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Abstract

An important research area in computer vision is parametenasson. Given a mathemati-

cal model and a sample of image measurement data, key parameters are sought to encapsulate
geometric properties of a relevant entity. An optimisation problem is often formulated in order

to find these parameters. This thesis presents an elaboration of fundamental numerical algo-
rithms for estimating parameters of multi-objective models of importance in computer vision
applications. The work examines ways to solve unconstrained and constrained minimisation
problems from the view points of theory, computational methods, and numerical performance.

The research starts by considering a particular form of multi-equation constraint function that
characterises a wide class of unconstrained optimisation tasks. Increasingly sophisticated cost
functions are developed within a consistent framework, ultimately resulting in the creation of

a new iterative estimation method. The scheme operates in a maximum likelihood setting and
yields near-optimal estimate of the parameters. Salient features of the method are that it has sim-
ple update rules and exhibits fast convergence. Then, to accommodate models with functional
dependencies, two variant of this initial algorithm are proposed. These methods are improved
again by reshaping the objective function in a way that presents the original estimation prob-
lem in a reduced form. This procedure leads to a novel algorithm with enhanced stability and
convergence properties.

To extend the capacity of these schemes to deal with constrained optimisation problems, several
a posteriori correction techniques are proposed to impose the so-called ancillary constraints.
This work culminates by giving two methods which can tackle ill-conditioned constrained func-
tions. The combination of the previous unconstrained methods with these post-hoc correction
schemes provides an array of powerful constrained algorithms.

The practicality and performance of the methods are evaluated on two specific applications. One
is planar homography matrix computation and the other trifocal tensor estimation. In the case
of fitting a homography to image data, only the unconstrained algorithms are necessary. For the
problem of estimating a trifocal tensor, significant work is done first on expressing sets of usable
constraints, especially the ancillary constraints which are critical to ensure that the computed
object conforms to the underlying geometry. Evidently here, the post-correction schemes must
be incorporated in the computational mechanism. For both of these example problems, the
performance of the unconstrained and constrained algorithms is compared to existing methods.
Experiments reveal that the new methods perform with high accuracy to match a state-of-the-art
technique but surpass it in execution speed.
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Chapter

Introduction

odern computer vision systems need to process considenalblends of data to

perform several tasks almost simultaneously. Many of the applications are con-

cerned with scene geometry estimation, object detection, trajectory estimation,
online 3-D localisation, tracking, or some related sub-problems. Typically any such applica-
tion is modelled mathematically by some algebraic constraints which establish a relationship
between an underlying geometric problem and some image measurement data. Often the geo-
metric problem can be summarised by key parameters. So, central to many vision applications
is the problem of estimating parameters from given image features. This task puts a heavy toll
on algorithms and numerical methods which are required to be more precise, more robust, and
execute faster in order to serve the higher level purpose of the application.

The mathematical model underpinning a parameter estimation problem is generally multi-
objective in character in its dealing with a system of equations and combines both the sought
parameters and the image data. In some applications, the parameters are subject to ancillary
constraints not involving image tokens. In this case, a parameter vector solution must satisfy
both the principal multi-equation system and the ancillary constraints.

When prior knowledge about the measurement errors is available, covariance matrices can be
incorporated in the estimation process to weight the observed data according to their degree of
reliability. A statistical noise model suitable in this situation is the so-called errors-in-variables
model. An estimator capable of such informed weighting can be formally derived from the
principle of maximum likelihood (ML). This procedure allows for an optimal estimation of the
parameters. Since the constraints are geometric in nature, the problem is regarded as an instance
of geometric fitting.

One of several drawbacks with ML estimation is that the dimensionality of the parametric
model increases with each new measurement. The associated optimisation problem can quickly
become intractable. This thesis presents fundamental algorithms based on an approximated
maximum likelihood formulation of the underlying estimation task. The parameter estimates
generated exhibit nearly optimal statistical behaviour and—unlike the maximum likelihood
estimate—are relatively inexpensive to compute.
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1.1 Thesis outline

1.1 Thesis outline

Often in optimisation or estimation problems researchecsigmn formulating cost functions

to minimise some algebraic or geometric error and then employ well-established numerical
schemes to perform the minimisation. These methods can sometimes involve significant over-
head and be more sophisticated than necessary which comes at an expensive computational
cost.

The next chapter in this thesis presents a progressive elaboration of specifically designed algo-
rithms for solving a class of general constrained parameter estimation problems encountered
in geometric computer vision and pattern recognition. The remaining chapters exemplify the
proposed techniques in the context of realistic vision applications.

In more detail, Chapter 2 introduces necessary theoretical material for discussing parameter
estimation and sets forth a parametric model applicable to a wide range of underlying vision
problems. The first couple of sections deal with the topic of unconstrained estimation, when the
ancillary constraints on the parameters are ignored. Increasingly sophisticated cost functions
are developed, including a maximum likelihood cost function but special emphasis is given
to an approximated maximum likelihood (AML) cost function. Using an AML cost function
over an ML one has significant benefits provided some care is taken. First, a series of three
algorithms are devised for minimising the AML function when the parametric model suffers
from functional dependencies or none. Second, a reformulation of the multi-objective AML
function leads to the development of a novel algorithm which operates in a reduced space than
the original three schemes. This algorithm enjoys better stability and convergence properties.
The second part of the chapter is then dedicated to post-hoc correction techniques to enforce
ancillary constraints to the result of the previous unconstrained minimisation. Several methods
with various degrees of complexity are proposed. Specific algorithms are also given to tackle
ill-posed constrained problems.

Chapter 3 provides an empirical evaluation of the linear and nonlinear optimisation methods
developed for unconstrained parameter estimation. The application chosen is that of comput-
ing a planar homography. It will be assumed throughout this thesis that the system of cameras
is uncalibrated and that each camera captures the scene under a general projective projection
model. Extended Euclidean geometry is then employed to represent the natural geometric rela-
tionships between a scene and its projections, or those between corresponding image features
across images. Now, because the homography model is described by a multi-component objec-
tive vector with linear dependencies, accuracy of the solutions and behaviour of the three AML
estimators is examined thoroughly. Experiments are also conducted to compare the accuracy
and computational efficiency of other estimation techniques including the ML estimator.
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Chapter 1 Introduction

An intermediate chapter is then devoted to expose some theoretical material about the trifo-
cal tensor relating three views of a scene. Following a brief overview of the perspective camera
model and the epipolar geometry between a stereo pair of images, Chapter 4 provides a substan-
tial, self-contained study on trifocal geometry. A review of the trilinear relations between image
features (lines and/or points) and the trifocal tensor is given. Special care is taken to translate
the geometrical relationships into algebraic formulae in a clear and concise manner. The back-
ground work on the trifocal tensor establishes notations and relations which lead ultimately to
the presentation of the most common internal trifocal constraints.

In a natural extension of this work, an experimental chapter provides details about trifocal tensor
computation. The post-hoc correction schemes presented in Chapter 2 are applied and their per-
formance evaluated through both simulated and real image sequences. The trifocal constraints
elaborated in the previous chapter are used in two ways, either directly in some of the adjust-
ment techniques or to provide accuracy measures on the final constrained estimate generated.
To complete the analysis, optimal fundamental matrices are computed between pairs of images
and the accuracy of the resulting estimates compared with that of trifocal tensors.

A final chapter summarises the findings in this thesis. It also opens up several avenues for future
research.

1.2 Thesis contributions

This thesis has drawn on expertise from various researciphiises and integrated the knowl-

edge into one piece of work. On one hand there is theoretical material regarding general opti-
misation techniques and, on the other hand, theory and applications related to computer vision
with special attention given to effective computation of the trifocal tensor.

The development of cost functions leading to accurate unconstrained estimators and post-
correction methods is exposed neatly within an explicitly defined mathematical model and con-
sistent framework. This presentation aims to facilitate understanding and contributes to a wider
effort to place a variety of methods within a global, common context. The parametric model
considered in this thesis describes a multi-objective vector-valued principal constraint function,
generalising the single-equation case investigated in earlier work [33]. A similar upgrade was
achieved when considering ancillary constraints on the parameters. The previous approach was
restricted to incorporate a single ancillary constraint so multiple constraints had to be included
by summing up the contributions of the squared individual constraints, which is not optimal.
In this thesis, proper multi-objective cost functions are defined to tackle problems with several
ancillary constraints.
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The adoption of a two-stage approach to solving constrained estimation problems offers several
advantages. Firstly, it permits to easily discard the ancillary constraints enforcement process
if the problem is unconstrained. Secondly, the individual methods, for constrained or uncon-
strained estimation, can be subject to various standard or customised performance tests, thus
facilitating subsequent analysis, comparative studies, and possible refinement. Overall, the new
proposed estimators have the advantage of dealing with multi-objective (principal and ancillary)
constraint functions, are simply expressed, precise, and computationally efficient. Additionally,
they are fairly robust in their ability to cope with linearly dependent cost functions, degenerate
camera configurations, and ill-posed problems.

While devising our own algorithms, we also review, improve, or shed new lights on the work of
several key contributors to the fundamental algorithmic theories in computer vision. Although
the separate development of these algorithms has been reported in earlier work, the originality
here comes from describing them in a unified framework. This allows us to put everyone’s work
into perspective with respect to one another. It is hoped that the contributions from all parties
are also better appreciated this way.

Algorithms developed in this thesis are applied to two example problems: planar homography
computation and trifocal tensor estimation. With regards to homography fitting, minimisation
techniques are evolved from cost functions built from different matrix generalised inverses. The
value of the experimental section in Chapter 3 is to show that the selection of an appropriate type
of matrix generalised inverse is critical to generate good-quality parameter estimates. Although
the cost functions are connected through the use of different generalised inverses, the obtained
solutions are not guaranteed to be equivalent. Some of the experiments address this question
specifically and reveal that the final estimate of a given estimator is the minimiser not only of
its own cost function but also of other functions as long as the cost functions are differentiable
or rendered continuous via regularisation.

One major difficulty when dealing with the trifocal tensor is to understand the many different
relations and constraints imposed by the trifocal tensor on image measurements, and then realise
the connections between these relations. To help with this, we have chosen to expose the trifocal
tensor by considering its contractions with an increasing number of image tokens, from a single
point/line feature to a combination of three points/lines across the views. Although the work
reproduces well-known results, the approach is innovative in that trilinear relations are tackled
from an uncommon but consistent manner.

The power of the trifocal tensor comes from its roots in multilinear algebra. In that respect,

once defined, it can be manipulated or decomposed in a multitude of ways, or combined with
various other entities. One major inconvenience stemming from the generality of the algebra
is that there is no unique definition to characterise the trifocal tensor from camera projection
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Chapter 1 Introduction

matrices. A considerable amount of literature covers results, rules, constraints, proofs on the
trifocal tensor but connections between them are not obvious and one must penibly start from
the supplied definition of the tensor and proceed with the analysis.

In this thesis, we have adopted the definition proposed by Hartley [37]. All the main trilinear
constraints known to date are then expressed within a common framework based on this par-
ticular characterisation of the trifocal tensor. While giving the transfer equations in the usual
tensorial notation (with covariant and contravariant indices), a novelty is also to represent them
in vector or matrix form. It is hoped that these results elevate the general understanding—and
take away some of the burden of dealing with tedious index manipulations. In turn, this work
encourages implementation because it is easier in practice to operate at the feature level (using
lines and points coordinates) rather than defining every rule or transfer equation through indices,
which is more error-prone.

A further area of contributions comes from the work on expressing the ancillary constraints on
the trifocal tensor. The original sets of constraints were all described starting from a different
definition of the trifocal tensor. Here, all constraints are expressed within a common context,
edified from Hartley’s trifocal tensor description. The analysis and derivations help discovering
their origin, relating them, and ultimately comparing their effect in practice. Literature which
provides such detailed and comprehensive summary of the trifocal constraints, for both principal
and ancillary constraints, is almost non-existent. This part of the thesis is essential to gather
knowledge into one body of work.

It is believed that further contributions come from the methodology employed in the experi-
ments. Often the unconstrained and constrained estimation stages are tested on separate sets of
data. Only with real image sequences the computation of both entities is carried out consecu-
tively from one sample data. In this case, there is often no feedback on the accuracy of the un-
constrained estimate since the focus is centred exclusively on the quality of the final constrained
tensor. In each of our synthetic test, the same data were used to estimate both unconstrained and
constrained trifocal tensors. This strategy allows to apply performance measures on both types
of estimates and compare the results. For instance, a constrained estimate should typically give
a slightly higher cost function value compared to an unconstrained one. So the benefit can be
seen to occur at two levels. One is that it permits checking theoretical properties and the other
is about testing the performance of individual constrained and unconstrained algorithms.

To conclude, it is recognised that a trifocal tensor provides more accuracy than a fundamental
matrix, however, little study or none has been done to show how much gain there is and where
the gain takes place exactly. This sort of analysis is quite vital when one needs to decide whether
utilising a trifocal tensor or not. This issue is addressed in the experiments carried out on real

image data. In general, the simplicity and efficiency of a fundamental matrix is preferred to
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a trifocal tensor which is complex to first understand and then compute stably. These major
hurdles make it unpopular and abandoned. It is hoped that the results presented in Chapters 4
and 5 will convince and encourage the vision community to use it more often, and believe in
the validity of the algorithmic theories set forth in Chapter 2.
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Chapter

Towards Constrained
Parameter Estimators

etermining a global, constrained minimiser is a difficulktagich often depends

on the characteristics of the objective function, for instance its continuity, convex-

ity, linearity or nonlinearity. This chapter presents several estimation methods, or
estimatorscapable of minimising objective functions derived for a particular parametric model
underlying a wide class of problems in computer vision and pattern recognition. The first sec-
tion describes in detail a class of specific type of parametric model considered in this thesis.
The remaining sections will then focus on developing appropriate cost functions and estima-
tion techniques to minimise these functions. Advantages and drawbacks of each technique will
be discussed. It is important to understand the limitations of the presented algorithms because
knowledge of such limitations will guide their improvement.

2.1 Parametric model

Fitting parametric models to data is a ubiquitous task in agepvision. A parametric model
combines parameters and image features to reflect a particular geometric relationships of inter-
est. Image features are typically low-level descriptors of an image contents, for instance the
locations of corresponding 2-D points and/or lines in images. Similar features across images
can be assembled in a vector= [xz1,...,7;]" and considered as a single element of data.
Typically, a parameter vectd? = [f;,...,6,]" and image data pertaining to a model are
described by a system of equations

f(x,0) =0, (2.1)

where
f(X7 9) = [fl(X7 0)7 ) fm(xv 0>]T’

is a vector ofmulti-objective constraintsHere, the label “multi-objective” is used because the
range space of functiofi will be assumed to have dimensiom greater than one. The case
investigating a single objective function was the subject of previous studies [15, 23, 33, 49].
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Models with a multi-component constraint vector of type (2.1) include ones in which param-
eters describe such entities as a plamamography[13, 51, 100], a3-D rotation matrix[68],

a camera projection matri¥62], and an aggregate of affine subspacd®, 91]. A vast class

of computer vision models, including those mentioned above, employs a constraint vector in
which the parameters are bound linearly with the measurements as per

fi(x,0) = u;(x)76,

where u;(x) is a polynomial function inx",1]". In this case, the constraint vector can
succinctly be written as
f(x,0) =U(x)'0, (2.2)

whereU(x) = [u;(x), ..., u,(x)] is anl x m carrier matrix encapsulating the nonlinearity in
the data. It is worth noting the fact that the constraint vector depends lineaflyroplies that
equation (2.1) is invariant to the multiplication@®by a non-zero scalar. This in turn entails that
any useful cost functiod for generating estimates éfhas to be insensitive to scale change,
or -homogeneoyssatisfyingJ(t0) = J(0) for every non-zero scalar Clearly, an estimate
embodied by the minimiser of@&homogeneous cost function is determined only up to a scalar
factor.

Noise model

We assume the most general situation where measurementrdatdfected by anisotropic
and inhomogeneous, that is, heteroscedastic, noise. More precisely, we adopt a noise model
whereby a datung; is assumed to result from a perturbation of some unobsendddévalue
x; such that
X; = X; + 0x,, (2.3)

wheredy, is seen as a sample from a set of errors distributed according to the Gaussian law with
mean zero andovariance matrix\,, a proviso that the distributions associated with different
pointsx; are independent.

Each ideal point has the property that it satisfies exactly the multi-objective constraints,
U(%X;)T0 = 0, for a common value of. The set

Mg = {x e R* | f(x,0) =0}

forms a manifold which we term model manifold

Ancillary constraints

In many vision applications the system (2.1) does not encempl of the constraints that
apply to the problem. These equations which relate data to parameters often constitute a set of
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Chapter 2 Towards Constrained Parameter Estimators

principal constraintdan the model. It turns out that the parameters can exhibit some intrinsic
properties which are completely independent of any image feature but which must be accounted
for in order to conform to the underlying geometry. These additional requirements are described
by ancillary constraintof the form

®(0) =0, (2.4)
where® = [$,(0),...,6,(0)]" is a nonlinear, vector-valued function of the parameter vec-

tor 6 only. In general, each sub-constraint functionis homogeneousf degrees;, or
x;—homogeneous, with the property that

9;(A0) = N"¢;(0),  AF#0.

In this thesis, it will be assumed that each functigns smooth enough to satisfy
1
6;(0 +h) = ¢;(8) +h'a;(0) + 7h'4;(6)h + O(|[h|[*),

wherea,;(0) = (%gbj(e)T anda;(0) = 9349;(0) are the gradient and Hessianjgfrespectively,
forj =1,...,q. The notatiorO(||h||*) stands for an entity that, when divided Hy||?, remains
bounded agh| — 0.

When combined with the principal constraints, the ancillary constraints may restrict the solu-
tion to curves, surfaces (or other submanifolds) of lower dimensionality than the unconstrained
solution space. Basic examples of models involving principal and ancillary constraints include
the stereo and motion problems of estimating the fundamental matrix [1, 17, 84], flow fun-
damental matrix [52], and coefficients of the differential epipolar equation [14], conic fitting
problems [8, 50, 55, 60], and multiple-view structure from motion problems with estimation of
thetrifocal andquadrifocal tensor$24, 26, 27,37, 79].

2.2 Cost functions and estimators

Given a collection(xy, ..., x,) of image data, we aim to determiie £ 0 satisfying (2.4)

such that (2.1) holds for each image datwm wherex in (2.1) is now replaced by; for

1 < i < n. Our approach to solve this type of constrained optimisation problem is first to
design good quality unconstrained estimators and then employ a post-hoc adjustment procedure
to accommodate for the ancillary constraints.

We shall useost functionso measure the extent to which the data and candidate estimates fail
to adhere to (2.1). Specifically we will consider cost functions that exhibit nonlinearity in both
the data and the parameters. It will be assumed that any such fudcsosmooth enough for

the following Taylor expansion to hold

J(6+ 1) = J(6) + hTg(6) + ShTHB)h + O(|h]]).

Page 9



2.2 Cost functions and estimators

Hereg(0#) andH(0) represent the gradient and Hessiay aespectively,
g(0) =09J(0)",  H(O) = I3 (0).

If the ancillary constraints are set aside, then a glmtm:lonstrainedninimisergu of a cost
functionJ = J(0;xy,...,x,) is defined by

~u
0 = argmin J(0;x,...,X,).
0 cR

When the ancillary constraints are taken into account, then the problem becomes
0" = argmin J(0;x4,...,X%,)

0cVy

suchthaty = {0 € R'|®(0) = 0}.

Clearly, the condition tha® must belong to the set déasible vectord’ restricts further the
solution space. Th@-vector satisfying this requirement and for which the cost function value
is minimal is the globatonstrainedminimiser of.J, denoted*. Figure 2.1 shows two contour
plots of a typical quadratic optimisation problem with and without an ancillary constraint.

0,4 0, A
1‘2 —
S
S
(2]
c
o
o
S
2 -
o optimal
c
= vector
o

principal constraints 0, 0,
@) (b)

Figure 2.1. Contours of a quadratic in R?: (a) with its global unconstrained minimiser
0" (b) with ancillary constraint ¢; and global constrained minimiser 6*.

The next couple of sections will introduce several cost fimmst with different algebraic and
geometric properties. The minimisation algorithms associated with these functions will find an
unconstrained-estimate. The second half of the chapter will then present several constraint-
enforcement techniques which can be applied to the result of these unconstrained estimators to
obtain a final constrained minimiser.
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Chapter 2 Towards Constrained Parameter Estimators

2.2.1 Algebraic least squares
A simple cost function results from considering the system
Ux)'0=0 (i=1,...,n),

where thei-th equation is a copy of (2.2) in which replacesk. This system can be expressed
as
M'O =0, (2.5)

whereM = [U(xy),...,U(x,)] is anl x mn design matrix Whennm > [, equation (2.5) is
over-constrained and, typically, does not admit a non-zero solution. A non-trivial approximate
solutionin the least-squares format can be obtained by applying the following optimisation rule:
minimise||M"@|| subject tg]|@|| = 1. Here|| - || denotes the Euclidean norm. Given that

MTO1* = [lu(x)TOlI* =D f£(xi, 0)"(x:, 6),
i=1 =1
the solution coincides with the minimiser of takgebraic least-square@LS) cost function
Tars(05x1,. . x,) = 0] f(x;,0)T(x;,0) = [|0]| *67s 6, (2.6)
=1

wheres = > U(x;)U(x;)" is thescatter matrix The label ‘algebraic least-squares’ is rem-
iniscent of thealgebraic distancéetween a data point and a normalised paramet@|| 10,
defined ag|f(x, ||0]|7'0)|| = ||0||~(f(x, 8)Tf(x, 8))"/?, instantiations of which, in the form

of the ||f(x;, ||@]|~'0)]||* terms, appear in the expression by s.

It is easily seen that the ALS estima@ALs, coincides, up to scale, with an eigenvector of
S associated with the smallest eigenvalue, and this can be found by perfsmgujar value
decompositioiSVD) ons' [54,92]. The ALS method exploiting SVD is essentially equivalent
to the Direct Linear Transformation algorithm described in [37].

2.2.2 Generalised total least squares

A generalised total least-squaré&TLS) estimator was originally proposed for problems de-
scribed by a single-objective principal constraint function [55]. A key feature of this estimator
is that it utilises a common covariance matrix that weights the carrier vactorhis work was

later extended to the multi-objective case [58,61] and is exposed next.

Foreachi=1,...,n,andj =1,...,m, let

Eji = [axuj]X:XiAXi[(axuj)-r]x:xi
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be thel x [ matrix which is the result of propagating, by the mapping — u;(x). Suppose
thatZ is an approximate solution of the equation

~ ~

Zjl-:%iz, /in>07 1=1,....n,7=1,...,m,

obtained by minimising

n m

DD IS — sl

i=1 j=1
where ||A||, denotes the Frobenius norm of the matkix The solution to this problem is
characterised by

& _ dimi 2o Wiy = tr(E ;)
Z:'Lzl Z;n:l 'ngi g tr(f?) ,

wheretr(A) stands for the trace of the matrix These equations cannot be solved in closed
form. However, a short procedure can be implemented to obtain an estiniatstafting from
v;i = 1) andv;; by iterating over the above expressions. Now, define@hted scatter matrix

§=> U(x) T U(xi)T,
=1

whereT; = diag(v1;, ..., vmi). The GTLS estimate, denot@t},TLS, can then be expressed as
the minimiser of .
60'se
J. 0;xq,...,X,) = ——. 2.7
arrs( 1 ) 9750 (2.7)

Like standard ALS, the solution of the above problem can also be expressed in closed form, in
this case requiring a generalised eigendecompositi¢® @j. The GTLS estimate can be found
directly as the generalised eigenvector corresponding to the smallest generalised eigenvalue of

SO = \16.

It should be noted that no prior estimatefbils required here to solve the eigenproblem since it
relies on the pair of matric&sandz. As a result, this method is often used as initialisation of
more sophisticated iterative algorithms.

2.2.3 Maximum likelihood

The ALS cost function is introducead hocand is lacking a satisfactory statistical basis. A
statistically viable cost function can be derived by adopting a stochastic model for the data
generation process. It is natural to assume that the data have been created by choosing a model
manifold, selecting points on it, and perturbing these points using Gaussian noise. The observed
data pointx;, . .., x, can then be viewed as a sample drawn from random variables. , x,,
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whose joint distribution is labelled by axtendegarameter vectap = (6%, ...,X,,), where

0 is theprincipal part oft representing a particular geometric primitive &g, . . ., X,,) is the
subsidiarypart representing a specific selection of points on the primitive. The two components
of ¢ are such tha # 0 and

£(%,,0) = =f(X,,0) = 0. (2.8)

Using (2.3), the distribution associated with a particalatan be described by the probability
density function (pdf)

PR, + 0syy. . X, + Oy, | ) = (2m)F/2 H1 det(Ay,) "% x exp {—% Zl 612,1\}(}5&} :
Here, k is the common length of the;, for eachi = 1,...,n, A, is ak x k symmetric
covariance matrix, assumed to be known, that quantifies errors in the measurement of the data
point x;. The above pdfs constitute all the essential ingredients needed for deciding which
extended parameter labels the distribution that has most likely produced the data, provided that
there are no special preferences as to how a particular geometric primitive and points on it have
been chosen. According to thenciple of maximum likelihogdhe optimal extended parameter
vector is the one that maximises tlikelihood functiomp — p(xy,...,x, | ). In view of the
specific form of the (logarithm of the) likelihood function, timaximum likelihood estimate
P, J)ML, can alternatively be characterised as the extended parameter vector whose subsidiary
part minimises the squarédahalanobis distancé&om the data. The squared Mahalanobis
distance between the data poifis, . . ., x,,) and model point¢x,, . ..,X,,) is given by

n

Bpanat (X1, X3 Xy, K, = Y (%= %) A (% — X,). (2.9)
i=1
For each@ # 0, when restricted to the set of thoge,,...,X,) for which (2.8) holds, the
function

diqahal(xl, X 0) (X, .., X)) diqahal(xl, ey X Xy, X))

attains a constrained minimum at some pgitt, . . ., x%). All these minima can be assembled
into a cost function to yield

IL(0;%1, .. %) = gt (X1, - - X X0 X, (2.10)

Denote by@ML the minimiser ofJyy,. Clearly, JML@ML) is the smallest of all the values
thatd?;,,..(x1, - . ., x,; ®) attains at the subsidiary parts of extended parameter vectors. Conse-
quently,8y, and(x% ... x%1) are the principal and subsidiary partsypf;, . This justifies

calling Jy, the maximum likelihood cost function fa-estimation, an(ﬁML the maximum
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likelihood estimate of). Of all candidate parameter vecto%m is the preferred vector that
makes the observed data as likely as possible. The ML function shown in (2.10) provides an
optimal estimator under the defined parametric model of Section 2.1.

The demand for optimality introduces some major drawbacks though. Firstly, an explicit ex-
pression forJy;, must be derived for each problem specifically. In chapters 3 and 5 we give
its form relevant to homography and trifocal tensor estimation respectively. Secondly, finding
(%9,...,%?) for eachd is a difficult task. Each new measurementequires the addition of a
corresponding; to the optimisation set. As a result, the ML estimator effectively operates over

a search space of dimensidn;_, dim(X;) + dim(@) = kn + [. The parameter&,, . . .,X,,)

are only of intermediate use to obtafAmIL and not required as final output. For this reason,
they are often called theuisance parameters$n practical applications, minimisation df;y, is
possible but restricted to relatively small data sets, as the problem quickly becomes intractable.
Sparse matrix techniques may be employed to alleviate the computational load, however, this
usually complicates greatly the algorithm. A more feasible approach is to seek to minimise an
appropriate approximation ok, that captures near-optimality and which does not optimise
over the nuisance parameters. One such approximation is indicated next.

2.2.4 Approximated maximum likelihood

Sampson [75] first proposed and Kanatani [49] next populduaskrst-order approximation to
Jur, defined by

Tann(0; X1, %) = > £(x1,0) [0k (x;, 0) Ay, O (x;,0) "7 (x;, 0). (2.11)
=1

Sometimes we may abbreviate this functio/tq;,(€) sinced is the only unknown. Evidently,

the dimension of the search space is now tha,cds desired. Underlying thepproximated
maximum likelihoodAML) cost function is the assumption that the system of model equations
is of full rank, ensuring in particular thatf(x, 8)Adxf(x,0)" is invertible for anyx and

0 satisfying (2.1). Here we give a general form of a AML cost function pertinent to models
described by rank-deficient systems of equations. Our development will critically rely on the
notion of a generalised inverse of a matrix.

Given anm x n matrix A, a generalised inverse, or g-inverse,Aos anyn x m matrix A~
satisfying

AATA=A.
Such matrices are sometimes call®ake conditiong-inverses orequation solvingg-inverses

because of their use in solving systems of linear equations. Consider the following conditions
for a (real) matrixx:
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(1) AXA = A,

(2) XAX =X,

(3) (AX)T = AX,

(4) (XA)T = XA.

(5) AX = XA provided thatt is square.

Let A0 be any matrix that satisfies conditiofis, (5), ..., ({) of the above itemised condi-
tions. Such matrices are termédj, . . ., ) g-inverses of.. Particular cases include:

e A2 areflexiveg-inverse, denoted algg;

e A4 aminimum nornyg-inverse, denoted alsg; ;

e A(1¥) aleast-squareg-inverse, denoted al9g ;

o AL234) theMoore—Penros@g-inverse, opseudo-inversedenoted alsa™ or Af;
e andA(“29) thegroupor Drazing-inverse, denoted algg” or AP,

Except foraA®-234 andA(125) | g-inverses are, in general, not unique.

In view of (2.9) and (2.10), to develop an AML function, we need an approximate expression
for

(x; — %) A (x; — %7).

To this end, note that when applied to the constrained minintiggr. . ., %), the method of
Lagrange Multipliers implies that, for each= 1,...,n, the gradient (the column vector of
the partial derivatives) ofx; — y) Ay (x; — y) with respect toy is a linear combination of the
gradients of the components of (the row vecfds), 8)" with respect tgy, provided that all the
gradients are evaluatedsdt. Since the first gradient is equalt@A; (x; —y) and the gradients
of the components df(y, 8) " coincide with the columns ab, f(x9, 0))T, it follows that

A — X2) = (D (3, 0) T (2.12)

Xi

for some lengths vector of Lagrange multiplierd;. By Taylor expandiny — f(y, ) to first
order aroundk?

f(x;,0) — £(x7,0) = Of(x7, 0)(x; — %7)

7

and noting thaf(x?, 6) = 0, we obtain the approximate equality
f(x;,0) = 0,f(x2,0)(x; — %9).

7

This together with (2.12) yields the approximation

(xi = %7) A (3% = X7) = (3% — X7)T(0xE (X7, 0)) T A = f(x;,0)" . (2.13)
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Now, using (2.12) restated as

x; — %9 = Ay, (8xf(5(f, 0)"\;,

()

we find that
f(x;,0) = £(x7,0)\;, (2.14)

where
£(x,0) = 0. £(X2,0)A,, (0 F(%%,0))T.

For notational convenience, we contract momentdiiky, #) andz(x?, 0) to f; andg;, respec-
tively. Then (2.13) reads
(x; — %) A (x; — x2) = £\ (2.15)

and (2.14) reads
fi =T\ (2.16)

Clearly,
A =I TN+ (T2 5)A,

wherel = I,,.., is them x m identity matrix. This combined with (2.16) yields
Hence, again by (2.16),

£ =7 (Z f + (T -7 Z)N)
=75 f +£7(1 - 57 2)N\
=75 f, + A 5] (I — 5,7 5) A\
Now taking into account that; is symmetric and using the definition of a generalised inverse,

we see that
£ (1 —5%) =5(I—%7%) =0

Therefore

which, in view of (2.15), can be rewritten as
(x; — x)TA ! (x; — x0) = £(x;,0) (%0, 0) f(x;, 0). (2.17)

Note that the above equality is only approximate so that each particular g-ini(es%e) -
leads to a separate first-order approximatiofof— x¢) A, ! (x; — %%), with any pair of such
approximations differing by second-order entities.
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In a last step we substituix;, 8)~ for £(x?,0)~ in (2.17). For this to be meaningful, it is
necessary to assume thk;, 0)~ be close tax(x?, 6)~. Importantly, this requirement is not
automatically satisfied. It can be fulfilled by either selecting a g-inverse which is continuous
or by regularising appropriately the g-inverse at hand to make it effectively continuous. More
details on both approaches will be given later. Whens chosen to be effectively continuous
at(x9, 9), the final approximation reads

Itis clear from the above discussion that a meaninful AML cost function is given by
JamL(0; %1, ..., X Zf X;, 0)T[0xf (x5, 0) Ay, Oxf(x5,0) "] (x;, 0),

provided that~ is effectively continuous at all thgz?, ).

2.2.5 Equivalent form of the AML cost function

The AML cost function can efficiently be optimised by two clyseeslated procedures. For the
presentation of these techniques, an alternative expressionferis needed, and this will be
given next.

Recall that, for ann x n matrixA = [a,;;] and ap x ¢ matrix B, theKronecker producf54] of
A andB, A ® B, is themp x nqg matrix

anB e alnB
A®B=
a,1B ... a,.,B
For anm x n matrixA = [ay,...,a,] with a; the j-th column vector of lengthn, let vec(A)

denote thevectorisationof A, that is the column vector of lengtlvn defined byvec(A) =

[al,...,al]T. Since (2.2) can be reformulated as

f(x,0) = (Lxm ® 07) vec(U), (2.18)
with vec(U) = [uf,...,u]]T, we have

Okt = (Txm ® GT)E)xvec(U),
wherel,, ., is them x m identity matrix andd,vec(U) = [(Oxuy)T, ..., (dxu,,)T]". Conse-

quently, foreach =1,...,n,

O F (x5, 0) Dy, (0uF(%4,0)) " = (T @ 07)Bi(Tnsm @ 6),
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2.2 Cost functions and estimators

where
B = [Dhevec(U(x))]xms, A, [(Ovec(U(x))) s,

Now, withU; = U(x;),
Tann (051, %) = 07U [(Tysm ® 07)Bi(Lyusr ® 0)] 7 U0
=1

and this is the required expression fHfyr,.

2.2.6 Optimisation of the AML cost function
The minimiser@}gML satisfies the necessary optimality condition
[89JAML(0; X1y ,Xn)]ezaxML == OT (219)

with 0gJani1, the row vector of the partial derivatives df,;, with respect td@. We term this
thevariational equation With the aid of (2.18), it can be shown that

(Do JamL(0;%1, . .., X,)]" = 2X¢0, (2.20)

whereXy is anl x [ symmetric matrix given by

Xg = Mg — Np, (2.21a)

Mo = > Uz U], (2.21b)
=1

Nog = Z(TIZT ® Iix1)Bi(m; @ Lixa), (2.21c)
=1

B; = Oy, vec(U;) Ay, [Ox, vec(U;)]T, (2.21d)

Zi = (Inxm ® 01)Bi(Lxm ® 6), (2.21e)

n; =%, 0] 6. (2.21f)

The variational equation (2.19) can accordingly be rewritten as

X6 = 0, (2.22)

~

where the evaluation #%,,, is dropped for clarity. In this form the variational equation will
serve as a basis for isolatiy ;.

Two iterative methods for solving this equation have recently been developeéuidemental
numerical schem@NS), originally designed for optimisation of a single-objective AML cost
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Chapter 2 Towards Constrained Parameter Estimators

function [15], exploits the fact that a vect@rsatisfies (2.22) if and only if it is a solution of the
ordinary eigenvalue problem

Xg€ = A&
corresponding to the eigenvalue= 0. This suggests an iterative method for solving (2.22)
whereby if 8, is a current approximate solution, then an updated solian is a vector
chosen from that eigenspaceXf which most closely approximates the null-spac&gfthis
eigenspace is, of course, the one corresponding to the eigenvalue closest to zero in absolute
value. The algorithm can be seeded with an estimate produced by some non-iterative method
such as ALS or GTLS presented in Sections 2.2.1 and 2.2.2 respectively. The overall procedure
is summarised in Algorithm 3, assuming an ALS initialisation.

