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Abstract

Copulas are multivariate probability distributions, as well as functions which

link marginal distributions to their joint distribution. These functions have been

used extensively in finance and more recently in other disciplines, for example

hydrology and genetics. This study has two components, (a) the development of

copula-based mathematical tools for use in all industries, and (b) the application

of distorted copulas in structured finance. In the first part of this study, copula-

based conditional expectation formulae are described and are applied to small

data sets from medicine and hydrology. In the second part of this study we

develop a method of improving the estimation of default risk in the context of

collateralized debt obligations. Credit risk is a particularly important application

of copulas, and given the current global financial crisis, there is great motivation

to improve the way these functions are applied. We compose distortion functions

with copula functions in order to obtain greater flexibility and accuracy in existing

pricing algorithms. We also describe an n-dimensional dynamic copula, which

takes into account temporal and spatial changes.

xii



Introduction and Overview

Copulas are functions which join multivariate distributions to their marginal dis-

tributions. The ability to compose any copula with any choice of margin, means

we are able to create a great variety of distributions. Copula functions may also

be viewed as multivariate distributions with uniform marginal distributions. The

nature of copula functions allows us move away from traditional dependence mea-

sures such as linear correlation and toward more general measures of dependence

in the form of one or more copula parameters.

While many families of bivariate copulas have been proposed and their proper-

ties have been described, progress has been slower in relation to the development

of copula-based mathematical tools and the construction of higher dimensional

copulas. The reason for the slow progress is that expressions representing higher

dimensional copulas and their density functions are often quite lengthy and non-

trivial. Generalizations from two dimensions to higher dimensions are sometimes

not possible and implementation may require considerable computational effort.

The main aim of this thesis is to create new multidimensional copula-based math-

ematical tools for use in finance and other areas such as genetics and hydrology.

We start by reviewing the theory and application of copula functions in Chapter

1. Given that practitioners are often required to carry out calculations repeat-

1



2

edly, and at the same time achieve fast and accurate results, the copula-based

regression formulae of Chapter 2 are proposed. These regression formulae are

designed to be simple to implement, and enable the users to make relatively ac-

curate predictions of the conditional mean of a random variable of interest.

The new models in Chapter 2 allow us to move away from traditional expectation

formulae, which are models of linear regression, and toward a more general form

of regression. More specifically, suppose we have two random variables X and Y .

If we assume that X and Y are jointly normal, then the conditional expectation

of Y , given X, is

E[Y | X] = a+ bX,

where the constants a = µy − bµx and b = ρσy/σx are such that E[Y − a− bX]2

is minimized. In the new models, the expectation formula is represented by a

copula-based function h. The conditional expectation of Y , given X, in this case

is

E[Y | X] = h(X),

and X and Y do not have to be normal or jointly normal. The new expectation

formulae are applied to simulated data, interest rate data, hydrology data and

body measurement data.

During the last two decades there has been an expansion in the credit derivatives

market, along with a rapid rise in securitization by large financial institutions.

Given such changes, one of the challenges facing the finance industry now is

the pricing of the latest products in the market. Collateralized debt obligations

(CDOs) are an example of a class of financial products which are used in the

United States of America (USA) and Europe. Like any other credit derivative,

a CDO requires an efficient and accurate method for its pricing. The current

market standard for pricing CDOs involves a function called the Gaussian Copula.
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The Gaussian copula does not have a heavy tail and so its use results in the

underpricing of risk. The use of one factor copula models has contributed to

the current subprime mortgage crisis in the USA, since investors overestimated

their return on CDO deals and underestimated their risk in the current global

circumstances. This has motivated researchers including myself to investigate

alternative methods and modifications which may overcome the problems arising

from the use of the Gaussian copula. The main aim of Chapter 3 is to improve

on the copula-based tools for the pricing synthetic CDOs. In particular, two new

static models for pricing synthetic CDOs are proposed. These models have four

new characteristics,

1. they involve the use of multiplicative generator functions and well known

copula functions,

2. they are designed to be less complicated than the present system in that

only one dependence parameter is used for the entire structure,

3. the models are easy to implement, and

4. the combination of functions allows us to approximate CDO default distri-

butions with greater accuracy.

New developments in the theory of copula functions are still emerging, although

many publications focus only on their application. Few attempts have been made

to generate new constructions and new examples of copulas. Thus, we focus on

the construction of n-copulas in Chapter 4. Three mathematical methods are

combined to form new copulas,

1. the inclusion of distortion functions,

2. the mixing of particular classes of functions, and

3. the use of integral equations involving lower order copulas.

Previously, these methods were applied to copulas separately in order to obtain
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higher order or new copulas. Many of the examples described in Chapter 4 are

novel in that they have been created by a combination of the three methods.

Copulas may be

1. static, so that one can only obtain a snapshot of the dependence between

variables of interest,

2. varying with respect to time, or

3. vary with respect to time and space.

Most research papers in finance focus on static copulas or use discrete time rather

than continuous time, when modelling dynamic copulas. An option transaction

and other financial derivatives may be modelled using copulas which vary in time

and space. There are, however, very few descriptions of such dynamic copulas.

Thus, the motivation for the work on time and space varying copulas in Chapter

5. Our method makes use of stochastic partial differential equations. In particu-

lar, we are interested in modelling the dependence between n Markov diffusions,

using a copula-based approach. In order to achieve this goal, we require the for-

ward Kolmogorov equations and an n-copula. The result is a dynamic n-copula

which describes the evolution of dependence between the n diffusions. The dy-

namic n-copulas may be applied to portfolios of risky assets in order to obtain a

measure of time-varying aggregated risk.

Ideas for future research in this area are discussed in Chapter 6.



Chapter 1

Literature Review

This chapter consists of

1. a general overview of copula functions and their applications and

2. an overview of the role of copula functions in the pricing of Synthetic CDOs.

1.1 Copula Functions and Their Applications

Although Gumbel and Fréchet were working on very specific examples of copulas,

the concept of a general copula function first appeared in 1959 as a solution

to the problem of constructing multivariate probability distributions with given

marginal distributions [154]. It was not until the 1980s and 1990s that books on

the construction of copulas were published, for example [149], [115], [83] and [78].

The purpose of this section is to review recent theoretical and applied research in

this area, and in particular to discuss some of the more novel families of copulas.

Before providing a definition of the copula functions, we discuss the reasons why

one might use copulas in conjunction with other statistical techniques.

(a) An alternative to linear correlation between random variables. Suppose we

5
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want to capture the dependence between two random variables. Linear cor-

relation is a sufficient method for describing the association between pairs

of normally distributed random variables, otherwise it is not appropriate.

Moreover, linear correlation is only a measure of the overall strength of

the association between the variables, not a measure of changes across the

distribution [86]. Thus, if two distributions are strongly correlated at one

extreme, but not otherwise, one would not be able to capture that informa-

tion if we were using a linear correlation coefficient. Another limitation of

linear correlation is that it is not invariant under transformations of the un-

derlying distributions. Copulas and their dependence parameters overcome

both of the limitations just described. A more extensive discussion on the

properties of dependence parameters and the advantage of using copulas

is given in [28]. Copula dependence parameters can also be expressed in

terms of population versions of Kendall’s tau and Spearman’s rho, see [116],

which are useful when fitting any particular copula to data.

(b) A complete representation of multivariate distributions. Another advantage

of the copula functions is that they provide us with a complete representa-

tion of all multivariate distributions. The reason we can obtain a complete

representation is because we can separate out the marginal distributions

from the overall dependence structure using Sklar’s Theorem. Sklar’s The-

orem (see next section) enables us to construct a joint probability distribu-

tion by housing given marginal distributions within a copula function. A

wide range of copulas and marginal distributions can be defined, and so it is

possible to obtain many kinds of multivariate distributions. Sklar’s theorem

also says that a copula function exists for every multivariate distribution.

Thus, we can be sure that we will be able to find a copula, if we are given

the multivariate and marginal distributions.

This method for constructing joint distributions is very appealing since one
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often knows much about the marginal distributions, but not very much

about their relationship. Deciding how to choose a suitable copula for a

given set of data is the topic of ongoing research. Some copulas will nat-

urally be more suitable for data correlated at one or both of the extremes

than others, however, the choice of copula is still somewhat arbitrary. More-

over, researchers are still in the process of developing goodness of fit tests

for these functions.

(c) Copulas may be used in established frameworks. As will be shown later in

this thesis, copulas may be combined with well established mathematical

frameworks, since they are distributions in their own right. Conditional

distributions can also be expressed in terms of partial derivatives of copulas,

so they can be used in Bayesian analysis, sampling algorithms, Markov chain

models and other computationally intensive techniques.

1.2 Definition and Basic Properties

1.2.1 Copula Functions

Definition 1. 2-copula. A function C : [0, 1]2 → [0, 1] is a 2-copula if it satisfies

the following properties,

1. C(u1, 0) = 0, C(0, u2) = 0, u1, u2 ∈ [0, 1],

2. C(u1, 1) = u1, C(1, u2) = u2, u1, u2 ∈ [0, 1], and

3. For every ua, ub, va, vb ∈ [0,1], such that ua ≤ ub, va ≤ vb, the volume of

C, VC([ua, ub] × [va, vb]) ≥ 0, that is

C(ub, vb) − C(ub, va) − C(ua, vb) + C(ua, va) ≥ 0.
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Equivalently, a copula is the restriction on [0, 1]2 of a bivariate distribution func-

tion with standard uniform marginal distributions. Condition 3 above is usually

referred to as the “2-increasing” condition. A theorem by Sklar in 1959 [154]

shows how a copula function is able to link a joint distribution function to its

marginal distributions.

Sklar’s Theorem. Suppose H is a bivariate joint distribution with marginal

distributions F and G, then there exists a 2-copula C, such that

H(x, y) = C(F (x), G(y)), for all x, y ∈ R. (1.2.1)

If F and G are continuous distributions then C is unique, otherwise C is uniquely

determined on RanF × RanG [115]. If a copula C which absolutely continuous,

then it has density function

c(u1, u2) = ∇u1,u2
C(u1, u2), (1.2.2)

where

∇x,yC(x, y) =
∂2C(x, y)

∂x∂y
,

that is the mixed partial derivative of C. Moreover

C(u1, u2) =

∫ u1

0

∫ u2

0

c(s, t)dsdt.

It follows that if the density function of H is h, and F and G have associated

density functions f and g, then

h(x, y) = c(F (x), G(y))f(x)g(y). (1.2.3)

The Fréchet-Hoeffding bounds for a copula C are

W (u1, u2) ≤ C(u1, u2) ≤M(u1, u2).

where

W (u1, u2) = max{u1 + u2 − 1, 0}

M(u1, u2) = min{u1, u2}.

W (u1, u2) and M(u1, u2) are also 2-copulas.
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1.2.2 Quasi-Copula Functions

Definition 2. 2-Quasi-copula. A function Q : [0, 1]2 → [0, 1] is a 2-quasi-copula

if it satisfies the following properties,

1. Q(u1, 0) = 0, Q(0, u2) = 0 for all u1, u2 ∈ [0, 1],

2. Q(1, u2) = u2, Q(u1, 1) = u1 for all u1, u2 ∈ [0, 1], and

3. Q is non-decreasing in each of its arguments, and

| Q(ub, vb)−Q(ua, va) |≤| ub−ua | + | vb−va |, for all ua, ub, va, vb ∈ [0, 1].

