1 represents a point homography from viewΨ1 to view

Ψ2 via the first principal plane in viewΨ3. The geometric properties of slicesK2 (resp. K3)

can be deduced ife2 (resp.e3) is used in place ofe1, which suggests the next proposition.

Proposition 24 Matrix Kk describes a homography between points in the first view and points

in the second view induced by thek-th principal plane in the third view. MatrixKT

k maps lines

in the second view to lines in the first view via the same principal plane.

Similar toJ l′, matrixKl′′ in (4.39) is constructed as a linear combination of the coordinates of

line l′′ and homography slicesKk. The operationKl′′m gives a pointm′ in Ψ2 via the plane

back-projected from linel′′ in Ψ3.

Now, according to Proposition 24, employing homographyKk to transfer canonical pointeh

(h = 1, 2, 3) in imageΨ1 gives a point in the imageΨ2 via the planeΓ′′
k in Ψ3. The special

coordinates ofeh selects theh-th column of matrixKk which implies that the columns of

each matrixKk represents a point in the viewΨ2. Conversely, thinking ofeh as a line inΨ2,

homographyKT

k yields a line inΨ1 which has coordinates given by theh-th column ofKT

k , or

h-th row ofKk. These considerations are gathered in the following proposition.
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C.2 Row properties

Proposition 25 The column vectors of eachKk matrix are three distinct points in the second

view, whereas the row vectors of these matrices are three distinct lines in the first view.

By interchanging entities in the imageΨ2 with those in the imageΨ3 in the derivation preceding

Proposition 13 in Chapter 4, one may deduce some properties about the columns of matrices

Kk.

Consider pointei on principal rayRi in Ψ1. The three homographiesKk sendei to three

points in the imageΨ2 which correspond to the projection of world pointsWik ≃ Ri △Γ′′
k for

k = 1, 2, 3. These image points must lie on the projection ofRi in Ψ2, that is, the epipolar line

L
′
1i according to Table 4.4. Becauseei has unitali-th component with other components being

zero, the images ofei, pointsKkei, have coordinates given by thei-th column of matricesKk.

This result leads to the next proposition.

Proposition 26 The three image points obtained by selecting thei-th column vector of matrices

K1,K2, andK3 are collinear and lie on the epipolar lineL′
1i in the second view.

A similar argument to the one following Proposition 13 proves that the column vectors of a

given matrixKk define the vertices of a triangleT′
k in the imageΨ2, each vertex being on one

of the epipolar linesL′
11,L

′
12,L

′
13. The three triangles associated withK1,K2, andK3 are in

perspective from the epipolee21 = e′.

The properties of matricesKk elaborated so far are summarised in Table C.1. The remaining

part of this section carries on from these results.

Image points in Ψ2 On epipolar line From world points

a′
k ≃ Kke1 L′

11 W1k ≃ R1 △Γ′′
k

b′
k ≃ Kke2 L′

12 W2k ≃ R2 △Γ′′
k

c′k ≃ Kke3 L′
13 W3k ≃ R3 △Γ′′

k

Table C.1. Algebraic and geometric properties of the columns of matrices Kk.

C.2 Row properties

In Chapter 4 the conventionjch was used to refer to theh-th column of homographyJ T

j , or

h-th row ofJ j . Since matricesJ j andKk are related, this notation also gives thej-th column

of homographyKT

h , or j-th row ofKh. It can be checked in (4.38) thatr3 andt2 are represented

by 1c3 and3c2 respectively.
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Now, recall from Proposition 25 that the rows of a given matrixKk represent distinct lines in

imageΨ1. Following (4.38), this means thatrk, sk, andtk are edges of a triangleSk in the

first image whererk = 1ck ≃ K
T

k e1, sk = 2ck ≃ K
T

k e2, andtk = 3ck ≃ K
T

k e3. Here, entities

eh (h = 1, 2, 3) represent lines in viewΨ2. Geometrically, the linesrk, sk, tk are obtained by

projection of the world linesL1k,L2k, andL3k which are the intersections of the three principal

planesΓ′
1,Γ

′
2, andΓ′

3 (back-projection ofe1, e2, e3 in Ψ2) with thek-th principal planeΓ′′
k (by

choosingKT

k ).