Algorithm 3 Fundamental Numerical Scheme |

Steps to compute an estimﬁﬁNS of the minimiser of/,\, givenin (2.11) :
1. Find an initial estimaté, = §ALS and sett = 0.
2. Compute the matriXy, as per (2.21a).

3. Takef,.; as the normalised eigenvector x§, associated with the eigenvalue closest to
zero (in absolute value).

4. If 8, is sufficiently close tdd,, then terminate the procedure and 5@@15 = Op.1;
otherwise incremenit and return to step 2.

In view of the representatiafy = Mg — Ny, equation (2.22) can also be written as
Mg = NgB. (2.23)

Theheteroscedastic errors-in-variabl€"EIV) scheme [55, 59] is based upon the observation
that a vecto® satisfies (2.23) if and only if it is a solution of tigeneraliseceigenvalue problem

Mp& = ANg§

corresponding to the eigenvalue= 1. Given a current approximate solutiéqp, HEIV in

its basic form takes for an updated soluti®pn_ ; a normalised eigenvector of the eigenvalue
problemMy, & = ANy, £ corresponding to the eigenvalue closest.tégain the iterative process
can be seeded wi@nALS.

FNS and the HEIV schemes are locally convergent—to work they require an initial estimate
sufficiently close to a solution of the equation underlying a particular method. More stable ver-
sions of the algorithms, able to cope with less accurate initial estimates, result from selecting at
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2.3 Coping with linear dependencies

each iteration the eigenvector corresponding to the smallest eigenvalue instead of the eigenvec-
tor corresponding to the eigenvalue closest to O in the case of FNS, and closest to 1 in the case
of HEIV. Typically, the minimal eigenvalue computed after a few iterations is also the closest
to 0 or 1 depending on the method, and once this stage is reached the modified algorithms act
exactly as their original versions. Without these modifications, the schemes may exhibit slow
convergence or even divergence.

2.3 Coping with linear dependencies

For some models, like those pertaining to a homography or @ @amatrix, the system (2.1) is

linear in@ and consists dinearly dependenequations. In this situation, some gradients of the
sub-constraint functions can be expressed as a linear combination of other gradients. Figure 2.2
gives an illustration for two gradients.

S
2

g1
22

(@) (b)

Figure 2.2. Intersection of sub-constraint functions f; and f» in R? when both gradients
g1 and gy are (a) linearly independent; (b) proportional. In the latter case
this implies that there exists a non-zero scalar A such that g; = A\gs.

It turns out that for any such model the matriég$(x;, ) A, Oxf (x;, O)T, the inverses of which

enter the AML cost function, are ill-conditioned and the AML estimate® @ire, as a rule,
inaccurate when noise in the data is small. The purpose of this section is to demonstrate that
this deficiency can be overcome if either the cost function or its Jacobian is suitably modified.
In general, many modifications are possible. For example, the constraint ¥éxté) can

be curtailed, in a multitude of ways, so that (2.1) becomes a linearly independent system of
equations—a system giving rise to a well-behaved AML cost function. Another possibility is
to replace the inverses of thif(x;, 8)A,,dxf(x;,0)" by truncated versions of the Moore—
Penrose generalised inverses. One of the contributions of this work is putting various forms
of cost-function modification within a unifying framework. A key concept in this context is

a generalised inverse of a matrix. It emerges that any useful variant,gf is the result of
replacing the inverses of thiaf(x;, 0) A, dxf(x;, 0)" by suitable generalised inverses.
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Chapter 2 Towards Constrained Parameter Estimators

2.3.1 Problem description

We now consider a model in which, for any data pointhe carrier matrix(x) is not of full

rank, having linearly dependent columns. Examples of such a model include the homography
and camera matrix models, where in each case the carrier matrix has three linearly dependent
components, with only pairs of columns being linearly independent. As we shall see shortly,
the problem with any non-full-rank model is that, for small measurement errors in the data,
the AML cost function is a poor approximation of the ML cost function and, consequently, the
AML estimates of the parameter vector may be unreliable. The difficulty in finding an estimate

in this case is depicted in Figure 2.3.

L\

(@) (b)

Figure 2.3. Contours of a quadratic in R? when the problem is: (a) well-conditioned; (b)
ill-conditioned. The valley around 0" becomes longer and narrower as the
problem becomes ill-conditioned. This creates some trouble for any method
that tries to find the unconstrained minimiser.

A fundamental consequence of the rank deficiency of the carmarix is that, for eacldeal
data pointx and each parameter vectBrmatchingx, the matrixd,f (X, 8)Axxf(X, 0) " is
singular. Indeed, the linear dependence of the columng:of means that, for eack, there
existsa(x) = [a(x), ... an(x)]" # 0 such thafy ", a;(x)u;(x) = 0, or, more compactly,
U(x)a(x) = 0. It follows that, for eacl®,
a(x)U(x)"0 = a(x)"f(x,0) =0

whence, upon differentiating with respecttp

dear(x)"f(x, 0) + Oxf(x,0) a(x) = 0. (2.24)

Combining this withf(x, 8) = 0 yields

0.f(%,8) () = 0.
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2.3 Coping with linear dependencies

Consequently), f (X, )\ 0, f (X, 0) hasa(X) in its null-space and as such is singular.

Now, if x is a noisy variant ofc and @ is close to@, then, as a rulef(x, 6) in (2.24)

will not vanish andd,f(x, 8)Adyf(x,0)" will be full-rank (invertible, to be more pre-

cise). However, the singularity ab,f(X, 8)A0xf(X,0)" will influence the behaviour of
Of(x, 0)MOxf(x,0)". If noisy data points are close to ideal data points, which typically
happens when the noise level is low, and if the parameter vector is close to the parameter vector
matching the ideal data points, then the latter matrix will be ill-conditioned. In particular, for
data exhibiting small errors/ g, will be a poor approximation af ..

2.3.2 Sub-constraint vectors and generalised inverses

One way to overcome the deficiency stemming from the preseiitieconditioned matrices

in the expression fosyy, is to form a shorter constraint vectbi(x, ) = U(x)7@, where

U(x)’ is formed by a linearly independent set of columngJgt). The number of columns

of U(x)’, or equivalently the length of the sub-constraint vedidx, €), is set to be equal

to the column rank ofi(x). Any sub-constraint vector of this form will be termedbasic
sub-constraint vector. If'(x,0) is a basic sub-constraint vector, then, under favourable con-
ditions, 0, f'(X, 0) Az O f' (X, §)T will be invertible. Various basic sub-constraint vectors can be
generated from a full constraint vector. For example, for the homography and camera matrix
models, three basic sub-constraint vectors can be formed, each comprising a pair of components
of the original constraint vector. Given a basic sub-constraint véter@), one can define a
modified AML cost function by setting

Jamn(0;%1, ... Xy, Zf’ i, 0)T[0xf" (x4, 0) Ay, O f' (i, 0) | ' (x:, 6). (2.25)

As we shall show next, the multitude of cost functions arising from different basic sub-constraint
vectors can be viewed from a unifying perspective once these functions are characterised in
terms of ageneralised inversef a matrix [11].

Suppose that the constraint vectas partitioned a$f’™, fT|T, wheref’ = [f1, ..., f,] is abasic
sub-constraint vector anff = [f,,1,..., f.u]" is the complementary vector. Then associated
with  there is a g-inverse @i, f(x, 0)Adxf(x,0)", namely

[0 f'(x, 0) A Duf’(x,0)T] 71 0

. . (2.26)

[0xf (%, 0) A0, f(x,0) ], =

In terms of this g-inverse, the AML cost function basedfgras given in (2.25), can be written
as

Jauw(0;%1, ..., X Zf xi, 0) " [0xf (xi, 0) Ay, Oxf (x5, 0) |7 £(x:, 0).
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Chapter 2 Towards Constrained Parameter Estimators

Note a similarity with formula (2.11) —the standard inverse appearing there is now replaced by
the g-inverse associated with

Different AML cost functions can be obtained by selecting different sub-constraint vectors. To

wit, let o be a permutation of1,2,...,m} and letf, be the result of rearranging the entries
of f according too, that is,f, = [f,q),. .., fom)] . Suppose that in the representatiyn=
(£ €777, wheref, = [foa),- .., fom)" @NdE! = [fopi1)s-- s foem)]'s £, is @ basic sub-

constraint vector. Then the following AML cost function can now be defined
T (051, %) = £,(xi,0)T[0xfs (%1, 0) A, O (x1,0) ] F, (x5, 6).

Given thatf, = P,f, whereP, is the m x m permutation matrixdefined byP, =
[91(1)7 .. ,el(m)]T, with e; the i-th row vector ofI,,.,,, the above formula can be rewritten
as

Jamw(0;x1, ..., x Zf xi, 0) " [0uf(xi, 0) Ay, 0xf (x;,0) ], £(x;, 0), (2.27)

where
[0x£(x, 0)0,04£(x,0)"],, = Py [P,0xf(x, 0)A0xf(x,0) 'P1] P, (2.28)

is the g-inverse associated wifh. Note that, similarly as before, the g-inverse in the AML
cost function (which is now based df) plays the role of the inverse in the formula for the
standard AML cost function. Note also thaty, given in (2.27) is differentiable. This follows
from (2.26), (2.28) and the fact that the mapping sending an invertible matrix to its inverse is
differentiable. The differentiability property guarantees that the function can be optimised by
using FNS or HEIV.

In summary, a first solution to bypass problems engendered by the linear dependency of some
components of the objective vectbris to evolve a cost function based on a sub-constraint
vectorf’. Adapting the original FNS (Algorithm 3) to the present context leads to the procedure
outlined in Algorithm 4.

2.3.3 Enter all constraints

An obvious aesthetical, though not fundamental from thetpafimiew of theory, shortcoming

of the AML cost functions based on sub-constraint vectors is the asymmetry with which various
components of the original constraint vector are treated. Each of these cost functions uses some
components and ignore others. It would be more desirable to see all components incorporated
into a valid cost function. One conceivable way to achieve this is to use the pseudo-inverse and
let

Jan (05 %1, ..., X Zf xi, 0) T [0, f(xi, 0) Ay, Ouf(x;, 0) ] HE(x, 0). (2.29)
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2.3 Coping with linear dependencies

Algorithm 4 Fundamental Numerical Scheme Il

Steps to compute an estimzﬁtﬁqs of the minimiser ofJ,1, givenin (2.25) :
1. Find an initial estimaté, = §ALS and sett = 0.
2. Compute the matriXy, based on a chosdhvector instead of the full vector.

3. Takef,; as the normalised eigenvector x§, associated with the eigenvalue closest to
zero (in absolute value).

4. If 8,4 is sufficiently close td@,, then terminate the procedure and Gets = 01.1;
otherwise incremenit and return to step 2.

This, however, is not a satisfactory choice—the proposed function is prone to numerical insta-
bility, as we now explain.

The point is that the pseudo-inverse may fail to be continuous when the limit matrix is not of full
rank. A simple example illustrating this phenomenon is this: Tet= [ 7, | andT = [{ §].
ThenT = [} %]andT =T" = [} 8], soT,, — T while T, diverges as mcreases Note that

is rank deficient, while all th&, are full rank. Given thad, f(X, )1z 0,f (X, 0) is singular, the

lack of continuity of the pseudo-inverse implies that, for small ndg|(x, 8) A, f(x, 0)"|*

is ill-conditioned. This drawback can be overcome if the formula (2.29) is modified to read

Janw(0;x1, . .. Zf X;, 0) 7 [0 f(x;, 0) Ay, Oxf (x;,0) | £(x;, 0). (2.30)

Herer is the column rank of(x) andA™ denotes the-truncated pseudo-inverse them x m
matrix A defined as follows: it = UDVT is the SVD ofA, withD = diag(dy, ..., d,,), thena, =
UD, V' with D, = diag(dy, ..., d,,0,...,0) is ther-truncated SVD ofi, andA;” = VD, UT with

D} = diag(d{,...,d},0,...,0), whered] = d;* whend; # 0 andd; = 0 otherwise, is the
pseudo-inverse of,. The truncated SVD forces thlexactrank of 0, f(x;, 0) Ay, Oxf (X, G)T to

be reduced to the more adequatenericalrank, this being defined as the rank of the underlying
matrix 0, f (X;, 0) A< 0, f (X;, §)T. The rank suppression enforces continuity of the g-inverse and

is an example of gegularisationtechnique [21].

The modified AML cost function, as specified in (2.30), is still not entirely satisfactory. It is
not obvious whether it is differentiable and, even if it is, whether its Jacaljdm,g, can be
calculated straightforwardly. One troublesome fact is that the singular values of a matrix are not
differentiable functions of the matrix. For exampleAif= a is al x 1 matrix, then its singular
value is|a| and the functioru — |a| is not differentiable ad. To bypass this difficulty, we
choose, following Kanatani [49], to regularise the Jacobian rather than the function itself. The
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key ingredients of the regularised Jacobian take the form

Mo = > Ui [(Tnsm ® 0 )Bi(Lnsm ® )] U],
=1

Ng - i(OTUi [(Im><m (%9 OT)Bi(Ime X 0)]:— ® Il) (231)

i=1

X Bi([(Trxm ® 07)Bi(Linxm ® )] UTO @ ).

Now, with Xy = Mg — Ny, the AML estimate ob, 5XML, based on the full constraint vector can
be defined as the solution 3@ = 0 to be found in the vicinity oﬁALS. The computation of
this estimate can again be done with the aid of either FNS or HEIV.

Recapitulating the findings, we propose a second method to tackle objective functions with
linearly dependent components. The method involves employing a truncated pseudo-inverse of
rank r suitable for the problem at hand. A modification of the original FNS (Algorithm 3) is
presented next.

Algorithm 5 Fundamental Numerical Scheme lll

Steps to compute an estimzﬁtﬁqs of the minimiser ofJ,y, givenin (2.30) :
1. Find an initial estimaté, = §ALS, setk = 0 and the rank.
2. Compute the matriXq, from the matricesly, andNy, as per (2.31).

3. Takef,, as the normalised eigenvector ¥4, associated with the eigenvalue closest to
zero (in absolute value).

4. If 8, is sufficiently close tdd,, then terminate the procedure and @gﬁs = Op.1;
otherwise incremerit and return to step 2.

2.3.4 General recipe

The previous considerations lead to the following gene@peefor generating AML cost func-

tions for models with linear dependencies. The starting point is the standard AML cost func-
tion as given in (2.11). This function is modified, the inverses of the matrices of the form
Oxf(x, 0) M Oxf(x, B)T being replaced by generalised inverses of some type. Various types of
g-inverse can be used for the process. If a particular inverse chosen turns out not to be con-
tinuous, then it is next appropriately regularised. If now the resulting AML cost function is
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differentiable, then a corresponding optimisation condition is evolved straightforwardly by cal-
culating the Jacobian of the cost function and setting this Jacobian to zero. If the AML cost
function is not differentiable, then an optimisation condition is derived based on a regularised
Jacobian. Once the optimisation condition is set forth, the computation of AML parameter
estimates proceeds by utilising either FNS or HEIV.

Algorithm 3 may be adapted such that the AML cost function is either the one given by (2.25)
or (2.30). When a sub-constraint vecfors selected, matriXy is derived based on the matrix
U(x)" associated witl’. If function (2.30) is employed, theXy is formed fromMy andNy as
described in (2.31).

2.3.5 Equivalence problem

Given the multitude of AML cost functions and related optiatisn conditions that can be
obtained with use of various g-inverses, it is natural to ask how different AML estimates of
relate to one another. Bearing in mind the natural way in which g-inverses arise, one can expect
that in terms of accuracy all AML estimates will be essentially equivalent. Chapters 3 and 5 on
homography and trifocal tensor estimation will provide some experimental evidence in support
of this claim.

A notable implication of this finding is that for the purpose of effective estimation, it suffices to
use a simple, differentiable AML cost function such as any one based on a basic sub-constraint
vector. More complicated AML cost functions, like the one involving a truncated pseudo-
inverse, can safely be ignored.

2.4 Reduced fundamental numerical scheme

The previous sections showed that when the sy$tenf) = 0 consists of linearly dependent
equations two general techniques were available to regularise the associated AML objective
function. One approach is to curtail the vecfoso that it includes only linearly independent
equations. The second option keeps the original vefttilowever, provides a modification

of the AML function as follows. When the length of the f(x;, 8) surpasses the common
codimension of the submanifolds of the formix € R* | f(x,0) = 0} with 6 representing

ideal parameters that might have generated the data, the inugssed) ! in expression (2.11)

are replaced by the-truncated pseudo-inverse&;, ).

Although these modifications improve the robustness of FNS and broaden its range of appli-
cability, the method may show some signs of instability for difficult sets of data. This sec-
tion will present a reduced form of FNS, where only a subset of the total parameter vector is
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estimated iteratively and the remaining parameters are recovered in a single step based on the
result of the earlier iterative process. The reduced algorithm in effect replaces the original esti-
mation problem with a couple of problems of lower dimension. The algorithm is an extension

to the multi-objective setting of the reduced FNS in the single-objective case given in [16]. The
process of dimension reduction leads to significant benefits. Compared to the full form, the
reduced form of the algorithm requires a less accurate initial estimate and enjoys better conver-
gence properties. While the work here is primarily concerned with FNS, the optimality condi-
tion which underlies the reduced form of this algorithm can readily be exploited to advance a
reduced form of HEIV.

2.4.1 Problem reformulation

The starting point for the development of the new algorithrthes constraint functioffi given
in (2.2). Suppose that the carrier mattig) can be written as

U(x) = [Z(X)] = [Zl(x) Z’”(X)] , (2.32)

whereZ(x) is an(l —m) x m matrix that depends ax (a “pure measurement” matrix) afds
anm x m invertiblematrix that does not depend an Corresponding to this splitting @f(x),
the parameter vectdr will be subdivided as

, (2.33)

wherep anda are vectors of length — m andm respectively. The partitioning af(x) and

0 reflects that fact that some component®lottonsidered as indeterminates, appear in each
of the equations of (2.2) only with constant coefficients. The veatapllects together those
components of that appear in (2.2) with pure constant coefficients. For eachi, ..., m, the
non-zero entries of theth column ofw represent the constant coefficients of the components of
a in thei-th equation of (2.2). If, for instance, every equation of (2.2) has exactly one parameter
with a unity coefficient, then, after reordering of the equations of (2.2) if necessary, it can be
assumed that = I,,«,,. Notice that matrixw does not depend on datus) so its derivative

with respect tox, dyvec(W), is anms x k zero matrix. One of the motivations behind the
new algorithm is to eliminate these non-informative rows from the estimation process. Upon
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differentiation with respect tg,

z1(x)

vec(U(x)) : ) (2.34)

Zn (X)

Wm

SO one may see that the derivative matrix does not have all the elements of thes lest/s
vanishing because some of these rows correspond to the derivatives ok gamEherefore,
matrix U, as it stands in (2.32), is not an adequate representation.

The shortcoming of may be overcome by introducing the x [ measurement matrix

V(x) =U(x)". (2.35)

Now,
vee(V(x)) = VeC(Z(X)T) 2.36
(V(x)) [ vec(u™) ] (2.36)

and differentiating this expression with respectxtajives a matrix with the lastns rows
vanishing, as desired. The adoption of this new measurement matrix means a reformulation
of the objective functiorf defined in (2.2) and associated expressions. This is shown next.

The particular relationship = UT permits to write
vec(U) = K,y vec(V), (2.37)

wherek,,,; denotes the squammmutation matriof sizeml x ml [57]. It follows naturally
that
f = (Lsm @ 07) vec(U) = (Inxm @ 07Ky vee(V).

By property of commutation matrices,
(Im><m X OT)Kml - (OT X Imxm)7 (238)
hence

f(x,0) = (07 @ I,,ym) vec(V). (2.39)

If this identity is used in calculatingPs Janr,)T instead of (2.18), then the ensuing expression
for Mg will be identical with the one given in (2.21b), but the expressiorgpwill change as
described next.

Inspired by the form of matri®; in (2.21d), let

B = 0Oy, vec(V;) Ay, [Ox,vec(V;)]T, (2.40)

Page 28



Chapter 2 Towards Constrained Parameter Estimators

wherev; is short forv(x;). The derivative off with respect tax = [z, .. ., 2*] takes the form

Oxvec(U) = [Oprvec(U), .. ., O xvec(U)]
and applying rule (2.37) to each of its columns, we deduce that

Oxvec(U) = Ky Oxvec(V).
Starting from (2.21e) and using the previous identity, we can write
% = (Imxm @ 07 KOy, vec(V;) Ay, [0, vec (V)] "KL ((Twm @ 6).
Simplifying with (2.38) and (2.40) gives
Zi = (07 @ Lnsm)Bi (0 @ L) (2.41)
foreachi = 1,...,n. Recalling (2.21c) and given the fact that
(n! ® L)kt = (L @M} ),

it follows that
Ng = (Il><l (29 ’I’];I—)BZ(Ile X 77@) (242)

The matrixXy composed fronMy andNy based orv gives a neat formula for the gradient
of the cost function proposed by Matei and Meer [62], where the “scatter matridy is
S vz 'v; and the “weighted covariance matrixNg = >, (I; ® ] )B; (I, ® n,). While
equation (2.21c) foXg arises more frequently in the literature, equation (2.42) will prove more
useful in what follows.

2.4.2 Reduced variational equation

We shall now present a system of two equations that jointlyegrgvalent to the variational
equation (2.22). One of these equations involves @nnd can be solved separately, and the
other expressas in terms ofu. We begin by noting that, in view of (2.36),

8xvec(Z(X)T)] |

Om2><k

Oxvec(V(x)) = [
Hence, for eachh = 1,...,n, thelm x Im matrixB; can be represented as

B/ 0
B* — [ i (¢ m)m”’ﬂ] : (2.43)

i
Om2><(l—m)m Om2 xm2
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whereB! is the(l — m)m x (I — m)m matrix given by

B, = 3xZ~VeC(ZT)sz~ [3xiveC(ZT)]T, Zi = Z(x).

% 7

It is worth noting that this partitioning a8, crucial to the subsequent development, results
from taking (2.39) rather than (2.18) as a point of departure. It may be difficult to compute the
matrix dxvec(Z(x)") directly. An alternative could be to start from an easier expression such as

O0xZ1(X)
Oxvec(Z(x)) = :
OxZm (X)

and use the identity

Oxvec(Z(x) ") = K—mym Oxvec(Z(x)).

As is easily seen from (2.43), the null-space of each matrixs spanned by the lengtihn
canonical vectofo, .. .,0,1]T, wherel denotes a lengtm? vector of ones. Consequentli

is singular and solving the eigenvalue problem associated with (2.22) is susceptible to numerical
instability [70]. This difficulty is overcome by reducing the eigenvector problem to a similar
problem involving a positive definite matrix replacitig. Such a reduction relies on matik

and is exposed next.

Define anm x m matrix £, by
L = (B ® Inxm)Bi(B @ Lyxim)- (2.44)

Clearly,z; is positive semidefinite and depends only ontle element of data, its covariance
A,, and the parameter vectpr Assume henceforth that eathis positive definite and hence
invertible. The inverses, ' can now be used as matricial weights to define a “centroid” of the
Z; as follows:

7= i z;x ! [i z;*l} - (2.45)
=1 =1

Here} "  ©~!isinvertible because a sum of positive definite matrices is also positive definite.

=11

Foreach =1,...,n,let
Z.=2,—12 (2.46)

be thei-th pure measurement vector relativeztd_etting

n, = ZQ‘IZQTM, (2.47)
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Chapter 2 Towards Constrained Parameter Estimators

define the following! — m) x (I — m) matrices

Z zT 'z (2.48a)
N;L - Z( (1=m)x (1—m) © 7 T)B;(1 (I=m)x (1—m) @ 13), (2.48b)
=1
Xy =M = Mo (2.480)

A fundamental result that can now be established is@hat[u", o] satisfies the variational
equation (2.22) if and only if the following system of equations holds:

X,pu=0, (2.49a)
a=—(zw . (2.49b)

A proof can be found in Appendix A.1. The first equation constrains sqleiyd, therefore,
can be solved separately. Oneés determinedg is readily prescribed by the second equation.
Of the two constraints, the first plays a leading role and will be termecetheced variational
equation A salient feature of this equation is that the matifx unlike Ny, is generically
positive definite ifn > [ — m in which case the eigenvalue problem associated with (2.49a) is
nondegenerate.

With thereduced AML cost functiodefined by
Jann (B X1, -, X Z p'Zr 'z (2.50)

(2.49a) can be viewed as the variational equation for an optimisé(,@f. This formula also
reveals that the new estimation problem has a smaller search space, of diménsion <
dim(@). Interestingly, thgs-part of@}gML, which satisfies (2.49a) ?ﬁML satisfies (2.22), turns

out to be the minimiser of,,,;, denoteduy,,, not just a critical point of/,,,;. Moreover,

both Jayr, and Jj,,;, attain a common minimum value at;\ML and p'x ., respectively (see
Appendix A.2). One noteworthy consequence of this link is that the reduced AML cost function
can be minimised by any algorithm and the resulj{gector) can first be fed into (2.49b) to
produce a partial estimate (arrvector) and further combined with this partial estimate (as per
(2.33)) to produce the minimiser of the full AML cost function.

2.4.3 Algorithm details

A modification of FNS based on the reduced variational syst2m9@) and (2.49b) is the
reduced fundamental numerical sche®NS). Its steps are summarised in Algorithm 6.
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Given a current approximate solutigy),, the technique takes for an updated solutign ,

a normalised eigenvector &f, corresponding to the smallest eigenvalue. Veetds calcu-
lated from the limiting value ofs,_, obtained upon convergence when solving (2.49a). The
iterative process can be started by computing the ALS estimate,

Algorithm 6 Reduced Fundamental Numerical Scheme

Steps to compute an estimzﬁ@FNS of the minimiser ot/ ,;; given in (2.50):
1. Find an initial estimatg,, = fi1,;,4 and setc = 0.
2. Compute the matrix, as per (2.48c).

3. Takep, ., as the normalised eigenvectorxjf associated with the eigenvalue closest to
zero (in absolute value).

4. If p,, is sufficiently close tqu,, then terminate the procedure; otherwise increntent
and return to step 2.

5. Computea as per (2.49b) using the limiting valye,, and the corresponding value
Z(py.,) from the previous step. Sépns = pf, o]

In the case that the matricEsl are replaced by the matricés;),f in the expression fodar.,
a similar change also affects the matriggs of FNS. Moreover, ag; = £, fori = 1,...,n
(see Appendix A.1), théz!)+ supercede the, ! in the expression fov},,;;, and in thex;, of
RFNS.

Finally, we remark that a vectd satisfying (2.22) can alternatively be viewed as a solution

of the generalisedeigenvalue probleyé = ANg& corresponding to the eigenvalue= 1.

This observation provides a starting point for the development of the HEIV scheme in both full
and reduced versions [16]. Each version solves successively generalised eigenvalue problems
analogous to the ordinary eigenvalue problems solved by a corresponding version of FNS.

2.5 Incorporating ancillary constraints

All of the estimators presented so far, with the exceptiomef¥lL one, aim to find a minimiser

with no particular restriction on the parameter space other than the requireme#t hiaat

unit norm. In general these methods will return an estimate which does not satisfy the ancillary
constraints. The remaining part of this chapter is dedicated to address this deficiency. Assuming
that we have an unconstrained estimate, we propose several cost functions, each leading to a
post-hoc correctiorscheme, to enforce the ancillary constraints.
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Chapter 2 Towards Constrained Parameter Estimators

The procedures we are about to present are all iterative and typically employed to solve (uncon-
strained) nonlinear optimisation problems. By providing these methods with an adequate cost
function, they are used here to produce a constrained parameter vector.

2.5.1 Gauss-Newton correction

One way to obtain an estimate consistent with the ancillarnstaints is to minimise the
geometric distance between a sought veét@nd the unconstrained estimzﬁgML. Under
the assumption tha lies close to@ngL, this problem can be formulated as a standard least-
squares problem of the form
, 1, 4 1 )
argmin F(0) = 5 r(0) r(0) = 5 lr(8)]%,
(2]

wherer(8) = (0 — §XML)/H0H is called theresidual function In numerous 3-D computer

vision problems [61, 62]0 is often parameterised through a nonlinear funcyaacting on a
lengths vector3 such tha® = ¢(3). So, the residual vector is redefined as

r(8) = (9(8) — 84an)/19(B)] (2.51)
and the minimisation criterion becomegs@nlinear least-squargsroblem
i 1
arg min F(8) = 5 [r(8)* (252)

Newton’s method is a natural choice for solving the above nonlinear problem. From an initial
valueg,, the method constructs a sequence of vegligre,, . . ., such that at step

Bri1 = By + P, (2.53)
wherep;, a vector controlling the search direction, satisfiesNe&ton’s equations
(35 Ik + Br)pr = —Ji 1w, (2.54)

wherer, = r(8,), J» = J(B,) is the Jacobian matrix of(3) evaluated at3,, and

By = i, 7:(B4)Gi(By), with G;(3,) the Hessian matrix of;(3) evaluated aB,. When the
residuals;(3,) are small, the quantityB, || is small compared t}J} J,||. In such situations,
By, is typically discarded from (2.54) which gives rise to the so-caflednal equations

Jngpk = —JZI']{. (255)
Rearranging this expression, the search direction vector is readily prescribed by

Pr = —[JZJk]_lJZrk. (256)
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2.5 Incorporating ancillary constraints

The Gauss-Newton method is a procedure which updates the search direction in the fashion
described by (2.56). Its popularity comes from the fact that the method ultimately converges to

a solution at the same (quadratic) rate as Newton’s method, however, relying on first derivative

information only—encoded in the Jacobian The value ofp, in (2.56) can be used in (2.53)

to find an update fo8,.

Under a model employing a quadratic function, the search direction vector given in (2.56)
enforces thedescentcondition £(8,,,) < F(B;). This requirement is a safety measure to
prevent convergence towards a maximiser or a saddle point of the function. Nofe ikt

be monotonically decreasing only if certain favorable conditions are present. This topic is dis-
cussed next.

Given a suitable starting point, convergence to a minimiséf sfguaranteed provided that the
Jacobiaryy, has full rank in all steps. Unfortunately, this is not the case for the function in (2.52).
In general, the problem can be remedied by taking the pseudo-inverse of the quamtityf

a current approximate solutidh. = g(3,) is known, another way to improve performance is
to compute an updated estim#&g ; as the normal to the hyperplane tanger?,al61]. When

6,. has unit norm, this condition is equivalent to requiring #at; also lies in the unit sphere,
see Figure 2.4. For a lengthvector@, this is ensured by using@ojection matrix

P(0) =TI, —Q(0) =1, — ||0] 206" (2.57)

We show next that, witd = ¢(3), this matrix is given by

(99(8)/98)"9(B)g(B)" (9g(B)/9B)
1(09(8)/08)T9(B)||?

P(B) = Lixs — ; (2.58)

wheres refers to the length g8.

Let Ay be a small pertubation &f and, for simplicity, leP andQe be short forP(8) andQ(80),
respectively. Ideallyo should be such that

Qo Ao =0, (2.59)

or equivalently,
Po Ag = Ap. (2.60)

If (2.59) (or (2.60)) is not satisfied, thehy is replaced by

Ay =Pg g
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ng Agk

Figure 2.4. Action of the projection matrix on a parameter estimate.

so thatAj now satisfieflg Ay = 0 andPy Ay = Aj. In trying to satisfy (2.59), we try to ensure
that
16 + Aol = (16|

up to second order ing. Taking into account tha = ¢(3) gives

o081+ 29285 = 51601 @2.61)
Since )
o081+ 22280 = la(I +207(8) % 25+ 01301,
condition (2.61) can be rewritten as
HOET I’

when neglecting the second order term. By analogy to (2.59), this expression is equivalent to
Qs Ag = 0, where
(99(8)/9B)T9(B)g(B)"(99(8B)/IB)

1(09(83)/08) T 9(8)|I? '

The associated projection matrix then takes the form (2.58).

Qg =

The preceding remarks are included in the final version of the Gauss-Newton method outlined
in Algorithm 7. It is assumed that the unconstrained estimator was initialised with the ALS
method presented in Section 2.2.1. This implies that an esti,%]@t@exists such tha@ALS =
g(BALS). A constrained estimate is then evolved frcis\rffg.\,IL and E’ALS. Sinceg is problem
specific, we omit the details of computivﬁ‘;\LS here. Examples will be given in Section 4.2.2
when examining different parameterisations of the trifocal tensor. Clearly, if the unconstrained
scheme is initialised with a different method, then the correspondiagctor must be used in

place offi’ ALS-
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Algorithm 7 Gauss-Newton correction scheme

Steps to correct an unconstrained estin@qu ;

2. Compute
Bii1 = Br — [PrILIPL] T PRIy,

whereP,, = P(3,,) as per (2.58).

3. Comput&dd 11 = 9(Bir1)/l9(Bri)|l-

4. If 8,4 is sufficiently close tdd,, then terminate the procedure and Get = 01.1;
otherwise incremernit and return to step 2.

2.5.2 Weighted nonlinear least-squares correction

The Gauss-Newton method can be improved by including infaomabout the covariances
of parameters. Given a parameter estimate represented by a lerggttor 9, let Cy denote
thel x [ covariance matri>of 8. The aim now is to minimise the geometric distance between
0 and@xML under the Mahalanobis metric induced &y The problem becomesveeighted
nonlinear least-square@VNLS) optimisation

. 1 1
g min F(8) = 5 v(8)Twr(8) = 5 (B (2.62)
with W = C 5 andL'L = W. Letting

I (B)I2, ., = £(B)7C}5x(B) = (B,

problem (2.62) can be rewritten as

argmin F(8) = 5 [r(B)13,, = 5 [[(6(8) ~ B ) /1o (2.63)

3 2

2
Co(m)

The above expression emphasises the fact that the residual fungpms optimised in the
metric induced by the parameter covariance matyix). This formulation will turn out useful
in Chapter 5 when compared to another cost function underlying a particular method for trifocal
tensor estimation. At each iteration step the search direction vector associated with (2.62) is
calculated as

Pr = —[J W3] I Wy, (2.64)

This expression can be substituted in (2.53) to obtain an updated vafije of
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Candidate parameter covariance matrices

Two choices of parameter covariance matrix can be used ingmo§2.62). First, the minimisa-
tion may be carried out optimally in the metric induced by the covariance mat/ﬂ\f(,\ﬂf [49]:

Cou = [X?’ZML] l__l . (2.65)

BAML

Here constraining the rank of the matrix is needed to ensur@gg&tobtained numerically is
positive semi-definite. In this case, it will be shown next that the variational equation (2.22),
written explicitly as

Xg: Oy, =0, (2.66)

leads to a simplification of the WNLS problem.

Consider the following first order Taylor expansiongf, . ;) in a neighbourhood o8,

19)
981es) =98 + 5L B~ ).
Since
or(B) _0r(6)00 00 _ 9g(B)
o3 00 98 98 0B’
we have

I, — or(B,,) _ d9(By)
ST 0By

hence we may write

9(Brs+1) = 9(By) + Ix(Bis1 — Bi) = 9(By) + JkPr- (2.67)

Recalling (2.51) and simplifying (2.64) with (2.65) and (2.66) yields

P = —[ILWI " IWg(B,)/9(By)l.

Note that the pseudo-inverse ofwJ, must be employed because matiix= Xgu is rank-
deficient and so is the product wiflp. Substituting this form op;, in (2.67) shows thaj(3,, )

is fully expressed in terms af(3,). Therefore, (2.67) turns out to be a special case of lineari-
sation ofr(3,,,) in a neighbourhood 08, arising from the choice of covariance matrix in
(2.65).