A quasi-copula is a generalization of a copula and may not satisfy the 2-increasing

condition, [3],[56]. This class of functions has potential application in the area of

fuzzy logic [68]. An equivalent set of conditions to those in Definition 2 is;

1. Q(u1, 0) = 0, Q(0, u2) = 0, for all u1, u2 ∈ [0, 1],

2. Q(1, u2) = u2, Q(u1, 1) = u1 for all u1, u2 ∈ [0, 1], and

3. Q satisfies Q(ub, vb) +Q(ua, va) ≥ Q(ub, va) +Q(ua, vb), for all

0 ≤ ua ≤ ub ≤ 1, 0 ≤ va ≤ vb ≤ 1.

see [56] and [131].

1.2.3 Tail Dependence Formulae

Tail dependence or extreme measures of dependence in relation to copulas, give

an indication of how data pairs are related at the extremes of the distribution.

Given random variables U1 and U2, the upper λU and lower λL tail dependence

are defined by

λU = lim
u1→1

Pr{U1 > u1 | U2 > u1} = 2 − lim
u1→1

1 − C(u1, u1)

1 − u1

∼ 2 − lim
u1→1

ln(C(u1, u1))

ln(u1)
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and

λL = lim
u1→0

Pr{U1 < u1 | U2 < u1} = lim
u1→0

C(u1, u1)

u1

.

If the random variables are independent, then λU = 0. Conversely, if there is

perfect dependence between the random variables, then λU = 1. Many copulas

have no tail dependence, however it is possible to induce tail dependence by

combining copulas in particular ways. Two interesting copulas which have upper

tail dependence, λU = 2 − 21/α, are shown in the Archimedean section below.

A good overview of dependence measures is given in [22], and also given in the

monographs on copulas mentioned earlier.

1.3 Classes of Copulas

1.3.1 Elliptical Copulas

Gaussian Copula

C(u1, u2) = Φ2(Φ
−1(u1),Φ

−1(u2); ρ), ρ ∈ [−1, 1], (1.3.1)

where Φ2 is the bivariate normal distribution, ρ is the Pearson product-moment

correlation coefficient and Φ−1(·) is the inverse of the standard univariate normal

distribution. Although the Gaussian copula is often the first to be chosen when

fitting copulas to real data, it may not provide very accurate results, for example

in quanto FX pricing, see [8]. A copula transform was applied in [8] in order to

provide a better fit to the data. The Student’s t copula has more Kurtosis than

the Gaussian copula, and so it is often the preferred alternative, see [20], [42] and

[19].
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Student’s t Copula

C(u1, u2) = Tν,ρ(t
−1
ν (u1), t

−1
ν (u2); ρ), ρ ∈ [−1, 1], (1.3.2)

where Tν,ρ is the bivariate Student’s t distribution, ρ is the correlation coefficient

(as in the Gaussian copula), ν > 0 is the number of degrees of freedom, and t−1
ν

is the inverse of the univariate Student’s t distribution. The upper and lower tail

dependence parameters for the Student’s t copula are equal in this case, see [44]:

λU = λL = 2 − 2tν+1

(√
ν + 1

√
1 − ρ√
1 + ρ

)

.

The advantages and disadvantages of using Elliptical copulas are discussed in

detail in [45].

1.3.2 Bertino Copulas

Bertino copulas have the form

Cδ(u1, u2) = min{u1, u2} − min
t∈[{u1,u2}]

{t− δ(t)}, for all t ∈ [0, 1], (1.3.3)

where δ(t) is the diagonal section of the copula, that is δC(t) = C(t, t), and

[{u1, u2}] is the closed interval with endpoints u1 and u2 [48].

1.3.3 Copulas with Quadratic Section

Farlie-Gumbel-Morgenstern Copula

The Farlie-Gumbel-Morgenstern (FGM) copulas are a simple one-parameter fam-

ily of distributions. Given parameter θ ∈ [−1, 1], the bivariate FGM copula is

Cθ(u1, u2) = u1u2 + θu1(1 − u1)u2(1 − u2). (1.3.4)

The FGM density cθ, is

cθ(u1, u2) = 1 + θ(1 − 2u1)(1 − 2u2)
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Figure 1.3.1 shows an example of the FGM density with θ = −0.5.
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1
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Figure 1.3.1: Density for FGM Copula distribution in (1.3.4)

It is possible to associate Kendall’s τ and other scale-free measures of dependence

with the FGM dependence parameter θ. In particular, the relationship between

τ and θ is τ = 2θ/9. Given that θ can only take values in [−1, 1], we can only

use the relationship above when the dependence between the variables is weak,

since that is when we will obtain a relatively small value of τ .

Iterated Farlie-Gumbel-Morgenstern Copula

Authors in [70] describe a method for generalizing the family of FGM copulas

and that family is referred to as iterated FGM copulas. The first iteration, with

parameters α and β, gives us the copula

C(u1, u2) = u1u2 + αu1u2(1 − u1)(1 − u2) + βu1
2u2

2(1 − u1)(1 − u2), (1.3.5)

where

|α| ≤ 1, α + β ≥ −1, and β ≤ 2−1(3 − α + (9 − 6α− 3α2)1/2).
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1.3.4 Marshall-Olkin Copulas

Marshall-Olkin, see [115], have the form

Cα,β(u1, u2) = min{u1
1−αu2, u1u2

1−β}, α, β ∈ [0, 1]. (1.3.6)

1.3.5 Archimedean Copulas

Archimedean 2-copulas have general form

C(u1, u2) = ϕ[−1]{ϕ(u1) + ϕ(u2)}. (1.3.7)

The function ϕ : [0, 1] → [0,∞] is convex and is referred to as the generator

function. Here, the pseudo-inverse ϕ[−1] : [0,∞] → [0, 1] is defined by

ϕ[−1](t) =











ϕ−1(t) for 0 ≤ t ≤ ϕ(0)

0 for ϕ(0) ≤ t ≤ ∞.

Gumbel Copula

The Gumbel copula has generator ϕ(t) = (− ln(t))α, α ∈ [1,∞), and has the

following form

Cα(u1, u2) = exp
(

−[(− ln(u1))
α + (− ln(u2))

α]1/α
)

. (1.3.8)

The Gumbel copula has more probability mass concentrated in the upper ex-

tremes than some of the other copulas, therefore it is thought to be useful in

models of severe financial loss, see [86] and [20].

Joe Copula

This example is attributed to Joe [82] and has a heavier right tail than left tail:

C(u1, u2) = 1 − [(1 − u1)
α + (1 − u2)

α − (1 − u1)
α(1 − u2)

α]1/α, (1.3.9)
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where α ∈ [1,∞). Both, Gumbel and Joe copulas, have upper tail dependence

λU = 2 − 21/α. On the other hand, the Clayton Copula below has a heavy lower

tail, so it might be useful for modeling dependence between small losses.

Clayton Copula

The Clayton copula has the form

C(u1, u2) = (u1
−1/θ + u2

−1/θ − 1)−θ, θ > 0. (1.3.10)
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0

0.1

0.2
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1
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u
2

Figure 1.3.2: Sampled points from Clayton Copula

Sampled points from the Clayton copula with θ = 4.0 are shown in Figure 1.3.2.

An extensive list of Archimedean generators and their copulas is given in [115]

and S Plus code for fitting many of these copulas to data is provided in [28].

On the other hand, [161] is a detailed article on sampling from Archimedean

copulas. There are further developments in terms of multivariate Archimedean

quasi-copulas, [118], simulating from exchangeable Archimedean copulas [163]

and generalizations of this class of copulas [33].
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1.3.6 Periodic Copulas

Periodic copulas are families of copulas based on Periodic functions, see [2]. Sup-

pose c is the density of a copula C. A density which satisfies the properties of

this class of copula, will have the form c(u1, u2) = c̃(u1 ± u2) for a non-negative

function c̃ : R → R and it must satisfy

∫ u1

0

∫ 1

0

c̃(x± y)dxdy = u1, for all u1 ∈ [0, 1],

(1.3.11)
∫ 1

0

∫ u2

0

c̃(x± y)dxdy = u2, for all u2 ∈ [0, 1].
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Figure 1.3.3: Density for copula distribution in (1.3.12)

For example, let c̃(t) = 1 + sin(2πt + α), for α ∈ [0, 2π), then the corresponding

copula is

C(u1, u2)

= (sin(2πu1 + α) − sin(α) − sin(2π(u1 + u2) + α) + sin(2πu2 + α))/(2π)2

+ u1u2 (1.3.12)
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Figure 1.3.3 shows the density of the Periodic copula described above, with α =

π/6.

1.3.7 Generalized Diagonal Band Copulas

Another special class of copulas is the diagonal band copulas, see [99]. A copula

C is a generalized diagonal band copula if it has a density of the form

c(u1, u2) =
g(| u1 − u2 |) + g(1− | 1 − u1 − u2 |)

2
, (1.3.13)

where g is the probability density function of a continuous random variable, say

Z, on the interval [0, 1]. A new class of band copulas is described in [14]. Figure

1.3.4 shows the density function of a diagonal band copula with

g(x) =
e

e− 1
e−x.
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Figure 1.3.4: Density for copula distribution in (1.3.13)
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1.3.8 Copulas with Fractal Supports

Copulas with fractal supports are described in [47]. Transformation matrices T

are used to describe the partitioning of probability mass on I2 = [0, 1] × [0, 1],

and construct other 2-copulas.

Definition 3. Transformation matrix for copulas. A transformation matrix

T =





t12 t22

t11 t21





is defined as a matrix T with nonnegative entries, for which the sum of the entries

is 1 and no row or column has every entry zero [47].

The transformation of a copula C is defined as

T (C)(u, v) =
∑

i′<i,j′<j

ti′j′ +
u− pi−1

pi − pi−1

∑

j′<j

tij′ +
v − qj−1

qj − qj−1

∑

i′<i

ti′j

+ tijC

(

u− pi−1

pi − pi−1
,
v − qj−1

qj − qj−1

)

and the volume of T (C) is

VT (C)([pi−1, u], [qj−1, v]) = tijC

(

u− pi−1

pi − pi−1
,
v − qj−1

qj − qj−1

)

.

For example, if

T =





0 0.5

0.5 0



 ,

then T (min{u, v}) = min{u, v}. A copula C is invariant under this particular

transformation.

1.3.9 Empirical Copulas

The Bivariate Empirical Copula
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The 2-dimensional Empirical copula is defined as follows; Given data pairs (xk, yk),

k = 1, 2, . . . , n, from a continuous bivariate distribution, CE is

CE

(

i

n
,
j

n

)

=
M such that x ≤ xi and y ≤ yj

n
, (1.3.14)

where, M is the number of pairs in the sample, xi and yj, i, j = 1, 2, . . . , n are

the order statistics from the sample, see [115]. An algorithm for calculating CE

is shown in [143]. This can be useful when fitting data to a particular copula,

since we can find copula parameters such that the least squares fit between CE

and the copula to be fitted to the data is minimized. A theoretical generalization

of the Empirical copula is the discrete quasi-copula [131]. Another theoretical

development in this area is the use of wavelet expansions and the Empirical

copula to estimate other copulas, see [111].

1.3.10 Bernstein Copulas

Given a copula C, its Bernstein approximation of order N is given by

BN(u1, u2) =
N
∑

i=0

N
∑

j=0

C

(

i

N
,
j

N

)

pi,N(u1)pj,N(u2), (1.3.15)

where

pk,N(x) =

(

N

k

)

xk(1 − x)N−k.

Bernstein copulas and their application are described in [137] and [138]. They

can be very useful for smoothing data sets.
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1.4 Methods of Constructing new 2-copulas

1.4.1 Convex Combinations of Copulas

There are various methods for constructing new 2-copulas from given ones. One

method involves constructing a convex combination of two or more known copu-

las:

C(u1, u2) = (1 − η)Ca(u1, u2) + ηCb(u1, u2), (1.4.1)

where Ca and Cb are known copulas and η ∈ [0, 1]. For example, the two classes

of copulas below are constructed in this way.