Now, letwjk be a vertex on triangleSk and pointW′
kj its corresponding world primitive defined

as the meet of the rayR′
j and the planeΓ′′

k. Explicitly, W′
kj ≃ R

′
j △Γ′′

k ≃ Γ′
α △Γ′

β △Γ′′
k,

wherej, α, andβ are distinct values in the range{1, 2, 3}. The planesΓ′
α andΓ′

β are the

back-projection of the canonical lineseα andeβ in view Ψ2. This means that these lines select

rowsα andβ from the matrixKk. Therefore, we havewjk ≃ αck × βck. The main facts to

remember from these derivations are stated in Proposition 27. Table C.2 lists information about

the algebraic and geometric operations deduced from the rows of matricesKk.

Proposition 27 The three image lines given by the row vectors of matrixKk form a triangleSk

in the first view. Verticesw1k,w2k, andw3k of Sk can be computed as the cross product of two

lines represented by the appropriate rows ofKk, see Table C.2.

Triangle Edges From world lines Vertices From world points

1ck ≃ KT

k e1 L1k ≃ Γ′
1 △Γ′′

k w1k ≃ 2ck × 3ck W′
k1 ≃ R′

1 △Γ′′
k

Sk
2ck ≃ KT

k e2 L2k ≃ Γ′
2 △Γ′′

k w2k ≃ 3ck × 1ck W′
k2 ≃ R′

2 △Γ′′
k

3ck ≃ KT

k e3 L3k ≃ Γ′
3 △Γ′′

k w3k ≃ 1ck × 2ck W′
k3 ≃ R′

3 △Γ′′
k

Table C.2. Algebraic and geometric properties of the rows of matrices Kk.

Finally, suppose that we fix the rayR′
j in the viewΨ2 and consider its intersection with the three

principal planesΓ′′
k of the viewΨ3. This process yields three world pointsW′

kj ≃ R
′
j △Γ′′

k,

for k = 1, 2, 3. By construction, these 3-D points are on the line of sightR
′
j and so, according

to Table 4.4, project into points on the epipolar lineL2j in the first view. Using Table C.2, these

image points can be identified as the verticeswj1,wj2, andwj3. It follows that these vertices

lie on the epipolar lineL2j going through the epipolee12.

Proposition 28 Verticeswj1,wj2, andwj3 of trianglesS1,S2, andS3 are collinear and lie on

the epipolar lineL2j in the first view.

This proposition concludes the investigation of the properties of matricesKk.
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Appendix D

Vector Cross-product

This appendix describes some useful operations derived fromthe vector cross-product.

Given a length-3 vectorp = [p1, p2, p3]T, define the3 × 3 skew-symmetric matrix

[p]× =




0 −p3 p2

p3 0 −p1

−p2 p1 0


 .

This definition is motivated by the fact that, for any length-3 vectorq, we have

p× q = [p]×q and q × p = qT [p]×.

The vectorp spans both the left and right null-spaces of the matrix[p]×, which implies that

[p]× has rank2 for any non-zero vectorp. This matrix is also defined up to scale byp sinceλp

is also a null-vector of[p]× for any non-zeroλ.

The matrix([p]×)sr is written aspiǫirs in tensor notation where the indicesr ands represent the

(s, r)-th entry of the matrix[p]×. By definition,[p]×p = 0 is equivalent to
∑

r p
r([p]×)sr = 0s,

for each fixed value ofs = 1, 2, 3. In turn, this may be written compactly as

prpiǫirs = 0s.

Denoting thes-th row of [p]× by lsT, we have

pTls = 0 for all s = 1, 2, 3. (D.1)

If p represents the homogeneous coordinates of an image point, then, from (D.1), eachls may

be thought as a line going throughp. The linel1 with coordinates

l1r = piǫir1 = [0,−p3, p2]T,

is a horizontal line going through the pointp since points of the formy = [p1 + λ, p2, p3]T

satisfyyTl1 = 0 for anyλ. Similarly, the linel2 with coordinates

l2r = piǫir2 = [p3, 0,−p1]T,
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is a vertical line going throughp. Finally, the linel3 with coordinates

l3r = piǫir3 = [−p2, p1, 0]T,

is a line going through the image coordinate origin (the point[0, 0, 1]T).
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