Another candidate parameter covariance matrimggﬂ ) whose form was originally intro-
duced in (2.21b). This matrix is a good approximation)(gfML and has the advantage of
being generically positive definite, and therefore invertible, provided [. The general

case of the weighted nonlinear least-squares correction scheme is shown in Algorithm 8 for
W=Xg . Note that the Gauss-Newton method which solves problem (2.52) can now be seen
as a particular case of the WNLS method where the parameter covarianceimasit to the
identity, meaning that no weights are applied to the residual vector.
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Algorithm 8 Weighted Nonlinear Least-Squares correction scheme

Steps to correct an unconstrained estin@j,qL ;
1. Setk — O, /Bk‘ — ﬁALS’ andw — X/élqj\ML .

2. Compute
B = By — [PLILWIPL T PLIfWry,

whereP,, = P(3,,) as per (2.58).
3. Computddy.1 = g(By11)/l19(Brr1)l-

4. If 9,1 is sufficiently close t@,, then terminate the procedure and 8ats = 01.1;
otherwise incremenit and return to step 2.

Further analysis

Recall the cost functio'(3) given in (2.62) which underpins the WNLS correction scheme.
Whenw = Xgu ,We demonstrate next that this function enters the expression of a second-order
approximation of the unconstrained cost functibf,, in the neighbourhood (ﬁZML.

Writing out (2.62) explicitly gives
1 - ~

- -0 TCJr _ Du ’
@ 98) = O ) C 0 (9(8) — Binac)

whered = ¢(3) belongs to the region of th@manifold where the constraints imposed gy
are satisfied. From (2.65) and (2.66), the above expression reduces to

1 T
F(B) = S4B 9(B) Xg= 9(B). (2.68)

Now, leth = 6 — §ZML and suppose th#& = ¢(3) lies in the vicinity of@ZML. A second-order
Taylor expansion off s\, (0) around@gML is given by

F(B)

~u
eAML

~ ~ 1 ~
JAML(G) = JAML(OXML> + hT%( ZML) + §hTH( XML)h + O(”h”g)a

whereg(0) = 9gJan(0)" andH(0) = 92,Janw(0) are the gradient and Hessian 6y,
respectively. Given that(8%,,,) = 0 andH(8%,,,)8%,, = 0, we have

o~ ]_ AN

Jan(0) =~ JAML(OXML)+§hTH( an) b
~ 1 ~

= JAML<0XML)+§0TH< am) 0.

Defining the function

J(8) = 59(8)H(B1)9(8), (2.69)
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and expressingawr, in terms of3, it follows that

Tanr(9(8)) = Janir.Oan ) + Ju(B).

For difficult problems, the Hessian of second derivatives may not be available. Various choices
are possible to approximate it. One such choic83js/an.(0) = Xe. This with (2.68) and
(2.69) gives/u(B) = [|9(B)|*F(B), therefore

Tamr(9(8)) = Jan.@an) + 19(B)IPF(B).

This analysis shows that functiafi contributes to the overall,y, cost value. If3* is the
minimiser of F(3) and given thaUAML@gML) < Jamr(0), we expect/av(g(8")) to be
slightly higher thanIAML(ﬁgML). This fact will be confirmed in the experimental chapters.

2.5.3 Kanatani-like correction

Although the previously described methods do not utiliseveiiees of the ancillary constraints,

they produce a constrained estimate by minimising a cost function based on a parameterisation
of the #-manifold where these constraints are satisfied. As an alternative to these techniques,
Kanatani [49] proposed a first-order correction scheme which employs a single ancillary con-
straint directly in its adjustment mechanism. The correction effectively applies to the full length
vector @ rather than3. Below, Kanatani’s original work is expanded to deal with multiple
ancillary constraints.

In spirit of Kanatani’s writing, the covariance matrix@iML is assumed to take the form given
in (2.65). Note that Kanatani never defim‘-;,aML as he prefers working with renormalisation
estimates instead of AML estimates.

Recalling the form oP(8) given in (2.57), define tangentialcovariance matrix a@ by

To = P(0)C,, P(6). (2.70)

Au
O nL

The matrixTy is guaranteed to carry no information in the directio@p$o that the scale @&
does not matter.

Let® = [¢,...,¢,|" be alengthp column vector of constraints. The ancillary constraints are
then given by the system of equations

®(8) = 0. (2.71)

Let

Do = [Vodr,. ., Vedp) = | .o
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be thel x p gradient matrix ofP (the transpose of the Jacobian matrixd®f A Kanatani-like
correction scheme is shown in Algorithm 9. The method assumes that the regksaffor 6
satisfying (2.71), in other words,is the number of algebraically independent constraints.

Algorithm 9 Kanatani-like correction scheme

Steps to correct an unconstrained estin@qu ;
1. Setk = 0 and@;, = §ZML.
2. Compute the matriXy, as per (2.70).

3. Compute
0111 = 01 — To,Do, [Dj, To, Do, ], ®(6y).

4. Computed;1 = 0)1/||01]|-

5. If 8., is sufficiently close td,, then terminate the procedure and 8ok = 01.1;
otherwise incremenit and return to step 2.

2.6 Coping with rank-deficient Jacobian and Hessian

One common issue with optimisation techniquestability. Quite often, the stability of a
method is affected if the solution is either not unique or very sensitive to noise or measurement
errors in the input data of the problem. The success of the Gauss-Newton method is closely
related to the sign of the quantity= p'Gp, wherep denotes a search direction vector and

G = (JTJ+B) is the Hessian matrix af appearing in Newton’s equations (2.54). To guarantee

a decrease in the cost function and therefore convergence to a minimiger afeeds to be
positive, which is guaranteed wheénis positive definite [92]. When the Jacobians rank-
deficient in a neighbourhood of a local minimuénis also rank-deficientp is not unique and

this causes the Gauss-Newton method to fail producing a reliable descent direction. In this
situation, the matrixi J is no longer a good approximation @f In this case, two approaches

are possible. One is to incorporate the second-order m&ainxG or an approximation to it.

The other is to advance a novel formulation of the problem that deals directly with the rank-
deficient Jacobian. Next, we expose two methods which implement each of these strategies.
The proposed techniques provide a regularisation of the standard Gauss-Newton algorithm.
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2.6.1 The Levenberg-Marquardt method

The Levenberg-Marquardt (LM) algorithm [92] implementdaanped Gauss-Newtanethod
where the search direction is defined by the following modification of (2.55)

(I 3k + plnsn)Pr = — i1, (2.72)

whereyu > 0 is adamping parameterThe behaviour (and stability) of LM is controlled by the
value ofu.. This parameter ensures that the algorithm stays within a certetregionat each
iteration. Wheny,, is rank-deficienty must be sufficiently large value to assure that the Hessian
matrix G, = (J} J + ul.,) is positive definite. It is only in this case that is well-defined
(unique) and can be stably estimated. By analogy to (2.54), the matrix, may be thought as

an approximation of matrig; to ensure that, is positive definite. The value ¢@fis computed
dynamically at each iteration and several rules may be implemented to update it. The interested
reader can find more details in [92]. When information abijuhe inverse covariance matrix

of 0, is available, minimising (2.62) may proceed by using the LM algorithm applied to the
residual vector

r'(8) = Lr(8)/V2. (2.73)

Recall thatL is “half” the covariance matri¥ such that."L. = w. Judicious choices fdi are

Xgu OFMge . as mentioned in Section 2.5.2. In the simplest scenario, one may. takg

in which case LM solves the minimisation problem (2.52). A programming package such as
MATLAB already provides an implementation of LM so the work is limite defining the
residual vector’(3) as input to the built-in function.

2.6.2 The truncated Gauss-Newton method

The cost function given in (2.52) may be modified to accomnmeda¢ situation where the
Jacobian ot is rank-deficient. For ill-posed problems of this type, the search direction vector
is no longer unique and the computed estimgtetend to get excessively large. To avoid these
situations, a new function can be evolved to solvamiaimum norm nonlinear least-squares
problem defined by coupling two optimisation problems as follows

B = argmin 8- ¢|’ (2.74)
BeB

suchthatB — {B e R* |8 = argmin % B2}
5

Here( corresponds to a natural centre for the problem and therefore is application dependent.
It is either chosen a priori from some reasonable approximation of the solution or set to zero.
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The criteria in (2.74) intend to provide some regularisation to the starting ill-conditioned
problem in order to achieve a solution of practical value. Similar to the way the original least-
squares problem (2.52) can be resolved at each step by determining a search directigs),vector
using the normal equations (2.55), the minimum norm problem (2.74) can be stated equivalently
as

o1
P = argmin 5 I8, —¢+plf (2.75)
p € Py

1
suchthatP, = {p € R"|p = argmin 5 |[r(8;) + 3D | }.
1Y

To derive an expression for the search direction vector which satisfies the above conditions, it
is necessary to consider the SVD decomposition of the Jacobian matrix

Suppose that at steépthe following SVD decomposition af;, holds
T Dy T
Jr = EDK' = (E;, Ep) 5 (Ki,Kz) ', (2.76)
2

whereE'E = I,,;, K'K = I,.,, D; = diag(oy,...,0:), andD, = diag(oy1, ..., 0s) With the
singular values; sorted in decreasing order. This splitting of the Jacobian gives

Jp = J1 + Jy = E;D|K] + EyDoKy .

For rank-deficient problems, there exists a clear gap in the SVD-spectrum betyawty, , |,
which allows for such a partitioning to take place. The entity called thegradeof J,. Since
Jo is negligible or zero, an (approximate) solution to (2.75) is given by

= —(J/,P r(ﬁ’“)) : 2.77
Pk ( i) (ﬁk ¢ (2.77)

whereP,, is the orthogonal projection on the null-spaceJof Since we require that at the
solution

PM(Bk - C) =0,
(2.77) reduces to
pr = —KD;'Elr(8,). (2.78)
The obtained search direction vector is such that both minimisation criteria in (2.75) are satisfied
in limit as £ — oo, and so are those in (2.74). Theincated Gauss-NewtaiTf GN) method

which solves the minimum norm problem (2.74) is detailed in Algorithm 11. If parameter
covariance information is available, the3, ) in (2.78) may be replaced hy(3,) in (2.73).
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Algorithm 11 Truncated Gauss-Newton correction scheme

Steps to correct an unconstrained estin@ge1L ;
2. Compute3, ., = B, + px, Wherepy, is given in (2.78).

3. Computdyi1 = 9(Bri1)/ll9(Bri)ll-

4. If 8, is sufficiently close td,, then terminate the procedure and 5@&;1\1 = Or.1;
otherwise incremernit and return to step 2.

2.7 Conclusion

The work presented in this chapter relied on a parametric mad&hich the relationship
between parameters and image features is expressed as a system of equations. In a first stage,
several multi-objective cost functions were conceived based on this model and used to create
unconstrained estimators.

The most ordinary cost functions considered minimising algebraic residual errors. Although
their minimiser can be expressed in closed form, these functions exhibit a statistical bias. To
overcome this, a maximum likelihood (ML) cost function was evolved and lead to a statistically
optimal estimator. In this framework the presence of nuisance parameters create a significant
barrier to the scalability of the algorithm to large data sets. Consequently, the approach taken
was to generate an approximation to the ML cost function whereby the nuisance parameters are
eliminated and only the principal parameters are considered in the estimation. The concocted
AML cost function fullfills these criteria and therefore exhibit a much smaller search space,
of dimension equal to the size 6f This distinction considerably reduces the computational
complexity of its associated estimator, FNS.

For a sub-class of the parametric model the objective function consists of linearly dependent
components. The standard AML cost function corresponding to any of such model involves

inverses of ill-conditioned matrices and is not well suited for generating accurate estimates

when noise in the data is small. A solution to these deficiencies was to replace the inverses of
the critical matrices by generalised inverses. Two variants of FNS were proposed, one relies on
a curtailed objective function with linearly independent components, and the other uses the full

objective function combined with a rank-constrained pseudo-inverse.

FNS is a local minimiser and so provides a function value which is minimal inside a feasible
neighbourhood. The scheme often necessitates a good initialisation and a relatively small noise
in the data in order to converge to a minimiser of the AML cost function. The algorithm was

Page 43



2.7 Conclusion

robustified by decoupling the estimation process into two problems of lower dimension. First,

a subset of the total parameter vector is estimated iteratively and then the remaining parameters
are recovered in a single step based on the result of the earlier iterative process. It will be
shown in the experimental chapters that the reduced form of FNS, RFNS, enjoys better converge
properties. Finally, it was noted that a companion scheme, RHEIV, can be evolved in a similar
fashion to that of RFNS. Subsequent tests will confirm that the performance of RHEIV matches
that of RFNS.

The second part of the chapter explored various post-correction techniques to adjust for any
ancillary constraints that may apply. The weighted nonlinear least-squares (WNLS) method,
which generalised the Gauss-Newton (GN) method, and a Kanatani-like method are classical
schemes which accomplish a first-order correction of the constraints. A common feature be-
tween the WNLS and GN correction schemes is that they do not handle the ancillary constraints
directly because they are based on minimising a cost function. This is a major advantage for
applications in which the ancillary constraints are difficult to express in a concise and efficient
manner. The Kanatani-like method is the only one to truly involve the value of the ancillary
constraints.

For some problems, the solution is not well-defined when the Jacobian and Hessian of the
constraint objective functio’ are rank-deficient. Two other methods were proposed to deal
with such cases. One is the Levenberg-Marquardt method and the other is a truncated Gauss-
Newton method. In general, these methods attempt to guarantee a positive definite Hessian
matrix in order to obtain a search direction with no ambiguity.

The following chapters put these algorithms into practice, first on the unconstrained minimisa-
tion problem of fitting a homography to data and then on the constrained problem of estimating
a trifocal tensor between three views of a scene.
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Chapter

Application I:
Homography Matrix
Estimation .

he unconstrained estimation of parameters plays a very tanorole in deriving

optimal constrained parameters. This chapter examines the behaviour and solutions

produced by the three Fundamental Numerical Schemes presented in Chapter 2. The
core of these schemes relies on an AML cost function which takes various forms depending on
the type of generalised inverse used. Adopting the homography model, which is naturally de-
scribed by a linearly dependent system of three equations, we demonstrate empirically that the
choice of a particular type of generalised inverse is irrelevant as long as the inverse is either con-
tinuous or is rendered continuous via regularisation. Modified AML cost functions involving
continuous generalised inverses are shown to lead to good-quality parameter estimators of com-
parable accuracy. Our simulations also reveal that a cost function employing a discontinuous
generalised inverse can produce a poorly-behaved estimator. To complete the analysis, tests are
carried out on real image sequences and computed homographies are used to create panoramic
mosaics. In both synthetic and real data experiments, the performance of the AML estimators
is compared to that of existing methods.

3.1 Introduction

To evaluate the quality of various types of AML estimate# pive have performed a number of
experiments on the computation of a homography. This section provides necessary prerequisites
concerning homography estimation. A detailed description of experiments and their results will
be deferred until the next section.
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3.1.1 Two types of homography

If two overlapping images of planar scene are taken from different camera positions and/or
orientations, or if a single camera underg@ese rotation then the images are linked via a
planar projective transformation, or homography. A homography is described by a non-singular
3 x 3 matrix, sayH, in terms of which the action of the homography on a 2-D homogeneous
pointm = [u, v, 1]T to produce a 2-D homogeneous paint = [u’, v/, 1]T is given by

m’ ~ Hm, (3.1)

where ~ denotes equality up to scale. To define the homography unigaetgeds to be
specified only up to scale—matrices differing by a non-zero scalar factor encode the same
transformation. With the common notational conventions as established in [37], the matrix
for a homography induced by a scene pldhés given by the following generalisation of a
formula derived by Faugeras and Lustman [25]:

H = KoRa[Tsxs — (n"Cy +d) " (C1 — Co)n" Ry 'K, (3.2)

Here the indices = 1 andi = 2 refer to the left and right cameras, respectivélyandR;
denote the calibration and rotation matrices, @ik the inhomogeneous 3-vector representing
the camera centre in the world coordinate system. Furthermasehe unit outward normal of
IT andd is the Euclidean distance betweBrand the origin of the world frame, taken with the
minus sign. When a homography arises from a rotation of a single camera, the corresponding
matrix is given by

H = KyRoR; 'K . (3.3)

The derivation of both (3.2) and (3.3) can be found in Appendix B.

3.1.2 Homography model and associated cost functions
The model pertaining to a homography described by a matisxexpressed by
m’ x Hm = 0. (3.4)

This vector equation is an immediate consequence of (3.1) —since the vecansiHim differ
only by a non-zero scalar, their cross product vanishes. Witk [h;, h,, h;], (3.4) expands to

vhim —hjm = 0,
h/m — vhjm = 0, (3.5)

uw'hjm — v'h{m = 0.
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Chapter 3 Application I: Homography Matrix Estimation

This system can be brought into the form given in (2.1) by first concatenating the inhomoge-
neous coordinates e andm’ to obtain a single item of data= [u, v, u’, v']T, and then letting

0 = vec(H") andf(x, 0) = [ f1(x,0), f2(x,0), f3(x,0)]", where f,, f, and f5 are the corre-
sponding expressions on the left-hand side of (3.5). Furthermore, wefhav®) = U(x)"6,
whereU(x) = [u;(x), uz(x), uz(x)] with

u,(x) = [0,0,0, —u, —v, —1,uv’, vv’, v']",
uy(x) = [u,v,1,0,0,0, —u/, —vu’, —/]T,
us(x) = [—w', —vv’, =0, wd v ', 0,0,0] .

As a system of linear equations éh (3.5) is linearly dependent. Moreover, each of the three
possible pairs of equations deriving from (3.5) are linearly independent and can serve as basic
sub-constraints, see Section 2.3.2. Accordingly, one can form three AML cost functions cor-
responding to the three sub-constraint vectors. In addition, one can also form an AML cost
function based on all three constraints, as described in Section 2.3.3.

3.1.3 Normalised algebraic least-squares estimate

Four different ALS estimates of a homography can straightéodly be evolved starting from

(3.4): three based on sub-constraint vectors and one derived from the full constraint vector. As
pointed out by Hartley [36], the accuracy of each of these estimates can be greatly enhanced if
image coordinates are normalised before the estimates are actually computed. Here we briefly
describe how to generate improved ALS estimates.

Let

be thecentroidsand let

1 1/2
5 — [% ;(u —)? + (v —m2)2] ,

1 <& 5 5 1/2
§ =[50 Dot — i)+ (o) — )?]

be thescalesof them; = [u;, v;, 1]T and them) = [u}, v}, 1], respectively. Following Hartley
[36], define thenormaliseddata by

m; = [(ul — T;’Ll)/S, (Ui — mg)/é‘, 1]T,

i, = [(u] — 1)/, (0] — 1)/ 1],
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This amounts to settingy; = Tm; andm, = T'm/, where

st 0 —shy S0 =)
T=1|0 s1' —s by and T=| 0 &' —s 'm|. (3.6)
0 1 0 1

Letx; = [a,, 05, @), ¥/]T be the result of concatenation af; andm/. Fixing a particular ALS
method, letH,rg be the ALS homography estimate based onthe Then thenormalised
algebraic least-square@NALS) estimate of, HyaLs, is defined byﬁNALS = T 'HarsT. This

estimate is the sought-after enhanced versidingf.

3.2 Experimental evaluation

The remaining part of this chapter is now dedicated to theldpw@ent and analysis of tests on
homography computation.

3.2.1 Experiments with synthetic image data

Repeated experiments were performed in order to colleclisasistatistical significance. The
regime adopted was to generate a planar scene visible by two perspective cameras and project
the scene points onto twi®0 x 500 pixel images to provide “true” matches. Each image point

was then perturbed by homogeneous Gaussian noise of preset level and the resulting noise-
contaminated pairs of corresponding points were used as input to several algorithms.

Scene and camera set-up

The development of a scene and camera set-up for our expéatoenrelied heavily upon

the formula for a plane-induced homography, as given in (3.2). This formula is, as it were, a
powerful modelling tool. It enables one to choose freely the position of a plane in 3-D space
and permits realistic visualisation of the scene. In addition, with the aid of this formula, camera
centres and intrinsic parameters can be set adequately so that scene points, all lying in the plane,
are in front of the cameras and within the cameras’ fields of view.

In our experiments, the scene and cameras were arranged as follows. After fixing a world
coordinate system, we chose for a planar scene the plane parallehtatptane, positioned

units away from the world origin. We assumed thainit is equivalent t@50 pixels. 60 points

were randomly selected from the scene plane and then viewed by two perspective cameras
placed atC; = [—1.5,—0.1,0]T andC, = [1.5,0.1,0]". The right camera had-a1° rotation

about itsz-axis and at° rotation about itg/-axis to look inwards at the scene. The left camera
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was subject to &° rotation about itg/-axis. In radians, the rotation angles for the left camera
area; = 0 andg; = —5 x 180/x. For the right camera, the corresponding angle values
areay; = —1 x 180/7 and 3, = 4 x 180/x. All rotations are counterclockwise about the
respective axes and relative to the camera coordinate system. For each view, a rotation was first
applied about thg-axis followed by one about the-axis (there was ne-axis rotation). The
composition of the two transformations gave the final rotation matrices

1 0 0 cosf3; 0 sinf;
Ri= 10 cosa; —sinq 0 1 0
0 sina; cosq; —sinf; 0 cospf;

For both cameras, the focal lengftwas set t@250 pixels which allowed &0° viewing angle.

The origin of the image coordinate system was set at the lower left corner of the image asin [37].
The principal point was assumed to be located in the centre of the image 50, yo = 250)

and the skew factos was taken to be zero. So, both cameras used the common calibration
matrix

[ s x
K=10 f wol- (3.7)
0 0 1

The scene plan# had outward unit normah = [0,0,1]T and offsetd = 1500. Figure 3.1

depicts the scene and camera setup just described. The projection of the scene onto a left and
right image provided true matches shown in Figure 3.2. The “true” homography relating the
noise-free image points was computed using (3.2) and the aforementioned information.

The need for a truncated g-inverse

We first demonstrate that if the constraint vedtot, 8) is built from all three scalar constraints

as per (3.5), then, in the presence of very small noise in the data, the matice8) =

Oxf (X, 0) Ay, Ok f (%, G)T cannot be reliably inverted with the standard inverse operation. We
also show that the problem is remedied when the 2-truncated Moore-Penrose g-inverse of
y, replaces the ordinary inverse. More specifically, we show that, with a particular estimate
0 taken as a seed for FNS, E’(xiﬁ) is properly inverted for all data points;, then FNS
converges and produces a genuine AML estimate. However, if the inverse Ofﬂéﬁm/é) is
ill-conditioned, then FNS is unable to produce a stable estimate.

We conducted several series 28f0 experiments, where ideal image data were corrupted by
small homogeneous Gaussian noise with standard deviatiamying in steps betweehand

0.3 pixels. In each experiment we recorded whether or not FNS converged wméniaﬁALs)

were inverted using the standard inverse, the Moore-Penrose g-inverse or the 2-truncated
Moore-Penrose g-inverse. Figure 3.3 provides histograms of the results.
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Figure 3.1. A synthetic planar scene of random points photographed by a pair of
cameras with non-parallel optical axes.
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Figure 3.2. Left and right noise-free images acquired by the two cameras shown in
Figure 3.1.

For a noise level less than01, the standard inverse applied to m(eci,aALs) alwaysfailed

to produce a well-conditioned matrix and FNS diverged. As the noise level increased, the
£'s became more often invertible and FNS converged more frequently. In contrast, when the
2-truncated Moore—Penrose g-inverse was employedy’thbased on three equations were
alwaysinvertible. The Moore—Penrose g-inverse yielded similar results to those obtained with
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Figure 3.3. Histograms showing the number of times FNS converged over 200 trials
at several small noise levels when all Z(xiﬁALs) were derived from: (a)
all three constraint vectors; (b) any choice of two constraint vectors.

the 2-truncated version, which is not surprising given tleg tlaat the MaTLAB implementation

of the Moore—Penrose g-inverse involves truncation of small singular values. On the other hand,
for any choice of pairs of equations of (3.5), thie were always invertible irrespective of the
inverse function used or the noise level, and FNS converged to a genuine AML estimate every
time.

In each experiment we also tested whether the inversions af'sheere affected by the pa-
rameter estimate used. More specifically, we inveEted,@NALS) and z(x;, AXMLP?) with

the three previously described inverse functions; @rﬁﬁ—? is the AML estimate obtained

by choosing the first two equations of (3.5). Results were similar to those shown in Figure 3.3,
meaning that the inversion of th#s does not depend on the parameter estimate but rather is an
intrinsic characteristic of the's.

Performance evaluation

We now present the results of comparative tests carried auaivate the accuracy of various
AML estimates. The covariances of data were assumed to be the defadlidentity matrix

(Ax, = I4x4 for all ¢) corresponding to isotropic homogeneous noise in image point measure-
ment. The basic estimation methods considered were:

e ALS = Algebraic Least Squares,
e NALS = Normalised Algebraic Least Squares,
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e FNS = Fundamental Numerical Scheme,
e HEIV = Heteroscedastic Errors-In-Variables scheme,
e GS =Gold Standard.

To describe the GS method, we first note that, with the default covariances, the maximum
likelihood cost function given in (2.10) simplifies to

J(0;x1, ..., x,) = Z Ix; — 9. (3.8)

Recalling thatx; = [u;, v, ul, v)] andx? = [@%, 7%, 72, v/] are the concatenation of;

[2RE 2 Z’Z

[u;, v, 1]T andm; = [u},v},1]7, andm? = [@%,v?,1]T andm? = [@?,v?,1]7, respectlvely,

we see that (3.8) can be written as

(03 %1, ..., Xp) = Z(Uz — ) + (v —9)? + (uy — ) + (v — )
=1 (3.9)
= Zd (my, m?)? + d(m), m}?)?,

whered(a, b) is the Euclidean distance between the pomtndb expressed in inhomoge-
neous coordinates. The right-hand side of (3.9) is the famiéiprojection error GS is an
advanced method [37] for minimising the expression given in (3.9). The scheme seeks to min-
imise 3", d(m;, m;)? + d(m/, m})? over all pointsm,; and matriced, with them/, uniquely
determined byn; ~ Hm,;. Our implementation of GS uses the Levenberg-Marquardt algorithm
to carry out the minimisation.

FNS and HEIV minimised an AML cost function which incorporated the 2-truncated Moore—
Penrose g-inverse function when the full system (3.5) was used or the standard inverse function
for any combination of two equations. Both FNS and HEIV estimates were obtained using
the stable versions of the algorithms as described in Section 2.2.6 or [18]. The three itera-
tive schemes were initialised WitﬁNALS and operated on raw image data (no Hartley data
normalisation applied). It should also be noted that the iterative methods were supplied with
similar stopping conditions so as to enable fair comparison.

In each o200 experiments, one ML estimate was computed as well as four sets of ALS, NALS,
AML, and HEIV estimates, each set comprising four different estimates corresponding to the
selection of either all three equations of (3.5) or any particular combination of two equations.
Figure 3.4 shows the average values of the AML cost function based on three constraint vectors
and involving the 2-truncated Moore—Penrose g-inverse, attained at various types of estimate.
Our tests revealed that, when evaluated at the estimates delivered by the iterative schemes, the
average values of 5\, based on three equations, the average valuek @f based on any
combination of two equations, and the average valueg@fare practically identical.
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Figure 3.4. Cost values of the Jay, function based on three constraint vectors and
a 2-truncated g-inverse for: (a) very small noise levels; (b) larger noise
levels.

For illustrative purposes, we provide tables of the averagépmance of the methods when
the data were corrupted withpixel of noise.

Table 3.1 shows that the foun, cost functions achieved very similar values when evaluated
at their corresponding minimisers.

Homography equations

Methods 1-2-3 1-2 1-3 2-3

GS 113.28 113.28 113.28 113.28
ALS 146.38 115.44 247.08 407.74
NALS 114.99 113.29 117.90 119.76
HEIV 113.28 113.28 113.28 113.28
FNS 113.28 113.28 113.28 113.28

Table 3.1. Average Jawmr, cost values for various selection of equations.

On the other hand, Table 3.2 presents the cost values of otieubar./,\;, function evaluated
at the four AML estimates. It is seen that each estimate yielded the same cost value. This
observation was typical, irrespective of which one of the four AML cost function was selected.

Perhaps the most critical test came from using the maximum likelihood funcfign, For

an estimate obtained by a method other than G&L(g) was calculated by minimising
S, d(m;,my)? 4+ d(m}, m})? over all pointsm;, with the m; uniquely determined by the
relationm/ ~ Hm; andH, representin@, being kept fixed. Note the difference with GS where

the m; andH were allowed to vary simultaneously. Inspecting Table 3.3, we see that FNS
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Homography equations

Function 1-2-3 1-2 1-3 2—-3

1-2
Jiz 113.28 113.28 113.28 113.28

Table 3.2. Average cost values of Jay, based on the first two equations of
(3.5) and standard inverse.

estimates produced very competitive cost values in congatis the GS estimate. Now, if
Table 3.1 is re-examined, it can be observed that;, exactly approximated,, for all types

of iterative and non-iterative estimates. Note also that the values of the AML (or ML) function
revealed that the data normalisation in the NALS method provided a significant advantage com-
pared to plain ALS. For any combination of equations, the cost values were much lower for the
NALS estimates than the ALS ones, and relatively close to that of GS.

Homography equations

Methods 1-2-3 1-2 1-3 2-3
GS 113.28

ALS 146.38 115.44 247.08 407.74
NALS 114.99 113.29 117.90 119.76
HEIV 113.28 113.28 113.28 113.28
FNS 113.28 113.28 113.28 113.28

Table 3.3. Average Jyy, cost values for simulated data.

A timing test is presented in Table 3.4. Unsurprisingly, G@é¢d out to be by far the slowest
of the methods. While it may have been speeded up via the incorporation of sparse-matrix
techniques, it was intrinsically slow given the high-dimensionality of its search strategy.

Homography equations

Methods 1-2-3 1-2 1-3 2-3
GS 1.7

ALS 0.004 0.004 0.004 0.004
NALS 0.004 0.004 0.004 0.005
HEIV 0.066 0.049 0.049 0.050
FNS 0.093 0.067 0.067 0.067

Table 3.4. Average computation time per homography (in seconds).
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3.2.2 Experiments with real image data

Three sequences of images were acquired by rotating a cabmrtits centre and correspond-

ing points were identified manually. For each sequence, we computed a homography between
each pair of consecutive images using five algorithms: ALS, NALS, HEIV, FNS, and GS. As
in the simulated experiments of Section 3.2.1, one ML estimate and four sets of ALS, NALS,
AML, and HEIV estimates were computed every time, each set comprising four different es-
timates corresponding to the selection of either all three equations of (3.5) or any particular
combination of two equations.

To assess the quality of the various homographigg, and Ja\, cost values were evaluated

for the obtained estimates. The algorithms’ computation time and number of iterations were
also recorded. The three iterative schemes were set as in our synthetic experiments. Note
that their timing did not include the initialisation stage. Here, we only report the results for
the first homography of each sequence, that is the one computed between the first two views,
because the same observations could be made for homographies relating other pairs of images.
As illustration, we have used the homographies computed with FNS l1U(fq¢, based on all

three equations) to compose panoramic mosaics of the sequences.

IMAX theatre sequence

The three images shown in Figure 3.5 were used to compute adrapityy. Each input image
IS 680 x 450 pixels in size. Starting from the leftmost image, consecutive pairs of images have
258 and173 matches, respectively.

Figure 3.5. Images of the IMAX theatre sequence.

Numerous contemporary vision applications require reaétprocessing. To check the poten-
tial suitability of FNS for such tasks, another performance indicator that we have examined was
the convergence rate of FNS. The convergence rate of an iterative method may be assessed by

calculating the relative error
. 16 —0]
16l
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where 8, stands for a parameter estimate at stepnd 8™ is a local minimiser of the cost
function underlying the problem of interest. In our te€l$,was taken as the final estimate
produced by the FNS method. An algorithm shows linear convergence provided

err1 < aeg wheneg issmall; 0 <a < 1.
Superlinear convergence is recognised when
ers1/ex — 0 fork — oo,
and quadratic convergence if

errr = O(e})  wheney, is small

Table 3.5 provides information about each iteration step in the FNS minimisation process by
listing the Jang, residual, the relative norm difference between two successive iterates, and

the convergence rate. These results are typical whether all three equations (FNS 1ll) or any two
equations (FNS Il) were used to compute an AML estimate. It can be seen that the AML residual
and the norm difference decreased rapidly. The values of the relative error (third column) indi-

cate that FNS converged quadratically to the solution.

Step JAML |0k+1 — Okl €k+1/€k

0 224.80 133 1.50 x 1076
197.76 2.00 x 1074 1.40 x 1073

2 197.74 2.80 x 107 0.00

Table 3.5. FNS convergence characteristics when computing the first
homography in the IMAX sequence. Step 0 gives the initial values
for the seed 6y = aNALS.

When comparing the performance of several methods, Tableo®frms that FNS and HEIV
produced estimates on par with GS. Notice that all four FNS estimates yielded almost identical
residual values. Thé,;;, cost was computed for each estimate as described in Section 3.2.1. The
values were found to match those of their AML counterparts given in Table 3.6. Surprisingly,
the NALS method generated a good estimate only when the first two equations of (3.5) were
used. For other selections of equations, the NALS solutions were of inferior quality to those of
ALS.

GS performed five iterations in total whereas both FNS and HEIV did only two (no matter
if two or three equations were employed in the estimation). Timings to compute the various
homographies appear in Table 3.7.
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Homography equations

Methods 1-2-3 1-2 1-3 2-3

GS 197.74 197.74 197.74 197.74
ALS 215.60 198.83 292.15 217.65
NALS 224.80 197.76 301.67 226.45
HEIV 197.74 197.74 197.73 197.74
FNS 197.74 197.74 197.73 197.74

Table 3.6. Jawmy, residuals for several homographies between the first two

images.
Homography equations

Methods 1-2-3 1-2 1-3 2-3
GS 46.34

ALS 0.06 0.03 0.03 0.03
NALS 0.03 0.05 0.05 0.03
HEIV 0.36 0.25 0.23 0.23
FNS 0.51 0.33 0.31 0.33

Table 3.7. Computation time for various homographies (in seconds).

To give a visual appreciation of the accuracy of the AML estasawe assembled a panorama
using the computed homographies derived from all three equations of (3.5), see Figure 3.6.

Figure 3.6. IMAX theatre panoramic mosaic.
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Adelaide convention centre sequence

Figure 3.7 shows the images for this sequence. Each image is 426 pixels in size. Con-
secutive pairs of images ha¥é and54 matches, respectively.

Figure 3.7. An Adelaide convention centre sequence.

Some information about each step of FNS IIl was recorded am#thod computed the first
homography in this sequence, see Table 3.8. Choosing any pairs of equations (as in FNS I1)
yielded similar results. Convergence was again quadratic and so only a couple of iterations
were needed to reach a solution.

Step JamL [0k+1 — Okl ek+1/ek

0 116.55 115 3.23 x 107°
107.68 3.69 x 1073 7.60 x 1073

2 107.62 2.82 x 107° 0.00

Table 3.8. FNS convergence characteristics when computing the first
homography in the Adelaide convention centre sequence. Step 0
gives the initial values for the seed 6y = §NALS.

Table 3.9 confirms that FNS generated as good estimates asd33EdW. Note that all four

AML estimates yielded closely identical residual values. The value of the reprojection error
(from the Jy1, function) was also checked and found to match its corresponding AML value for
each computed estimate. NALS again performed poorer than ALS except when the first two
equations of (3.5) were employed. Using a reduced set of equations permits a fractional gain in
computation time (Table 3.10) without affecting the accuracy of the solution.

Figure 3.8 shows the mosaic composed from the input images of Figure 3.7.
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Homography equations

Methods 1-2-3 1-2 1-3 2-3

GS 107.63 107.63 107.63 107.63
ALS 112.26 117.36 117.80 112.16
NALS 116.57 107.63 208.48 121.71
HEIV 107.62 107.62 107.62 107.61
FNS 107.62 107.62 107.62 107.61

Table 3.9. Jawmr, residuals for several homographies between the first two

images.
Homography equations

Methods 1-2-3 1—-2 1-3 2—-3
GS 1.61

ALS 0.02 0.01 0.00 0.01
NALS 0.02 0.01 0.01 0.00
HEIV 0.09 0.06 0.06 0.05
FNS 0.11 0.06 0.06 0.06

Table 3.10. Computation time for various homographies (in seconds).