Positive Linear Spearman Copula

C(u1, u2) =











{u1 + ρs(1 − u1)}u2, if u2 ≤ u1

{u2 + ρs(1 − u2)}u1, if u2 > u1,

(1.4.2)

where ρs ∈ [0, 1] is Spearman’s rank correlation coefficient [1].

Mixture Copula

Cm(u1, u2, θ,w) = w1CGauss(u1, u2; ρ)+w2CGumb(u1, u2;α)

+ (1 −w1 −w2)CGS(u1, u2; β), (1.4.3)

is referred to as a Mixture copula with parameters θ = (ρ, α, β), w = (w1, w2)
T

and u1, u2, w1, w2 ∈ [0, 1] such that w1 + w2 ≤ 1, see [69]. The copulas involved

in the mixture are the bivariate Gaussian copula, the Gumbel Copula and the

Gumbel survival copula, CGS with parameter β ∈ (0, 1],

CGS(u1, u2; β) =u1 + u2 − 1 + exp
{

−
[

(− log(1 − u1))
1/β+ (− log(1 − u2))

1/β
]β
}

.

(1.4.4)

Authors in [136] used a Bayesian approach to obtain new Mixture copulas, instead

of the method above.



CHAPTER 1. LITERATURE REVIEW 20

1.4.2 Bivariate Iterated Copulas

The bivariate iterated copulas in [90] provide another approach to building new

2-copulas. A new copula C can be constructed from a known copula C∗(u1, u2)

and univariate functions f and g as follows

C(u1, u2) = C∗(u1, u2) + f(u1)g(u2), (u1, u2) ∈ [0, 1] × [0, 1]. (1.4.5)

Functions f and g are given and have the following properties

1. f , g are absolutely continuous and f, g ≡/ 0,

2. f(0) = f(1) = g(0) = g(1) = 0 and

3. min{αδ, βγ} ≥ − ∆∗

(ub−ua)(va−vb)
, where

∆∗ = C∗(ub, vb) − C∗(ub, va) − C∗(ua, vb) + C∗(ua, va),

with ua < ub, va < vb, for all ua, ub, va, vb ∈ [0, 1],

α = inf{f ′(u1) : u1 ∈ A} < 0, β = sup{f ′(u1) : u1 ∈ A} > 0,

γ = inf{g′(u2) : u2 ∈ B} < 0, δ = sup{g′(u2) : u2 ∈ B} > 0.

An example of f is

f(u1) =
1 − e−λu1

1 − e−λ
− u1, λ > 0. (1.4.6)

This construction can be generalized further by introducing a parameter θ, for

example,

C(u1, u2) = C∗(u1, u2) + θf(u1)g(u2), (1.4.7)

see [90] for more detail.

1.4.3 Transformation or Distortion of a 2-copula

A distortion function can be applied to a known 2-copula in order to produce a

new 2-copula. It can be useful for inducing Kurtosis in the copula. The general
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framework for applying distortions to copulas was introduced in [55], and then

formally described as transformations in [35]. They are also also referred to as

multiplicative generators in [115]. Distortions are bijective maps from existing

copulas to new copulas.

Let C be a bivariate copula and ψ : [0, 1] → [0, 1] be a bijective map, then

Cψ(u1, u2) = ψ[−1] (C(ψ(u1), ψ(u2))) , for all u1, u2 ∈ [0, 1] (1.4.8)

is a copula, if on the interval [0, 1]

1. ψ is concave;

2. ψ is strictly increasing;

3. ψ is continuous, and

4. ψ(0) = 0 and ψ(1) = 1.

Furthermore, the inverse of a multiplicative generator has properties

ψ[−1](t) =











ψ−1(t) if ψ(0) ≤ t ≤ 1

0 if 0 ≤ t ≤ ψ(0)

ψ[−1](ψ(t)) = t and

ψ(ψ[−1](t)) =











ψ(0) if 0 ≤ t ≤ ψ(0)

t if ψ(0) ≤ t ≤ 1.

General distortions induced by functions ψ which are not necessarily bijective,

were considered in [34]. The impact of distortions on the properties of copulas

is discussed in [35]. Table 1.4.1 shows the distortions considered by Durlemann,

Nikeghbali and Roncalli.

Figure 1.4.1 shows how the bivariate Gaussian density with ρ = 0.5 is changed

when the distortion (3) in Table 1.4.1 is applied with β1 = 4 and β2 = 0.5.
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ψ(t) ψ−1(t) Restrictions

(1) t1/α tα α ≥ 1

(2) sin(πt
2
) 2

π
arcsin(t)

(3) (β1+β2)t
β1t+β2

β2t
β1+β2−β1t

β1, β2 > 0

(4) 4
π

arctan(t) tan(πt
4
)

(5)
(

∫ 1

0
f(t)dt

)−1
∫ x

0
f(t)dt - f ∈ L1(]0, 1[), f(x) ≥ 0, f ′(x) ≤ 0

Table 1.4.1: Distortions of Durlemann, Nikeghbali and Roncalli.
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Figure 1.4.1: Contours of Gaussian and transformed density

1.4.4 n-copulas

Definition 2. Let n ≥ 2 and u = (u1, . . . , un). An n dimensional function C is

an n-copula if it satisfies

1. C(u) = 0, ∀u ∈ [0, 1]n, if uj = 0 for at least one j, 1 ≤ j ≤ n.

2. C(u) = uj, if uk = 1 for all k 6= j and 1 ≤ j, k ≤ n.

3. Let [a,b] denote the n-box B = [a1, b1] × [a2, b2] × . . .× [an, bn]. For every

a,b ∈ [0, 1]n, such that a ≤ b, the C-volume of B, VC([a,b]) ≥ 0.
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In terms of the copulas, the C-volume of B is VC(B) = ∆bn
an
. . .∆b2

a2
∆b1
a1
C(u),

where

∆bk
ak
C(u) = C(u1, . . . , uk−1, bk, . . . , un) − C(u1, . . . , uk−1, ak, . . . , un).

Elliptical n-copulas exist, for example the Gaussian copula:

CΣ(u) = Φn(Φ
−1(u1), . . . ,Φ

−1(un); Σ) u ∈ [0, 1]n, (1.4.9)

where Φn(·) is the multivariate standard normal distribution with correlation

matrix Σ = (̺ij)1≤i,j≤n, and Φ−1(·) is the inverse of the univariate normal distri-

bution.

Archimedean copulas in n dimensions have the form

C(u1, . . . , un) = ϕ[−1]{ϕ(u1) + . . .+ ϕ(un)}, (1.4.10)

under some suitable assumptions on ϕ [108].

1.4.5 Methods of Constructing n-copulas

Method 1

In most cases other than the Gaussian copula, it is not trivial to obtain a higher

dimensional version of the 2-copula. For example, Archimedean copulas may be

extended to n dimensions, as in (1.4.10), provided that additional conditions are

placed on ϕ [115], [108]. The higher dimensional copulas which are obtained,

however, are quite restrictive in terms of their dependence structure. An alter-

native method for generalizing Archimedean copulas is described in [140] and is

designed to overcome the restrictions of the Archimedean n-copulas in (1.4.10)

by incorporating more parameters and therefore inducing more flexibility. This

construction of n-copulas results in multivariate distributions referred to as Hier-

archical Archimedean copulas. An example of the construction of a Hierarchical
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Archimedean 4-copula is

C(u1, u2, u3, u4) = C{Ca(u1, u2), Cb(u3, u4)}

= ϕ−1(ϕ ◦ ϕ−1
a [ϕa(u1) + ϕa(u2)] + ϕ ◦ ϕ−1

b [ϕb(u3) + ϕb(u4)]).

Method 2

A method of constructing n-copulas is described in [94]. A multivariate copula

C is constructed using the following

C(u1, u2, . . . , un) =

∫ 1

0

(

n
∏

i=1

∇tCi(ui, t)

)

dt, ui ∈ [0, 1], i = 1, . . . , n,

(1.4.11)

where Ci, i = 1, . . . , n are bivariate copulas. This is a generalization of the copula

product discussed in Chapter 5.

Generalizations of this method for constructing 3-copulas are described in [129]

and [32]. For example, assume that we have two bivariate copulas

C(u1, u2, 1) = C12(u1, u2) and C(u1, 1, u3) = C13(u1, u3),

and a third simple copula, such as the product copula C23(x, y) = xy. Now, let

∇u1
be the partial derivative with respect to the first argument, then one can use

the formula

C(u1, u2, u3) =

∫ u1

0

C23(∇u1
C12(t, u2),∇u1

C13(t, u3))dt

to construct the required 3-copula. For example, let

C12(u1, u2) = u1u2 + θ1u1(1 − u1)u2(1 − u2), θ1 ∈ [−1, 1],

C13(u1, u3) = u1u3 +

{

ln(γu1 + 1)

ln(γ + 1)
− u1

}{

ln(γu3 + 1)

ln(γ + 1)
− u3

}

, γ ∈ (0, 5.2]

and C23(x, y) = xy. The range of values for γ is capped at 5.2, since the cop-

ula density is not positive for values outside this range. After integration and
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simplifications, we obtain

C(u1, u2, u3) = u1u2u3 + θ1u3u1(1 − u1)u2(1 − u2) + u2

[

ln(γu1 + 1)

ln(γ + 1)
− u1

]

A

+ θ1u2(1 − u2)A

[−2γu1 + (2 + γ) ln(γu1 + 1)

ln(γ + 1)
+ u1(u1 − 1)

]

,

where

A =

[

ln(γu3 + 1)

ln(γ + 1)
− u3

]

.

Other examples are described in Chapter 3.

1.5 Quantiles for Copulas

As an alternative to calculating expectation formulae in models of financial risk,

it is suggested that one calculates p-th quantiles [49]. The p-th quantile is defined

as the solution xp of

p = H(xp | x1, . . . , xk−1), (1.5.1)

where H is a k-dimensional distribution. Thus, in terms of a bivariate copula

function C(u1, u2), for u1, u2 ∈ [0, 1], we have

p = H(xp | X1 = x1) = ∇u1
C(F1(x1), F2(xp)),

where ∇u1
C is the partial derivative of C with respect to the first argument of the

copula. Here F1 and F2 are given univariate cumulative probability distributions.

Therefore, for a specified proportion p and given that X1 = x1, we can calculate

the value of xp.

The following is an example using the bivariate Gaussian copula, with parameter

ρ, and exponential marginal distributions. Suppose that F1 and F2 are defined

by

F1(x1) = 1 − e−λ1x1 , F2(xp) = 1 − e−λ2xp
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for constants λ1, λ2 > 0. We solve for xp in

p = Φ

(

F2(xp) − ρF1(x1)
√

1 − ρ2

)

to obtain

xp =
− ln{1 − ρΦ−1(1 − e−λ1x1) −

√

1 − ρ2Φ−1(p)}
λ2

, (1.5.2)

where Φ(·) and Φ−1(·) is the standard univariate normal distribution and its

inverse, respectively.

1.6 Dynamic Copula Models

One of the criticisms of copula models is that they are static. The dependence

between distributions, such as the movement of stocks or the risk distributions of

firms, may change over time. This makes it inappropriate to hold parameters of

a copula constant over time. In order to overcome this problem, researchers make

the copula dynamic by incorporating time varying distributions and dependence

parameters, for example, the bivariate option pricing model described in [156].