Figure 3.8. Panorama of the Adelaide convention centre.
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War memorial sequence

The final image sequence considered is shown in Figure 3.9 iBa@ge is429 x 640 pixels in
size. Consecutive pairs of images h&%e80, and67 matches, respectively.

Figure 3.9. Images of the war memorial sequence.

As in previous example sequences, Table 3.11 looks at thevioeinaf FNS 11l when com-

puting the homography between the first two views. Choosing pairs of equations again yielded
very similar results to the three-equations case. Only two iterations were necessary for FNS Il
to attain a solution. The method showed a quadratic convergence rate when applied to these
image data.

Step JAML |0k+1 — Okl ek+1/€k

0 125.58 125 1.28 x 10~°
108.14 1.56 x 1073 2.39 x 10~2

2 108.12 3.83 x 107° 0.00

Table 3.11. FNS convergence characteristics when computing the first
homography in the war memorial sequence. Step 0 gives the
initial values for the seed 6, = @NALS.

Compared to other iterative methods, FNS produced estinaditeisnilar quality to those of
HEIV, and most importantly, to those of GS, see Table 3.12. Jlxevalues were also found

to match those obtained withy\;, revealing once more that,,;, is @ good approximation to
Jur- For this particular sequence, NALS always improved on the results of ALS irrespectively
of the combination of equations chosen.

In terms of computation time (Table 3.13), HEIV and FNS were the most effective schemes to
generate fast solutions while reaching the accuracy of a proper maximum likelihood one.

Figure 3.10 shows the mosaic composed from the input images of Figure 3.9.
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Chapter 3 Application I: Homography Matrix Estimation
Homography equations

Methods 1-2-3 1-2 1-3 2-3

GS 108.17 108.17 108.17 108.17
ALS 284.90 108.83 285.19 586.43
NALS 125.62 108.14 143.95 256.17
HEIV 108.17 108.12 108.14 108.03
FNS 108.12 108.12 108.14 108.03

Table 3.12. Jawmy, residuals for several homographies between the first two

images.
Homography equations

Methods 1-2-3 1-2 1-3 2—-3
GS 1.08
ALS 0.05 0.01 0.00 0.00
NALS 0.02 0.00 0.01 0.01
HEIV 0.07 0.05 0.04 0.04
FNS 0.10 0.05 0.04 0.04

Table 3.13. Computation time for various homographies (in seconds).

Figure 3.10. War memorial panoramic mosaic.
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3.3 Visualising the AML cost function

3.3 Visualising the AML cost function

This section aims at visualising the form of thig\;;, cost function in vicinity of the AML esti-

mate. The overall plot of the function and its slices are shown through specifically constructed
parameter vectors. This analysis can be seen as a safety measure to verify that the solution
produced by FNS is indeed the minimiser of the AML cost function. We have decided to use
the AML estimate relating the first two images in the Adelaide convention centre sequence to
carry out the work. The graphs of other estimates were generated and found to exhibit similar
characteristics.

3.3.1 Bracketing the AML minimiser

To see the shape ofy\ 1, around@}gML a new parameter vectérmay be defined as

6(a) = (1 — ) 0%y, + @ OyaLs.

Note thatJAML(AXML), the cost value at the estimated AML solution, is obtained when0.

Here, both vector@XML and@NALS are set to unit norm. Choosing the rangexofalues must

be done with care. One might naively think that the minim@j@;{L could be bracketed in a
range as small asl — ¢) AXML < 5XML < (1+4¢) AXML, wheree is a tolerance value close

to machine floating-point precision. This is not the case! The shape of the AML function near
§XML is mandated by its Taylor expansion

~T /\u ~
0 H(O0%,)0.

~ ~ 1
Jamn(0) = Jamrn (@A) + 5

If the required toleranceis too small, there will be no gainin bracketiagML closer [92, Chap.
10]. We now outline a procedure to set upper and lower bounds on

Suppose we wish to have a point at a distaht®m §XML, that is,

|| [(1 — )@, + QONALS] -0k || = K
| a(@xars — Oxy) | = K
|| [|Onars — Oanll = K
k
la| =

H BNALS - OXML ”
SO

—k k
<a<

(3.10)

OnaLs — 0%yl [Oxars — 0%l
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Chapter 3 Application I: Homography Matrix Estimation

Let

fla) = Jane(6(a)) (3.11)
be the graph of/,,1, in vicinity of the AML estimate. The form of is shown in Figure 3.11
wherek = 0.11 anda belongs to the intervak-9.6 x 1074, 9.6 x 10~*] using the bracketing rule
(3.10). For this range af values, the difference in function values between any two successive
points on the curve was very small, abduk 10~°, and matched the termination condition
used to comput@}gML. As expected, the shape i\, turned out to be a parabola in the
neighbourhood o@XML, which confirms the quadratic nature of the function. ClezﬁML is

the lowest point on the curve, and therefore the minimisetgf;,.

107.74¢
107.72F

10771\

s
o 107.68F % /
107.66 4

107.64¢ e, /

107.62 S

T

orange x10*

Figure 3.11. Graph of f(«).

Itis possible to view 2-D cross-sections of the cost funchipwvarying one component éfand
fixing others. The search space for the homography fitting problérdimensional so there
are nine graphs, one for each elemen@ofhe j-th graph shows the value deML(é) where
the k-th component o8 is given by

~ 1— )@y +ab if kb=,
6 (a) = { ! 7 Ok T O g (3.12)

ML otherwise.
The resulting cross-sections are presented in Figure 3.12. The same valgelof1 was also
used here to find a range farautomatically. Each graph shows a parabola with minimum at
a =0, thatis, Where?)xML is located.
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Figure 3.12. Cross-sections of f(«).

3.3.2 Examining the derivative of the AML cost function

We extend the previous work to study the derivative of the AMKktdunction.

Given a vectol® satisfying (3.12), the derivative gf can be obtained by applying the chain
rule to the right-hand side of (3.11), that is,

fl(a) = 8éJAML(0)8aé,

hence,

~ -~

(@) = 9 Janr(0) Oxars — %), (3.13)
where
aéJAML(é) = Q(Xéé)T

is the Jacobian of 4, at @ obtained from (2.20). We chose to plét,, based on all three
homography equations, ¥§ = M — Nz, whereM; andN; were computed from (2.31) with the
rankr set to2.
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Chapter 3 Application I: Homography Matrix Estimation

The graph of the AML cost function derivative is shown in Figure 3.13 wiféie) was written

asdf /da for clarity. Since the minimum of a function is an inflection point, the derivative
changes sign. To locate this point easily on the graph, we have plotted the absolute value of the
function derivatives. Upon examination, we see that an inflection occurs-at0, that is at

gxML, the minimiser of/ ..

300
250
200

150

| df / dot |

100

50

o range %107

Figure 3.13. Graph of the absolute value of f/(«).

Another formula should be used if we want to examine 2-D ceesgions of the AML cost
function derivative. At the difference with (3.13) the derivative applies to a component of the
vector@ and not the whole vector. The expression for the Jacob;aﬁ;{ML(é) remains the
same, howeved, 0 has nowk-th component

~k aNALS — aqfoL if k=7,

0 otherwise.

Figure 3.14 shows the cross-sections of the absolute valy&@f. The minimum on each
graph occurs a/éXML whena = 0.
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x 10 x 10 x 10
2 15 3
18 10 2
1
B 5 1
0 0 0
=3 0 1 =g 0 1 -1 0 1
-3 -3 -3
x 10 x 10 x 10
x 10° x 10’ x 10°
2 8 2
15 6 15
1 4 1
0.5 2 05
0 0 0
-1 0 1 -1 0 1 -1 0 1
S x 107 x107° x107°
x 10 x 10’
2 10000 10
g
=1 5000 5
T
0 0 0
-1 0 1 -1 0 1 0 1
o x 107 x107° x107°

Figure 3.14. Cross-sections of the absolute value of f/(«).

3.4 Conclusion

The aim of this chapter was to demonstrate empirically thliglof the theory put forward

when developing the Fundamental Numerical Schemes in Chapter 2. Choosing the homography
estimation model, it was shown that the difficulty stemming from the presence of ill-conditioned
matrices in the standard AML cost function can be eliminated if the ordinary inverses of the ill-
conditioned matrices are replaced by generalised inverses that are continuous. Tests revealed
that no specific generalised inverse, as long as it is continuous, is particularly favoured as far as
the accuracy of the solution is concerned. This finding lent a particular prominence to cost func-
tions involving generalised inverses that correspond to a minimum number of linearly indepen-
dent equations, as these functions are differentiable and can be optimised with well-established
methods of the likes of FNS or HEIV. It was seen that the modified FNS methods, FNS Il and
FNS llI, produced solutions of similar accuracy and matched that of a maximum likelihood
estimate while being faster techniques than GS.
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Chapter

Geometry and Algebra of
the Trifocal Tensor

f we picture the same scene from different viewpoints, we eixfige various image

to be related in some ways, even if the position, orientation and nature of the ca

differ a lot. The aim of this chapter is to expose the underlying relationships linking three
partially overlapping views of a scene. It turns out that a certain valence-3 tensor, the trifocal
tensor, serves as an adequate descriptor of the inter-image geometry. This tensor allows the
recovery of the scene up to a projective transformation in 3-D and is computable from image
correspondences alone without requiring knowledge of the motion between views or calibration
of the cameras.

The higher accuracy achieved by using the trifocal tensor of three views compared to a funda-
mental matrix of a pair of views makes it a powerful tool especially in the domain of structure-
and-motion recovery. Applications include accurate camera motion estimation [94, 96], radial
distortion [85], augmented reality [95, 99], camera calibration and self-calibration [2, 22, 34],
robot navigation [20], scene reconstruction [6, 32,67, 71], motion segmentation [87, 90, 97],
image stabilization [74], novel view synthesis [3], and more.

At the beginning, we briefly expose the perspective camera model and the epipolar geometry
which underlie the intrinsic projective geometry of one and two views of a scene respectively.
The rest of this chapter is then dedicated to the study of three-view geometry and the presenta-
tion of the trifocal tensor. This tensor will be decomposed into smaller, matricial objects called
the tensorial slices. These slices are effectively matrices embodying certain geometric opera-
tions between canonical basis vectors in the images. We will show that these matrices provide a
genuine canonical representation of the trifocal geometry because any general inter-view map-
ping can be expressed as their linear combination. The intrinsic properties of the slices will
then be turned into useful sets of algebraic constraints that must be satisfied to guarantee a con-
sistency between the computed tensor and the underlying trifocal geometry. Our investigation
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4.1 Monocular vision and stereo vision

of the internal trifocal constraints will primarily review the contributions of Hartley, Faugeras,
Canterakis, and Ressl on this topic.

An overlap with existing literature is inevitable, however the main value of this chapter is to
show a systematic way to derive the tensorial slices and to examine the geometric and algebraic
properties of the trifocal tensor by gradually contracting it with one, two, and three image
features. The most tangible contribution comes from the work on expressing the various internal
constraints in one common framework, the one proposed by Hartley [37], in order to see and
understand these constraints from a unified viewpoint.

4.1 Monocular vision and stereo vision

The first section introduces the framework of projective getsynthrough a presentation of the
single image geometry and the perspective camera model. This is extended in the next section
where stereo vision is tackled—the case when two perspective views of a scene are available.
The first two sections review some of the key concepts while establishing the projective frame-
work necessary to discuss the third and main part of this chapter about trinocular vision.

4.1.1 Single view and the perspective camera

A view is a two-dimensional snapshot of the world taken by aeranat a given time. Mathe-
matically, a camera is a genuine geometric device which constructs planar images of the three-
dimensional world by a projection through an optical centre. In the sequel, an image is consid-
ered as a two-dimensional projective sp&éeand the scene as a three-dimensional projective
spaceP?. The phenomenon of projection from 3-D to 2-D can be modelled by the action of a
perspectiveamera expressed in the form of & 4 matrix

P = KR[I3.s | —C], (4.1)

wherekK is a3 x 3 calibration matrix as introduced in (3.7) aRds a3 x 3 matrix representing
counterclockwise rotations about the three principal axes with origin the optical €@ofrthe
camera. The same projection matrix can be written as

P = FZ ) (42)

whereT’; is thei-th row vector of. Geometrically, each of these vectors represents the coordi-
nates of a plane in 3-D space. These three planes are callpdrbgal planes or projection
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Chapter 4 Geometry and Algebra of the Trifocal Tensor

planes of camereP and are depicted in Figure 4.2(b). These planes will play an important role
when deriving internal constraints of the trifocal tensor. With mairixhe central projection
from a scene poird1 to its image poinin, both represented by homogeneous vectors, is given
by
m ~ PM.

The symbol~ indicates that the equality is true up to a non-zero scalar factor. Note that pro-
jection matrixP and world pointM are always defined up todax 4 non-singular homography
matrix transformatiort, often referred to as th8-D projective ambiguitywhich leave the
image point unchanged

m ~ PM ~ PH 'HM ~ P'M’. (4.3)

These relations show that different pairs of projection and world point can give the same image
point if they transform according ® ~ PH~! andM’ ~ HM. The remaining part of this section

is devoted to the study of several properties of principal planes which will become relevant in
Section 4.4.

First, note that the back-projection of an image ling a plandl defined by the camera centre
C and the lind as shown in Figure 4.1.

Figure 4.1. An image line back-projects to a plane in space.

A scene poinfM lies on a planél of homogeneous coordinategif and only if M7, = 0.
Under this assumption the projected pait~ PM belongs to the image linke This means
thatm'l = MTP'I = 0, which suggests that the projection pldief line I has coordinates

m =Pl (4.4)

We now show a particular application of this result. Consider the leagtanonical basis
vectorse; (i = 1,2,3) of R3, which have theiri-th entry unital and all other entries zero.
Suppose the linéin (4.4) has homogeneous coordinates given by one of these vectors. Back-
projectingl gives the plane

F;r = PTeZ-.
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4.1 Monocular vision and stereo vision

This simple arithmetic demonstrates that the canonical vegionterpreted as an image line be-
longs to the principal planE;, or alternatively, the back-projection of the liagis the principal
planel’;. This is summarised in the next proposition.

Proposition 1 The principal pland’; intersects the image plane in the line with homogeneous
coordinates given by the vecteyin the canonical basis dk®.

The optical centre is the unique poi@twhich satisfie C = 0. Therefore, this point lies at
the intersection of the three planEs In the Grassmann-Cayley algebra, the intersection of
projective subspaces is defined by the meet operat@; 24, 77]. So, the optical centf@ may

be computed aF; A T'; AT, see Figure 4.2(b).

It is essential for later work to also consider the intersection of pairs of projection planes. These
intersections give rise to three special world lines,

Rl :FgArg, R2:F3AI‘1, RgzrlAI‘Q, (45)

called theprincipal rays or projection rays of cameraP. These three lines meet at the optical
centreC and exhibit the following property.

Proposition 2 The principal rayR; intersects the image plane at the point with homogeneous
coordinates given by the vecteyin the canonical basis dk3.

Proof. A general scene poittI, distinct from the optical centr€, belongs to the-th princi-

pal planerl’; if and only if M'T; = 0. Thus, the image pointh ~ PM has itsi-th coordinate
equal to zero. Suppose that the zero entries of basis vectoe designated by the indicgs
andk, thei-index accounting for the unital entry, such that, £ take distinct values in the set
{1, 2, 3}. With this convention, it follows that vectey;, viewed as an image point, corresponds
to the projection of a 3-D poirlVI belonging to both principal pland$; andI';, since its; and

k entries are zero. WithI # C, this situation is only possible ¥1 lies on the intersection of
both planes, that is, the principal r&; by definition.[]

An alternative understanding of this propositon is that the optical ray back-projected from the
camera centr€ through the image poing; is the principal rayR,;. Figure 4.2 illustrates how
the geometrical entities presented in Propositions 1 and 2 arise in the camera system.

The geometric interpretations of the canonical veatpere listed in Table 4.1. Although these
considerations seem rather trivial at this stage, they will be important in Section 4.4 as they
underpin the geometric properties of the tensorial slices.
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Image

« T,

Rs

(@) (b)

Figure 4.2. The perspective camera model with (a) principal rays R;;
(b) principal planes T;.

Vector Image point Image line

e; = [1,0,0]T on the line R, on the plane Ty
ex = [0,1,0]T on the line R, on the plane T',
e3 =[0,0,1]7 on the line R3 on the plane I's

Table 4.1. Geometric interpretation of the canonical basis vectors of R3.

4.1.2 Stereo vision and the fundamental matrix

A ubiquitous task in computer vision is the computation of pihejections that gave rise to a
sequence of images. Often it is assumed that the sequence is acquired by a single perspective
camera moving along some trajectory in space. Stereo vision is the first instance of multiple
view geometry, where a scene is pictured by two cameras. The inherent geometric constraints
between image points across the two views are described by the soegapetar geometry

Assuming a perspective camera model as introduced in the previous section, suppose that the
left and right images arise from projection matri®eandp’ with origin the camera centrés

andC’ respectively. A homogeneous 3-D poMit is projected onto the left image plane with

to give an image poink, and onto the right image withl to givem’. The pair of image points

m andm’ are said to be in correspondence as they are both projections of the same 3-D point
M. This is shown in Figure 4.3.

The projection in one view of the camera centre of the other view is a point known as the
epipole We define the left-image epipole as~ PC’ and the right-image one @5~ P'C. The
epipoles may or may not lie in the images depending on the spatial distribution of the cameras.
The optical ray going through camera cenfteand image poinin, denoted(ém), projects
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4.1 Monocular vision and stereo vision

Figure 4.3. Epipolar geometry between two views.

into a linel’ in the second view, thepipolar lineassociated withm. Since this line is the
projection of bothC andm, I’ joins the pointm’ and the epipole’. A similar relation applies
to the epipolar lind in the first view which is the image of the r4¢'m’) joining the pointm
and epipoles.

The next two sections will present an algebraic derivation of the fundamental matrix which
embodies the mapping between the peinand its epipolar lind’. Elements in this derivation
will come useful later in the chapter.

Point transfer via a plane

Consider a planél in 3-D space not passing through either of the camera ce@tisd C’.
The optical ray back-projected froffi through the image pointi meets the plang in a point

M, which is then projected into a point’ in the second image. This procedure is known as
a point transfer via the planél and is depicted in Figure 4.4. Sind4 lies on the optical ray
throughm, the projected pointa’ must lie on the epipolar linE corresponding to the image of
that ray. When both points1 andm’ are in homogeneous coordinates, the mapping fioho

m’ is given by a3 x 3 homographyiy; induced by the plan8 such thaim’ ~ Hym.

Constructing epipolar lines

Because the exact depth of world paMtis not known, it is not possible to predict the position
of the correspondent’ of m. However, geometrically, the location df is not arbitrary:M
has to lie on the optical rayCm) and thereforen’ is on the projection of that ray in the second
image, the epipolar linE. Since the epipole’ also belongs td’, we can write this line as

I!'~e xm'~[e],m’, (4.6)

where the definition and properties of the mafrjx can be found in Appendix D. Substituting
m’ with Hpm, we obtain

l' ~ [€]Hpm.
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Q?
@

Figure 4.4. Two-view point transfer via a plane in space.

The mapping

F21 ~ [e'] X HH

is a3 x 3 matrix of rank2 termed thdundamental matrixit follows that
I ~ Fyym. (4.7)
With m’ being onl’, we havem’"l’ = 0 and theepipolar constraint
m' Fyym = 0. (4.8)

Interchanging the role of the images, a right-image paihthas associated epipolar lihe~
Fiom’, whereF, is the fundamental matrix from vieto view 1, and epipolar constraint

mTFlgm' =0.

Comparison of this expression with (4.8) shows that one equation is the transpose of the other,
therefore
Fo1 = Fly. (4.9)

In practice, the epipolar constraint is a central element in many algorithms designed to accu-
rately estimate the fundamental matrix [17, 23, 36, 48, 59, 66, 86, 98]. Two compelling reasons
to solve for this matrix are that it reduces the search spacenf@ong the lind’ using (4.7)

and also that both scene projections can be retrieved from it.

It is worth noting that if only measurements data are available, then it is not possible to recover
the true projections that gave rise to the images. This is prevented by the inherent ambiguity
of 3-D space whereby projections are defined up to a common projective transformation as de-
scribed in (4.3). A standard technique to eliminate this problem is to set the projection matrices
in canonical formsuch that the first projection has the form

P = [I3x3 | O].
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4.2 Trinocular vision and the trifocal tensor

ProjectionsP andP’ are always amenable to canonical form by carrying out the operation

PH ! andP’ ~ P'H! for
P
H= [ ] (4.10)
W

andw a non-zero row vector of length The matrixH is a4 x 4 matrix defined up to a scale
factor and so has5 degrees of freedomEach projection matrix represents ancalibrated
camera withl 1 degrees of freedom accounting for thizelements of the interior and exterior
orientations modulo an overall scale. Because the same projective transformation applies to
each of the two projections, the degrees of freedom of two cameras are

11x2—15="1. (4.11)

This result may be generalised to an arbitrary number of cameras more than two.

Choosing the first projection in canonical form constrains the form of the second to comply to
the epipolar geometry. It can be checked in [7, Chap. 4] or [37, Chap. 8] that the following
proposition holds.

Proposition 3 WhenP = [I3.3 | 0] andP’ = [Q | q], then the fundamental matrix for such a
pair of projections is
F= [q]xQ' (4.12)

Conversely, iP = [I343 | 0] andF = [q]«Q, then the second projection has the form

P'=[Q]q (4.13)

4.2 Trinocular vision and the trifocal tensor

Suppose that we acquire a third view of the same scene andlebehages from left to right

by ¥, to V3. It seems a priori sufficient to describe the geometry of three viewsjfocal
geometryfrom the perspective of two views by considering the epipolar geometry between each
of the three pairs of images. However, it turns out that the number of situations where the scene
points cannot be recovered grow rapidly and this causes problems to predict the location of some
image points. An interesting analysis of the restrictions of fundamental matrices to describe the
trifocal geometry is available in [24, Chap. 8]. The quest for a more global descriptor of the
trifocal geometry leads back to analysing the intrinsic relations between image features.

In difference to the case of two cameras, the richness of the trifocal geometry comes from
its capacity to capture line correspondences. Relations between triplets of image points or
combinations of lines and points spawn from the more general incidence between lines.
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Original work on line correspondences appeared in [82, 93] for the special case of calibrated
cameras and was further developed in [39] for the uncalibrated case.

In the sections that follow we present a standard derivation of the trifocal tensor edified on the
relations between a triplet of image lines and their corresponding world primitive. In addition,
we show three parameterisations of the tensor which will serve to derive techniques relevant to
its computation.

4.2.1 Parameterisation from three projections

The trifocal tensor naturally arises by considering triplettlines in correspondence across the
images. Consider a world linB imaged in three views in the lindsl’, andl” as illustrated

in Figure 4.5. Each scene projection is defined up to a 3-D homography as seen in (4.3). This
implies that, if we knew the set of projections which gave rise to the imégés v, we could

apply a4 x 4 non-zero transformation in the style of (4.10) to obtain a set in canonical form
without changing the original images or their relationships. So, without loss of generality, we
may choose the camera projections for the three views as

P=[Is|0], P =[A|€] =[d], andP” = [B | "] = [b}]. (4.14)

Elements:’ andb* denote the entrieg, i) and(k, 7) in the second and third projections respec-
tively. QuantitiesA andB are3 x 3 matrices describing infinite homographies (see Appendix B.2)
from the first to the second and third images respectively. Note that, with the first projection
in canonical form, the left camera centre expressed in homogeneous coordinates is given by
C =[0,0,0,1]T. So, we have’C ~ ¢ andP’C ~ ¢’, that is, the fourth column of the second

and third projections readily provide the coordinates of the epipoles in these views.

In light of result (4.4), the three world planes obtained by back-projecting the camera centres
through their respective image lines have coordinates

m = Pl =[",0,
m = P = [dl),a)l}, dl}, ail)]",
my = P = [T B O T

The above expressions make use of Einstein’s summation convention to the effect that a repeated
index which appears once as a superscript and once as a subscript implies summation over the
range of the index. For instanceil; Is short forZ?’:1 a{l;. This convention will be used
throughout this chapter.
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4.2 Trinocular vision and the trifocal tensor

Figure 4.5. Linesl,1’, andl” are the images of a world line L into three distinct views.

In the classical case, three planes intersect in a 3-D pol.situation depicted in Figure 4.5
shows that the planes meet in space in a commonllinghis particular intersection constrains
the planes coordinates in a special way as exposed next.

LetM = \{M; + A\, M, be aworld point on lind, whereM, M, are two linearly independent
points onL and )\, A\, two scalars. Such a poitM lies on all three planes so it satisfies the
relationsMTm; = MTrm, = MTr3 = 0. With the4 x 3 matrix Z = [, m, 73], these three
conditions can be written a8I'Z = 07, revealing thatz has a two dimensional null-space
becauseM [z = 0T andMJz = 0'. Therefore, matrix has rank2 and so the coordinates of
the three planes must be linearly dependent. We may write

T = amy + (O3,
for «, g scalars, which gives the coordinated afs
L = a(all}) + BOELY). (4.15)

The last coordinate af; being zero, we have = a(ailg») + B(b51})), which is satisfied when
o =~ (b51)) and ~ —(ail;). Substituting these values in (4.15) and rearranging yields

L = Ul (albf — ajdh).
Defining the3 x 3 x 3 tensor
% = adbk — dlbk, i,j,k=1,2,3, (4.16)

now gives
L= LT, (4.17)
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Note that, in tensor notation, the order of the elements is not important, only the placement of
indices so the previous relation can also be writtei; as l;;?;j’“l}. The tensor introduced in
(4.16) is known in computer vision as tlrenocular or trifocal tensor This equation provides

an explicit parameterisation in terms of the three image projections. Given the range of the
indicesi,j,k, the trifocal tensor is defined &7 scalar coefficients. A common visualisation of
this tensor is as & x 3 x 3 cube of numbers, as drawn in Figure 4.6. The tensorial elements on
the cube can be worked out by looking at the orientation of the coordinate system.

Z’ ~ ~
k | - Ie - IeoC
N 1 T =T
; 21 o T3
J U
AU A A 23
L | |
S IR -
| I T
/]'133 X | |
| |

Figure 4.6. A representation of the trifocal tensor as a cube of numbers.

It will be convenient in the sequel to operate on the tensodafficients when they are assem-
bled in a vector. Since each indexTﬁ’“ ranges from 1 to 3, we may list the elements using a
polynomial in bas@&. For instance, one possibility is to taR’g—%’“ for the (3% + 35 + k)-th entry

in a vector. However, this rule predicts the first elemént' as thel3-th entry in the vector
so we must substra¢®. In short, we adopt the convention

ij = 0giy3j+k—12- (4.18)

We conclude this section by outlining two different, but intimately related, techniques to derive
the trifocal tensor from three general projections, not necessarily assumirig=th@.; | 0].

One method relies on the formalism of Grassmann-Cayley algebra [24, 27]. In essence, this
method expresses the line relation (4.17) by the meet of principal planes originating from the
three images. This procedure relies on thee3 critical matrices, the trifocal matrices, which
implicitly define the trifocal tensor. Each entry in these matrices is obtained by calculating the
meet of four planes: two principal planes from the first view and one principal plane from the
second and third views. This particular choice of planes will be explained in Section 4.3.3.
Using definition (4.2), this is carried out by computing the 4 determinant made from two

rows of the first projection and one row from the second and third projections. A remarkable fact
is that coefficientd”* can be written directly in terms of thege« 4 determinants. This method
describes the trifocal tensexplicitly [40]. To summarise the argumentation, one method de-
rives the tensor indirectly, from geometric considerations, whereas the second does it directly,
from algebraic manipulations.
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4.2 Trinocular vision and the trifocal tensor

4.2.2 Parameterisation from two projections

The first projection being in the forra = [I5.3 | 0] may be discarded to leave a reduced
parameterisation which only considers the remaining projeckbaadpP”. The complete7-
dimensional parameterisation (4.18) can be curtaile®tb@mensional one by vectorising the
second and third projections as in
P/
B = [VGC( >] : (4.19)

vec(P")

This parameterisation will be used in the implementation of most correction schemes proposed
in Section 2.5. Only Kanatani’s method does not exploit any parameterisation of the tensor
manifold as it operates with the full, unconstrained parameter véctor

Now, notice that (4.16) provides a mapping from elements of the second and third projections
to the trifocal tensor. Let this mapping be defined by a functionR?* — R2" such that

g(B) = T, whereg takes the form (4.19). This function is quadratic and its Jacobian is given
by the24 x 27 matrix

[ Iy ®@eT
Isxs ®e'T
Igeg @€l
dg Isxs ® —b{ I3x3®@ —b Ig® —b] (4.20)
op —eT ® I3y ’ .
—eT @ Iy

—e'T ® I3y

T T T
| 2] ®Izxs Ay ®@Isxg az @ Isxs |

where the vectors;, b; are thei-th columns of the projectiors, P”, ande’, e’ are the epipoles
in imagesV,, V3 respectively. The position of zero elements has been left blank for clarity.

In some situations, the epipolesande” may be known. This information yet allows another
parameterisation of the tensor. This time, we may define a linear transformgati®if — R?7
such thatj(3) = 7, with 3 obtained by vectorising the innérx 3 matrices of?’ andP” as in

B = [VQC(A)] . (4.21)

vec(B)

This partial paramameterisation (of a subset of the trifocal tensor manifald)dgnensional.
In this case, transformatidpis given by &27 x 18 matrixE such thatl = E(¢/, ¢”)3, and since
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g is linear,
~N\ T
E(e,€e") = <8_g~]) :
B
One may use (4.20) and remove the rows corresponding to derivative®’ ando7 /oe” to
obtain

E(€,€") = |I3x3 @ I3x3 @€, I3,3® —€ ® I3><3] . (4.22)

Hartley has used this type of parameterisation to impose some linear constraints on the trifocal
tensor. Details are deferred to Section 5.2.3.

4.3 Contractions of the trifocal tensor

Geometric relations between features in correspondenceabures “transferred” from one
view(s) to another are related to algebraic operations on the tensor. Since the trifocal tensor
is a mixed tensor, its valence can be reduced by multiplying it with lines (covariant vectors)
and/or points (contravariant vectors). This reduction of the tensor is formally knownas a
tractionof the tensor. The various combinations of features across three views produce several
incidence relations, which can all be captured by a single trifocal tensor. We can distinguish
several levels of contraction of the trifocal tensor depending on the number and type of features
(line or point) employed. The next sections will present each type of contraction in turn and
their associated image geometry.

4.3.1 Single contraction: the tensorial slices

A contraction of the trifocal tensor by one image token redutseoverall valence by one. This
operation amounts to fixing one of the indiceg, or k£ of the tensoﬂgj’“. Fixing a particular

index isolates thred x 3 matrices from the tensor and, depending on which index is selected,
we can imagine the cube being cut in three principal directions: horizontal, vertical, and lateral.
This procedure yields three different kinds of matrices calledt¢nsorial slices It will be

shown that each type of slices corresponds to a specific image operation. Ultimately, these
slices will play an important role in deriving sets of constraints to estimate the trifocal tensor
from image measurements.

The correlation slices

Recall that{e;}?_, is a set of canonical basis vectors f&t. With respect to this basis, any
image pointm can be expressed in homogeneous coordinates by a set of contravariant scalar
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4.3 Contractions of the trifocal tensor

coordinates{m'}?_, such thatm = m’e;. Similarly, any image lind can be defined in the
contravariant basise’}?_, asl = [;€’ with [; also representing scalar coordinates.

The contraction of the trifocal tensdf’* with an image pointm in the reference view
eliminates (or fixes) the-index in Tj’“ by performing the operatiom%jk. Whenm = e;,
this contraction gives a special matrix

_7Jk _ . Wk Ik
1 =T = agby —agby,

where the notatiori:) emphasises the fixation of thiéndex. The quantityT(jf)k can be inter-

preted as & x 3 matrix Z; for which the entries are ordered by tliéndex for the rows and

the k-index for the columns. Cycling through different values of thedex gives three matri-

ces referred to as thteifocal matricesor correlation slicesof the trifocal tensor. We will see

in Section 4.4.1 that these matrices are correlations [77] because they embody mappings from
lines to points, hence their name.

In vector notation,
T; = (Ae;)bj — ay(Be;)" = a;b] —ab], (4.23)
which, in terms of the trifocal coefficients, corresponds to
PR P Oi-s) Owi-7 Oi-o)
I, = 7;21 7;22 72‘23 = |00is5 0Opia BOois)|- (4.24)
T3 T T Oi—2) Ooi-1y O

The definition of the projections matrices in (4.14) sets a particular orientation for the coordinate
system of the trifocal tensor (refer to Figure 4.6). In this system, the trifocal matrices correspond
to vertical slices of the trifocal cube. A representation is given in Figure 4.7. It turns out
that the order of the coefficient5’" on the slices matches the order of the coefficients in the
matrices (4.24). For instance, elem&fit is in position(2, 1) in matrixZ, and similarly on the

first slice of Figure 4.7. The same remark will hold for the other two types of slices that will be
examined in the next section.

It will become useful to specify the column and row vectors of the trifocal matrices as follows

I, = [ay, a5, a3], T = [by, by, by, Iy =[], ¢, ¢, (4.25)
and
I7 = [di,d;. d3], Z; = [e], ey, 5], Ty = [f. £, £5]. (4.26)
The trifocal tensor can be recovered from the correlations slices defined in (4.24) by setting
vec(Z7])
0= |vec(Z]) |- (4.27)
vec(Z3)
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R R T

21 21
7, 1,

T, T, T,

Figure 4.7. A representation of the three correlation slices Z; and some of their
elements.

This reassembling of the tensor from the correlation slicesiges a similar ordering of the
trifocal coefficients as that proposed in (4.18).

In general, the contraction of the tensor by an arbitrary image poinat m‘e; in the reference

Image is & x 3 matrix

T =m'T* =m'T, + m2Ty + mPT;.

2

As it can be seen, this matrix is a linear combination of the trifocal matrices. Using (4.23), we
havem'Z; = (Am'e;)b] — as(Bm'e;)T, thus

Zm = (Am)b; — a,(Bm)". (4.28)

Clearly, ifm = e;, thenZ,, = Z;, as given initially in (4.23). The image geometry associated
with matrix Z,,, will be described in Section 4.3.2.

The homography slices

Thej-index (resp k-index) of the tensoT;j’“ is contravariant which implies that the tensor must
be contracted with a covariant vector, that is, a line in the second (resp. third) view.

To begin, consider a contraction of the trifocal tensor (4.16) with an imagé’l'me[l;] in the
second view. This operation amounts to fixing fh@dex inTij’“ by carrying ouiiﬂfk. When
the image lind’ is a canonical basis vectef, we obtain & x 3 matrix

jj _ /];(J')k _ az('j)bi . aflj)bf- (429)

Here, indices: and: refer to the entryk, ¢) in the matrix. It will be shown in Section 4.4.2 that
matrix J ; represents a homography mapping from points in image points inimagel'; via

the j-th principal plane in imag#&,. Accordingly, these matrices are calledmography slices

or intrinsic planar morphism®f the trifocal tensor. They are associated with the horizontal
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4.3 Contractions of the trifocal tensor

slices of the cube as depicted in Figure 4.8. Generally, these matrices are regular with rank
three but may be singular for particular camera configurations [73]. Equation (4.29) can be
formulated in terms of basis vectors as

jj = b4(eTA) — (alej)B, (430)

J

or explicitly, in terms of the tensorial coefficients, as

77" T 02 O@ivn O
Ti=|T" T° T = |01 Osjvs Ojin | - (4.31)
7° T TP O Oiire) Oj+1s)

These matrices have elements in common with the trifocal matfice®ne may check that
J1= [d/1/> ellla ff]? T2 = [d/2/’ 6/2/, fé’], NERS [dg> e/3/> fé/] (4.32)

For convenience, we observe the following convention for the row vectors ¢f theatrices:

j—lr = [r17r2ar3]a '-7-2r = [51752,53], J;’,r - [tlat27t3]' (433)
1 7:-311
i k
J
7:'322
7'233

Figure 4.8. A representation of the three homography slices J; and some of their
elements.

Analogously to the case of matrik,, in (4.28), the contraction of the trifocal tensor by an
arbitrary image lind’ = lg»ej in the second view is & x 3 matrix

Ty =UT" =0T+ LT >+ 15T, (4.34)

which is a linear combination of the homography slicEs. Using (4.30), we havé J ; =
by(lje]A) — (ajlje;)B, thus
Jr =by(1'A) — (ajl')B.
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An analysis of the image geometry associated with mafrixis deferred to Section 4.4.2.

Finally, the contraction of the trifocal tensor with an image line in the third view fixes the
k-index in77*. Choosing lines with canonical coordinates yields trFee 3 matrices of the
form

Ky =7'" = abl? — ajb®

where indices and; refer to the entryj, i) in each matri¥Cy. It will be shown in Section 4.4.2

that matrix/C, represents a homography mapping from points in imagéo points in image

¥, via the k-th principal plane in image&/;. These matrices yet constitute another type of
homography slices of the trifocal tensor and relate to the lateral slices of the cube, as shown in
Figure 4.9. In terms of basis vectors,

IC,. = (bjer)A — ay(e.B) (4.35)

or, in terms of the tensorial coefficients,

" T T Oy  Ouvo) Oriris)
ICo= | T T2 THF| = |Opss) Opriz) Operon | - (4.36)
PR S Okr6) Opr1s) Oeraq

These matrices have elements in common with igtAnd 7 ; matrices. One may check that

IC; = [al, bl, c}], KKa = [a}, by, ¢y, K3 = [a}, b}, ¢3], (4.37)
and
IC] = [r1,s1,t1], K = [rg,80,t2], IC§ = [r3, 3, t3]. (4.38)
) 7:-311
l k ' : ! 7;12
J T T
LS S
1 : | | N 7:'323
e
’CB I I

Figure 4.9. A representation of the three homography slices IC, and some of their
elements.
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4.3 Contractions of the trifocal tensor

The contraction of the tensor by an arbitrary image lihe= }/€" in the third view is a3 x 3
matrix

Ky = UT7" = 11K, + 1Ko + 151Cs. (4.39)

Using definition (4.35) fo#C,. and simplifying gives
ICor = (bjl")A — a,(1""B).

The geometric interpretation of these matrices is also postponed until Section 4.4.2.

4.3.2 Two contractions: transfer between views

We now consider the effect of using two image tokens to simehasly contract the trifocal
tensor. We will see that given a pair of corresponding features in two views, the tensor will give
their matching counterpart in the third view [30]. This property of the tensor is widely used in
recognitionapplications where it is necessary to predict the location of a feature in one image
from its positions in two other images. This problem is sometimes described &satiee
transferproblem.

Transferring two image lines

The most natural use of the trifocal tensor is to transfer gnlages. The situation was first
presented in Section 4.2.1 when we derived a parameterisation of the tensor in terms of three
camera projections. The primitive that arises in the first view by transferring the pair of lines
(I',1") is a linel given by the equations

L= LT, (4.40)

It turns out that these relations can be writtenlas: 7 (1',1"), where the applicatior? :
P* x P?* — P?* such that

T(l/, l//) — [l/Tl'll//7 l/TIQl//, l/TI3l//]T (441)

is the trifocal tensor expressed as a bilinear map acting on two lines to produce a third line. This
expression will be proved shortly as a consequence of Proposition 5.

A particular case of this transfer occurs when the lilendl” are in correspondence with a
pointm on linel in the reference image, that is, for a point-line-line incidence in three views.
Predicting the poinin cannot be achieved in one tensor contraction as per (4.40). Further
information is needed, like its corresponding paimton!’ in view 2.
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Transferring an image point and an image line

Another possible situation is when the tensor is contracyeghlimage point and an image line
in two separate views. The geometric relationships take place as follows.

Suppose that a scene poMl projects into three views in the points, m’ andm”, and that

I’ is a line throughm'. Althoughl!’ may not be an epipolar line, its back-projected plane still
contains the scene poiM. Without loss of generality, we may assume that the first camera
projection is in canonical form, so the ray of sight obsensnngives directly the position avI

in the world frame. Consequently, poiM can be parameterised by the equation

M = C + pP*m, (4.42)

wherep is a non-zero scalar indicating the depti\Mfin space ané* = [I | 0]T is the pseudo-
inverse matrix of the canonical projection in the first view. Featurésand!’ in the second
view satisfy the relation

I''m' =1"PM =1'"(¢/ + pAm) = 0. (4.43)

This formula fixes the value of parametetin (4.42), hence the location of the scene point.
Now, projectingM in the third view gives

m"” ~ P"M ~ " + pBm,
and substituting the value pffrom (4.43) leads to
m” ~ ¢”(I'"Am) — (I"¢/)Bm.
Given thatl'"Am = (Am)Tl’ andl’"e’ = ¢TI, we find that
m” ~ [¢’(Am)" — (Bm)e'T| I'.

The expression between the brackets is the transpose 8fthematrix Z,,, in (4.28), hence
we can write

m’ ~ZI '~ [m'ZI]]l.
This expression reveals that mat¥_ acts as a correlation mapping from the lines in image
U, to the points in imag&;. Rearranging this equation gives

m" ~ [Z{l', ;U ;U] m.

In this form, we see that point in the first view is transferred to its correspondetit in the
third view, and so thé x 3 matrix [Z{1', Z,1', Z1'] is a homography. This is summarised in
the following proposition.
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4.3 Contractions of the trifocal tensor

Proposition 4 The3 x 3 homography matrix?, induced by the plane back-projected from a
line I going throughm’ in the second image, describes a mapping fienin the reference
image tom” in the third image such that

m™ ~ hkmi whereht = [ZTU', Z3U, Z31]. (4.44)

Now, rearranging (4.40) ak ~ l;’(lﬂf’“) shows that the quantitgé.Tij’“ acts as a mapping
between lines from the third view to the first. This together with relation (4.44) proves that
the result of the contractioj7;”" is the homography!, that is,// 7" ~ h¥. Substituting in
(4.44) gives

m'™ ~ mil;’];jk. (4.45)

The geometric situation is depicted in Figure 4.10. The mapping fioto m” in (4.44) is a
point transfer via a plane as described in Section 4.1.2; here the plane is readily identified as the
back-projection of a lind¢’ in the second view. When the lidedoes not go through the point

m’, h¥ is still a homography, however, it maps the paintto a pointm” on the epipolar line
containingm” [65, 79-81].

View 2

Figure 4.10. Three-view point transfer via a plane in space [37].

Likewise, there exists a homography which maps$o m’ via the projection plane of a ling
going throughm” in the third view. Projecting the poiiNI of (4.42) into the second view and
substituting the value qf from (4.43) gives

m’' ~ e + pAm ~ (I""e”)Am — €'(I""Bm).
Sincel”"Bm = (Bm)'1” andl”"e” = ¢"T1", we obtain
m’ ~ [(Am)e”" —€'(Bm)"| 1",
where the expression between the brackets is exactly th& matrix in (4.28). Thus, we have

m' ~ Tl ~ [m'T] 1" (4.46)
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This result shows that matriX,,, acts as a correlation mapping from the lines in imageo
the points in image&’,. After rearranging,

m' ~ [T,0", Tol", T5!"]m, (4.47)

which permits to state the next proposition.

Proposition 5 The3 x 3 homography matri>h{, induced by the plane back-projected from a
line 1" going throughm” in the third image, provides a mapping framin the reference image
tom’ in the second image such that

m ~ hlm',  whereh! = [Z,1", Z,l", Z;l"]. (4.48)

(2

Here, /! corresponds to the contracti¢f7’*, hence
m" ~ miy T (4.49)
The proof of (4.41) follows directly from the above results and is exposed next.

If I’ is a line through the poink’ in the second view, we have tHatm = 0. Substituting (4.47)

for m’ givesl'"[Z,1", Z,1”, Z5l"Jm = 0. This relation suggests th&t [Z,1”, Z,1", Z51"] can

be viewed as the coordinates of a lihgoing thoughm in the first view. Now, the vectal'™

can be inserted in each of the components within the brackets and taking the transpose of the
resulting expression yields (4.41), the lihim the first view expressed as a column vector.

In practice, the transfer operations (4.44) and (4.48) are the most useful because they allow to
predict the location of corresponding points in images further along in the sequence. It should
be noted that, in contrast with using a fundamental matrix, the location of the 3-D Ipbint
needs not be computed to find a corresponding image point. This is a significant advantage with
the trifocal tensor.

For completeness, we show next how a point or a line can be obtained in the first view given a
point and a line in the second and third views. These situations correspond to yet other possible
geometric incidence relations between features in three views and, as before, are associated
with specific algebraic contractions of the trifocal tensor.

Suppose that we have a pair of featufes, "), and thatm’ = [/, ¢, 1]T. The pointm’ can be
obtained in infinitely many ways by taking the cross product of any two distinct lines from the
pencil of lines passing througi’. Now, any linel’ in the pencil can be expressed as a linear
combination of two arbitrary, but fixed lines in that pencil, see Figure 4.11. With rectangular
images, a natural choice is the horizontal liffeand the vertical liné" passing througim’:

" ~1[0,-1,v]" and 1" ~[1,0,—/]".
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It turns out that the coordinates of these lines may be expressed in termisef
l;»h ~m'e  and I~ m'le o, (4.50)

wheree s, s = 1,2, are the coordinates of a covariant kronecker teag68, 56].

Figure 4.11. Any line I in the pencil of lines through the image point m’ can be
expressed a linear combination of the lines I and 1'*.

A line 1 in the first view is now easily obtained using (4.40) with the litleand either one

of I'" or I'". For instance, choosin® givesl; ~ (m'e,;1)I{T7*, or simplyl ~ T(I"™1").

Note that the computed linkkgoes through the point corresponding tan’. If m needs to

be found explicitly, the tranfer cannot be realised in one operation and both'liresll’ are
required. Poinin in the reference image can be computed as the intersection of the transferred
linesl' ~ 71", 1") andl® ~ T (1"*,1") given by

m ~ ' x I*. (4.51)

Figure 4.12 illustrates the situation. For a pair of featuleéan”), one may follow a similar
approach to find two lines through” and transfer them witH to a line or a point in the first
view.

View 1 View 3

T(lw, l/l)

T(l/h, l//)

Figure 4.12. Trifocal tensor 7 transferring point m’ in view 2 and line I” in view 3 to
point m in view 1.
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Transferring two image points

This section will conclude the study of trifocal tensor cawtrons from two image tokens.
Here, we assume that the locations of two matching points in distinct views are known and we
aim to find their point correspondent in the third view. There are three possibilities depending
on which two data points are transferred to another view.

First, suppose that we have identified the pair of mat¢hean’) and wish to obtaimn” in the
third image. The trifocal tensor cannot be contracted directly wittso one must find a line
through this point. Such a line may be takeri’asn (4.50) which gives

m"™ =~ m(m/le )T, (4.52)

Similarly, if we have a pair of matchgsn, m”), their corresponding point’ in the second
view can be computed as

m ~ mi(m"qeqjl)’];jk. (4.53)
On the other hand, if we have a p&n’, m”), we must computen as the intersection of two
transferred lines correspondingi@ andm” respectively. There are infinitely many ways to
choose the lines going through these points. A trivial choice is totake 7 (1", 1"") with
U~ m/%e,;1 andl)® ~ m"e, 1, andl® ~ T (1™, 1") with [}" = m"%€,;,. Pointm can then be
computed as in (4.51). Figure 4.13 illustrates this transfer.

View 1 View 2 View 3
T(l/h7 l//v) m// l//h
m T(l,h, l”h) m/ l,h
) l//v

Figure 4.13. Trifocal tensor 7 transferring points m’ in view 2 and m” in view 3 to
point m in view 1.

The above considerations show that image point relatioms fosubset of image line relations
since transferring points can only be done by resorting to lines first. The line transfer technique
is used when the three camera centres are aligned, or close to be aligned, thus allowing point

to be determined. This is not possible from intermediate fundamental matrices between views.
More details on point and line transfers can be found in [24, 27, 41]. As in the fundamental
matrix case, there exist particular camera configurations and scene structures for which the
trifocal tensor is ill-defined. Often these situations appear in the form of critical sets of lines
and surfaces in space which give rise to ambiguous or even undefined reconstructions [9, 10,43,
63,83].
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4.3.3 Three contractions: the trilinearities

Since the trifocal tensor is a valence-3 tensor, it can becestiio a scalar by using three
image tokens. When the image features are in correspondence across the views, the systems
of equations describing the various incidence relations can be deduced from the transfer equa-
tions elaborated in the previous section. These systems exhibit linear relationships between
the image tokens and the trifocal tensor and so are cdiletkbarities. Given enough image
measurements, it is possible to estimate the trifocal tensor based on these systems. This topic
will be covered in chapter 5.

In this section, we focus on deriving the trilinear systems corresponding to the various possible
cases of incidence relations between image features in three views. It will be assumed that lines
I,I', andl” are in correspondence across the images and that paints’, and m” are the
respective matches on these lines.

Point-line-line correspondence

The trifocal tensor has the forﬁjﬂ“ which suggests that it can be fully contracted by using a
point in the first view and a line in the second and third views. Geometrically, the two image
lines back-project to planes which intersect in a world line and the optical ray back-projected
from the image pointintersects this line in a 3-D point. This point-line-line incidence represents
thefundamental trifocal constraininderpinning all relations between triplets of image points
and/or lines. It is the equivalent for the trifocal tensor over three views of what the epipolar
constraint is for the fundamental matrix over two views. It will be shown in subsequent sections
that the algebraic constraints describing other trinocular incidence relations are variants of this
particular one.

In this situation, one may noted that the optical ray in the first view may be obtained as the
intersection of two principal planes in this view. Algebraically, this corresponds to selecting
two rows from the first projection matrix. Each plane from the back-projected lines in the
second and third views contributes one row from the respective projections in these images.
This argument justifies the specific choice of four planes used to describe a general trifocal
tensor wherp # [I5,3 | 0] as discussed at the end of Section 4.2.1.

To establish the trilinear constraints for the point-line-line relation, recall th#taifdl” are

two corresponding lines in the second and third views respectively, then their matchirg line
in the reference view is given by (4.40). Any poimt onl satisfies the relatiom‘l; = 0 and
substituting the definition of from (4.40) yields the trilinear relation

m' I T* = 0. (4.54)
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This formula can also be derived using (4.45) and the facttat] = 0, or using (4.49) with
m’jl; = 0. Moreover, notice that (4.46) gives the matrix representation of (4.49). Therefore,
using the relatiod’"m’ = 0, (4.54) can be written in matrix form as

UT [m'Z) 1" = 0. (4.55)

Point-point-line correspondence

Suppose that the coordinates of poinism’, and linel” are known. In order to identify the
algebraic constraints which bind these entities, it is necessary to convert the information about
point m’ into lines passing through it. A particular lifecan be expressed in terms of
asl; ~ m'e,;, for each fixed value of = 1,2,3. Substituting forl} in (4.54) gives three
trilinearities

m'(m'le ;) ILT* = 0,. (4.56)

Whens = 1 (resp.s = 2), the above equation can be obtained from the transfer equation (4.52)
using linel™ (resp. ") and the fact that"*I/ = 0. Since the lineg” andl” are sufficient

to describe the pencil of lines through’, the quantitym/?,;3, whens = 3, defines a line
containingm’ which can be obtained from a linear combination'8fand?’” as depicted in
Figure 4.12. Therefore, the three equations in (4.56) must be linearly dependent and only two
are independent.

Point-line-point correspondence

The incidence between image features is similar to the pusvime except that entities in the
second and third views are interchanged. In this case, inseéftingm” e, in (4.54) yields
the relations

mil} (m"qeqks)’];jk = 0y, (4.57)

Again, only two of these three equations are linearly independent. Alternatively, they may be
obtained from (4.53) when= 1 ands = 2 and the fact tham’jl;. =0.

Point-point-point correspondence

This image correspondence is considered as the most partzage of the trifocal geometry
since no lines are known but three points instead. The algebraic constraints which relate a point
triplet can be worked out by first considering the lines through paititandm”. Three lines
supporting each of these points may be defined by the coordifjates:c ;, andlj ~ m"" €.,
respectively, fors, ¢ = 1,2,3. Substituting these definitions in (4.54) and taking all possible
combinations of indices andt give a total of nine equations

mi(m/qGQJS)(mllrerkt),];jk = Ost~ (458)
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These trilinearities were first proposed by Shashua in relation to visual recognition tasks [78].
Only four of these equations are linearly independent since each pencil of lines passing through
the pointsm’ andm” contributes two independent constraints.

Line-line-line correspondence

Any line l in a projective plane is represented by-aector so one may form the x 3 skew-
symmetric matrixl]. By duality, a pointm belonging to a lind may be written asn’ ~
1,67, for fixed values ofs = 1,2,3, ande?* is the length3 contravariant kronecker tensor
corresponding to lines. It follows that the (matrix) equatifijsm = 0 become;,e?* = (¢
in tensor notation. Using (4.40) or replacing in (4.54) by its line equivalent, we obtain three
trilinearities of the form

(Le™ I T* = 0, (4.59)

where only two of these three equations are linearly independent. If only thd lameH’ are
known, thenl” may be computed by solving the set of equations (4.59), hereby transférring
into the third image. A similar technique can be used to transfer lines to the second image.

Summary

One may have realised that not all the points and/or lineseetliiews are related by a trifocal
tensor, only those that are in correspondence and satisfying the trilinear relations summarised
in Table 4.2.

Correspondence Trilinearities Indep. Egs.
Point-point-point m"(m’qeqjs)(m“TeTkt)Tijk = 04t 4
Point-point-line mi (mlegj ) IV TH = 04 2
Point-line-point ml (m" e ) T7* = 0, 2
Point-line-line mI TN =0 1
Line-line-line (lge?™ 1 T = 0° 2

Table 4.2. Trilinearities and associated number of independent equations.

The 27 entries of the tensor are defined up to a common scale, so they may be computed pro-
vided at leasR6 equations. Adapting the result in (4.11), the trifocal tensor associated with
three uncalibrated cameras hdsx 3 — 15 = 18 degrees of freedom. This implies that the

27 tensorial coefficients have to fulfilconstraints between themselvesdditionto satisfying

the trilinearities. One of these constraints can be eliminated by fixing the scale of the tensor.
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Chapter 4 Geometry and Algebra of the Trifocal Tensor

This condition can be achieved by requiring that the vectorised form of the tensor, as defined in
(4.18), has unit norm. Thereforgconstraints are essentially to be considered. Because these
constraints apply exclusively to the trifocal elements and do not involve any data, they are re-
ferred to asancillary or internal constraintsto be distinguished from thgrincipal constraints
expressed by the trilinearities.

Irrespective of the computation method used, a trifocal tensor which does not satisfy the internal
constraints is termed amconstrainedensor. For a point correspondence across three views,
such a tensor gives projections for which the back-projected rays through the image points do
not intersect in a precise 3-D point, see Figure 4.14(a). Constraining the tensor ensures that the
rays intersect in space. Such a constrained tensor is saidgedoeetrically validand allows a

correct triangulation as in Figure 4.14(b).
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Figure 4.14. A triangulation example for: (a) an unconstrained tensor; (b) a geometrically valid
tensor. In case (a), point M is not at the intersection of the three back-projected

rays but lies in the region delimited by these rays. This uncertainty gives a poor
reconstruction.

4.4 Properties of the tensorial slices

This section establishes properties of the tensorial shitesh are fundamental to subsequently

identify sets of ancillary constraints on the trifocal tensor. First, some notation must be intro-
duced.

By analogy to (4.2), let the projection matrices of three views be defined in terms of their
principal planes as

T, I T/
P=|Iy|,P = (T, andP’ = [T}
I I, I
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In view of (4.5), the principal rays corresponding to the intersection of pairs of projection planes
will be denoted byR,;,, R}, andR;} (h = 1,2, 3). Exact definitions are provided for conve-
nience in Table 4.3.

Image Principal rays

Uy R1~=~T9AT3, Ro=T3AT,R3~=T'1 ATy
Uy L ~TLATE, Ry ~T AT, Ry ~T) ATY
Uy R ~T5 ATY, Ry ~T4 AT], Rf ~ T/ AT}

Table 4.3. Principal rays as intersection of principal planes.

In addition, we observe the naming convention of Table 4.4dsighate the epipolar lines
obtained by projecting the principal rays of one image into the other two images. Several
comments must be added regarding the information in this table.

Epipolar lines Geometric incidence

Loj ~ F}lej Mapping of rays R; of image ¥, into image ¥,
L3, ~Fl e Mapping of rays R/, of image U3 into image ¥4
L), ~Foe; Mapping of rays R; of image ¥, into image ¥,
LY ~Fle Mapping of rays R/, of image U3 into image ¥,
LY, ~Fse; Mapping of rays R; of image ¥, into image U3
L5 ~ Fae; Mapping of rays R; of image ¥ into image ¥

Table 4.4. Mapping of the principal rays of one image into epipolar lines in
the other two images.

First, the principal ray®R,;, in the first image are special optical lines going through the canoni-
cal pointse;, and not arbitrary image points (recall Table 4.1). This is also true for principal rays
R;, andR;, so the convention set forth in Table 4.4 applies to specific, “canonical”, epipolar
lines. It is hoped that this remark will clarify any confusion when we derive properties of the
trifocal matrices in Proposition 6 which apply to general epipolar lines. Second, by analogy
to (4.7), the canonical epipolar lines in vieiwmay be expressed by the fundamental matrix
F;; acting on pointse;, in view i. Therefore, the column vectors Bf; give the coordinates of
these lines. A similar argument to the derivation of (4.9) establishes that fundamental matrix
Fij(= F]Ti) sends points in view to epipolar lines in view.
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Finally, two more notations are necessary. One;iso refer to theh-th column of homography

J ]T or h-th row of J ;. For instancer; andt, in (4.33) are represented ty; and“c, respec-
tively. And the other notation is;; to represent the epipole obtained by projecting the camera
centre of image into image;j. Examples of common epipoles includle= e,; ande” = es;.

4.4.1 The trifocal matrices

Evolved as special instances of matliy, in (4.28), the trifocal matriceg; are the first type

of tensorial slices to be considered. This section provides details about the interframe geometry
and 3-D incidence that occur when these correlation transformations are used. Their general
properties are first uncovered, followed by some specialisations needed later to deduce internal
constraints on the trifocal tensor.

Suppose that we have a poimi in the first view and its corresponding epipolar liién the
second view. The epipolar plabg back-projected fronk’ passes through the first two camera
centresC andC’ and therefore contains the optical li€m). Additionally, the plane back-
projected from any liné” in the third view intersecll’ in a 3-D line L. Since the rayCm)
lies entirely inII’, it must intersect the lin&, which means that, I’, andl” constitute a point-
line-line correspondence satisfying the constrélintn'Z;]1” = 0, see (4.55) in Section 4.3.3.
This is true foranyline I” in the third view, consequently” [m’Z;] = 0". In turn, this relation
implies that epipolar liné’ belongs to the left null-space of matrik,, = m'Z,. A similar
reasoning applied to lin& demonstrates that'Z,] 1" = 0. Thus,l” is in the right null-space
of matrixZ,,. The next proposition summarises these properties.

Proposition 6 If m = [m’] is a point in the first view with corresponding epipolar linésand
I” in the second and third views respectively, tileandl” are members of the left and right
null-spaces of the matriX,,, = m'Z;, that is,

l/T [m’l’l] = OT and [m’l'z] " =o0.

Three particular instantiations of this proposition occur when pwing chosen to have coor-
dinatese; = [1,0,0]",e; = [0,1,0]T, ande; = [0,0,1]". In this setting, the epipolar lines

in the left and right null-spaces of matrip’Z;] are readily computable from the trifocal ma-
tricesZ,,Z,, andZ; respectively. These lines originate as the projection in the second and
third views of the principal rayRR,, R., R3 because these rays are the optical lines through
the pointse;, e;, e3 in the first image. Referring to Table 4.4, these epipolar lineCareand

L, respectively.
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4.4 Properties of the tensorial slices

Proposition 7 When pointm is represented by homogeneous coordinaies = 1,2, 3, we
have

Since all epipolar lines pass through an epipole, this is true for the &feand £7; which go
throughe,; = €’ andes; = €”. A direct implication of this result is that both of these epipoles

can be computed as the intersection of their respective epipolar lines. We can express these
intersections using the conditions th&t L', = 0 ande”T L}, = 0 foralli = 1,2, 3.

Proposition 8 Epipole €’ in the second view is the common intersection of epipolar lines
11, L9, and L}, that is,

/T[

/ / AR
€ 115 £12) 13]—0-

Similarly, epipolee” is the common intersection of epipolar ling$§,, £7,, and LY, that is,

//T[ " " " ] —0.

€ 115 212, £13

To summarise, it was shown that epipelgresp.e”) is in the null-space of the epipolar lines

1; (resp.LY.), which themselves are in the left (resp. right) null-space of the trifocal matrices
Z,;. The previous two propositions were originally established by Hartley [37] but also appeared
under a different form in [29]. They outline two important properties of the trifocal matrices
which will be investigated further in the remaining part of this section.

The reIationL’lTZ-Ii = 07 implies that the columns of matrix, are three points in the second
view! lying on epipolar lineC’; (as the product of each column vectotiwith £;! vanishes).

Now, thek-th column of the trifocal matrices can be obtained by carrying out the operation
Z,e., Wheree;, is a canonical basis vector. This vector may be viewed as representing the
coordinates of a particular ling in the relationl’” [m'Z,]1” = 0. From Table 4.1, the back-
projection of pointe; in the first image is the principal ralR; and the back-projection of line

ey in the third image is the principal pladg. Therefore, thé-th column of matrixZ; is an
image point which is the projection in the second view of the intersectioR 0and T}, see
Figure 4.15.

Analogously, the fact thaf, £}, = 0 means that the rows of matriX; are three points in
the third view lying on epipolar line&7;. The j-th row vector of the trifocal matrices can be
obtained a<] e;, wheree; is a canonical basis vector representing a line in the second view.

1This result justifies notatiord(25 for the columns of the trifocal matrices denoted with onengrias for
entities in the second view.
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The linee; back-projects as principal plalfg. Therefore, thg-th row of matrixZ; is an image
point which is the projection in the third view of the intersectiorn®f andl“;. The findings
are summarised in Proposition 9.

Figure 4.15. Geometric construction to interpret a column vector of matrix Z;.

Proposition 9 The column vectors of ead} matrix are three distinct points in the second view
lying on epipolar lineC’;, whereas the row vectors of these matrices are three distinct points in

the third view lying on epipolar lin&€’,.

A further interpretation of this proposition is that theh column vector of matrice®,, Z,, Z5
represents the vertex of a triangl¥ in the second view for each value bf= 1, 2, 3, refer to
Figure 4.16. A similar remark can be made about the rows of each ngtrikhe h-th row of
the trifocal matrices represents the vertex of a triafigfje@n the third view. An illustration of
this geometry is given later in Figure 4.19(b) when investigating matkges

Figure 4.16. Geometric interpretation of the columns of matrices Z;.

Some general properties of the trifocal matrices can nowdiedt
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Proposition 10 Matrix Z; describes a correlation between lines in the third view and points in
the second view induced by the principal planes in the third view. Matfixnaps lines in the
second view to points in the third view via the principal planes in the second view.

Clearly, sinceZ,, is a linear combination of the trifocal matrices, it ought to perform the same
geometrical action. For instance, one may deduce that the opeftjingives a pointm’ in

U, (as per (4.46)) which is the projection of the intersection of the opticadfian) of ¥; and

the plane back-projected from lidéin ¥;. A formal algebraic proof can be found in [73].

4.4.2 The homography matrices

We now proceed to analyse the properties of homography slicesDerivations related to
homographiedC, are similar and have been placed in Appendix C to avoid redundancy in the
chapter.

To begin, note that a special case of Proposition 4 occurs when tHéikrane of the canonical
basis vectors;, (h = 1, 2, 3) of R3. From Table 4.1, we know that each veatgican be thought
of as a line belonging to thie-th principal plane of view?,. Whenl’ = [1,0,0]" we have

hf = [IIel, I;el, Igel] = jl.

The above equality can be checked by constructing a matrix with the first column of each of the
matricesZ|,Z,, andZ, as given in (4.26) and compare it with the matgix in (4.32). This

result shows that matrigr; represents a point homography from vigw to view ¥ induced

by the first principal plane in views,. Furthermore7| maps lines inl; to lines in¥, via the

first principal plane. Using' = e, (resp.e;) selects the second (resp. third) principal plane in
view ¥, SO

To= [IIeg, I;—eg, I;eg] (resp.jg = [Ifeg, I;eg, I;eg]) .

This leads to the following proposition.

Proposition 11 Matrix J ; describes a homography between points in the first view and points
in the third view induced by thgth principal plane in the second view. Matr.iX]T maps lines
in the third view to lines in the first view via the same principal plane.

This proposition sheds light on the underlying geometic transfer implied by mdiyixthe
linear combination of sliced ;, introduced in (4.34). The operatigfi,ym gives a pointn” in
U5 via the plane back-projected from lidlein ¥,.
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Now, considefe; as a point on the first principal raig, of the imageV,. Applying Propo-
sition 11 to transfee; with the homography7 ; gives a point in the third image via theth
principal plane in viewl,. The particular coordinates ef implies that the transferred point
is given by the first column of matrig ;. A generalisation of this result is straightforward: the
homography7 ; acting on the canonical poirf, produces a point in imagg; with coordinates
given as thé:-th column of 7 ;.

Referring to Proposition 11 again;f]T is a line homography from view’; to view ;.
Considering vectors;, as homogeneous lines in view, it can be deduced that the columns
of JT, or equivalently the rows off ;, are lines in the reference view. These properties are
recapitulated below.

Proposition 12 The column vectors of eacif; matrix are three distinct points in the third
view, whereas the row vectors of these matrices are three distinct lines in the first view.

The remaining part of this section establishes further properties of maffigdmsed on the
work done so far.

By definition, the principal rays of one image are mapped to epipolar lines in the other images.
Now, consider the poing; on principal rayR; in the first view. The intersection in space of
the lineR; with the three principal pIaneE; of view W, gives three distinct world poinfs¥’;;,

where index: is fixed by choosing the raR,; and; varies from1 to 3 corresponding to the
pIanesI‘;. of U,. An example is shown in Figure 4.17 f® ;.

Figure 4.17. Point transfer via the principal planes I‘; in view W,

Since all three world points lie 0R ;, they are collinear and so must be their projections in view
V3. From Table 4.4, the raR; maps to the epipolar lin€7; in U3 where the corresponding
point of e; lies. EmployingI‘;, the j-th principal plane ofV¥,, to transfere; means that
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homography7 ; carries out the point transfer between the views. Moreovei-th€oordinate
of e; being unital implies that theth column of 7 ; gives the coordinates of the corresponding
pointinW;. This resultis stated in the next proposition and algebraic details appear in Table 4.5.

Proposition 13 The three image points obtained by selectingitttecolumn vector of matrices
J1, T2, and J 5 are collinear and lie on the epipolar ling!; in the third view.

A consequence of this proposition is that the three columns of a particular ngafriepre-

sent points (by Proposition 12) lying on different epipolar lines in imégenamely the lines
LY, LY,, andL’;. Therefore, for a given matriy ;, its column vectors define the vertices of a
triangle’T’ in ¥3. Since all epipolar lines meet at the epipole, it follows that the triangles asso-
ciated with7 1, J 2, and J 3 are in perspective from the epipalg, = €”. This is illustrated in
Figure 4.19(b).

Image points in U3 On epipolar line From world points
4/ ~ T e 1 Vij =R AT
ei ~ J ;e 12 Vaj ~ Ry AT
i~ T jes Ly V3~ R3 AT

Table 4.5. Algebraic and geometric properties of the columns of matrices J ;.

Now, recall from Proposition 12 that the row vectors of a jgaitir matrix7 ; represent distinct
lines in the first image, hendée,,’c,, and’c; define a trianglél; in ¥;. Geometrically, these
lines correspond to the images of three world likes L2, andL;; arising as the intersection
of the j-th principal planel’; of view ¥, with the principal planed’],T';, andT; of view
U3 respectively. Figure 4.18 depicts the situation wiigérmeets with one of the plands.
Algebraically, linesc;, (for h = 1,2, 3) are obtained by applying homograpjjij to the three
canonical lineg;, in U5,

Looking at the vertices of triangl&;, one may compute them as the intersection of two lines

of T, effectively by cross product of two rows ¢f ;. A particular vertex cannot be calculated

from any two arbitrary rows though. Vertex, corresponds to the projection of a world point

Vi, which emanates as the intersection of the Ry and the pland™;. From Table 4.3,

R is the meet of the plands, andI';, wherek, o, and 3 take distinct values in the range
{1,2,3}. Hence, we can writd/}, ~ T, AR ~ T, AT AT Proposition 14 recapitulates
these remarks. Of more practical interest, Table 4.6 gives details about the various algebraic
operations and associated geometry which can be elaborated from the rows of ngajrices
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"
R,

é//

Figure 4.18. Vertex v, arises in the first view by projecting the world point ng
obtained as the meet of the principal ray R} ~ I', AT and the
world line Lj, ~ T, ATy,

Proposition 14 The three image lines given by the row vectors of maffixform a triangle
T, in the first view. Vertices ;;, vj,, andv;; of T; can be computed as the cross product of
two lines represented by the appropriate rowsof, see Table 4.6.

Triangle Edges From world lines Vertices From world points
ey ~ JjTel Lj; ~T; AT vj1 =~ Jeg x Jes Vi~ ', ARY

T; Icy ~ T | e Ljo ~ T} ATY vjo ~ Jeg x Jey Vi ~T; AR}
Jeg ~ JjTeg Ljz ~T; ATy Vs = Jey x Jey Vi, T, AR;

Table 4.6. Algebraic and geometric properties of the rows of matrices J ;.

Further geometric relations can be inferred from the rowg7fof We show next that corre-
sponding vertices of different triangles are aligned.

First, recall from the derivation preceding Proposition 14 that the vertiges/;,, andv;s

are the mappings of world points obtained by fixing a plm‘]lén ¥, and intersecting it with

the three rayR; in ¥;. Since these 3-D points belong to three different rays in space, their
projections in the firstimage are three non-collinear points which constitute a trianghkow,
suppose that we fix the raig; in U3 and intersect it with the three pIanE§ of ¥,. The world
points in this case are all collinear on the MY/, hence they project to three vertices which lie
on the image of that ray i, that is, the epipolar lin€, going through the epipole;s. By
construction of the world points and definition of vertex, we deduce that the vertices @,
arevyy, va, andvs,. Table 4.6 readily provides rules for computation of these points from the
rows of matrices7 ;. These results are illustrated in Figure 4.19(a) and summed up as follows.
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Proposition 15 Verticesvyy, va, andvs, of trianglesT, Ty, and T3 are collinear and lie on
the epipolar lineCs; in the first view.

L3

(a) (b)
Figure 4.19. Geometric interpretation of the (a) rows and (b) columns of matrices J ;.
The next series of properties are derived from an applicati@mnoposition 11 using the epipoles
in the first image.