Another method of incorporating time into the copula is to associate it with

a Markov process. Several models have been constructed in this way and are

extensions of the formulae which was initially described in [24]. In particular,

such models assume Xs is the initial state of a random variable X at time s.

Similarly, Xt is the final state of X at time t. Let Fs and Ft be the initial

and final probability distributions associated with Xs and Xt, then their joint

distribution can be represented by the copula Cst:

Hst(xs, xt) = Cst(Fs(xs), Ft(xt)) = Cst(us, ut) (1.6.1)

and

Pr(Xs < xs | Xt = xt) = ∇utCst(Fs(xs), Ft(xt)). (1.6.2)
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This is used in [165], where the distributions are those of credit grades at two

different times. The aim is to model the dependence between initial and final rat-

ing grade for a firm. One univariate distribution in the bivariate copula C(us, ut)

such that us, ut ∈ [0, 1], is designated the initial distribution, us = Fs, of a given

credit rating class. The other is designated the final distribution of the credit

rating class, ut = Ft. For example, let Xt = BB, then we interpret the firm’s

rating as BB at time t. A transitional distribution or conditional distribution is

formed by taking the partial derivative of Cst. Also, the cumulative probabilities

of the ratings are obtained from the proportion of the total of exposures in the

rating class at that time.

Another approach to building time into a copula has been formulated in [125],

and applied to Value-at-Risk in [120] and [60]. More details on this approach

are given in Chapter 5.

An expression for a 2-copula between two correlated continuous Markov diffusion

processes is described in [53]. Very little theoretical work has been carried out in

higher dimensions, so there is scope for more research in this area.

1.7 Practical and Theoretical Applications

Applications of copula functions are becoming more prevalent in the literature as

researchers realize how applicable they are. Applications include

1. Finance

• Credit Risk. The Gaussian copula was used in credit swap valuation,

see [100]. In particular, let the time until default of a risky asset

be τ , then the associated cumulative distribution of τ up to time t,
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F (t) = Pr{τ < t}, may be calculated using

F (t) = 1 − exp

(

−
∫ t

0

h(s)ds

)

,

where h(s) is interpreted as the instantaneous default probability ob-

tained from a credit curve. More information about this formula is

mentioned in Section 1.8.1. Suppose that we have a pair of risky as-

sets, a and b, then their joint probability of default is given by the

Gaussian copula

Pr{τa < t, τb < t} = Φ2(Φ
−1(Fa(t)),Φ

−1(Fb(t)); ρ). (1.7.1)

In Example 3 of [100], the n-dimensional Gaussian copula is used to

value a portfolio of n risky assets in a first-to-default contract. The

CreditMetrics asset correlation is used as the correlation parameter.

Other applications include asset return dependency [42], pricing port-

folios of Credit Derivatives and CDOs [146],[97],[93] and [139]. One

factor Gaussian and Clayton copulas are used for the individual condi-

tional marginal default probabilities in [139], and a fast Fourier trans-

form method was applied in order to extract the total number of de-

faults in a portfolio at time t.

In [77], an alternative to the Gaussian copula for pricing CDOs is

presented. The distribution of hazard rate paths, such as h(t) in [100],

was specified instead of specifying a particular copula.

• Auction pricing. A copula model was applied to Auction pricing

in [65]. Marginal distributions in this model are associated with the

valuations of private bidders. The Gumbel copula was used to obtain

the joint distribution of the valuations.

• Stock and option pricing. A bivariate option pricing model appeared

in [156]. There are also a number of applications of copulas, includ-
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ing stock and option pricing in [21]. In one example, the marginal

distributions of the stock prices are determined by a Generalized Au-

toregressive Conditional Heteroskedasticity (GARCH) process. A dy-

namic copula with time-varying correlation parameter is then used to

represent the joint distribution between the stocks.

2. Environmental Science

In hydrology, flood data typically consists of flood peak, volume and du-

ration. The joint distribution between these variables (peak, volume and

duration) is typically non-Gaussian, so their dependence is not accurately

modelled by traditional methods. This makes flood data very suitable for

copula models.

• Hydrological frequency analysis. Bivariate hydrological frequency anal-

ysis of peak flow and volume of the Rimouski River [38]. In [38], inde-

pendence, Clayton and Frank copulas were fitted to the data. In the

case of the Clayton copula, the relationship between the dependence

parameter, α, and Kendall’s tau, τ , which is α = 2τ/(1 − τ), was

used to fit the copula to the data. In the last case, the Frank copula,

inference for margins (Maximum Likelihood Method) was used to fit

the copula to the data.

• Flood frequency analysis. Trivariate flood frequency analysis of the

Amite River [164] and Tiber River [150]. Data fitting was carried

out in two stages in the these studies. Firstly, the three marginal

distributions were fitted to the flood variables, and then log likelihood

was used to fit the three dimensional Gumbel-Hougaard copula to the

data.

• Water cycle estimation. More recently a 3-copula was used in re-

gional terrestrial water cycle estimation [121]. Microwave temperature
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is taken to be an indicator of soil moisture and therefore the rainfall on

a given region of land. In this water cycle study, the Gumbel copula

was chosen to model the joint distribution between benchmark tem-

perature, satellite-measured temperature and latent heat. This model

was useful for detecting small rainfall events that were missed by other

methods.

3. Genetics.

Traditional methods for analyzing genetic data may be limited in their

usefulness, since genetic data is typically non-normal [101]. Copulas were

shown to be useful in modelling dependence in two areas of genetics,

• Trait linkage analysis. Computer simulations in [101] suggested that

the Gaussian copula is better for testing linkage between non-Gaussian

traits than regression and variance-components methods.

• Sequence alignment. DNA and RNA sequences are lined up in order

to find similarities. Aligned segments are represented in the form of

scoring matrices. In [51], scoring matrices were generated from the se-

quences and then a copula was used to model the dependence between

selected scores from those matrices.

• Dependence between genes. A copula of the form

C(u, v) = uv + θuv(1 − u)α(1 − v)β,

where α, β ≥ 1, is used to examine directional dependence between

genes in [91].

4. Aggregation and Decision Theory

When a firm’s directors and policy makers want to make decisions, it is

often important to gather information from multiple sources. Quantifying

the incoming information is problematic, for example, calculating the ag-

gregated risk of a particular event occurring, given the risks posed from a
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number individual agencies. The information from individuals is sometimes

referred to as expert opinions [85]. Assuming that such opinions can be re-

formulated into distributions or quantified in some other way, copulas may

be applied to the data to provide an aggregated opinion. The use of copulas

for aggregating expert opinions was demonstrated in [85].

5. Signal Processing

• Signal restoration. Gaussian copulas are combined with Markov chains

to find the link between stochastic processes which model hidden and

observed signals in [16].

• Signal time-frequency distributions. Copulas can be used to build time-

frequency distributions for signals [27]. Let T (t) and F (f) be the

cumulative marginal distributions for the time and frequency compo-

nents of the signal, respectively. Also suppose that C is a copula, then

the time-frequency distribution will be

P (t, f) = C(T (t), F (f)).

An example is

C(u, v) = uv +
ǫ

4π2nm

(

cos(2π[mv − ∆]) + cos(2π[nu− ∆])

− cos(2π[nu+mv − ∆]) − cos(2π∆)
)

, (1.7.2)

where ǫ ∈ (−1, 1), ∆ ∈ [0, 2π] and (m,n) ∈ Z
2.

1.7.1 Theoretical Applications

Some of the most recent articles on the theory of copulas are [117], which contains

a discussion of the construction of copulas and quasi-copulas with specific type

of diagonal section, [153] in which a scalar product for copulas is developed, [31]
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on threshold copulas, and [19] on tail dependence for t-copulas. Several Bell-type

inequalities were also shown to hold for copulas [79] and quasi-copulas [80].

1.7.2 Estimating Copula Parameters

Researchers have taken traditional methods for fitting probability distributions

to data and modified them so that copulas can also be fitted to data. Common

methods for estimating copula parameters are

• Exact Maximum Likelihood Method. The parameters of the marginal distri-

butions and the chosen copula are estimated in one step using this method.

We give an example from [52]. Suppose we have N underlying assets and

market data associated with the assets is observed at M times. A random

sample can be represented by

X =

















X11 X12 . . . X1N

X21 X22 . . . X2N

...
...

...
...

XM1 XM2 . . . XMN

















Let the vector of parameters to be estimated be θ = (θ1, θ2, . . . , θk), then the

log-likelihood function l(θ) can be expressed in terms of the copula density

c:

l(θ) =
M
∑

t=1

ln
(

c
(

F1(x1t), F2(x2t), . . . , FN(xNt)
))

+
M
∑

t=1

N
∑

i=1

ln
(

fi(xit)
)

.

(1.7.3)

The maximum likelihood estimator θ̂ of θ is the vector of estimates for θ,

which maximizes the log-likelihood function. This method is also explained

in [21], and [133].

• IFM (Inference for margins) Maximum Likelihood Method. Marginal dis-

tribution parameters are estimated first and then those of the copula. For
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example, let θ̆ = (θ1, θ2, . . . , θN) be the set of parameters related only to the

univariate marginal distributions, and α be set of dependence parameters

of the copula, then the log-likelihood function in this case is

l(θ̆) =
M
∑

t=1

ln
(

c(F1(x1t; θ1), . . . , FN(xNt; θN);α)
)

+
M
∑

t=1

N
∑

i=1

ln
(

fi(xit; θi)
)

.

(1.7.4)

Estimates if θ̆ are obtained first and then the maximum likelihood method

is used to obtain α, see also [21], [133] and [49], in which they fit marginal

data to Pareto distributions.

• Canonical Maximum Likelihood. Marginal distributions are obtained in em-

pirical form and then are used in the maximum likelihood method. See [21]

and [28], in which the authors obtain marginal distributions empirically

using a method based on midpoints. Also see [87], [122] and [133] for de-

scriptions of this method.

• Multi-stage Maximum Likelihood Method. This is a generalization of a two

stage maximum likelihood method, see Patton [126] for details.

• Non-parametric method. This method involves calculating non-parametric

statistics such as Kendall’s τ and Spearman’s ρ, then using simple formulae

to obtain copula parameters, see in [21], [28] and [58]. For example, τ =

α/(α + 2), where α is the dependence parameter of the Clayton copula.

Alternatively, α = 2τ/(1 − τ), therefore, having obtained τ , we can obtain

α. In [160], the copula has many locally defined parameters which may be

obtained in a similar way.

• Empirical and Bernstein copulas. An empirical copula may be generated

from any data set and can be combined with the Bernstein copula in order to

obtain a multivariate distribution, see [21], [28], [133] and [58]. A substantial

amount of the research involving Bernstein copulas is documented in [137].
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• Bayesian approach to fitting copulas. In this method, Bayesian estimates

for the marginal survival distributions are obtained initially, and then a

likelihood function is used to obtain a joint posterior distribution, see [72],

and for survival models [67] and [134].

1.7.3 Goodness of Fit Tests

There is still considerable research to be done on the goodness of fit of any chosen

copula. Both [21] and [28] explain how to use a sampling approach to resolve this

problem. Other approaches are described in [142], [122], [57] and [39]. For

example, for integrable functions f1 and f2, define

〈f1 | κN | f2〉 =

∫ ∫

κN (x1, x2)f1(x1)f2(x2)dx1dx2,

where x1, x2 ∈ R
N and κN is a positive definite symmetric kernel. If X1 and X2

are random vectors, and f1 and f2 are the associated density functions, then

E[κN(X1, X2)] =

∫ ∫

κN(x1, x2)f1(x1)f2(x2)dx1dx2.