When the cameras are in general position, the three homografhiedate epipoles;; in the
first image toes; in the third image according to

€3] X~ jjelg ] = ]_, 2, 3. (460)

Given thates, is the image ok;3 by any of the three transformatiogs;, we may choose two
of these homographies and reformulate (4.60) as a generalised eigenvalue problem of the form

(Tp— KT ¢)x =0, (4.61)

wherex is a non-zero scalar representing the generalised eigenvalue associated with point
in the first image. By construction, the solutian= e;3 is a generalised eigenvector for this
problem. More details are given in the proposition below. These properties were defined by
Ressl [73] but originally proposed by Canterakis [12].

Proposition 16 The generalised eigenvalue probl¢gi, — xJ ,)x = 0, with x a point in the
first image and regular homography,, p # ¢, has the following general eigenvalues:

1. ko = €h, /e, is a double generalised eigenvalue with corresponding two-dimensional
eigenspace spanned by the epipolar libg, where{p, ¢, r} is a permutation of 1, 2, 3}.

2. k1 = eh;/el, is a single generalised eigenvalue with corresponding one-dimensional
eigenspace spanned by the epipoilg
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Proof. To begin, we show that}, /e, is a double eigenvalue. Upon replacing slicés and
J , by their algebraic expression evolved from (4.30) and adapting the notation for the epipoles,
we obtain

Ty — kT, = ez (e, — ke,) A—ey (e, — re,)B. (4.62)
Whenk = e}, /e, the factor preceding matrixvanishes so (4.61) reduces to

es (e, — ke,) Ax = 0. (4.63)

It turns out that this equation can be simplified by identifying the quaitity— xe,)"A with
the epipolar lineC;,. This is shown next.

Consider the equality

1
() — Key) = —T[egl]le,«, (4.64)

€21
where the indicep, ¢, r take distinct values in the sét, 2, 3} ande, is a3-vector withr-th

entry equal tal and other entries zero. One may check that the right-hand side of this equality,
which can be rewritten a®,; x e,)/e3,, produces the same result as the left-hand side for any
choice of{p, ¢, r} taken as a permutation 1, 2, 3}. Now, using (4.12) in Proposition 3 with
P = [I3.3 | 0] andP’ = [A | ey], the fundamental matrix between views one and two is given
by

Fo1 o~ [e1]xA. (4.65)

Multiplying (4.64) on the left byaT and simplifying with (4.65) shows that
AT(e, — ke,) ~ AT[ey|Le, = Fj e,.

From Table 4.4, vectofF.], e, gives the coordinates of epipolar lim®,, the image of the ray
R, of the image?, into the imagel;. With this, (4.63) can be written as

es L] x = 0. (4.66)
As long asC # C”, the epipoless; exists and is non-zero. Pre-multiplying bY; gives
ese5Lyx = [leg[2L5,x = 0,

henceL] x = 0. This means that the one-dimensional epipolar ihe represents a two-
dimensional eigenspace ®R® associated with a double generalised eigenvalue k, =

eh, /el,. In other words, the pointg* on epipolar lineC,, are generalised eigenvectors for
the pair of homographic sliceg, andJ,. They span an eigenspace that is orthogonal to the
r-th column of the fundamental matrix, (= FJ,) sinceL] x* = (Fze,) x* = 0.

In general, the epipole;; does not lie on the lin€,,. becauseL,, is independent of the third
image so(J, — kJ ,)e1; does not vanish fok = x,. Multiplying (4.62) on the right bye,;
gives

es (e, — ke,) ey (4.67)
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sinceAe;; ~ ey; andBe;3 = 0. This expression vanishes when= k; = e}, /el,. Sok; is the
generalised eigenvalue corresponding to the eigenvegior]

It should be noted that each matifX, must have maximum rank because the denominator

in all generalised eigenvalues must be non-zero. Furthermore, the eigenspaces of the matrices
(T, — kiJ ), 1 = 1,2, represent the null-spaces of these matrices. Indeed, these eigenspaces
satisfy the relations7 , — x;J ,)&€; = 0, where§, here stands for the eigenspace corresponding

to x;. Proposition 16 indicates that the eigenspaces/null-spaces are nontrivial so the matrices
(J, — kT ,) must be rank deficient. In addition, the fact that a particular null-space has
dimension equal to the multiplicity of its corresponding eigenvalue suggests that matfices

xmJ ) and(J, — k2 J ;) have rank two and one respectively. It will be proved in Section 4.5.2
that if the conditions of Proposition 16 are met, thenzhi@umbers of the7 ; slices constitute

a geometrically valid trifocal tensor.

The numerous results derived in this section (and Appendix C) show that the tensorial matrices
Z,,J;, andKC;, act asgeneratorsof the trifocal geometry because they underpin any general
inter-image relations expressed by the matri€gs J,, and/C;». Furthermore, the tensorial
matrices are defined from and apply to canonical basis vectors representing either lines or points
in the images, so they intrinsically give a canonical representation of the trifocal geometry.
Applying constraints on these slices would automatically restrain the entire trinocular geometry
underlying the relationships between general line and point matches in three views. This is why
they are so important to consider in order to ensure a geometrically valid tensor.

Formulating ancillary constraints on the trifocal tensor now comes as a natural extension af-
ter considering the properties of the tensorial matrices. The next section presents the most
important sets of algebraic constraints which have been proposed to date in the literature. The
description follows their chronological order of appearance and reveals a shift in research focus,
from correlation to homography slices, necessary to identify minimal sufficient sets. From an
application viewpoint, taking ancillary constraints into account is a mantatory step to compute
a final tensor of practical use.

4.5 Ancillary constraints on the trifocal tensor

Although multiple-view geometry is well established [88],8& conversion into usable sets of
algebraic constraints has turned out to be a majorly difficult task. In the case of three views,
some researchers have proposed simplified versions of the full projective trifocal tensor to re-
duce the number of ancillary constraints. For instance, an affine tensor (corresponding to a weak
perspective camera model) can be used in some situations to approximate a generic tensor [64].
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The following sections consider the general projective case and describe ancillary constraints
underpinning three perspective views of a scene.

4.5.1 Papadopoulo-Faugeras’ constraints

Papadopoulo and Faugeras were perhaps the first to proposetsvof equations which fully
characterize the trifocal tensor manifold. Both sets are derived from the correlation slices and
contain constraints which are neither minimal (2) nor independent. All constraints hold
under the general viewpoint assumption that the three camera centres are not aligned.

Itis known from Proposition 9 that the column vectors of the trifocal matrices are three collinear
points on the line’,. This collinearity property implies that the columns of each correlation
matrix must be linearly dependent so the determinant of matfige®,, andZ; must vanish.

Proposition 17 The trifocal tensof7” satisfies three constraints of degrgecalled the trifocal
rank constraints

det(Z,) =0 i=1,2,3. (4.68)

These conditions on the tensor components are genericsthatliependent of the coordinate
systems in the images. In other words, constraints (4.68) remain valid if the trifocal matrices
are multiplied by non-zero scalass for i = 1,2,3. Because the trifocal matrices aex 3
matrices with vanishing determinants, they must have rank at most equalttiurns out that

the sum of the trifocal matrices is also a rank deficient matrix [28, 69]. A generalisation of the
rank constraints is stated as follows.

Proposition 18 The trifocal tensof7 satisfies the teextended rank constraints

3

rank (Z /\Z-IZ) <2 VAN #£0,i=1,23. (4.69)
=1

These constraints are equivalentiia (z;”zl /\Z-L-) = 0. To see that (4.69) enforces ten con-

ditions on the tensorial elements, we have to expand the previous determinant with respect to

the three unknowns;. The resulting equations are polynomial constraints of order three in the

unknowns);. In the determinant expansion, the coefficients of the cubic terins;, and A3

correspond to the determinantist(Z,), det(Z,), anddet(Z5) respectively. So the extended

rank constraints contain the rank constraints.

An interesting result which follows from Proposition 8 is that he 3 matrices £, £/, L]
and[LY,, L], L7;] have rank exactly equal fbecause they span a one-dimensional null-space
given by the epipoleg’ ande” respectively. This simple observation allows to identify another
two internal constraints on the trifocal tensor.
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4.5 Ancillary constraints on the trifocal tensor

Proposition 19 The trifocal tensof” satisfies two constraints of degréecalled trifocalepipo-
lar constraints, given by

det([LIm £/127 Lllg]) =0, (4.70)
and

det([LY;, L5, L5]) = 0. (4.71)

Constraint (4.71) on epipolar line8];, was also proposed by Heyden in the context of mul-
tiple view tensors [44-46]. His approach was very much algebraic and relied on dependen-
cies of determinants characterising the tensorial components, formally knownagsattiratic
p-relations[47].

We now define the first set of algebraic constraints that fully characterises a trifocal tensor.

Theorem 1 A bilinear mappingZ” fromP?* x P?* to P?* is a genuine trifocal tensor of the form
(4.41)if and only if 7 satisfies the following twelve dependent constraints: the ten extended
rank constraintg4.69)and the two epipolar constrain{d.70)and (4.71)

Other intrinsic properties of the trifocal tensor may be deduced by considering the 3-D incidence
of principal planes in two images and the projection of their intersection in a third view. Suppose
thate; = e,, ande, = ej, represent canonical lines in the second and third views with

Jj =aj,k =06 andj, k = 1,2,3. LetL,; be the 3-D line of intersection of pIan(F§ and

I';, andl;, ~ 7 (e;, ;) its image line in the first view. Now, consider the four liflgs,, ~

T (€ay:€as)s Ugran = T (€8, €05)layp = T (€4,,€p,), andlg 3, ~ T (es,,es,), Such that the

pairs of indiceq a1, az) and(f;, 52) are different andv; # (1, as # (2, otherwise identical

lines are produced. Clearly, the corresponding world linedarg, ~ I, AT,  Lga, ~

[y AT, Lo, =T, AT}, andLg,g, ~ T'; AT},. An example was shown in Figure 4.18

of Section 4.4.2. From Table 4.6 the image lines can be expressed in terms of the rows of
matricesJ ; asl; ~ c; ~ j}ek. Furthermore, using definitions (4.31) and (4.33), we have

. . 9T

thatl;, ~ [713’27'23’“,7;]’“] . There are nine possible tuples of such four lines obtained by
selecting different basis vectossande;,. Eachd-line tuple satisfies some algebraic constraints
detailed in the next proposition.

Proposition 20 The trifocal tensof7 satisfies ninevertical constraints of degrees given by

det([lalam lOllﬁQ’ lﬂlﬁ2]) det([lala27 lﬂlaw lﬂlﬂ2])
(4.72)

- det([lﬁmma lmﬁzv lﬁlﬁz]) det([lalaw lﬁ1a27 la1ﬁ2]) =0.
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A proof of this proposition can be found in [69]. The vertical constraints express the fact that a

line joining two corresponding points envelops a degenerate conic whose determinant is given
in (4.72). The advantage of showing the representation with principal planes is that it reveals
the connection between image features and the 3-D primitive they originate from. Enforcing

conditions (4.72) on the image lines constrains the intersection of the principal planes in space
and ultimately the form of the projection matrices. A second set of algebraic constraints can

now be described. This will conclude the overview of Papadopoulo-Faugeras’ constraints.

Theorem 2 A bilinear mappindgZ” fromP?* x P?* to P?* is a genuine trifocal tensor of the form
(4.41)if and only if 7 satisfies the following fourteen dependent constraints: the three rank
constrainty4.68) the two epipolar constraint&l.70) (4.71) and the nine vertical constraints
(4.72)

45.2 Canterakis’ constraints

Canterakis was the first to propose a minimal set of eight caings to describe the intrinsic
relationships between th¥ coefficients of the trifocal tensor [12]. His constraints rely upon
the properties of homography slicgs; presented in Proposition 16 and revisited next.

Recall that the matrix.7, — x;J,) has a nontrivial null-space for any of the two generalised
eigenvaluess;. It follows thatdet(J, — x;J,) = 0 so the generalised eigenvaluescan

be seen as the roots of a cubic polynomial giverlby 7, — 7 ,). For reasons that will be
explained shortly, we may only consider two out of three polynomials which can be generated
by selecting different pairs of homographigs, and 7 ,. Consequently, the requirements of
Proposition 16 on the trifocal coefficients are essentially that

1. The cubic polynomiadlet(J 2 — xJ1) has a single root; and a double rook, with
matrix (J s — ko J 1) having rank one.

2. The cubic polynomiadlet(J 3 — ~J 1) has a single root; and a double rook, with
matrix (J s — ko J 1) having rank one.

3. The general eigenvectors of the single rogtandr; are the same (equal &3) modulo
a scalar.

We now show how these conditions can be expressed algebraically. A first group of constraints
is obtained by defining a third degree polynomial which possesses a double root. Representing
the polynomialet(J s — kJ1) asp(k) = ax®+ bk* + ck + d, wherea, b, ¢, d are scalars made
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4.5 Ancillary constraints on the trifocal tensor

from the trifocal coefficients of matriceg; and J», the requirement that(x) has a double
root is satisfied provided

B? —4AC =0, (4.73)

whereA = b? — 3ac, B = bc — 9ad, C = ¢ — 3bd. When condition (4.73) holds, the single root
1 and the double root, are given by

B b B

L= - and Ko = —o 7
Two constraints similar to the one given in (4.73) can be derived by demanding a double root
for the polynomialsiet(J 3 — xJ1) anddet(J 3 — kT 2). Thanks to Proposition 16, the two-
dimensional eigenspaces of the matri¢gs, — xJ,) are readily recognised as the epipolar
lines Ly, Lo7, and L,3. Geometrically, all three lines intersect at the epipglebut only two
of these lines are truly needed to identify the location of this point. So, at best, we can only
obtain two independent (internal) constraints of the trifocal tensor by deriving (4.73) for any two
of the three matriceQ7, — vrJ ). Using all three matrices would generate a set of dependent
constraints.

Another essential requirement is that the matix — 2 J 1) has rank one. When this condition

is satisfied, we know from Proposition 16 that the eigenspace of this matrix is represented by
the epipolar lineC,;. The generalised eigenvalue problém, — xJ,)x = 0 then reduces to
(4.66) and becomes

T
T2 — k1= 631[«23.

One may see from this relation that any potnthich does not lie on the lin€,3 is mapped to
the epipolee;; by the matrix(J s — ko T 1), otherwiseeglﬁggx = 0. One such point could be
x = L5, (the dual ofL,3) because it does not lie afi,;. Now, from the homography-epipole
relation (4.60), we also know that; is sent toes; by any regular matrix7 ;. Therefore,
altogether, the rank-condition can be imposed by demanding

(JQ - 5251)1123 ~ Jieis.
These equations may be expressed in terms of a vector cross product as
(JQ - 5251)1123 x Jie3 =0, (4.74)

which provides two independent constraints on the matgteand.J .. Considering the matrix
(J 3 — ko T 1), another two constraints can be found in the same way using

(T3 — RaT 1)Ly x T1€13 =0. (4.75)
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Finally, Proposition 16 also requires equality (up to scale) for the two one-dimensional
eigenspaces corresponding to the single reptend~,. Again, using the homography-epipole
relation (4.60), this condition may be enforced by the equations

Jie3 x Jee13 =0, (4.76)

which yield two independent constraints. Any pair of matrigéscould be used to derive such
relations. The constraints proposed by Canterakis can now be summarised.

Theorem 3 A bilinear mappingZ fromP?* x P?* to P** is a genuine trifocal tensor of the form
(4.41)if and only if 7 satisfies the following eight independent constraints:

e Two constraints of the forn.73) by demanding a double root for the polynomials
det(JT 2 — kT 1) anddet(T 3 — kT 1);

e A total of four constraints frond.74)and (4.75)to compel matrice$J , — k2 J ) and
(T3 — RaJ 1) to have rank one;

e Two constraints fronf4.76)to compel matrice§7 > — k1 J 1) and(J 3 — k1T 1) to have
the same eigenspace.

Since the second and third images play analogous roles with respect to the trifocal tensor, similar
constraints can be derived from the homography shices

45.3 Ressl's constraints

Substantial work has also been done by Ressl| [73] to formalateénimal set of ancillary
constraints on the trifocal tensor. Similar to the elaboration of equation (4.72), his set is derived
by drawing on the properties of 3-D points and lines that arise as the meet of principal rays and
planes from the images. As seen in Section 4.4, these canonical relations are encapsulated by
the rows and columns of the tensorial slices. Despite considering the correlation slices, much
emphasis is dedicated to the homography slices, yet in a different way than Canterakis’. The
final constraints impose that the principal rays of one image project into concurrent lines in the
other two images. These constraints form a minimal set and are independent.

One inconvenience however is that Ressl’s constraints apply to a different tensor than the “stan-
dard” ones proposed by Hartley [37] or Faugeras [24]. A significant part of the work in Sec-
tion 4.4 was realised with the aim to express these constraints in the more familiar framework
proposed by Hartley, which is the one chosen in this thesis for trifocal tensor estimation.
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4.5 Ancillary constraints on the trifocal tensor

Three of the eight constraints are already known and consist of the rank constraints given in
(4.68). The second constraint is not entirely new and corresponds to a reformulation of epipolar
constraint (4.70) in terms of the correlation slices. A new expression for constraint (4.71) is
provided here as a byproduct. The remaining four conditions are founded on properties of
trianglesT, Ty, T3 defined in Section 4.4.2. These conditions are also a reformulation of the
original constraints suggested by Ressl. We begin by revisiting the epipolar constraints.

Epipolar constraints in the second and third views

The inconvenience with epipolar constraints (4.70) andl{ic@mes from the difficulty to write
them explicitly in terms of the tensorial components.

Considering the first epipolar constraint, we know from Proposition 8 thaB the3 matrix
(L, L5, L5] has a one-dimensional null-space, the epipsle In light of Proposition 9,
the epipolar lineC}, may be computed from any two column vectors of trifocal maffix
Therefore, constraintet([L];, L},, £}5]) = 0 may be reformulated by selecting, for instance,
the first two columns of matrices;. Using convention (4.25), the new form of this constraint
is

det([a] x a), b} x b}, ¢} x c}]) =0. (4.77)

A similar reasoning can be applied to epipolar lin&§. We deduce from Proposition 9 that
each line£7, may be obtained as the cross product of any two row vectors of the trifocal
matrices. Choosing the first two rows of these matrices and following convention (4.26), the
constraintdet([L];, L7, L]5]) = 0 becomes

det([d] x dJ, €] x e5, ' x £]) = 0. (4.78)
Collinearity constraints

The next series of constraints develops from Propositiomtseapresses the fact that vertices

Vik, Vor, andvsy of trianglesT,, Ty, andT; lie on epipolar lineCs, for k£ = 1,2, 3, as illus-

trated in Figure 4.19(a). The collinearity property of these vertices means ttaktBanatrix

formed by these points has rank two and therefore may be expressed as a determinant constraint
in the style of equation (4.78) but involving lin&s,.. According to Proposition 14, the triangle
vertices can be computed in terms of the rows of matri€esUsing Table 4.6, the collinearity

of verticesvyy, vo1, andvs; on line L3, implies the constraint

det([r2 X I3, Sg X 83, tg X tg]) = 0. (479)

Similarly, verticesv,, voy, andvs, on line L3, give the constraint

det([r3 X r1, S3 X s1, t3 X tl]) =0, (480)
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and verticesr 3, vo3, andvss on line L33 mean
det([r1 X 9, S1 X Sg, t1 X tg]) = 0. (481)

Papadopoul@t al. already discovered the role of the vertices entering the above constraints
when they derived the vertical constraints in (4.72). However, the authors miss to evolve any
conditions from their collinearity property. The new constraints are stated in the following
proposition.

Proposition 21 Trifocal tensor7 satisfies three constraints of degrée called trifocal
collinearity constraints, given by the equatior(@.79) (4.80) and(4.81)
Epipolar constraints in the first view

If the essence of epipolar constraint (4.70) (resp. (4.&l)hat epipolar lineL’; (resp. L];)
go through the epipolée’ (resp.e”), then the essence of epipolar lin€g, is to go through the
epipolee;s. This latter remark implies that

det([ﬁgl, [:32, £33]) =0. (482)

From Proposition 15, we know that epipolar lin€g, can be computed from any two of the
three verticessy, vor, andvsg, k = 1,2, 3. Moreover, these vertices can themselves be com-
puted from the rows of matrice$ ; as claimed in Proposition 14. Therefore, we can write

L31 >~ Vi X Vo =~ (ry X Ir3) X (Sg X 83),
L35 ™~ Vip X Vog =~ (r3 X 1) X (S3 X 81),
L33 ~ Vi3 X Vo3~ (r] X o) X (81 X 89).
Altogether, it follows that epipolar constraint (4.82) is given by
det([ras X sa3, I3 X 831, rig X S12]) =0, (4.83)

wherer;; = r; x r; ands;; = s; x s;. Here, we have chosen the first two vertices on each line
L. (using the rows of7; andJ ), but in general this constraint can be set up with any two
vertices on these lines (using any two of the three matg€gs This constraint is summarised

in the next proposition.

Proposition 22 Trifocal tensor7 satisfies arepipolar constraint of degreel2 given by the
equation(4.83)
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The conditions on the tensor proposed by Ressl| can be summarised in the following theorem.
This will conclude our presentation of the internal constraints on the trifocal tensor.

Theorem 4 A bilinear mappingZ from P?* x P2* to P?* is a genuine trifocal tensor of the
form(4.41)if and only if7 satisfies the following eight independent constraints: the three rank
constraints(4.68) the epipolar constrain{4.77), the three collinearity constraintg}.79)to
(4.81) and another epipolar constraint of the for(#.83)

It is possible to find sets with less th&@rconstraints, however, these sets are derived by direct
computation of the projections from a minimum of six point correspondences [72, 76]. These
constraints are useful in methods such as RANSAC to eliminate outliers in the data by iteratively
testing the quality of tensors computed from sets of six points at a time. This type of algebraic
constraints were not considered here because they do not give any indication on how to correct
an unconstrained tensor.

4.6 Recovering 3-D information from the trifocal tensor

One of many objectives behind computing the trifocal tensdoirecover the projectivity of

the scene and the camera centres. We have seen in equation (4.16) that the trifocal tensor
may be computed from three camera projection matrices. We now show the converse, that
projection matrices may be computed from the tensor up to projective equivalence. Knowledge
of the projections will then allow the relative camera positions to be worked out. We begin by
showing how the epipoles and fundamental matrices can be obtained from the trifocal tensor.

4.6.1 Retrieving the epipoles

Suppose that we have a trifocal tenéaas given in (4.16). Its corresponding trifocal matrices
Z, are readily obtained from expression (4.24). &gbe the unit vector that minimisd&,w;||,

that is,w; is the eigenvector corresponding to the third columm;oh the SVD decomposition

of Z; = U;,D;V]. LetW be the matrix with-th row made ofw.. The epipole” is the unit vector
that minimiseg|we”||, that is,e” is the eigenvector corresponding to the third columw afi the
SVD decomposition off = U'D'V'T [37]. The epipolee’ can be computed in a similar manner,
starting fromZ in place ofZ,. This method works well in the case of general motion. If the
camera displacement is degenerate, the trifocal matrices have rank legs Wiasich means
that the epipoles must be estimated from a more robust method as outlined in [73, Chap. 7].
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4.6.2 Retrieving the fundamental matrices

With knowledge of the epipolas ande”, itis an easy task to work out the fundamental matrices
Fy; andF3; from the trifocal tensor.

Recalling formula (4.48), a lin&' in the third view back-projects to a plane in space which
induces a homography such that ~ [Z,1", Z,l", Z5l"|m. Substituting this result in (4.6)
gives

U ~ [][T,1", Tol", Zsl")m

and now comparison with (4.7) shows that
Fo1 >~ [EI]X [Ill”, Igl//, Igl//].

Sincel” is arbitrary, Hartley recommands to uke= e” to avoid a critical situation wher®
lies in the null-space of any of the trifocal matrices. Therefore,

Fo1 >~ [e']X[Ile", Ize//, Ige//]. (484)
A similar proof can be evolved fdts;; using homographyi® in (4.44). Settind’ = €’ produces

Fy, ~ [ [Z]€, I €/, Ti€]. (4.85)

Fundamental matri¥s, between image¥, and V5 is not as straightforward to compute but

a couple of methods exist. One technique which utilises the formalism of Grassmann-Cayley
algebra [27] allows to express and recoVey in terms of the trifocal tensor [26]. A second
method proposes to compute this matrix linearly from six matching points across three views
given fundamental matrik,; and tensorial coefficientgﬂ‘C [4]. Perhaps an easier method than
the previous two is to compute homograghy and epipolees, such thaFs, ~ Hl, [ess]«. The
interested reader is conferred to [73, Chap. 7] for more details.

4.6.3 Retrieving the projections and camera centres

Because projections are defined only up to a projective 34ixtoamation, the first projection
may be chosen &= [I5.3 | 0]. Applying (4.13) in Proposition 3 to matrik; in (4.84) gives
the second projection as

P =[[Z:e", Toe", T5e"] | €]

Fixing the first and second projections in this manner defines a sppwjictive frame The
third projection cannot be derived from (4.85) directly because the final triplet of cameras
P/, andP” is not expressed in the same world coordinate system and therefomissistent
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4.7 Conclusion

Setting the scale of both epipolesande” so that they have unit norm, Hartley showed that the
third projection must be taken as

P// — [<e//e//T . 13X3>[l—'1|'e/’ l—'zl'e/7 l—;'e/] ‘ e//]

to ensure projective consistency between all three projections. This is summarised next.

Proposition 23 When the epipoles ande” are normalised to unit norm, 3-D information can
be retrieved from the trifocal tensor in the form of a set of three consistent projections

P = [Isxs]0],
P/ — [[Ileuy :Z-2e//7 Ige”] | e/]7
P// — [(e//e//T . I3x3)[II€/, :Z-'zl'e/7 I;'e/] | e//].

Given the special form of matrix, the first camera centre is located @t0, 0)". As mentioned

in Section 4.1.1, an optical centre is the (unique) point at the intersection of the principal planes
of a projection matrix. So, centr€s andC” may be computed as the null-spaces of the second
and third projections. More details can be found in [37, Chap. 5].

4.7 Conclusion

The description of three-view geometry can be approached the standpoint of two-view
geometry, with fundamental matrices as bindings between points of each image pairs. However,
the restrictions of fundamental matrices to properly encompass the multilinear relations between
three images have lead to the elaboration of a new object, the trifocal tensor. A valuable feature
of this tensor is its ability to handle point as well as line correspondences across the views.
If the essence of stereo vision is the epipolar constraint, then the essence of trinocular vision
is the point-line-line trilinear constraint. In general, information about a point must first be
converted into lines passing through that point before it can be handled by the trifocal tensor.
The various incidence relations between lines and points over three views give different, but
intimately related, trilinear expressions. These matching constraints tell whether features in
different images could possibly be the projections of a single world primitive.

A fundamental result is that the geometric notion of transfer between views is captured by the
algebraic contraction of the trifocal tensor. A single contraction of the tensor with canonical
basis vectors gives rise to tensorial slices, which are groups ofihr&eamatrices representing
either correlations or homographies between pairs of images. A contraction with an arbitrary
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image point or line produces a matrix which is a linear combination of the slices in one group
and so exhibits similar geometric properties than its canonical constituents. The consecutive
contraction of the tensor by two feature matches across two views permits finding a corre-
sponding feature in the third view. The trilinearities come as natural extensions of two-feature
transfer equations, when the tensor is fully contracted by three corresponding image tokens.

Because the tensorial slices may be seen as canonical representatives of the trinocular geometry,
they are ideal to characterise ancillary constraints that the trifocal tensor is subject to. Initial
work by Hartley and Faugeras al. focused on the correlation matrices and established several
sets of dependent constraints. In recent years, Canterakis first, and Ressl later, utilised the
homography matrices to derive minimal sets of eight independent constraints. This number
of constraints matches the expected theoretical value. The various sets of constraints were
examined in turn and expressed in one common framework.

The next chapter provides an implementation and testing of many results established here.
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Chapter

Application II: Trifocal
Tensor Estimation

his chapter is devoted to the estimation of the trifocal tefisom triplets of cor-

responding image points. The computation process is very sensitive to noise and

outliers in the data. Only an estimate which satisfies the internal constraints is accu-
rate enough to be usable in any application. It is highly probable that the initial approxim
of the trifocal tensor, arising exclusively from solving the incidence relations between v
does not adhere to the ancillary constraints. A refinement of the tensor must be carried
a post-process to enforce these conditions. The corrected estimate will then be consist
the underlying trifocal geometry.

For this task, general estimation methods described in Chapter 2 are employed and combined
with the trinocular constraints derived in Chapter 4. An additional non-iterative method is pre-
sented whereby a trifocal tensor is computed by imposing linear constraints. The FNS and
RFNS algorithms will be the major tools to generate accurate unconstrained estimates. The
trifocal tensors obtained are then corrected a posteriori using the schemes presented in Sec-
tion 2.5. Various performance measures of the devised (constrained) estimators are evaluated
through experiments on both simulated and real image data, and compared to that of other
existing methods.

5.1 Pointincidence

Throughout the chapter estimation of the trifocal tensof el based on the case of a point
incidence in three views. In general, there are two courses of action available. The estimation
problem may be modelled by an objective function which includes all nine equations generated
from each correspondence triplet or a minimum selection of four independent and orthonormal
equations.
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5.2 Hartley's method

Including all nine equations improves the conditioning of the system [40] but increases the

complexity of the solution. It was shown that the trilinear equations correspond to depth errors

weighted by a function of the data [31]. For an uncalibrated image sequence, the weights vary
substantially for different equations. Pre-normalising the data and selecting a minimum of four

equations helps reducing the variation between weights. This is the approach we will follow.

A typical triplet of corresponding points is assumed to have the farm= [m! m? m?]7,
m' = [m't,m? 1]7, andm” = [m”t, m"? 1]T. The points are related through the trifocal
tensor by the four trilinear constraints [79]:

3

ml'];n o mzmllzz;?,l 4 mzmllmulfz;fﬂ?, _ mlmﬂlzl?’) — 07

¢

mz/];12 o mzm/17;32 4 mzmllm//2/];33 _ mzm//Q,];l?’) — 07

¢

(5.1)

mz/]?l o mzm/Q/];?,l 4 mzm/Qm//17;33 _ mlmﬂl']??’) — 07

¢

Z (mi’]'-m — 2T mim/2 RT3 — mim1/2723) —0.

=1
This system will be used as a basis for computation of the trifocal tensor. Letfing 1, the
system can be brought into the form given in (2.2) by first concatenating the inhomogeneous
coordinates ofn, m’, andm” to obtain a single item of data= [m!, m? m/*, m?, m", m"?],
next rearranging the tensor entries into a length-27 vetand then setting

f(X, 0) = [fl(xv 9),...,f4(X, 0)]T7 (52)

wherefi, ..., f, are the corresponding expressions on the left-hand side of the above system.

5.2 Hartley’'s method

This section will show that a trifocal tensor can be estimatedn equivalent procedure to that

of the normalised eight-point algorithm for the essential matrix [36]. An unconstrained estimate

is first generated using the NALS method and then corrected lisgay constraints. In a final

step, the algorithm requires transformation rules to express the computed tensor back into the
original space of measurements. These transformations are stated in the next section before
presenting the algorithm’s details. We will refer to this methoéiagley’'s methodnamed so

after its inventor.
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5.2.1 Trifocal tensor normalisation

Suppose that triplet of corresponding poinig m;, and m; are normalised using transforma-
tionsT, T, andT” as in (3.6) such thah;, = Tm;, m; = T'm}, andm; = T”"m]. Denoting
the original tensorial coefficients bxlgj’“ for i,j,k = 1,2, 3, the trifocal tensor relating the
normaliseddata points is expressed as

=TT Y rst=1,2,3. (5.3)

7 K3

Here summations over the indiceg, andk are implicit. A more compact (and perhaps con-
venient) way to perform this operation is by acting on the trifocal matrices directly. Expression
(5.3) becomes

3
T.=T <Z(T—1)i7;> T r=1,23.

=1
The original tensor can be recovered from its normalised version by applying the transformation

T =T (T T, (5.4)

s

or equivalently,

3
T, =T1""! (Z T/ %) T =123
r=1

In general, trifocal tensors (5.3) and (5.4) do not have unit norm.

5.2.2 Normalised algebraic least-squares estimate

As in the case of homography or fundamental matrix computativze accuracy of the ALS
estimate can be greatly enhanced if image coordinates are normalised before the estimate is
actually computed. The normalisation ensures that the entries of the design mataxof
comparable size.

Suppose that the original 2-D homogeneous painfs m), andm; of the left, central and
right images respectively are convertedntarmalised2-D homogeneous poinis;, m;, and

m’ as described in Section 5.2.1. Moreover,3et= [a;, s, @), ¥}, u/, v/]T be the result of
concatenating the inhomogeneous coordinatasaofim;, andm?. If 7~?t designates the ALS
trifocal tensor estimate based on tkg then the correspondingormalised algebraic least-

squaregNALS) estimate o9, 5NALS, is defined by

Oxas =T =TT HI(T T (5.5)
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5.2 Hartley's method

5.2.3 Imposing linear constraints

The 27 entries of the tensor are defined up to a common scale so they may be computed given
at least26 equations involving points and lines as data input such that

2 #lines+ 4 #points> 26.

Originally, solutions were computed from a setfgboint matches ot 3 line correspondences
in three views. Hartley was first to propose a linear algorithm allowing for a mixture of both
points and lines [38].

The NALS estimate obtained in the previous step does not satisfy the ancillary constraints for
the trifocal tensor. This means that the projections recovered from this tensor would give a crude
3-D reconstruction of the scene. Imposing the constraints ensures that the rays back-projected
in space from each triplet of image points intersect in a single 3-D point, as seen in Figure 4.14.
To guarantee such a geometrically valid tensor, Hartley proposed a scheme whichlaqgaies
constraints on to the NALS estimate (5.5). This method is exposed next.

Having isolated epipoles ande” from 5NALS (see Section 4.6.1), one may solve the following
guadratic minimisation problem with linear constraints

aHRT = argmin HMEBH2 (5.6)
BeV
suchthat V = {8 € R"|cB =0}, (5.7)

whereM is the design matrix given in (2.53,= E(¢e’, ") is the transformation (4.22) andlis
the associated lengtl® vector containing the innét x 3 matricesA andB of the second and
third projections as defined in (4.21).

The constraints3 = 0 in (5.7) represent the three conditions

3
Za;.afl =0, (5.8)
i=1

which is the requirement that thieth column ofP’ is orthogonal to all other columns. It is
preferable to enforce these constraints, otherwise performing minimisation (5.6) alone may be
unstable due to the fact thatdoes not have full rank [35, 41]. The estimate resulting from
this minimisation process will be referred to as Hhartley trifocal tensor estimate and denoted

/éHRT-
The SVD ofc = UDVT enables to express as a linear combination of the columnstfthat

is, 3 = Vy. The diagonal matri® has the property that itsnon-zero diagonal entries precede
the zero ones; for constraints (5.8)= 3. Consequently;3 = 0 may be written a§by = 0,
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Chapter 5 Application II: Trifocal Tensor Estimation

which in turn is equivalent tdy = 0 sinceU is orthogonal. This last constraint is satisfied
only if y hasr leading zeros. In this case, we may wite= Vy = Vy, wherey is the vector
created fromy by discarding the leading zeros and’ is formed fromv by omitting the first

r columns. Since is orthogonal, the conditiofpiVy || = 1 is equivalent td| y || = 1 and the
original problem comprising (5.6) and (5.7) is reduced to a standard least-squares minimisation

BHRT = argmin || MEVyY ||2 with |y || = 1. (5.9)
yeRw-T

The solutionB;;z; can be found by computing the SVD of the matiix V and choosing the
eigenvector corresponding to the smallest singular value. Firﬁ@ﬂ% = VBHRT.

Levenberg-Marquardt correction

The epipoles, which serve to compute the constrained teasofixed and not updated in the
minimisation (5.6). This can be remedied by applying the Levenberg-Marquardt algorithm to
minimise the function

(e/,e") — |MEB]| with|E3]| = 1. (5.10)

The steps of the overall estimation procedure are as follows:

Algorithm 14 Hartley-LM algorithm

Steps to compute an estimzﬁ@RT_LM which minimises (5.9) and (5.10) :
1. Compute the trifocal tens@rNALS and retrieve the epipoles ande”; setk = 0.
2. Solve problem (5.9) for the current epipoles anddgt= Bypr-
3. Compute the norm of the residual error veatpr= ME 3,.