The squared distance between f1 and f2 is

Λ = 〈f1 − f2 | κN | f1 − f2〉

= 〈f1 | κN | f1〉 − 2〈f1 | κN | f2〉 + 〈f2 | κN | f2〉. (1.7.5)

Λ is used as a measure of the goodness of fit between points sampled from a

specified copula and real bivariate data [122].

1.8 Collateralized Debt Obligations (CDOs)

During the last two decades there has been an expansion in the credit derivatives

market, along with a rapid rise in securitization by large financial institutions.
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Given such changes, one of the challenges facing the finance industry now is the

pricing of the latest credit derivatives. Collateralized debt obligations (CDOs)

are an example of a class of financial products which require efficient methods for

their pricing. One reason for the popularity of CDOs is that they enable financial

institutions to transfer risk as well as freeing up resources and cash flow for other

purposes [127].

To be more precise, CDOs are a class of asset backed securities with underlying

collateral made up of loans, mortgages, bonds, credit default swaps (CDS), equity

swaps or even other CDOs [114]. All of the underlying are defaultable, hence they

are usually referred to as “defaultable instruments” [37]. The general impact of

CDOs on a bank’s default risk is discussed in [46].

The process involved in CDO pricing is complicated and can be broken down into

three parts,

(a) calculating the probability of default of each individual firm,

(b) calculating the dependence between defaulting firms and

(c) calculating the expected loss and fair price of CDO tranches, given the total

default.

On step (b) one must calculate a joint default distribution which represents the

probability of losses in relation to the entire CDO. A copula can be used in various

ways to represent the required joint distribution. A binomial distribution may

also be involved in order to obtain the probability that a proportion, say k out

of N defaults have occurred by a given time t.

The Gaussian copula is the current market standard in relation to CDO pricing,

and some algorithms use it in its conditional bivariate form, while others use the

multivariate form mentioned in the n-copula section:

CΣ(u) = Φn(Φ
−1(u1), . . . ,Φ

−1(un); Σ) u ∈ [0, 1]n, (1.8.1)
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where Φn(·) is the multivariate standard normal distribution with correlation ma-

trix Σ = (̺ij)1≤i,j≤n, and Φ−1(·) is the inverse of the univariate standard normal

distribution. We note that there are various ways of interpreting the Gaussian

correlation parameters ̺ij , each interpretation depends on the assumptions un-

derlying the model and information available. In a Merton-style model [141] or

asset based model, ̺ij is the correlation coefficient between asset values of the

i-th and j-th obligor, since one assumes a firm will default when the value of its

assets falls below a given threshold. However, one does not need to obtain asset

values directly, instead one can formulate the problem in terms of the correlation

between default times of each firm. For example, suppose we have a portfolio of n

obligors and that random variables τi, i = 1, . . . , n, represent the default times of

the n obligors. Then each τi will have a corresponding cumulative default prob-

ability distribution Fi(t) = Pr{τi ≤ t}, 1 ≤ i ≤ n, representing the probability

of default before time t ∈ R. Furthermore, by applying Sklar’s theorem, with

copula function C, we obtain the joint default distribution H of the n default

times:

H(t, . . . , t) = C(F1(t), . . . , Fn(t)).

For the Gaussian copula (1.8.1) we have

H(t, . . . , t) = Φn(Φ
−1(F1(t)), . . . ,Φ

−1(Fn(t)); Σ). (1.8.2)

The following example [43] outlines the steps involved in a Monte Carlo pricing

algorithm based on the multivariate Gaussian copula.

1. obtain a sample u1, . . . , un from the standard Gaussian copula:

(A) decompose the correlation matrix Σ into Σ = AAT ,

(B) obtain v1, . . . , vn from the univariate standard normal distribution, eg.

a µi ∼ U0,1 and set vi = Φ−1(µi), i = 1, . . . , n,
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(C) set w = Av and

(D) set ui = Φ(wi), i = 1, . . . , n.

2. let τi = F−1
i (ui),

3. compute cash flows implied from the τi values,

4. obtain present cash flows with a discounted payoff curve,

5. repeat steps 1 to 4 a sufficient number of times, as required for different

situations, and

6. take the average of the present values as the price of the financial product.

Here, F−1(·) is the generalized or pseudo-inverse of F (·) and is defined below.

Definition 2. Let F (·) be a distribution function. Its quasi-inverse, F−1(·) with

domain [0, 1], is any function satisfying

(α) if u ∈ RanF, then F−1(u) = x for any x ∈ R such that F (x) = u, so

F (F−1(u)) = u,

(β) if u /∈ RanF, then F−1(u) = inf{x : F (x) ≥ u} = sup{x : F (x) ≤ u} and

(γ) F−1(0) = −∞ and F−1(1) = ∞.

Therefore, if H is continuous and the pseudo-inverses of Fi(·) are denoted F−1
i (·),

then for any u ∈ [0, 1]n we also have,

C(u) = H(F−1
1 (u1), . . . , F

−1
n (un)). (1.8.3)

Algorithms which use Monte Carlo methods may be computationally cumber-

some. This may also be the case if one requires the use of fast Fourier transforms.

In order to simplify and speed up computation, models such as the Gaussian One

Factor model were developed (see Section 1.11.5).
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1.8.1 Calibrating Marginal Default Probability

For each firm in a CDO model, one requires a choice of marginal distribution,

and market or manager information to calibrate the distribution parameters.

There are two main types of models within which to determine the marginal

default distributions to be used for pricing multi-name credit derivatives.

1. Structural models. Structural models were brought into existence by Black

and Scholes, broadly speaking. These models require information on the

value of a firm’s assets and liabilities in order to form default distributions,

since they assume that a company will default if the value of it’s assets falls

below a certain threshold, see [74], [50] and [147].

2. Reduced form or intensity based models. Jarrow and Turnbull were the first

to produce a reduced form model [81]. These models take the market price

of financial products as an indicator of the probability of default. Reduced

form models do not require as much detail as structural models [141]. In-

stead, a reduced form model considers the time of default to be the first

jump in an externally given jump diffusion process, since it is not directly

observable. Under those assumptions, the formula for default probability

before time t is

Fi(t) = 1 − exp

(

−
∫ t

0

hi(x)dx

)

, (1.8.4)

where t > 0 and hi is the i-th intensity [43]. The associated survival prob-

ability is

Si(t) = e−hit

and is calibrated to observed market information, for example bond prices.

The calibration allows us to extract an implied hi from the survival proba-

bility formula, see [13]. Several authors have attempted to improve reduced

form models. For example, in [26], a skewed double-exponential distribu-

tion was used as the marginal distribution of a firm’s hazard rate in order
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to obtain better results in simulations of correlated default.

An intensity based model was used in the first article on the copula approach

to pricing portfolio credit derivatives, see [100]. More recently, in [62] a

global as well as an idiosyncratic intensity was incorporated a model of

correlated default. More specifically, the default time of the i-th obligor

was defined as τi = inf{t ≥ 0 : Ni(t) + N(t) > 0}, where Ni and N was

assumed to be Poisson processes with intensities hi and h, respectively.

From these intensities, one can obtain the survival probability

Si(t) = e−(hi+h)t. (1.8.5)

Rather than housing Si within the Gaussian copula, it may be housed within the

survival form of the Gaussian copula (see Section 1.11.3) in order to get the joint

survival probability for a number of firms.

Having decided on a copula model and formulae for the marginal default prob-

abilities, one still has to obtain the specific market information for calibration.

The four most popular sources of information for calibrating the distribution

parameters are

(a) ratings transition matrices constructed by Moody’s Investors Service, Inc. or

Standard and Poor’s service,

(b) asset price and volatility equations,

(c) bond yield spreads or

(d) credit default swap spreads.

An example [73] of part of a rating transition matrix is shown below.

Table 1.8.1 above shows the average cumulative default rates (%). Therefore, the

probability of a BBB rated bond defaulting in the second year is 0.55 − 0.24 =

0.31% (from the last row of the table).
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TERM (years)

RATING 1 2 3 4

AAA 0.00 0.00 0.04 0.07

AA 0.01 0.04 0.10 0.18

A 0.04 0.12 0.21 0.36

BBB 0.24 0.55 0.89 0.55

Table 1.8.1: Standard and Poor’s rating matrix (%)

A method of predicting future default rates, rather than just calculating default

rate from the history of a firm was described in [89]. The trailing 12-month

default rate for month t and rating sample or subgroup of rating k, (referred to

as “rating universe k”) is
Dk,t =

∑t
t−11 Yk,t

Ik,t−11
,

where Ik,t is the number of firms left in the rating sample k at time t, and is

generally known a year ahead. Yk,t is the number of defaulters in month t, that

were in the rating sample k as of time t−11. Parameter I is relatively stable and

a simple autoregressive model is required to obtain the percentage adjustment

due to non-credit related withdrawals. On the other hand, the number of bond

defaulters Yi is a source of much variation and so a Poisson distribution is used

to calculate it:

Pr{Yi = n} =
e−λiλni
n!

,

where i is the month, and the Poisson parameter, λi, must be estimated for each

month. A regression estimator can be used for that purpose, for example

lnλi = β1G+ β2P, (1.8.6)

where G is % of firms in a given rating and P is the industrial production. It

depends on the variables found to be most useful in predicting change in credit

quality.
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Implying default probabilities from asset price and volatility requires the “distance-

to-default” formula [23]. Conceptually, distance-to-default is a function of the

market value of assets and the associated volatility. However, equity and risk free

interest rate r need to be calculated first, since asset value and volatility are not

directly observable. More specifically, one of the most common methods of ob-

taining the asset related parameters is that of Black and Scholes. It is assumed in

this method that asset value VA can be modeled via geometric Brownian motion:

dVA = µVAdt+ σAVAdB,

where µ is the drift rate, σA is the asset volatility, and B a Wiener process

(Brownian motion). Given X, the book value of the debt at time t, market value

of equity VE and asset value are related by

VE = VAΦ(d1) − e−rTXΦ(d2), (1.8.7)

where

d1 =
ln(VA/X) + (r +

σ2
A

2
)T

σA
√
T

and d2 = d1 − σA
√
T .

We also have

σE =
VA
VE

∆σA. (1.8.8)

The two equations are solved for VA and σA. An example of the values obtained

are VA = $12.5bn and σA = 9.6%. Moody’s also have a more sophisticated

iterative method for solving the asset volatility, but do not provide the details.

Nevertheless, having obtained VA and σA, as well as µ = average return on a

firm’s assets and Xt = book value of liabilities at time t, one can use the following

formula to get the probability of default p(t) at time t:

DD =
ln
(

VA

Xt

)

+
(

µ− σ2
A

2

)

σA
√
t

, p(t) = Φ(−DD) (1.8.9)

Suppose that µ = 7%, VA = $12.5bn, Xt = $10bn and σA = 9.6%, then

DD =
ln
(

12.5116
10

)

+
(

0.07 − 0.0092
2

)

0.0961
= 3.012,
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and the one year default probability is p(t) = Φ(−3.012) ≃ 13bp. That is,

13/10000, given that a basis points (bp) is 1/10000. This type of method, see

[11], is used to indicate the probability that a firm’s assets have fallen below some

threshold.

Method (c), calibrating default probability to bond prices, can be implemented

by the simple formula

Q(T ) =
1 − e−[y(T )−y∗(T )]T

1 − R
,

where R is recovery rate, y(T ) is the yield on a T year corporate zero coupon

bond, y∗(T ) is the yield on a T year risk free zero coupon bond and Q(T ) is the

probability of default between [0, T ], see [73].

For example, suppose the spreads [y(T ) − y∗(T )] for a 5 year and 10 year BBB

rated zero coupon bond are 130 and 170 bp, respectively. Default probabilities

are Q(5) = 1 − e−0.013∗5 = 0.0629 and Q(10) = 1 − e−0.017∗10 = 0.1563. The

probability of default between 5 and 10 years is then 0.1563 − 0.0629 = 0.0934.

This method was modified so that defaults can happen at any time not just bond

maturity dates [75],

Let qi, the default probability density, be constant in each interval [ti−1, ti], and

βij =

∫ ti

ti−1

v(t)[FWj(t) − R̂Cj(t)]dt,

where Cj(t) is claim made by the bond holders if there is a default at time t,

v(t) is the present value of $1 received at time t, FWj(t) is the forward price of

the j-th bond, given that the forward contract matures at time t and R̂ is the

expected recovery rate. The probability of default of the j-th bond is

qj =
Gj − Bj −

∑j−1
i=1 qiβij

βij
,

where Gj and Bj are today’s price of a risk free bond and a corporate bond,

respectively.
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If we were using a reduced form model as mentioned above, we could obtain a

constant default intensity h via the formula h = − ln(1− p), where p is Moody’s

one-year default probability for the bond of interest [25].

The method of implying default probability from credit default swap (CDS) data

(d) is similar to method (c) and one example is given in [73]. Another simple

method for approximating default probability F (t) at time t, from CDS spreads

is

F (t) = 1 − 1
(

1 + SCDS

1−R/100
)t

where SCDS is the market spread of the CDS, t is the time in years during the life

of the CDS and R is the recovery rate, see [112]. This is similar to the risk-neutral

probability given in [63]

F (T ) ≈ 1 − exp

(

− SCDST

1 − R

)

.

where SCDS is the credit default swap spread and T is the time to maturity.

Note that risk neutral probabilities correspond to expected monetary values of 0,

whereas real world probabilities correspond to expected utilities of 0 and generally

allow for risk aversion.

A hybrid approach which assumes that a firm will default if its asset value falls

below a certain threshold and also makes use of historical data, involves setting

P (t) to a function of the barrier. By setting the default threshold zi = Φ−1(Q(t))

or Φ−1(F (t)) as required. An example, of such an approach can be found in the

CreditMetrics Technical document [66]. Table 1.8.2 summarizes this method. In

column 2 we have transition probability and in column 3, the probability under

assumptions of the asset value model. The variables, zAAA, zAA, zA, zBBB , zDef ,

etc., are asset return (AR) thresholds and σAR is standard deviation of the asset

returns. An asset return is the percentage change in asset value and, in this model,

is assumed to be normally distributed. For example, if zA < AR < zAA then an

obligor is downgraded from rating AAA to AA and Pr(AA) = Φ(zAA/σAR) −
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Probability from Probability as specified

RATING transition matrix (%) by asset value model

AAA 0.03 1 − Φ(zAA/σAR)

AA 0.14 Φ(zAA/σAR) − Φ(zA/σAR)

A 0.67 Φ(zA/σAR) − Φ(zBBB/σAR)

BBB 7.73 Φ(zBBB/σAR) − Φ(zBB/σAR)

BB 80.53 Φ(zBB/σAR) − Φ(zB/σAR)

B 8.84 Φ(zB/σAR) − Φ(zCCC/σAR)

CCC 1.00 Φ(zCCC/σAR) − Φ(zDef/σAR)

default 1.06 Φ(zDef/σAR)

Table 1.8.2: One year transition probabilities for a BB rated obligor (%)

Φ(zA/σAR).

We solve for zDef and work back up the ratings to obtain the rest of the thresholds.

All the thresholds are found in terms of a multiple of σAR.

1.8.2 Correlated Default and Asset Correlation Coeffi-

cients

There are several ways to model correlated default. The simplest models use

historical data on credit ratings or default volatility to obtain the correlation

coefficients. The problem with simple models is that the resulting correlation

coefficients are usually very small and are not good indicators of the influence of

correlation on credit risk. The amount of historical data available may also be

limited, therefore more complex models of correlated default are required when

pricing credit derivatives such as CDOs. For example, copula factor models. The
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definition of linear correlation is

ρE1E2
=

Pr{E1 ∩E2} − Pr{E1}Pr{E2}
√

Pr{E1}(1 − Pr{E1})Pr{E2}(1 − Pr{E2})
, (1.8.10)

so one direct method of obtaining ρE1E2
is to set Pr{E1} and Pr{E2} to the

historic average one-year default rate for a particular rating, see [102]. For

example, let Pr{E1} and Pr{E2} be the historic average one-year default rate for

two B rated companies. The joint default rate is then obtained by calculating

1. the number of B rated firms that defaulted during the year of interest and

2. all possible pairs of such defaulting B rated firms.

Let NB be the number of defaulted firms in a year, then the number of possible

pairs is
NB(NB − 1)

2
.

Similarly if NTot is the total number of B rated firms for that year, the total

number of pairs defaulted or not, would be

NTot(NTot − 1)

2

and the joint default Pr{E1 ∩E2} in a particular year is the quotient

NB(NB − 1)

NTot(NTot − 1)
.

It is possible to apply this simple method to data taken over several years, cal-

culate the average over those years, and then calculate the correlation coefficient

ρE1E2
. A problem with this method is that it assumes that the default probability

is constant for each rating level [102]. Therefore, when considering yearly joint

default rates over a long time interval, one cannot distinguish between the effect

of varying default probability and varying correlation. Furthermore, default and

correlation may be functions of time, which requires more complex modeling.

Another simple method involves the calculation of an average correlation, see [66].

For a large number, N , of firms in a given credit rating grade, average correlation
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ρ is defined by

ρ =
N
(

σ2

µ−µ2

)

− 1

N − 1
≈ σ2

µ− µ2
, (1.8.11)

where σ is the standard deviation of default rates observed from year to year, and

µ is average default rate over the years considered. A problem with this approach

is that it assumes that average default is constant across all firms in a rating grade

and constant with time, which is generally not the case. It is assumed in this

method that the default distributions are Gaussian, which is generally not true

either.

The joint distribution between asset returns is often assumed to be Gaussian with

a correlation coefficient ̺. A similar idea is to assume that the distributions at

time t of asset returns i and j, Fi(t) and Fj(t) are linked by a bivariate Gaussian

copula with the dependence parameter θ. If the probability of default or rating

migration were represented by the probability that an asset return fell below

a certain value, the framework above results in the following pairwise default

formula

ρij(t) =
Φ2(Φ

−1[Fi(t)],Φ
−1[Fj(t)]; θ) − Fi(t)Fj(t)

√

Fj(t)(1 − Fi(t))Fj(t)(1 − Fj(t))
. (1.8.12)

Typically, the value of the asset correlation parameter, ̺, or θ will be much larger

than that of pairwise default, ρij . For example, CreditMetrics [66] suggest that

20% to 35% is a typical range for average asset correlation across a portfolio.

This range results in a default correlation estimate of approximately 1%.

A similar model of a portfolio of bonds in a CDO is described in [13]. The

probability of default of each bond is defined by p, the pairwise default correlation

coefficient ρij is given, and then one determines the uniform asset correlation

coefficient ̺ by solving

ρij =
Φ2(Φ

−1(p),Φ−1(p); ̺) − p2

p(1 − p)
. (1.8.13)
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For example, see [13], suppose that we have m bonds in a portfolio and they

all have the same default probability p = 0.01. The pairwise default probability

ρij is the same for the entire portfolio and is set to a value, for example 0.03.

An implied ̺ = 0.2307 is obtained using a zero finding function such as fzero in

MATLAB. The equation needs to be rearranged as follows,

Φ2(Φ
−1(p),Φ−1(p); ̺) − p(1 − p)ρij − p2 = 0. (1.8.14)

Lastly, a very different method of incorporating asset return into a model of

correlated default is to assume that it is represented by the function Ai(t) = kie
bit

or similar function of time, rather than assuming it is a Gaussian random variable,

see [11].

1.8.3 Correlation factors and Log-Asset Returns

It is common practice to correlate defaults by correlating their Log-Asset Returns.

The correlation coefficients then appear as entries in the correlation matrix Σ of

the multi-dimensional normal distribution [104]. A less cumbersome approach for

achieving the same outcomes is to express log-asset returns in factor form and

use a special representation of a Gaussian copula called a Gaussian one factor

model (GOFM). In this construction we assume

1. there are n obligors in a portfolio,

2. the probability of default of the i-th obligor is Fi,

3. the logarithm of each asset return Ai is normally distributed and

4. the i-th obligor defaults when its asset return falls below a given threshold

zi, then we write

Fi(zi) = Pr{Ai ≤ zi} = Φ(zi),

where Φ(·) is the standard Gaussian distribution.
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We also suppose there exists normally distributed random variables or factors,

V and νi representing the state of the world and specific effects for each firm,

respectively [104]. Each market factor νi is uncorrelated to the others, and we

may express each log-asset return Ai in factor form:

A1 = ρ1V +
√

1 − ρ2
1ν1

A2 = ρ2V +
√

1 − ρ2
2ν2

. . . . . . . . . . . . .

An = ρnV +
√

1 − ρ2
nνn.

where ρi is the correlation factor. Then the conditional probability of default for

firm i, given each realization of V , is

Pr{Ai ≤ zi | V } = Φ

(

zi − ρiV
√

1 − ρ2
i

)

.

This is the one factor Gaussian copula, which is discussed more thoroughly from

Section 1.8.6 onward. The correlation between log-asset returns Ai and Aj is

obtained from

̺ij = ρiρj.

1.8.4 Survival copulas

Some models require the joint probability that n firms have not defaulted by

some time t. A survival copula rather than the general copula is usually used in

this case. If the survival distribution of the i-th obligor beyond t is

Si(t) = Pr{τi > t} = 1 − Fi(t).

and the joint survival distribution is

Sn(t, . . . , t) = Pr{τ1 > t, . . . , τn > t},
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then

Sn(t, . . . , t) = Ĉ(S1(t), . . . , Sn(t)), (1.8.15)

where Ĉ is the survival copula. The formula for survival copulas may be derived

from the volume formula

VC([F1(t), 1] × . . .× [Fn(t), 1]).

The marginal distributions have to be expressed in terms of survival functions Si

as follows

Fi(t) = 1 − Si(t) and ui = Si(t), i = 1, . . . , n.

For example,

VC([F1(t), 1] × [F2(t), 1]) = 1 − F1(t) − F2(t) + C(F1(t), F2(t))

= S1(t) + S2(t) − 1 + C (1 − S1(t), 1 − S2(t))

= u1 + u2 − 1 + C(1 − u1, 1 − u2)

= Ĉ(u1, u2), (1.8.16)

for n = 2.

1.8.5 Independent Defaults in a Binomial Framework

A good description of the factor model approach in conjunction with the binomial

framework can be found in [146]. The main assumptions in this framework are

• default occurs at a given time T ,

• interest rates are set to zero,

• there are n obligors with identical exposures of amount L and each has a

recovery rate R,

• individual default probabilities p occurring during [0, T ] are independent of

other individual default probabilities occurring in that time, and



CHAPTER 1. LITERATURE REVIEW 50

• if X is the number of defaults occurring within the time interval [0, T ], the

loss given default would be

X(1 − R)L.