4. If ||ex|| is greater than a user-defined threshold, then apply the Levenberg-Marquardt al-
gorithm to find new values for the two epipoles, incremgrdand go back to step 2.
Otherwise, terminate the procedure.

5. Compute@HRT_LM = EBk whereE is made from the final estimates of the epipoles and
the limiting value of3,..

This minimisation problem is of modest size since only six parameters, the homogeneous coor-
dinates of the two epipoles, are involved so the computational cost remains small. The improved
epipoles yield an optimal estimate of the trifocal tensor in terms of algebraic error associated
with the input data [42].
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5.3 FNS: Full and reduced forms

Discussion

Compared to the minimisation problem (2.63), the probler)(Bwvolves the metric induced

by the identity covariance matrix of the parameter vector. Moreover, not@mﬁt in (2.63)

acts as a centre for the estimated enjit$) in the same way tha} is a centre fo3 in (2.74).

In contrast, (5.9) can be interpreted as minimising the quafMiBy y) with no centering, that

is, the centre islwaysthe null vector. The advantage however in Hartley's formulation resides

in the fact that the ancillary constraints are linear and therefore can be expressed conveniently
in matrix form. After some algebraic manipulations, these constraints can be included in the
main objective function and solved at once to yield the inner (constrained) projections.

As we saw in Chapter 4 the elements of the trifocal tensor must satisfnlinear internal
constraints to represent a geometrically valid entity. These constraints are only partially met by
Hartley’s linear solution and a major drawback of this solution is that the (geometric) reprojec-
tion error is not fully reduced. Nevertheless, the method is fast and can be a good precursor for
an iterative procedure. In some instances, it can even produce an estimate which is competitive
with nonlinear solutions. The real image sequences we have considered give an example of
both possibilities, when Hartley’s method produces some results which are “far” from those of
the iterative techniques and some which are of comparable quality.

5.3 FNS: Full and reduced forms

Hartley’'s estimation method is simple but from its simplaidises its imperfection. The fun-
damental numerical scheme (FNS) and its reduced version (RFNS) offer a good alternative as
they produce near-optimal unconstrained solutions and are also fast. It will be shown through
experiments that when combined with post-correction methods they form good constrained es-
timators.

The implementation of the FNS method was analogous to that for estimating homography ma-
trices. The only difference was to supply the scheme with a carrier nianékevant to the
trifocal tensor and adopt the appropriate gradient makrixc(U). Elements relevant to RENS

can be derived from those of FNS by selecting the appropriate rows in the matrices. The fol-
lowing sections give technical details specific to the estimation of the trifocal tensor with both
methods.

5.3.1 Parameterisation for FNS and RFNS

The objective functiorf(x, 8) is taken as specified in Section 5.1. For FNS, the entries in
6 are chosen such th&f’C is the (97 + 3j + k& — 12)-th component of as set initially in
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(4.18). For RFENSpU(x) and @ can be partitioned as in (2.32) and (2.33) with= I,.4,
o = [/](;117 /];127 /];217 /];22 ]T’ and
o= [7'113’ 7'123’ 7'131’ 7'132’ 7'133’ 7'213’ 7'223’ 7'231’ 7'232’ 7'233’ 7;13’
7523’ 7;31’ 7;32’ 7;33’ 7'111’ 7'112’ 7'121’ 7'122’ 7'211’ 7'212’ 7'221’ 7'222 ]T.

5.3.2 Curtailing or truncating ?

The linear dependency of the gradiedtsf; of the objective function (5.2) means that the
length of thef(x;, @) surpasses the common codimension of the submanifolds of the{form

RS | f(x,0) = 0} with 0 representindgdeal parameters that might have generated the data.
Curtailing the objective vector is not an acceptable compromise because the correspgbnding
parameterisation does not encompass all of the sought tensorial coefficients.

The linear dependency is tackled in this case by using FNS Il (Algorithm 5). The singularity
is accommodated by replacing thex 4 matricesz; ' andz,! by their 3-truncated pseudo-
inverses(z;); and (z); in the expressions fod,yg, and J4, ., respectively, and in related
corresponding entities.

5.3.3 Data covariances

Given a data sefx;}?_,, the covariance of each datumtakes the form of a symmetic matrix

Am, O O
Axi = 0 Am; 0 )
0 0 Ay

whereh,,,, A, andAm;/ are2 x 2 symmetric covariance matrices associated with the inhomo-
geneous coordinates of the points, m;, andm/ respectively.

Although noise information was available in our synthetic tests, data covariance information
was not exploited. In experiments involving real imaggswas taken to be the defawltx 6
identity matrix corresponding to isotropic homogeneous noise in image point measurement.

5.4 Gold Standard method

Optimal results can be obtained by utilising the maximumliliied (ML) estimator. When all
data covariances are assumed to be the default identity matrix, the ML cost function (2.10) is
given by the reprojection error

> (d(m;, y)? + d(m}, 1in})? + d(m, 1)?), (5.11)

i=1
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5.5 Experiments with synthetic data

where pointsh; = N (PM;), m;, = N (P'M;), andm! = N(P"M;) andp’ andp” are the
second and third projection matrices retrieved from the trifocal tensor estihatelescribed

in Section 4.6.3. Herd/(a) = a/a® is a normalisation procedure whose application ensures
that the third (homogeneous) coordinate of a given planar point is unity/(ant) denotes the
Euclidean distance between the image poingdb that have been normalised in the above
sense. ThéVI; are initially obtained by triangulating from the;, m/, andm?, and are then
recomputed in each optimisation step of an iterative scheme (typically, and in our case, the
Levenberg-Marquardt algorithm) that minimises the reprojection error. The overall procedure
constitutes the Gold Standard (GS) method.

For a trifocal tensor estimat obtained by a method other than GE&L(@) is calculated by
minimising (5.11) over th&n reprojected pointsn;, m;, andm; and keeping the projections
fixed. Note the difference with the GS algorithm, in which—for find@n@wat minimises the
reprojection error—then;, m’, m’, andp’ andp” are allowed to vary simultaneously.

A commonly used accuracy measure which can be derived from (5.11) is the root-mean-squared
(RMS) error. Given a trifocal tens@ it is taken to be

~

RMS = \/ A (0)/(6n),

with 6 representing the number of elementary degrees of freedom expressible in units of length:
(three imagesk (two image dimensions). For an optimal estim@fés value is a good indica-
tion of the average noise contained in the data.

5.5 EXxperiments with synthetic data

Repeated experiments were performed in order to colleclisesistatistical significance. The
regime adopted was to generate a 3-D scene visible by three perspective cameras and project
the scene points onto images to provide “true” matches. Each image point was then perturbed
by homogeneous Gaussian noise of two pixels and the resulting noise-contaminated triples of
corresponding points were used as input to several algorithms.

5.5.1 Scene and camera configuration

In a standard experiment, the scene and cameras were ar@nfylbws. After fixing a world
coordinate system, a set of 3-D points were synthetised in a cuboid of dimefisioh$ x 3
m? with 5 points equally spaced along each direction. The images 3é&e x 2000 pixels,
with a pixel size ofd x 9 um?. The centre of the cuboid was first locateu away from the
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world origin. We then applied &5° rotation about the poirt..5, 0.75,4.5]T (front lower right
corner of the cuboid) to all 3-D points.

The 125 (rotated) world points were captured by three perspective cameras placgd-at
[—5,3,1.5]T, C, = [0,0,0]", andC5 = [3,3,1.5]". The right camera was rotated by
—31°,-36°, and —5° about ther, y, and z-axis, respectively. The central camera only had

a 10° rotation about itgj-axis. The left camera was subject to rotations-G2°, 35°, and5°

about itsz, y, andz-axis in that order. All rotations were counterclockwise about the respective
axes and relative to the camera coordinate system. For each view, rotations were applied about
thez, y, andz-axis consecutively.

The three cameras used a common calibration matrix. The focal l¢hgths set to3600

pixels (about32mm) which allowed an approximats° x 31° viewing angles in ther and
y-direction respectively. The origin of the image coordinate system was set in the centre of the
image where the principal point was assumed to be located and the skew factor was taken to
be zero. Figure 5.1 shows the simulated 3-D scene and camera configuration just described.
The projection of the scene onto a left, central and right image provided true matches shown in
Figure 5.2. The “true” trifocal tensor relating the noise-free image points was computed using
(4.16) based on the knowledge of the camera projections for each of the three views.

y-axis

Z—-axis
(depth)

X—axis 4

Figure 5.1. A synthetic 3-D scene made of equally spaced points inside a cuboid and
three cameras viewing the scene.

To determine the difference in accuracy and computatioffigiericy between different algo-
rithms, each unconstrained and constrained stage was examined. The methods’ performance
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Figure 5.2. Noise-free images acquired by the three cameras shown in Figure 5.1.

was assessed through two types of measures. One type in@udedneasures based on cost
functions and the other includedmputationameasures such as number of iterations, conver-
gence rate, and timing.

5.5.2 Performance measures part I: Unconstrained estimatio n

The performance of the estimators was evaluated over a e¢feg experiments to check their
average statistical behaviour in the long term.

Table 5.1 shows averages over the total number of trials for five unconstrained schemes: NALS,
GTLS, FNS, RFNS, and RHEIV. The three iterative schemes were seeded with a GTLS estimate
obtained as described in Section 2.2.2. The first two columns considehtheand J .
objective functions respectively. To calculatg,,; residuals for the non-reduced methods, the
p-component of each findl-vector was retrieved and plugged into tHg,; expression.

Methods JAML, JAML Iter. Time (sec)
NALS 1415.4 1415.3 1 0.05
GTLS 1415.4 1415.3 1 0.36

FNS 1398.1 1398.1 7.8 241

RENS 1398.1 1398.1 1.5 1.02
RHEIV 1398.1 1398.1 1.5 1.2

Table 5.1. Average residual errors and computational performance of five unconstrained
algorithms.

It is clearly seen that the estimates produced by the iteratthemes give all similar values of

Jamr, andJy, . residuals. This in particular provides an empirical confirmation of the identity
Jamn(0) = Jau () (see Appendix A.2). RFNS and RHEIV achieved a better convergence
rate over FNS—the last scheme was almost three times slower and required about five times
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as many iterations compared to the two other schemes. It can also be seen that the iterative
methods are tangibly more accurate than the basic non-iterative NALS and GTLS procedures.

This suggests potential utility of the iterative methods, as only accurate unconstrained estimates
can be upgraded to accurate constrained estimates suitable for practical applications.

20 T T T T T

" . 14154
= 10} I . ' . . 1
=2
0
1100 1200 1300 1400 1500 1600 1700 1800
20 T T T T T
" | 1415.4]
%! 14154
= 10+ o
e 4-__.“_l__‘—
0
1100 1200 1300 1400 1500 1600 1700 1800
20 T T T T T - "1
" I 1398.1
2 10F I I I I l I I I -
[V
0
1100 1200 1300 1400 1500 1600 1700 1800
20 T T 1 T
" ’ | - 1398.1]
£ 10 :
64
0
1100 1200 1300 1400 1500 1600 1700 1800
20 x : : : I —
> I 1398.1
L A0r I I I Il. I I I 1
X
0
1100 1200 1300 1400 1500 1600 1700 1800

Figure 5.3. Histograms of Jayr, values for five unconstrained methods.

To complete the analysis, Figure 5.3 shows histogramb @f, values for each estimator over

the 200 simulations (the average value appears in the top right corner of each histogram). Two
distinct groups of histogram profiles can be distinguished. One profile corresponds to NALS and
GTLS estimates (top two histograms) whereas FNS, RFNS, and RHEIV estimates generated
another type of distribution (bottom three histograms).

5.5.3 Performance measures part Il: Constrained estimation

This section shows the results of testing the constraintsaaijent schemes presented in Sec-
tion 2.5. The following acronyms will designate the type of post-correction employed: LM for
Levenberg-Marquardt, GN for Gauss-Newton, TGN for Truncated Gauss-Newton, and WNLS
for Weighted Nonlinear Least-Squares. Thus, the composition of FNS and LM correction will
be denoted by FNS-LM. To use Kanatani’'s extended method, let

®(0) = [¢1(0),...,95(0)]", (5.12)
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where ¢, ..., ¢g are the values of the constraints (4.68), (4.77), (4.79) to (4.81), and (4.83)
respectively.

With the exception of GN, all other techniques can be supplied with a non-identity covariance
matrix for 8. This covariance matrix effectively induces a different metric in the parameter
space. The choice of such a matrix is therefore important since different covariances may lead
an algorithm to different solutions. Two main questions arise. One is to determine whether a
particular choice of covariance matrix leads to a better and/or faster correction of the parameters.
Secondly, given a covariance matrix, do the correction schemes converge, and if they do, is it to
the same solution ? The next section presents the experimental results of this investigation.

Influence of the parameter covariance matrix in estimation

Since FNS and RHEIV produced equivalent estimates to thos&-bfS, results in this sec-

tion concern correction of the RFNS estimates only. The five constraint methods were applied
to each of the200 §RFNS estimates to assess the effect of incorporating different parameter
covariances in the correction mechanism. Apart from GN, the methods were run on three input
covariance matrices: a “default” identity matfix -, Mp, o andxaRFNS. Recall that GN is a
simplified version of WNLS where, by definition, the covariance matrix is fixed £0I57 7.

Several outcomes were immediately observable. The migfrix - was not often positive defi-
nite and therefore made every algorithm diverge.

Kanatani’'s extended method turned out to be inadequate to correct an unconstrained trifocal
tensor, irrespective of the covariance matrix used. For low levels of noise in the data (less
than0.2 pixels), the value of the constraifht was systematically small so the method reached
machine accuracy in one or two steps without providing much correction to the input estimate.
The result of this operation remained very much an unconstrained vector. For higher noise
levels, the method diverged as the iterations progress. Although the technique is efficient for
simpler problems such as ellipse fitting or fundamental matrix estimation [49], the degree of
difficulty involved in correcting an unconstrained trifocal tensor revealed to be too significant
for the method to work properly.

Table 5.2 presents the averagg,;, residuals for the various methods set with either the default
matrix Iy7xo7 OF matringRFNS. Clearly, whenever the identity matrix was used, the final con-
strained estimates were of mediocre quality no matter which method performed the correction.
Although the algorithms converged, they all reached a distant local minimum whevgihe

cost value is significantly high. On the other hand, when the metric was induced by the matrix
Mg..ns» &l Methods yielded equivalent constrained vectors. It will be shown in Section 5.5.3
that these solutions are commensurate in quality with GS’s solutions.
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Covariance GN WNLS LM TGN
Io7w97 5544.1 — 5496.3 5655.8
9 — 1427.6 1427.6 1427.6
RFNS

Table 5.2. Mean Ja, values when using different parameter covariances.

Perhaps a more appealing test comes from looking at the RM&iariTable 5.3. This error
approximately doubled whenever the identity matrix was used.

Covariance GN WNLS LM TGN

Io7xo7 2.53 — 2.52 2.56

5 — 1.38 1.38 1.38
RFNS

Table 5.3. Mean RMS errors when using different parameter covariances.

To summarise the findings, matety __ was unusable as parameter covariance. The Kanatani-
like method was an inefficient post-correction scheme for the trifocal tensor. The default identity
matrix induced an inadequate metric to adjust the parameters so the methods either diverged or
found a distant local minimum of the function. Best corrections were obtained when the matrix
Mp,.ons Was used. Operated with this covariance, WNLS, LM, and TGN converged to a similar
solution.

Experimental results

We now compare the accuracy of the previous corrected estit@bptimal constrained vectors

obtained from GS. Results for Hartley’s method are also given for reference. In this method, no
iterative correction of the epipoles was performed, this is deferred until using real image data
where the benefit is more noticeable. Table 5.4 provides feedback on the algorithms perfor-
mance. Every correction scheme which could use a non-identity parameter covariance matrix

was supplied withty .

Upon inspection, it is immediately apparent that RFNS-GN produced estimates with high cost
function values. For any other combination of RFENS with a correction scheme, the cost values
of the computed estimates were of comparable accuracy to the GS estimates. These values
were all very similar, if slightly higher than those for the estimates generated by the respective
unconstrained schemes (Table 5.1), as expected. Hartley’s method yielded reasonable results
and was especially fast.

The RMS error (fourth column) can be derived from thg, cost value and so, not surprisingly,
values for thal-based correction methods match those of GS. The fifth column indicates the
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Methods JAML JAML Jwmr RMS Iter. Time (sec)
Hartley 1442.6 1442.5 1442.6 1.39 1 0.05
RFENS-GN 5544.1 3580.9 9543.9 2.53 2.7 1.47
RFENS-WNLS 1427.6 1427.5 1427.6 1.38 2.5 1.45
RFENS-LM 1427.6 1427.5 1427.6 1.38 4.3 1.08
RENS-TGN 1427.6 1427.5 1427.6 1.38 6.22 1.69
GS 1427.8 1427.7 1433.5 1.38 12.4 22.37

Table 5.4. Average residual errors and computational performance of several constrained
algorithms. Hartley and GS methods are added for reference.

number of iterations achieved in the constrained mininosastage of the specified method.
WNLS performed the least amount of iterations followed by LM and then TGN. The sixth
column corresponds to the overall timing to produce a constrained parameter vector, that is, the
times for both unconstrained and constrained stages were added together. Timing for a specific
constraint adjustment scheme may be deduced by calculating the time difference with the results
given in Table 5.1.

LM turned out to provide faster correction than WNLS. This result may be explained by the
fact that LM relies on an termination condition based on the difference of successive estimates
whereas WNLS (and other post-correction schemes) uses cost function values, which need to
be computed at each iteration. We found experimentally that this latter choice was safer to
guarantee a good constrained estimate.

Overall, RFNS followed by any post-correction operated very quickly compared to GS. Note
that the search space for GS has dimeng2n x 3 + 27 = 402, whereas the search space
for RENS has dimensior&3—since the method does not optimise over the data points. The
post-corrections typically involved a few steps and therefore executed rapidly too.

Figure 5.4 shows histograms df\, values for the constrained methods. The RFNS-based
estimators and GS produced identical profiles whereas Hartley’s histogram shows some dif-
ferences particularly around tHd00 mark and abové550. Compared to the histograms of

the unconstrained estimators (Figure 5.3), these ones are more compadt, \fheost func-

tion and its slices were also examined; results were similar to those for homography estimation
shown in Section 3.3.

We performed a metric reconstruction of the cuboid from the RFNS-TGN trifocal tensor.
Figure 5.5(a) shows the corners of both the original object (red) and its reconstruction obtained
from the projective tensor (blue). The “projective” cuboid is clearly different from the original
one. After metric reconstruction (Figure 5.5(b)), the final object is very much aligned with the
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Figure 5.4. Histograms of Janr, values for five constrained methods. Not shown are
the values for RFNS-GN and RFNS-KK, as they are off the scale.

y-axis
o

z-axis
(depth)

(a) (b)

Figure 5.5. Cuboid 3-D models. The red cuboids are the original objects whereas the blue
ones represent computed cuboids from the (a) projective and (b) metric RFNS-
TGN trifocal tensor estimates.

starting cuboid. The mixture of red and blue edges is due tedbre viewing angle as the two
cuboids are now very similar.
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5.6 Considering real images

The values of the ancillary constraints are of great interest but will be omitted in this section.
Details are delayed until Section 5.6.1 and 5.6.2 when working with real image data. This
information may be more pertinent then and was found to agree with the results for synthetic
data.

5.6 Considering real images

We now extend the algorithms test framework to perform expenits on data collected from
two real image sequences.

5.6.1 Chemistry department sequence

Three images were acquired by a hand-held cameraléarcdrresponding points were manu-

ally identified as shown in Figure 5.6. Due to a small baseline distance between any two camera
positions, the trifocal plane here is not firmly defined and has potential to trigger numerical
instabilities. The problem is often due to several small eigenvalues being close to zero when
solving the eigenvalue problekgé = A\€. The eigenvector associated with the smallest eigen-
value is no longer the sought solution and actually yields to a drastic increase in the objective
function. In turn, this typically makes the algorithm diverge. A similar behaviour is observable
when the noise in the data is high or outliers are present.

Chemistry D
Office

Figure 5.6. Chemistry department sequence. Each image is 600 x 800 pixels in size.

Page 132



Chapter 5 Application II: Trifocal Tensor Estimation

To ensure convergence, a modification of FNS in stegf Algorithm 5 became necessary.
With v; ;. the normalised eigenvector corresponding toittiesmallest eigenvalue d&f, |, the
updated, was defined as the result of normalisipg)_, (8} ,v;x)vi.. A similar adjustment

was made in Algorithm 6 describing RFNS. As far as projectionmaiti-dimensionatather
thanone-dimensionatigenspaces are concerned, it should be stressed that FNS, RFNS, or any
similar scheme involving such projections converge to a soluifferentfrom the solution
obtained by using the respective methods in their original form. The point here is that the multi-
dimensional eigenspaces bring stability but potentially loose accuracy. For this reason, the
dimensionality of the space spanned by the eigenveetgrshould be kept as low as possible.

In particular, if there are no essential gains in stability, the multi-dimensional eigenspaces should
be abandoned.

Both unconstrained and constrained algorithms were run on Hartley-normalised data and nor-
malised trifocal tensor respectively. GS was the only method to operate on the original (un-
normalised) measurement data. The various iterative methods were seeded with the GTLS
estimateﬁGTLS, except the Hartley-LM method which, by definition, used an NALS estimate.

Performance results part I: Unconstrained estimation

To begin, Table 5.5 shows the results of applying five uncamsd algorithms to the image

data points. In each class of iterative and non-iterative estimators the methods produced very
closeJanr, andJy,,, values for both functions, and, given a@yector and itgue-component
coming from a particular method, the two functions attained a similar cost. FNS and RFNS
performed the same number of iterations and executed in about the same time. RHEIV lagged
fractionally behind.

Methods JamL JAML Iter. Time (sec)
NALS 33.2 33.2 1 0.08
GTLS 33.8 33.8 1 0.23
FNS 28.5 28.3 3 0.48
RENS 28.6 28.6 3 0.58
RHEIV 28.7 28.6 5 0.64

Table 5.5. Residual errors and computational performance of five unconstrained schemes.

As for homography matrix estimation in Chapter 2, we exantiieamethods convergence rates,
more particularly those of FNS and RFNS listed in Table 5.6 below. Jfg, cost value is

given at each step as well as the relative norm difference between two successive iterates. Note
here that, although FNS and RFNS operated on Hartley-normalised data, the cost values are
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given for the original measurement data so that they can be compared to the final values in
Table 5.5.

FNS RFNS
Step JAaML 10r+1 — O]l ek+1/ €k JAML 10541 — Ol eht+1/€k
0 33.8 0.433 0.53 33.8 1.180 0.43
1 36.2 0.217 0.36 34.2 0.232 0.41
2 28.7 0.072 0.17 29.1 0.098 0.39
3 28.5 0.011 0.00 28.7 0.059 0.00

Table 5.6. FNS and RFNS convergence characteristics when computing a trifocal tensor from
to the chemistry department data. Step 0 gives the initial values corresponding to
the seed 6, = §GTLS.

The norm difference between successive estimates is tgrgihller for RFNS and clearly
decreases as the iterations progress. FNS exhibits a much more steady pace. This behaviour is
typical in optimisation methods where the sékds far from the solution. In this situation, the
methods produce iterates which move steadily towards the local minimum and it is common that
the error increases in the very first step(s). This last remark is applicable to both FNS and RFNS
here. It was already noted in the case of ellipse fitting and fundamental matrix estimation [33]
that FNS was not producing monotonically decreasing;, values for successive estimates.

Overall, both FNS and RFNS showed a modest linear convergence. RFNS proved to have
faster convergence rate than FNS, as expected, despite a slightly highefifinatost. In

the next section, we will see that the constrained vectors produced by these two methods are
commensurate in accuracy so the slightly inferior RFNS estimate has not adversely affected the
constraint correction stage.

Performance results part II: Constrained estimation

The solutions delivered by FNS, RFNS, and RHEIV were thenembed with the constraint
adjustment schemes presented in Section 2.5. As for synthetic data, the extended Kanatani
method failed to converge, irrespective of the covariance matrix mlsed,I27X27,M§ZML, or

Xou wheref,,;, was an AML estimate generated from the above three iterative schemes.

To facilitate reading, the results are split up into several tables. Each one highlights an (iterative)
unconstrained scheme followed by a post-hoc correction. The three methods, WNLS, TGN, and
LM were supplied with parameter covariaml:@KML coming from the unconstrained estimator

they were combined with.
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First, Table 5.7 gives the results of constrain{ﬁgqs. For clarity, the fifth column indicates
the number of iterations achieved in the constrained minimisation stage of the specified method
and the timing result (sixth column) encompasses both unconstrained and constrained stages.

Methods JAML J/AML JML RMS Iter. Time (SEC)
FNS-GN 131.5 112.9 131.6 0.70 4 0.62
FNS-WNLS 37.2 37.2 37.2 0.37 7 0.70
FNS-LM 37.2 37.2 37.2 0.37 13 0.90
FNS-TGN 37.2 37.2 37.2 0.37 6 0.62

Table 5.7. Residual errors and computational performance of FNS followed by four post-
correction schemes.

Not surprisingly, GN provided a limited correction to the aaeters. Although the algorithm
converged, and quite rapidly, it had reached a distant local minimum of the function. Other
schemes performed well and matched each other in all tests that measured accuracy of the final
(constrained) solutions. The fastest method was TGN, followed by WNLS, and then LM.

Methods JAML JAML JML RMS Iter. Time (sec)
RHEIV-GN 154.5 143.9 154.6 0.76 4 0.73
RHEIV-WNLS 37.5 37.3 37.5 0.38 10 0.86
RHEIV-LM 37.4 37.3 37.3 0.38 9 0.67
RHEIV-TGN 37.3 37.3 37.3 0.38 7 0.81

Table 5.8. Residual errors and computational performance of RHEIV followed by four post-
correction schemes.

The same correction procedures were carried out after RHElivhation. Results appear in
Table 5.8. As before, GN turned out to be the weakest constraining scheme with even higher
cost values and RMS error than when coupled with FNS. The residual errors for other correction
types are good but slightly higher than those obtained with FNS indicating that the marginally
inferior unconstrained estimate did influence in this case the performance of the adjustment
schemes.

The final and best results were obtained for the RFNS estimate, shown in Table 5.9. Perfor-
mance of Hartley, Hartley-LM, and GS methods are also included for comparison. Despite that
GN produced its best results here, the error values remain significant. The other correction pro-
cedures performed very well with TGN being the fastest again, seconded by WNLS, and LM

in third place. Compared to Hartley’s method, the three RFNS-corrected estimates from these
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Methods JAML JAML JML RMS Iter. Time (sec)
Hartley 57.1 57.1 57.1 0.46 1 0.08
Hartley-LM 37.3 37.3 37.3 0.38 3 0.61
RFNS-GN 116.9 105.5 116.9 0.66 5) 0.66
RFNS-WNLS 37.2 37.2 37.2 0.37 7 0.69
RFENS-LM 37.2 37.2 37.2 0.37 15 0.59
RFNS-TGN 37.2 37.2 37.2 0.37 6 0.67
GS 37.2 37.2 37.2 0.37 233 43.16

Table 5.9. Residual errors and computational performance of RFNS followed by four post-
correction schemes. Hartley, Hartley-LM, and GS results are added for reference.

schemes yielded marquedly better constrained solutionshadme actually inseparable from

that of GS. One noticeable difference is that GS’s larger search space meant that the method run
considerably slower than any of the three correction schemes combined with FNS, RFNS, or
RHEIV. For this sequence, Hartley-LM method produced excellent results compared to its basic
form with no epipole correction. Its results are close to those of the optimal iterative schemes.

The benefit of using a parameter covariance matrix is clearly visible. This is best noted in
situations where any estimate resulting from applying a WNLS correction achieved optimal
results compared to their GN-corrected counterpart.

Another important factor to check is the effectiveness of the correction schemes in enforcing the
multi-objective constraints and ancillary constraints. For each of the final estimates obtained,
the following constraints were evaluated:

1. z/;(xl-ﬁ) = 2?21 \fj(xi,5)|, the sum of the absolute value of the principal constraints
fj givenin (5.1). This is approximately the equivalent of the epipolar constraint for the
fundamental matrix.

2. o(0) = 0| ¢2(6), whereg,, . . ., s were defined in (5.12).

3. Faugeras’s epipolar constraints (4.70) and (4.71) which will be denoted agd &,
respectively.

Table 5.10 shows example values of the above constraints for RFNS-TGN and GS parameter
vectors. Combinations of FNS and RHEIV with the available constrained estimators, except

with the Gauss-Newton scheme, achieved similar performance. We also give the values for
aFNS and@RFNS so that the accuracy of the final constrained vectors can be contrasted to some
AML unconstrained estimates. The results ﬁiﬁqs and §RFNS give an appreciation of how
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much correction was needed to get a fully constrained vector. GS is an ultimate benchmark to
compare the efficiency of the post-correction methods.

o~ ~

Methods ¥(x4,0) »(0) &1 &2

FNS 0.230 4.20 x 106 2.78 x 1073 1.29 x 104
RFNS 0.197 1.70 x 10~° 1.97 x 102 1.61 x 102
RFNS-TGN 0.059 5.76 x 10737 1.71 x 10719 4.62 x 10719
GS 0.058 1.17 x 10738 6.92 x 10719 1.08 x 1022

Table 5.10. Some constraint values for two unconstrained and two constrained estimates.

An important fact to note in these results is that the value> dbr the unconstrained esti-

mates is relatively small. This explains why the Kanatani-like scheme struggled to provide
any substantial correction. That it is for the constraint;, or &, the difference in magni-

tude between unconstrained and constrained estimates is significant, hence the need to apply
a powerful post-correction to reach an adequate accuracy. Although FNS and RFNS should
theoretically produce equivalent estimates, these tests reveal that their respective output vectors
are not guaranteed to satisfy the constraints in the same way.

Finally, to get a visual impression of the accuracy of the tested methods, the three input images
of Figure 5.6 were registered using the RFNS-TGN trifocal tensor. A 3-D model was then built
as shown in Figure 5.7.

Performance results part Ill: Accuracy of fundamental matri ces

We now carry out a qualitative comparison between the fundémhenatrices which can be
retrieved from the trifocal tensor and an optimum estimate coming from applying GS to pairs
of feature points.

In the following, fundamental matric&s, andF;; were computed from the RFNS-TGN tensor

as explained in Section 4.6.2. For comparison, optimum fundamental matricasdF;, were
computed with GS applied to each pair of vielws2 and1 —3 respectively. GS was seeded with

a GTLS estimate to match the initialisation condition of the RFNS-TGN trifocal tensor. The
resulting four estimates were SVD-corrected to ensure that they satisfy the rank-two constraint.
Given an estimated fundamental maffixwe then computed the reprojection error (ML cost),

the epipolar errof = m’"Fm, and the absolute value of the ancillary constra{ii) = det(F).
Results are presented in Table 5.11.

The fundamental matrices of corresponding views have a similar ML residual and an ancillary
constraint value. The matrices retrieved from the trifocal tensor seemed to be more advanta-
geous though since they produced lower epipolar error than those of GS.
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Figure 5.7. Two views of the 3-D model obtained from the RFNS-TGN trifocal

tensor estimate.

F-matrix JML 1) ol

Fo1 9.5 0.129 1.59 x 1022
Fo1 9.6 0.095 2.65 x 1072
Fa1 13.2 0.225 4.23 x 10722
Fap 13.2 0.054 2.12 x 10722

Table 5.11. Reprojection error and constraint values for various fundamental matrices.

A visual appreciation of the accuracy Bf; andFs; can be attained by inspecting Figure 5.8.
Depicted is a typical set of epipolar lines obtained from transferring an image point from one

view to another via these matrices. In addition, the epipolar lines frigrandFs; are drawn. To

contrast the difference with a trifocal tensor which does not satisfy the ancillary constraints, a
third final set of lines was drawn, coming from fundamental matrices associated with the NALS
trifocal tensor. The distinction between GS and RFNS-TGN epipolar lines is not visible and
GS’s lines are occluded by those of RENS-TGN. The view is improved in Figure 5.9 which

shows the images at sub-pixel accuracy, focusing around the feature point.
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“Badger
Chemistry D
» Office

Figure 5.8. An example of epipolar lines for a particular data point. The blue and
green lines are obtained from fundamental matrices retrieved from the
NALS and RFNS-TGN trifocal tensors respectively. The yellow epipolar
lines from GS fundamental matrices are not visible here because they lie
underneath the green epipolar lines.

Figure 5.9. Epipolar lines of Figure 5.8 viewed at sub-pixel level. The same magnifi-
cation factor has been used in all three images. The difference between
RFNS-TGN and GS starts to show up but is negligible. The lines from the
NALS fundamental matrices do not fit the feature point in any image; the
line is even out of sight in the third image.
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5.6.2 Dredger sequence

Another three images were acquired by a hand-held camergammbrresponding points were
manually selected as shown in Figure 5.10. Once again, the trifocal tensor is not well defined
because the three camera centres are close to be aligned which made the estimation process
unstable. We have used the same modification as in the previous image sequence;, Wiith
normalised eigenvector corresponding to kit smallest eigenvalue &f, ,, the update&d,

was defined as the result of normalis@j:l(Hgflvi,k)vi,k. A similar adjustment was made in

RFNS.

For this sequence, FNS, RFNS, RHEIV, and GS were initialised with the NALS estimate,
5NALS. Algorithms for both stages were supplied with Hartley-normalised data and normalised
trifocal tensor respectively. GS was again the only method to execute on un-normalised data.

Figure 5.10. Dredger sequence. Each image is 720 x 576 pixels in size.

Performance results part I: Unconstrained estimation

Five unconstrained algorithms were also applied to the inpageas of this sequence. RHEIV
did not converge, irrespective of the seed used, so it does not appear in Table 5.12.

Unlike in the previous sequence, there is more variability in the accuracy of the estimates
generated. RFNS performed much less iterations than FNS but its performance, in terms of
cost function values, is somewhat lower than expected. The effect of projecting on multi-
dimensional eigenspaces may have lead to this poorer performance. Overall, for any of the
estimates,/,\r, and.J)y . residuals matched, which agrees with our expectations.

Similar convergence tests to those in Section 5.6.1 were also carried out. Results are sum-
marised in Table 5.13. RFNS demonstrated fast convergence obtaining a small norm difference
in a single step. The fact that the method quickly reached a solution indicates that the esti-
mate obtained from the initialisation procedure was in vicinity of a local minimunf,Qf; .
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Methods JAML JAML Iter. Time (sec)
NALS 176.9 176.9 1 0.11
GTLS 185.4 185.4 1 0.48
FENS 172.9 172.9 3 1.23
RFNS 175.4 175.4 1 1.11

Table 5.12. Residual errors and computational performance of four unconstrained schemes.

However, this solution is not an optimal minimiser .6fy;;,. Started with the same seed, FNS
behaved differently. The method first showed an increase in function value then steadily moved
towards a local minimum. In this case, the solution yielded lowgyi;, residual than RFNS

final estimate. The algorithm’s behaviour is reminescent of the steps it followed earlier when
applied to the chemistry department data.

FNS RFNS
Step JAML 10r+1 — Okl ek+1/€k JaML 10k+1 — Okl ek+1/€k
0 176.9 0.257 0.15 176.9 0.150 0.01
1 182.1 0.075 2.39 175.4 7.61 x 1074 0.00
2 174.3 0.101 0.08
3 173.4 0.008 0.00

Table 5.13. FNS and RFNS convergence characteristics when computing a trifocal tensor from
to the dredger data. Step 0 gives the initial values corresponding to the seed 6, =

OnALS-

Performance results part II: Constrained estimation

Attention is now focused on constraining the previously ol@d AML solutions. Kanatani’s
extended method was once again to no avail and so four correction schemes remained to be
tested: GN, WNLS, LM, and TGN. Table 5.14 gives the results of coupling the FNS estimate
with these schemes.