In practice, we need to have some type of probability distribution for X to obtain

the loss, given default. The Binomial distribution is a common choice for those

formulating credit derivative models. In such examples, the probability of X = k

defaults until time T is

Pr{X = k} =

(

n

k

)

pk(1 − p)n−k

and the cumulative probability is

Pr{X ≤ k} =

k
∑

m=0

(

n

m

)

pm(1 − p)n−m. (1.8.17)

When the number of obligors gets very large, the distribution approaches the

normal distribution (from the Central Limit Theorem). This property provides

analysts with one method to generate simple explicit CDO pricing formulae, as

will be seen in later sections of this chapter. Due to market conventions, the most

common copula to be used within the binomial framework (or any other) is the

Gaussian one factor copula.

1.8.6 Gaussian One Factor Model (GOFM)

The GOFM was introduced in [100] and applied by many authors, see [37], [17],

[43], [97], [13] and [96]. The model can be thought of as a version of Merton’s

(1974) “firm value model” [63]. To be more specific, the probability of default of

each obligor depends on a normally distributed random variable Ai, for example

log-asset return of a firm, which comprises two risk factors,

(a) a single external risk factor V which influences all firms in the same way and
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(b) an idiosyncratic risk factor νi related only to the i-th firm, that is νi is

independent across firms.

Factors V and νi are assumed to be independent standard normal variables and

ρi is the asset correlation factor. The probability that the i-th obligor defaults

before the contract maturity date, conditional on the realization of V , is

p
(V )
i = Pr{Ai ≤ zi | V }

= Pr

(

νi ≤
zi − ρiV
√

1 − ρ2
i

∣

∣

∣

∣

V

)

= Φ

(

zi − ρiV
√

1 − ρ2
i

)

.

If the thresholds, zi = z, and correlations ρi = ρ are the same throughout the

portfolio, we obtain

p(V ) = Φ

(

z − ρV
√

1 − ρ2

)

. (1.8.18)

Combining the general conditional probability of default shown in equation (1.8.18),

with binomial and expectation formulae,

Pr{X = k} =

∫ ∞

−∞
Pr{X = k | V = v}φ(v)dv,

we obtain the cumulative probability of defaults

Pr{X ≤ k} =
k
∑

m=0

(

n

m

)
∫ ∞

−∞
Φ

(

z − ρV
√

1 − ρ2

)m(

1 − Φ

(

z − ρV
√

1 − ρ2

))n−m

φ(v)dv.

(1.8.19)

Another very convenient way of calculating the probability that there are exactly

k defaults out of n is by recursion, see [61] and [144]. More specifically, suppose

that for each m ∈ {0, 1, 2, . . . , n}, L(m) is the conditional portfolio loss, given m

obligors have been added to the portfolio. Also assume we know the conditional

probability of exactly k defaults out of m, P
(m|V )
k = Pr{L(m) = k | V }, then the

recursion for the probability of k + 1 defaults is

P
(m|V )
k+1 = P

(m−1|V )
k+1 (1 − p(V )

m ) + P
(m−1|V )
k p(V )

m , (1.8.20)
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where p
(V )
m is the conditional default probability of obligor m, given V . Initially

one sets

P
(0|V )
0 = 1,

P
(0|V )
k = 0, k > 0,

P
(m|V )
0 = P

(m−1|V )
0 (1 − p(V )

m ). (1.8.21)

This algorithm is explained in more detail in Chapter 3 and is used in the simu-

lation of CDO tranche pricing.

Large Portfolio Formula. Assume χ is the fraction of defaulted obligors and that

the asset to market correlations and default thresholds are the same for each asset

return and denoted ρ and z, respectively. As the portfolio size approaches ∞,

the central limit theorem leads us to the large portfolio formula

F∞(x) = Pr{χ ≤ x} = Φ

(

√

1 − ρ2Φ−1(x) − z

ρ

)

. (1.8.22)

A generalization of the GOFM involving multiple factors and rating transitions

also appears in [146]. When all the asset parameters are equal ̺ = ρ2, so some

variations of this model, see [13], use the
√
̺ in the copula. Sometimes ρi is called

a “loading factor” [43].

A variation of this model in terms of default time is shown in [97] and is as

follows; Assume that Y = (Y1, . . . , Yn) is a Gaussian vector of latent variables

such that Yi = ρiV +
√

1 − ρ2
i νi, where 0 ≤ ρi ≤ 1 are the loading (correlation)

factors, so the covariance of Yi and Yj in the portfolio is Cov{Xi, Xj} = ρiρj . We

let τi = F−1
i (Φ(Yi)) and then the conditional probability that the i-th obligor will

default before time t, given the realization of V , is

p
(V )
i (t) = Pr{τi ≤ t | V }

= Pr

(

νi ≤
Φ−1(Fi(t)) − ρiV

√

1 − ρ2
i

∣

∣

∣

∣

V

)

= Φ

(

Φ−1(Fi(t)) − ρiV
√

1 − ρ2
i

)

.
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The formulation in (1.8.23) makes use of the general property

Pr{z | V } ≈ Φ(V ρ, 1 − ρ2),

and assumes that z and V are Gaussian. The joint distribution of default times

H is

Hn(t, . . . , t) = E

[

n
∏

i=1

Pr{τi ≤ t | V }
]

=

∫

R

f(v)
n
∏

i=1

p
(v)
i (t)dv, (1.8.23)

where f(v) = 1√
2π
e−v

2/2 is the standard normal density function. The conditional

survival probability is

q
(V )
i (t) = 1 − p

(V )
i (t),

therefore the survival distribution required for pricing basket default swaps [127]

as well as CDOs is

Sn(t, . . . , t) =

∫

R

f(v)

n
∏

i=1

q
(v)
i (t)dv. (1.8.24)

Translating asset return information into a default times can be achieved by set-

ting τi = F−1
i (Φ(Ai)). It is suggested in [95] that we should remain cautious

when making the switch from asset return to default time, since the relationship

between correlation ̺i and the final correlated default times τi may become un-

clear. This indicates that the interpretation of copula parameters needs care, and

perhaps more research should be done in this area.

1.8.7 The Structure of a CDO

Conventional CDOs consist of a portfolio of risky assets which are sold to an entity

referred to as a Special Purpose Vehicle (SPV) [128]. In order to pay for those

assets, the SPV issues bonds, etc., to investors. In this scheme, the investors
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become protection sellers and are provided with periodic premiums depending

on how much they invest, whereas the original owner of the portfolio of assets

may be thought of as a protection buyer and it has to make periodic payments to

maintain that protection. A newer type of CDO is referred to as a synthetic CDO,

since it allows one to transfer credit risk without transferring the ownership of

the underlying assets. More detail on synthetic CDO structures will be explained

later in this chapter.

Returning briefly to conventional CDOs, we find that they can be divided into

two broad subclasses,

(a) Arbitrage CDOs. These CDOs are designed merely to make a profit from the

difference between the acquisition of the porfolio by the SPV and money

arriving from investors. For example, it would be hoped that the cost of

acquiring underlying collateral, such as corporate loans, would be much less

than the profit from the issuance of the notes (bonds) to investors.

(b) Balance sheet CDOs. These CDOs are designed to release regulatory capital

and resources associated with the collateral itself [127].

Another difference is that arbitrage CDO structures usually involve new assets

especially bought for the deal, see [29]. As well as freeing up regulatory capital,

balance sheet CDOs can reduce the use of credit lines to given borrowers.

The subclass of arbitrage CDOs can be divided further still, resulting in

(a1) cash flow CDOs and

(a2) market value CDOs,

depending on whether or not the assets are subject to trading. The SPV can

trade underlying assets. The value of a tranche depends on current market prices

in the case of market value CDOs, since the collateral in the portfolio can be

traded. The main source of risk in the case of cash flow CDOs is the loss due
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to default of assets, since no trading of the underlying occurs [128]. All of the

different types of CDOs are reviewed in [128].

1.8.8 The Structure of a Synthetic CDO

In the case of synthetic CDO structures, the SPV does not have to purchase

the loans, etc., instead it provides protection against default via credit default

swaps (CDSs) with the original bank. Therefore, the credit risk is synthetically

transferred off of the balance sheet of the bank. The administration costs involved

in actually selling/buying the underlying collateral are no longer a consideration

in a synthetic CDO setup. A CDS is a contract which “references” [162] a pool

of risky instruments like bonds or mortgages. In this sort of arrangement, the

bank makes periodic payments to the SPV, which can be used to pay investors,

and in the event of loss on the reference portfolio, the SPV compensates the bank

according to the CDS specifications. A synthetic CDO more like insurance than

an investment. The SPV still issues bonds to investors and but also invests the

proceeds in Government bonds, covered bonds and other collateral [29]. As a

consequence of the dealings of the SPV, investors are not only exposed to risk

due to loss on the reference items, but also risk associated with the quality of the

collateral in which the SPV has invested.

Any CDO structure allows for the transferring of credit risk and re-allocation

of resources. An important issue to arise in the meantime is the question of

how much the premiums should be, or equivalently how to value the CDO. At

present, the protection is divided into tranches, which have attachment KL and

detachment (upper attachment) points KU specifying how much protection the

investor has agreed on. For example, if the tranche interval was [KL, KU ] =

[.03, .10], an investor would have to absorb any losses between 3% to 10% of the

portfolio Notional, [37].
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TRANCHE RATING BID ASK IMPLIED CORR

% Moody’s bps bps %

0-3 Caa3 29.5% 31.5% 12

3-6 Baa1 179 199 3

6-9 Aaa 78 84 14

9-12 Aaa 45 50 21

12-22 Aaa 21 25 30

Table 1.8.3: FEB 2006 iTraxx Europe Series 4 quotes

Each tranche also has a name associated with it, such as senior, mezzanine or

equity [135]. Tranches also have an external rating such as those shown above,

that is AAA, Aaa, AA, Baa, Bbb, CC, and the like. The ratings reflect the quality

of the underlying assets and also relate to the level of protection an investor has

taken on [135]. Equity tranches often do not get a rating and the originating bank

may even absorb the losses associated with them, rather than investors [127]. In

Table 1.8.3, the rating of the three highest tranches is the same since they are all

assumed to have a low risk of default.

In the event of a default, investors of lower tranches will absorb losses before

those holding higher ones. For example if losses are between 3%−14%, they may

be absorbed by investors in a mezzanine tranche, whereas its only when losses

exceed that amount that investors of a senior tranche also have to absorb some

loss [127]. Consequently, premiums may be less for senior tranche holders than

others because of the lower risk. Table 1.8.3 shows typical synthetic CDO quotes

for the iTraxx series.
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1.8.9 The Pricing of CDO Tranches

Pricing a CDO is similar to pricing a bond or credit default swap, and amounts

to calculating quantities such as present value, fair spread and others of interest

for each tranche and time step up to maturity. These quantities depend on the

portfolio loss distribution, which involves the joint probability of default. There

are many different accounts of how the loss distribution fits into CDO tranche

pricing schemes, for example [52], [98], [9] and [147]. A standard approach to

pricing a synthetic CDO tranche is given in [88]:

Firstly, assume that the reference portfolio is made up of credit default swaps

and protection sellers have invested in given tranches. If there is no default, the

protection seller receives quarterly payments until the maturity of the deal. If

there is a default, and the loss has not exceeded the notional on the tranches

lower than that of the protection seller, he/she will also continue to receive pay-

ments. However, if the losses cut into the notional of the investor’s tranche, then

compensation will have to be paid out by the seller to the protection buyer. The

formula for the “premium leg” of the [KL, KU ] tranche describes the amount paid

out to the tranche investor and is

PremLeg =
n
∑

i=1

Spd∆ti(1 − E[L(KL,KU )(ti−1)])B(t0, ti−1), (1.8.25)

where

1. ∆ti = ti − ti−1 is the time step,

2. B is the discount factor,

3. Spd is the spread and

4. E[L(KL,KU )] is expected loss (as a percentage) of the [KL, KU ] CDO tranche.

The attachment points KL and KU are also expressed as a percentage of the total

portfolio notional (Ntl).
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The formula for “protection leg” represents the payout to the buyer in the event

of default, and is

ProtLeg =

∫ tn

t0

B(t0, s)dE[L(KL,KU )(s)]

≈
n
∑

i=1

{

E[L(KL,KU )(ti)] − E[L(KL,KU )(ti−1)]
}

B(t0, ti). (1.8.26)

Given a continuous loss distribution like the Gaussian copula large portfolio ap-

proximation, F∞(x) in equation (1.8.22), the expected loss on a single tranche

is

E[L(KL,KU )] =
1

KU −KL

(
∫ 1

KL

(x−KL)dF (x) −
∫ 1

KU

(x−KU)dF (x)

)

.