As noted in the experiments of Section 5.6.1, GN converged but produced a poor constrained
solution. The other adjustment schemes performed equally well across all tests.

Table 5.15 summarises the results of constrailaggNs. The table also includes the perfor-
mance of Hartley, Hartley-LM, and GS methods. For this sequence, Hartley’s method per-
formed exceptionally well both in terms of accuracy and execution speed. Note here that the
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Methods JAML J/AML JML RMS Iter. Time (SEC)
FNS-GN 614.4 587.7 614.4 0.90 3 1.30
FNS-WNLS 177.2 177.2 177.2 0.48 1 1.22
FNS-LM 177.1 177.1 177.1 0.48 4 1.67
FNS-TGN 177.3 177.3 177.3 0.48 3 1.67

Table 5.14. Residual errors and computational performance of FNS followed by four post-
correction schemes.

epipole correction with LM did not improve the quality of thetienates generated. In separate
tests, it actually turned that a slightly lower termination condition value and a Hartley estimate
as initialisation for FNS produced an unconstrained estimate which, after correction, yielded
results that matched those of the corresponding corrected RFNS estimates. Nevertheless, con-
sidering the number of matching points, the difference in the results compared to FNS seeded
with Oyars (Table 5.14) is negligible.

Methods JAML JAML JML RMS Iter. Time (sec)
Hartley 177.9 177.9 177.9 0.48 1 0.11
Hartley-LM 177.9 177.9 177.9 0.48 2 0.61
RFNS-GN 179.5 178.8 179.5 0.48 1 1.22
RFNS-WNLS 177.0 177.0 177.0 0.48 1 1.26
RFNS-LM 177.0 177.0 177.0 0.48 3 1.03
RFNS-TGN 177.0 177.0 177.0 0.48 4 1.41
GS 176.7 176.7 179.3 0.48 576 625.12

Table 5.15. Residual errors and computational performance of RFNS followed by four post-
correction schemes. Hartley, Hartley-LM, and GS results are added for reference.

RFNS was very competitive with GS in terms of cost functioruesl reprojection error and

RMS error. Although GS'’s stopping condition was very loivx{ 10~*), the method could

not reduce the/yy, residual further which resulted in a discrepancy with the, and Jy
residuals. Setting a lower termination condition did not help because function values and norm
differences became close to the machine precision and the method started behaving erratically.
A striking observation in these results come from the methods’ execution time. GS converged
very slowly compared to the other techniques. In addition to its high-dimensional search space,
GS here made very small steps towards a solution and therefore used up many iterations—a
well known phenomenon of the Levenberg-Marquardt method when the estimation process is
unstable. This behaviour was avoided in FNS and RFNS, and subsequent correction of the
parameters delivered optimal constrained estimates in considerably less time.
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Once again, in light of these experiments, there is no doubt that employing a non-identity
parameter covariance matrix provides a distinctive advantage. Any estimate resulting from a
WNLS correction achieved better accuracy than a GN-corrected one. The difference margin
between their respective residuals was not as significant as for the chemistry data though.

Finally, we have checked the contraint values produced by the solutions of FNS, RFNS, RFNS-
TGN, and GS. The statistics obtained are recapitulated in Table 5.16. Any corrected FNS esti-
mate, except the one based on a Gauss-Newton correction, achieved similar accuracy. For these
images the unconstrained estimates are less disparate from one another and their constraint val-
ues are of smaller order of magnitude than for the previous sequence. The amount of correction
required to get a constrained vector is visibly substantial.

o~ ~

Methods ¢(Xi, 0) @(9) 51 fg

FNS 0.190 7.34 x 1076 4.68 x 1074 3.62 x 1074
RFNS 0.088 2.27 x 1076 1.01 x 1073 2.59 x 1074
RFNS-TGN 0.060 7.35 x 10738 3.48 x 10719 7.38 x 10720
GS 0.057 2.94 x 10739 9.90 x 10~20 5.24 x 10719

Table 5.16. Some constraint values for two unconstrained and two constrained estimates.

As for the image sequence in Section 5.6.1, the three inp@gesaf Figure 5.10 were registered
and a 3-D model was built using the projections retrieved from the RFNS-TGN trifocal tensor
estimate, see Figure 5.11.

Performance results part Ill: Accuracy of fundamental matri ces

In this last section, we investigate the precision of fundat@ematrices retrieved from the
RFNS-TGN trifocal tensor. Fundamental matrices computed with GS (seeded with an NALS
estimate) were also used for comparison - results were no better if GS was initialised with a
GTLS seed. All estimates were rank-two corrected. The notation convention is kept identical
to that in Section 5.6.1. Results appear in Table 5.17.

F-matrix JML 1) |Q|

Foq 49.4 0.082 1.22 x 1072°
Foy 50.6 0.090 0

Fi1 71.7 0.42 2.65 x 10722
Fy 71.7 0.066 3.18 x 10722

Table 5.17. Reprojection error and constraint values for various fundamental matrices.
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Figure 5.11. Two views of the 3-D model obtained from the RFNS-TGN trifocal tensor
estimate.

For the first two views, results from GS are closely relatechtsé of RFNS-TGN. The main
discrepancy occured in the epipolar error for vielvs 3, where the trifocal tensor clearly
minimised this error better. It is obvious in this example that the trifocal tensor encapsulates
fundamental matrices which are approximately of equal quality as far as ancillary constraints are
satisfied. This may not be true for separate fundamental matrices, even when they are computed
with GS, hence the advantage of using a trifocal tensor.

We have also looked at the fit of several sets of epipolar lines through the image data. An
example for a specific point is shown in Figure 5.12 and at sub-pixel accuracy in Figure 5.13.
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Figure 5.12. An example of epipolar lines for a particular data point. The blue and
green lines are obtained from fundamental matrices retrieved from the
NALS and RFNS-TGN trifocal tensors respectively and the yellow lines
are from GS. In this case all three lines are distinct except in the third

view where they are grouped closer together.

Figure 5.13. Epipolar lines of Figure 5.12 viewed at sub-pixel level. The same mag-
nification factor has been used in all three images. The epipolar lines
from GS do not superimpose on those of RFNS-TGN but still provide an
excellent fit to the feature point. The lines from NALS miss the point in
every image.
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5.7 Conclusion

This chapter offered an application of the unconstrainedmsation algorithms and constraint
post-correction schemes in the realm of trifocal tensor estimation. It was first shown through
experiments on simulated data that the parameter covariance matrix plays an important role in
finding a good constrained solution. Takilﬂg{iML for a parameter covariance matrix revealed

to be an adequate choice.

Supplied with this parameter covariance, the Truncated Gauss-Newton (TGN) scheme provided
the most efficient constraint correction for the experimental data considered. It was optimal in
terms of accuracy as it generated constrained vector of quality equivalent to that of GS. Two
other post-hoc corrections, Weighted Nonlinear Least-Squares and Levenberg-Marquardt, also
produced remarkably accurate and consistent results and were practically as good as TGN. The
fourth adjustment scheme considered was Gauss-Newton. Although the method converged, it
suffered from utilising a basic identity parameter covariance matrix. Its final solution vector was
not a good constrained estimate in any of the two image sequences considered. The last method
implemented and tested was Kanatani’'s extended method. This was the only correction scheme
to act directly on the ancillary constraints and not on the projection matrices. Unfortunately,
the method failed to converge in every situation because the constraint values were small and
therefore prevented any substantial correction to be made.

Overall, FNS and RFNS algorithms coupled with adequate post-correction schemes were shown
to produce optimal constrained solutions. These methods have simple update rules, are inexpen-
sive to compute and therefore provide significant speed-up over traditional parameter estimation
methods like the GS method.
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Chapter

Conclusion

he thesis has described some minimisation techniques te solwide class of

parameter estimation problems in geometric computer vision. For each method

exposed or proposed, the motivating ideas were discussed, analytical calculations
were presented, and final algorithmic steps were detailed. In example applications the numer-
ical performance of the new estimators was discussed and compared to existing methods. The
next sections summarise the main conclusions from each chapter and highlight a number of
future research areas.

6.1 Thesis review

Initially, a specific form of a parametric model was definede Talationships between image
data and parameters pertaining to the model were expressed through a multi-objective p
constraint function. To accomodate the case where model parameters are further su
ancillary constraints, a second constraint function was presented for use in conjunction
principal constraints. The parametric model thus defined permits covering both unconstrained
and constrained optimisation tasks. The applications considered in this thesis, homography
fitting and trifocal tensor estimation, are instances of each type of problem respectively.

The development of constrained parameter estimators comprises two main stages. In the first
part, an approach was adopted to solve the principal system of equations in terms of an un-
constrained minimum of a cost function. The estimate generated was then used as input to an
adjustment procedure which aimed to enforce the ancillary constraints. In this setting, it is as-
sumed that the sought constrained vector lies close to the unconstrained minimum and therefore
that it would be a good estimate of a global constrained minimum for the problem.

Several cost functions and associated estimation techniques have been exposed. A framework
was established where objective functions and estimators could be built and analysed system-
atically. It started with classical least squares methods such as TLS, NTLS, and GTLS, which
minimise some image algebraic error, to progress towards more statistically sophisticated func-
tions like the maximum likelihood (ML) cost function measuring geometric errors in images.
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The minimiser of the ML cost function is typically isolated by the Levenberg-Marquardt (LM)
algorithm. In computer vision, LM, under the label of the Gold Standard (GS) scheme, is
a pivotal procedure to compute optimal parameters by minimising maximum likelihood cost
functions. The high dimensionality of the search space combined with a subtle iterative up-
date strategy typically makes LM operate fairly slowly. These considerations led to the study
of an alternative cost function. Through a variational argument, the approximated maximum
likelihood (AML) cost function was proposed. Critically, the gradient of the AML function was
shown to have a special form. This was exploited to compute its minimiser by a specifically
devised fundamental numerical scheme (FNS).

Next, the original AML cost function was refined to cope with situations where the principal
objective function has linearly dependent components. Analysis revealed that the deficiency
could be overcome by the use of generalised inverses. In turn, these inverses were shown to
act effectively as regularisation tools. Each type of generalised inverse gave rise to a different
AML cost function and consequently to a variant of the original FNS.

Motivated by the desire to robustify these schemes even further, a reformulation of the main
constraint function led to a reduced form of FNS, RFNS. The new algorithm replaces the orig-
inal (unconstrained) estimation problem by two problems of lower dimension. A first iterative
procedure computes only a subset of the parameters and the remaining parameters are recovered
in a final single step based on the result of the earlier process. RFNS offers better convergence
properties and requires a less accurate initial estimate. It was shown that the optimality con-
dition underlying this scheme is based on a reduced AML cost funcfipp, . It was further
demonstrated that the minimiser.gf,,; could be used to produce a minimiser of the full AML

cost function. While the emphasis was primarily on FNS, it was seen that a vector satisfying
the reduced variational equation could alternatively be viewed as a solution of a generalised
eigenvalue problem. This observation was readily exploited to advance a reduced form of the
HEIV scheme.

Until this point, ancillary constraints were ignored. A new section then explored ways of inte-
grating these constraints in an adjustment mechanism to produce constrained parameters. Novel
cost functions were devised, again, within a consistent framework. A simple residual function
was first proposed and immediately refined to accomodate problems where a linear relationship
exists between the complete set of parameters and a subset of it. This change only affects the
dimensionality of the solution space but not the constraint correction process. So, if no subset
can be identified, the overall correction procedure can be applied directly to the full set of pa-
rameters. On the other hand, if a subset exists, then the linear relationship between the two sets
must be taken advantage of.
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The first method proposed to minimise the residual function was the Gauss-Newton (GN)
method. It was shown that GN represents a particular case of a weighted nonlinear least squares
(WNLS) method where the covariance matrix of the parameters is the identity. Several examples
of parameter covariances were mentioned. Radically differing from the previous two methods
is Kanatani-like (KK) correction scheme. The method properly uses the ancillary constraints
in its adjustment mechanism. A common feature of the methods so far is that they are based
only on the Jacobian of the constraints to find the next best estimate. To handle situations
where the ancillary objective function is ill-conditioned, more powerful methods need to be
employed. It was shown how the LM method could be applied to a suitable residual function
to produce a constrained estimate. Another method capable of tackling rank-deficient function
is the Truncated Gauss-Newton (TGN) method. In this case, a splitting of the Jacobian allows
annihilation of elements which cause instability in the algorithm. Any of these five post-hoc cor-
rection schemes can be combined with the previous unconstrained methods to create genuine
constrained estimators.

As a first application, the unconstrained algorithms were used to the computation of a planar
homography. Initial synthetic experiments were conducted to check the ability of the FNS
methods to deal with objective functions with linearly dependent components. These estimators
were tested on data corrupted by increasingly larger noise levels, starting with a very small noise
of less than a hundredth of a pixel. The influence of the initial estimate on the inversion of the
problematic matrices was also measured. The results revealed that good-quality AML estimates
were obtained when an adequate generalised pseudo-inverse was used. It was seen that the
standard inverse failed systematically and typically made FNS diverge. Subsequent experiments
on different sequences of images compared the accuracy of the AML estimates to those of
existing methods. Across all sequences, it was observed that AML solutions commensurate in
guality with maximum likelihood ones. A distinct advantage of FNS was that it converged at a
quadratic rate and produced estimates marginally faster than GS. A confidence region around
the AML solution was also visualised to check that FNS computed a minimiser of the AML
function.

The second application considered was that of the estimation of the trifocal tensor. This is a
much harder problem than fitting a homography to data. The difficulty might be attributed to the
fact that the (standard) parameterisation of the trifocal tensor manifold is given by a nonlinear
(quadratic) mapping and also to the higher number of ancillary constraints compared to the
number of principal constraints. The trifocal tensor was first defined geometrically from line
correspondences across three images. The trilinear constraints were then derived progressively
starting from a contraction of the tensor with a single image feature, then two, and finally three
image features. Geometric and algebraic properties of the tensorial slices were presented to pro-
vide necessary background before considering the ancillary constraints on the tensor. The work
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6.1 Thesis review

of Hartley, Faugeras et al., Canterakis, and Ressl on this topic were examined. The different
sets of constraints were all expressed within a common framework. The chapter concluded with
practical information about recovering 3-D structure from the tensor.

The majority of the trifocal constraints derived were then employed in the unconstrained AML
estimators and post-hoc correction techniques to either compute trifocal tensors or test the accu-
racy of given such entities. One additional method, the Hartley-LM method, was also presented
as a specific technique devoted to the estimation of the trifocal tensor. The method is non-
iterative, imposes linear constraints on the tensorial coefficients, and is reasonably accurate. It
can therefore complement the array of precursor methods for the non-iterative schemes. In sim-
ulated tests, we began by evaluating the performance of unconstrained estimators, namely TLS,
GTLS, FNS, RFNS, and RHEIV. This was followed by a similar analysis for the adjustment
schemes, GN, WNLS, KK, TGN, and LM. For the latter algorithms we showed the importance

of the parameter convariance matrix on the estimation. The synthetic tests already provided a
statistical appreciation of the robustness of the correction schemes. Experiments on real image
data confirmed earlier deductions. Convergence of FNS was linear for the sequences tested but
rapid nonetheless since only a few steps were necessary. As for homography, accuracy of the
resulting constrained estimates were compared to that of several other estimators, including GS.
For the cost functions used and ancillary constraints considered, the results of the AML-based
constrained estimates matched those of the ML estimates. Again, the FNS and RFNS-based
constrained estimators executed tangibly faster than GS. The RFNS-TGN estimator turned out
to be the best combination scheme in terms of accuracy and execution speed. Finally, for each
image sequence, an interesting analysis was also carried out to compare the accuracy of RFNS-
TGN trifocal tensors to that of optimal fundamental matrices between intermediate views.

In general, FNS and RFNS are geared to find (local) minimisers of differentiable cost functions
or functions that can be rendered smooth via regularisation. These methods were designed to
operate with a minimum number of elements. FNS and RFNS are Newton-Raphson-like itera-
tive methods where each step is equivalent to solving a quadratic optimisation problem with the
help of first derivative information only. Upon careful initialisation, they yield a minimiser of

the AML cost functions which commensurate in accuracy with a maximum likelihood solution.
Other salient features of the methods are that they have simple update rules and exhibit fast con-
vergence. This was demonstrated here on homography fitting and trifocal tensor estimation and
is in accord with earlier findings concerning such estimation problems as ellipse fitting, funda-
mental matrix estimation, camera resectioning, or constrained generalised principal component
analysis.
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Chapter 6 Conclusion

6.2 Future research

Since FNS and RFNS are fast and accurate methods, an immexti@tsion of this work could

be to incorporate them as modules in tracking algorithms or robust outlier rejection estimators.
A lot of these methods rely currently on fundamental matrices to establish cross-correlation
measures between images. By means of the estimators developed here, the inter-image con-
nectors could be upgraded to trifocal tensors. This would result in stronger image geometry
and increased efficiency in various applications, especially if object occlusions are a frequent
problem. The capacity of the trifocal tensor to handle line correspondences could be relevant
in these circumstances. Note that FNS and RFNS-based constrained algorithms could also be
applied to estimate a quadrifocal tensor connecting four views of a scene. This would complete
the task of computing the major building blocks of image sequences.

On amore theoretical level, desirable properties of numerical methods can be summarised in the
adjectives reliable, accurate, and fast. These three aspects may all be seen to have a common de-
nominator that relates to the convergence of the algorithm. Although rules were given to ensure
convergence of FNS and RFNS, reliability may be improved by incorporating Hessian infor-
mation in the minimisation process. The search direction of the next iterate would be defined
more precisely which would increase the stability of the estimators. In turn, higher accuracy
of the computed solution would be guaranteed. It may be envisaged that, for an application
such as trifocal tensor estimation, this strategy would boost convergence to superlinear or even
quadratic. A subsequent analysis could examine whether the gain in convergence speed would
reduce the number of iterations. The tradeoff is to identify whether the enhanced numerical
robustness compensates for the higher computational cost of calculating the Hesigin.of
Certainly for relatively simple applications like homography fitting, this addition is superfluous
and should be discarded.

Regarding the post-hoc correction schemes, a line search strategy could be implemented in GN
and WNLS method although our expectation is that it would provide limited benefit for the
increased computational load. Now, when an unconstrained trifocal tensor is corrected with the
TGN scheme, the grade of the Jacobiars set manually. A convenient arrangement would

be to automatically and reliably determine its value. Further attention could also be given to
improve the Kanatani-like correction scheme. This work would require a deeper mathematical
analysis and may lead to a novel algorithm.

Having identified many of the pitfalls in dealing with an AML cost function and ill-conditioned
ancillary constraint function, it is possible to contemplate integrating the ancillary constraints
into a single optimisation problem. This extension is already available in the form of the Con-
strained Fundamental Numerical Scheme for problems described by a single-objective principal
function with a single ancillary constraint. The task would be to generalise this procedure to
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6.2 Future research

the case of multiple constraints for both principal and ancillary functions. By construction, a
single constrained estimator searches through a smaller parameter space and therefore may be
prone to isolating a local extremum of the cost function rather than a global minimum, espe-
cially if the objective function is complex. The two-stage approach adopted in this thesis was
chosen deliberately as a safety precaution to avoid such situations and unravel some of the nu-
merical complications that arise when dealing with multi-equation functions. The accumulated
knowledge should now permit to devise a fully integrated estimator.
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Appendi

Complementary Proofs for
Reduced FNS

This appendix provides further proofs involved in the derovaof the Reduced Fundamental
Numerical Scheme presented in Section 2.4 of Chapter 2.

A.1 Problem equivalence

We begin by showing the equivalence of (2.22) and the systeiohwdomprises (2.49a) and
(2.49b). Recalling definitions (2.41) and (2.44), first note that, by (2.33) and (2.43),

5, =% (A.1)
foreachi = 1,...,n. Consequently, definition (2.21b) can be rephrased as
Mg = iuizg—luj. (A.2)
=1
Again by (2.43), foreach=1,...,n,

I(l—m)x(l—m) ® "72— O(lfm)xm2

(I @ m] B (I @ m;) = [

Ome(l—m) Lsxm & ,r';l'
< B; Om(lfm)XmQ
On2 xm(l—m) Omn2 xm2
% I(l—m)x(l—m) @ n; Om(l—m)Xm
L Om2><(l—m) Loxm ® n;
_ (I(l—m)x(l—m) & ’r’;r)B;(I(l—m)X(l—m) ® 77@) O(l—m)Xm
O (1-m) O

It follows thatNy given in (2.42) takes the form

N’ _
N, = [O o Ou ’Wm] , (A.3)

mx(l—m) Omxm
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A.1 Problem equivalence

where

n

o = > (Tuomyx-m) @ 0B (Limyxi—m) ©10;). (A.4)

i=1

Now, if @ satisfies (2.22), then, in view of (2.32), (A.2), and (A.3), the equivalent condition
MgO = Ng6 on @ can be written as

n

Z; Np O
S s = ] (A.5)
— | W (o7 0 0| |«
which in turn expands into the system
> zE (W + 2] p) = Nop, (A.62)
=1
> ows Wtz p) = 0. (A.6b)

=1
By our standing assumption thats invertible, the second of the above equations reduces to
> mWa+zp) =0. (A.7)
i=1

Now, since thez; and hence th&, ' are symmetric, it immediately follows from (2.45) that
Z' = (02, )=ty w'zI Hence (A.7) can be rewritten as

i=1“1 i=1“1
(Z 2;—1> Wa+2Z"p) =0
=1
and further as
Woa+Z'p=0. (A.8)
As W is invertible, this immediately implies (2.49b).

To show that (2.49a) also holds, note that, by (2.32) and (2.33), forieach. .., n,
U0 =wa+z]p,
and by (2.46) and (A.8),
Wat+zip=ua+Z +2)p=2p,

whence

Ulo=12"p. (A.9)
Recalling definitions (2.21f) and (2.47), we see that (A.9) combined with (A.1) implies that
n; = ;. Comparison of (2.48b) and (A.4) now yielllg = N,. Thus, in particular,

Nopt =N, pt. (A.10)
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Furthermore, in view of (2.46),

n

SzE (Wt zlu) = 3 (2 + D)5 (e + 2] ).

i=1

By (A.7),
dzg Wa+zip) =2 m(Wa+2zp) =0,

and by (2.46), (2.4E;a), and (A.8),

Z ZE Wa+ 2] ) Z ZE T W+ 2T+ 2 )

= Z ZE 2T =M, p.
Putting the last three expressions together, we see that the left-hand side of (A.6a) is equal to
M, ue. This jointly with (A.10) yields (2.49a), as required.

Working backwards, one can easily infer thakiinda: satisfy (2.49a) and (2.49b) respectively,
thend = [T, o] satisfies the original expression (2.22).

A.2 Common minimisers

Let Moy and Qgy be the parts oﬁXML as per (2.33). Here we show thagxML can be
identified with zi',;,, and, moreover, that botli,;, and J},,;, attain a common minimum
value at9,,, andpi’,,,, respectively.

First note that, in view of (A.1), the expression oy, given by

Jauw(0) = > 0'u;z'ule

=1
can be restated as .
Tamp(8) = 0"Uz U] 6. (A.11)

Next, given an arbitrary, let o be such that (2.49b) holds, andfet= [T, a™]T. Then, as the
calculation in Appendix A.1 immediately preceding (A.9) reveals, (A.9) holds, and this equality
combined with (2.50) and (A.11) yields

JamL(0) = Jj&ML(/"’)' (A.12)

SinceJAML(axML) < Jamn(0), we see thaUAML(agML) < Jiu (), and sincep can in
particular be taken to bg},,; , we have

JAML (5XML) < JAML(//I’XML)' (A- 13)
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A.2 Common minimisers

On the other hand, as (2.49b) holds M“AML and Qgy (recall that@ﬁgML satisfies (2.22),
which, as shown earlier in Appendix A.1, implies (2.49b)), (A.12) can be explicitly written is
this case as

JAML@XML) = J/&ML(#’@U ). (A.14)

AML

But Jh i (Banr) < Jayg (pe) for all e, so in particular

‘]j&ML(ﬁ'XML) < J/&ML(#’@U ). (A.15)

AML

Putting (A.13), (A.14), and (A.15) together, we obtain

J/&ML(I/}’XML) = J/&ML(N?)XML) = Jamr(03nrp)-

Hence it first follows thafi'y,;, is equal to"?)XML (up to scale), as, generically, the minimiser of
Ji, 1S uniquely defined (up to scale). Furthermore, we seethat and.J},,, attain a com-
mon minimum value a@XML andpi's ., respectively. Our claims have thus been established.
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Appendi

Homography Types

It is possible to distinguish between two types of homographjrix depending on the camera
configuration capturing the scene. Algebraic details of their derivation are presented next.

B.1 Plane-induced homography

Suppose that a scene plafeis imaged from two viewpoints. Lét; = K;R;[I3x3| — Ci],

i = 1,2, be the projection matrices for the two views. Assume Ihdbes not contain either of
the camera centras; or C,. We shall show that corresponding image points are related by a
homography.

Let X be a point oril, and letx andx’ be its left and right images. Consider the projection ray
in 3D passing througk andC;. Any pointX’ = [X’T, 1]T along this ray satisfies

. X
KiR1[Isxs| — Cy] = AX

1

for some scalah, implying that
X' = C; + MR K 'x.

If the scene planél has unit outward normal and is situated at a distaneel from the origin
of the world coordinate system, then any pa¥it = [X”T, 1]T on the plane satisfies

n"X" +d=0.

The pointX = [XT, 1]7 lies at the intersection of the ray and the plane. Hence
n'X+d=0

and the value oA for X can now be read off from the equation

n"(C; + AR 'x) 4+ d = 0,
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B.2 Rotation-induced homography

the result being

TCy +d
A= TR K
1 1
Consequently,
-
~ ~ n Cl —|—d 1,1

As C, ¢ 11, we haven™C; + d # 0, implying A # 0. Now the projection ofX in the right
image satisfies

X' ~ KoRo[I3x3| — Co]

C, + ARy Ky 'x
1 ] '
This relation does not change if the right-hand side is multiplied by the stakar Putting
vT =n"/(n"C; + d), we have

RyK 'x — o TR K 'xCy
X/ = o :
whence
R'K 'x — v R K 'xC,
X' = KoRo[Igu3| — Co] | 1 To_1 1_1 '

= KR [(RT 'K 'x — v R 'XC) 4+ v RTK 1xCy],

[
= KoRo[R Ky 'x — (Cy — Co)v Ry K ],
= K2R2[13X3 — ( CQ) T]Rflel){,
= KoRs[I55 — (n"Cy + d)H(Cy — Co)n"|R K 'x. (B.1)

SinceC, ¢ 11, we also havea™C, + d = 0. A simple calculation now shows that
[I3><3 — (IlTél + d)il(él — éQ)HT]
X [I3><3 — (l’lTég + d)il(ég — él)nT] = ngg.
Hence the matrix
H = KyRy[I3x3 — (n'Cy +d) " H(Cy — Cy)n"|R 'K !

is invertible. Finally, rewriting (B.1) ax’ ~ Hx, we see thak’ is the image ofx by the
homography associated with

B.2 Rotation-induced homography

A homography of simpler form is applicable in the situatioranliboth cameras have a common
centre. Such a configuration of cameras arises, for example, when a single camera rotates, possi-
bly changing its intrinsics during the motion—the two cameras then represent the rotating cam-
era at two different instants. Wit the cameras’ common centre, we haye- KiRZ-[IngI—C],
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Appendix B Homography Types

and so
Py = KyRy(K1R1) "'KiRy [I5.5] — C] = KoRoRy 'Ky Py,

or P, = HP;, where
H = KyRoR; 'K

is an invertible3 x 3 matrix. If a pointX in the 3D scene gives rise to two imagesndx’,
thenx ~ P; X and
x' ~PyX = HP; X ~ Hx,

showing that’ is the image ok via the homography associated withNote thati in this case
is the limit of the plane-induced homography matriced &snds to—oco with n™, C;, andC,
kept fixed. Thus the rotation-induced homography describétifym (3.3) coincides with the
homography induced by the plane at infinity and is therefore termedfihée homography
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Appendi

Trifocal Tensor
Homography Matrices

Additional material is now presented to complete the workant®n 4.3.1 on the trifocal tens
homography matrices. Here, homography slikgsare considered and analogous results to
Propositions 11 to 15 are derived specifically for these slices. Proofs will be succint because the
role of matrices7 ; andC;, is similar, they are both point homographies, except for the views
where they map.

C.1 Column properties

A particular instantiation of Proposition 5 occurs when thel” = [1,0,0]T, which yields
hi = [Ilel, Igel, Igel] = ’Cl.

Choosing” = e; reveals that matrifC, represents a point homography from vigw to view
U, via the first principal plane in view ;. The geometric properties of slicéS, (resp. IC3)
can be deduced #; (resp.e;3) is used in place o, which suggests the next proposition.

Proposition 24 Matrix IC;. describes a homography between points in the first view and points
in the second view induced by theth principal plane in the third view. MatrifC; maps lines
in the second view to lines in the first view via the same principal plane.

Similar to Jy, matrix xC;» in (4.39) is constructed as a linear combination of the coordinates of
line I” and homography slicef,.. The operatiorfC;»m gives a pointm’ in ¥, via the plane
back-projected from lin&’ in ¥5.

Now, according to Proposition 24, employing homograpyto transfer canonical poin,
(h = 1,2,3) in imageV; gives a point in the imag®&, via the planel’; in ¥5. The special
coordinates ok, selects theh-th column of matrix/C, which implies that the columns of
each matrixiIC, represents a point in the viel,. Conversely, thinking o&;, as a line in¥,,
homographyC; yields a line in¥; which has coordinates given by theth column ofiC/, or
h-th row of IC;.. These considerations are gathered in the following proposition.
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C.2 Row properties

Proposition 25 The column vectors of eadi, matrix are three distinct points in the second
view, whereas the row vectors of these matrices are three distinct lines in the first view.

By interchanging entities in the imagg with those in the imag# ; in the derivation preceding
Proposition 13 in Chapter 4, one may deduce some properties about the columns of matrices
K.

Consider pointe; on principal rayR,; in ¥,. The three homographid§, sende; to three
points in the imag&’, which correspond to the projection of world poidé;;, ~ R; A T, for

k =1,2,3. These image points must lie on the projectiod®fin ¥, that is, the epipolar line
L', according to Table 4.4. Becausghas unitali-th component with other components being
zero, the images af;, points/C.e;, have coordinates given by tlx¢h column of matricedC,.
This result leads to the next proposition.

Proposition 26 The three image points obtained by selectingitttecolumn vector of matrices
IC1, KC2, and KC; are collinear and lie on the epipolar lin€’, in the second view.

A similar argument to the one following Proposition 13 proves that the column vectors of a
given matrix/C,, define the vertices of a trianglE, in the imagel,, each vertex being on one

of the epipolar linexC},, £',, L£};. The three triangles associated wih, IC,, andKC; are in
perspective from the epipote; = €'.

The properties of matricelS;, elaborated so far are summarised in Table C.1. The remaining
part of this section carries on from these results.

Image points in ¥, On epipolar line From world points
a), ~ Kpe; 1 Wi ~ R AT,
by, ~ Kye; Ly Woy, = Ry AT
c, ~ Kyes is Wi, ~ R3 AT,

Table C.1. Algebraic and geometric properties of the columns of matrices ICy.

C.2 Row properties

In Chapter 4 the conventioh, was used to refer to thie-th column of homographW]T, or
h-th row of 7 ;. Since matricesy ; andiC;, are related, this notation also gives thth column
of homographyC;, or j-th row of IC;,. It can be checked in (4.38) thatandt, are represented
by 'c; and®, respectively.
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Appendix C Trifocal Tensor Homography Matrices

Now, recall from Proposition 25 that the rows of a given mafdx represent distinct lines in
imageV¥,. Following (4.38), this means that,s,, andt, are edges of a triangl8; in the
first image where, = 'c, ~ Kle, s, = ¢ ~ KJe,, andt, = %, ~ K] e;. Here, entities
e, (h = 1,2,3) represent lines in view,. Geometrically, the lines,, s, t; are obtained by
projection of the world line&.;;, Lo, andLs, which are the intersections of the three principal
planesI’}, I';, andI"; (back-projection o0&y, e,, e3 in ¥5) with the k-th principal pland, (by
choosingkC}).

Now, letw ;. be a vertex on triangl8;, and pointW, ; its corresponding world primitive defined

as the meet of the raR; and the pland™. Explicitly, W}, ~ R AT} ~ ', AT; ATy,
where j, a, and 3 are distinct values in the randd,2,3}. The planed, and F’ﬁ are the
back-projection of the canonical lineg andeg in view U,. This means that these lines select
rows o and 3 from the matrix/C;. Therefore, we havev;, ~ “; x %. The main facts to
remember from these derivations are stated in Proposition 27. Table C.2 lists information about
the algebraic and geometric operations deduced from the rows of md@Gjces

Proposition 27 The three image lines given by the row vectors of maX¥orm a triangleS,,
in the first view. Verticesvy;, wo,, andws, of S, can be computed as the cross product of two
lines represented by the appropriate rowskof, see Table C.2.

Triangle Edges From world lines Vertices From world points
e, ~ Kle Ly ~T) ATY w1k ~ % X %, Wi, ~RIATY

Sk X~ Kley Loy ~TH5 ATY wor, ~ % % leg, Wi, ~RHATY
e~ Kles Ly, ~ T3 ATY Wi ~ lcp X % Wi, ~ R, ATY

Table C.2. Algebraic and geometric properties of the rows of matrices IC.

Finally, suppose that we fix the r@; in the view¥, and consider its intersection with the three
principal planed™ of the view¥3. This process yields three world poii¥}; ~ R AT,

for k = 1,2,3. By construction, these 3-D points are on the line of sightand so, according
to Table 4.4, project into points on the epipolar liig; in the first view. Using Table C.2, these
image points can be identified as the vertiegs, w;,, andw ;. It follows that these vertices
lie on the epipolar lin&,; going through the epipole;,.

Proposition 28 Verticesw;;, wj,, andw;; of trianglesS,, S,, andS; are collinear and lie on
the epipolar linel,; in the first view.

This proposition concludes the investigation of the properties of matkiges
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Appendi

Vector Cross-product

This appendix describes some useful operations derivedtfiermector cross-product.

Given a lengthi vectorp = [p!, p?, p®]7, define thed x 3 skew-symmetric matrix

0o —-p* p?
[p] x = p3 0 _pl
_p2 pl 0

This definition is motivated by the fact that, for any lengthectorq, we have

pxq=[plxq and gxp=q’ [p]«.

The vectorp spans both the left and right null-spaces of the mdgsix, which implies that
[p]«x has rank for any non-zero vectas. This matrix is also defined up to scale pginceAp
is also a null-vector ofp]. for any non-zero\.

The matrix([p] )., IS Written ag'e;,., in tensor notation where the indiceands represent the
(s, r)-th entry of the matriXp|.. By definition,[p]«p = 0 is equivalenttd>_ p"([p]x)s = 0s,
for each fixed value of = 1,2, 3. In turn, this may be written compactly as

prpieirs = Os-
Denoting thes-th row of [p], by I°T, we have
p'I*=0 foralls=1,23. (D.1)

If p represents the homogeneous coordinates of an image point, then, from (D.1), eegh
be thought as a line going through The linel' with coordinates

li = pieirl = [07 _p37p2]T7

is a horizontal line going through the poiptsince points of the forny = [p! + A, p?,p®]"
satisfyy 'l* = 0 for any \. Similarly, the linel? with coordinates

l? = pieir2 = [p37 07 _pl]Ta
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is a vertical line going througp. Finally, the linel® with coordinates
li = pi€ir3 = [_p27p17 O]Ta

is a line going through the image coordinate origin (the ppin, 1]T).
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