All assets have the same properties in a large homogeneous portfolio, so the

integral can be solved analytically, see [119]. The result is

E[L(KL,KU )] =
Φ2(−Φ−1(KL), z;−

√

1 − ρ2) − Φ2(−Φ−1(KU), z;−
√

1 − ρ2)

KU −KL
.

(1.8.27)

Similar descriptions of premium and protection leg equations appear in more

complicated formulations synthetic CDO tranche pricing, see [17], [98], [18] and

[37]. Most of these need Fourier transforms and numerical integration to get the

loss distribution, which may be too slow in practice. In contrast to all of these, a

much simpler formulae for the premium and protection legs, in terms of hazard

rate and survival probabilities, can be found in [144].

Two other methods for calculating tranche loss distribution which warrant discus-

sion, are found in [76], and [63]. The last method is applied to synthetic tranche

pricing, however it has the potential to be modified in such a way that it could

price other types of CDOs. The authors in [63] also separates the portfolio into

two separate parts

(1) the most important individual asset and

(2) group of identical assets.
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The motivation for the division is that it allows one to calculate the sensitivity

to risk of the most important firm in the portfolio, while treating the rest of the

portfolio the same.

Suppose that the distribution of each asset return in the homogenous part of

the portfolio is Ai = ρiV +
√

1 − ρ2
i νi, where V and νi are standard normal as

before. In this model, V is interpreted as the market factor return, and ρi = ρ is

the correlation of V with the homogeneous part of the portfolio. These authors

restrict 0 < ρ < 1. It is also assumed that

• p is the average marginal probability of default for the homogeneous part

of the portfolio,

• Ntl is the total notional amount of the portfolio,

• R is the recovery rate and

• each asset in the portfolio defaults if its return falls below a threshold z, so

z = Φ−1(pi), and the conditional default probability is

p
(V )
i = Φ

(

z − ρV
√

1 − ρ2

)

(1.8.28)

Loss on the homogeneous part of the portfolio is Lh is

Lh = (1 −R)Ntlp
(V )
i . (1.8.29)

Suppose there exists a single asset in the portfolio with the property that it

defaults if A0 falls below z0 and the other parameters for this unit of the portfolio

are Ntl0, p0, R0, ρ0, ν0 and z0 = Φ−1(p0). The probability of default for the single

asset, given V , is

p0 = p
(V )
0,i = Φ

(

z0 − ρ0V
√

1 − ρ2
0

)

. (1.8.30)
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Total portfolio loss is

L =











(1 − R0)Ntl0 + Lh with probability p0

Lh with probability 1 − p0

.

The loss distribution is the probability of a loss greater than a threshold K. For

a given value of K, one obtains values BL and BU , such that BL < BU and

BL =
1

ρ

{

z −
√

1 − ρ2Φ−1

(

K

(1 − R)Ntl

)}

and

BU =
1

ρ

{

z −
√

1 − ρ2Φ−1

(

K − (1 − R0)Ntl0
(1 − R)Ntl

)}

.

Equivalently

Pr{L ≥ K | V } = 1{V≤BL} + p01{BL<V≤BU}. (1.8.31)

Integrating over V gives rise to Pr{L ≥ K} in terms of bivariate and univariate

normal distributions:

Pr{L ≥ K} = Φ(BL) + Φ2(z0, BU ; ρ0) − Φ2(z0, BL; ρ0). (1.8.32)

The next step involves finding a formula for synthetic CDO tranche default prob-

ability and loss. Tranche loss is defined as

Ltr = max{L−KL, 0} − max{L−KU , 0}

and tranche probability (expected percentage loss) is

Ptr =
E[Ltr ]

KU −KL

=
E[max{L−KL, 0}] − E[max{L−KU , 0}]

KU −KL

, (1.8.33)

where

E[max{L−K, 0}]

= K[Φ2(z0, BL; ρ0) − Φ(BL)] + [(1 − R0)Ntl0 −K]Φ2(z0, BU ; ρ0)

+ (1 − R)Ntl[Φ2(z, BL; ρ) + Φ3(z0, z, BU ; Σ) − Φ3(z0, z, BL; Σ)]
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and the covariance matrix Σ is

Σ =











1 zz0 z0

zz0 1 z

z0 z 1











.

Premium and protection leg equations are essentially the same as described in the

previous general model. Tranche present value is the difference between Premleg

and ProtLeg. The fair value, sometimes also called tranche premium or break

even spread, S, is

S =
ProtLeg

PremLeg
. (1.8.34)

One of the pitfalls of the model is that the relative error may get large when

the number of obligors in the portfolio is less than 100. There may also be

issues when choosing ρ and ρ0. The trivariate normal distribution features in

the formulae for tranche losses in this Model. An elegant form of the trivariate

normal distribution was formulated in terms of the bivariate distribution and was

implemented in MATLAB and other programming languages, see [59].

1.9 Inadequacies of the Gaussian Model

The Gaussian copula in its purist form is limited because it obviously assumes

most of the distributions in financial markets are standard normal, when, in fact,

they often have fat tails (Kurtosis), [64]. The GOFM is also not very accurate

for small diverse portfolios [63].

Even though the Gaussian copula is the market standard, it is not accurate when

pricing credit default swap index tranches [64], [159], and does not correspond well

with observed iTraxx CDO tranche prices [17]. Furthermore, when the Gaussian

copula is calibrated to the lowest tranche of a CDO, it produces implied or base

correlations out of step with the market value of the higher tranches [17].
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1.9.1 Base Correlation Model

Suppose that the GOFM correlation parameter is calibrated to the market data of

a single CDO. A plot of uniform or compound correlation ρ versus tranche attach-

ment point KL should be linear, however, it resembles a smile. The reason for the

discrepancy is that correlation values are a function of both attachment and de-

tachment points. A simple ad hoc method of fixing the problem is called the “Base

Correlation method” was introduced in [106] and also discussed in [159], [162]. A

plot of base correlation versus detachment point produces a straight line which

can be used in determining tranche prices. This method involves “calculating

expected loss on a tranche as the difference between the expected loss of two

tranches with zero attachment” see [106] and [159]. This method allows us to

separate the losses for each level and then get a more appropriate correlation

parameter (the base correlation) using the GOFM. The base correlation model is

implemented for spreadsheet users in [105].

The base correlation method was criticized in [162]. The authors found that

base correlations were not uniform across US or European markets because the

structure of traded tranches and tranche points varied. Therefore a more radical

alternative may be needed.

1.9.2 Value At Risk and Shortfall

Value at risk (VaR) is typically the 95th or 99th percentile of a portfolio loss

distribution. Given that the tail of the normal distribution declines rapidly, the

GOFM may underestimate VaR in some situations and overestimate it in others.

An alternative which may be used instead of VaR is Shortfall. Shortfall is defined

as the expected loss size given VaR has been exceeded, see [107].
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1.10 Alternatives to the GOFM

Researchers have started creating multiple factor models and using alternative

copula factor models in the pricing of CDOs, in order to overcome many of the

problems encountered when using the Gaussian copula. Furthermore, a method

of testing whether or not it is appropriate to model dependence between pairs of

financial products using the Gaussian Copula was formulated in [103]. They found

that it was sufficient for modeling dependence between stocks and currencies, but

not good for commodities. Several alternatives to the Gaussian copula are now

discussed.

A moderate extension of the GOFM was proposed in [4]. These authors introduce

random recovery rates and factor loadings to match the fat tails of the CDO loss

distribution. Another modification of the GOFM involved the introduction of

intra- and inter- group correlations, see [98]. Correlations were also treated in a

new way in [5].

An extension in [159] is aimed at overcoming another of the inadequacies of the

GOFM, which is that the default of a particular firm can have a large influence

on the default probabilities of all the correlated surviving firms. Such a problem

is thought worse when one firm defaults within a short time [159], as surviving

firms then have a much greater chance of default. The author claims that all

models which combine the global risk factor V and idiosyncratic factors νi in a

linear way, will have that problem with the defaults. An unexpected fast default

of a firm is more likely to be caused by the state of a purely external factor than

by anything internal. A second factor was introduced in the model to compensate

for the effect of V .
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1.10.1 Other Factor Copula Models

Student’s t Copula Model. Another factor model commonly used in the

literature is the Student’s t copula and its variations, since it can induce skew

and kurtosis in the portfolio default distribution. In this model, one assumes

that there exists a vector (V1, . . . , Vn) which follows a Student’s t distribution

with υ degrees of freedom, Vi =
√
WXi, where Xi = ρV +

√

1 − ρ2Gi, and

τi = F−1
i (tυ(Vi)). The variable V and each Gi are independent Gaussian, but

υ/W follows a χ2
υ distribution, or equivalently, W follows an inverse Gamma

distribution with parameters υ/2. The default time distributions, conditional on

V and W are

p
(V,W )
i (t) = Φ

(

W−1/2t−1
υ (Fi(t)) − ρV
√

1 − ρ2

)

. (1.10.1)

Formula (1.10.1) is an example of the conditional default probability of a two

factor model, since it has factors V and W .

Archimedean Copula Models. As mentioned previously, the Clayton copula

belongs to the class of Archimedean copulas. In the Clayton copula factor model

we let

Vi = ϕ

(

− ln(ui)

V

)

, τi = F−1
i (Vi) and ϕ(s) = (1 + s)−1/θ,

where V has a Gamma distribution and ui are independent uniform random

variables. The conditional default probability is

p
(V )
i (t) = exp[V (1 − Fi(t)

−θ)]. (1.10.2)

Another Archimedean copula, which forms the joint default distribution for a

portfolio, is the Gumbel copula, which has generating function ϕ(t) = (− ln(t))θ.

This class of copulas were used to calculate loan loss distribution in [147], and

the authors make use of the fact that some copula functions can be represented

by Laplace transforms. In this example we are assuming that the model is a
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structured one, and therefore, we assume that the i-th obligor defaults if Xi falls

below the threshold zi. The probability of default, conditional on factor V , is

p
(V )
i = Pr {Xi ≤ zi | V = v} = exp (−vϕ(zi)) . (1.10.3)

The large portfolio approximation associated with the loss distribution is also

described in [147].

Double t Model. Recently, it was demonstrated that the double t copula was

more accurate for pricing CDO tranches than Gaussian and Clayton copulas, see

[17]. In this model we let

Xi = ρ

(

υ − 2

υ

)1/2

V +
√

1 − ρ2

(

ῡ − 2

ῡ

)1/2

V̄i,

where V and each V̄i are independent random variables having Student t distri-

bution with υ and ῡ degrees of freedom, and 0 ≤ ρ ≤ 1. τi = F−1
i (H(Xi)) and

Xi does not follow a t distribution. H(.) is calculated numerically and depends

on ρ. The probability of default, conditional on factor V , is

p
(V )
i = tῡ

{

(

ῡ

ῡ − 2

)1/2 H−1(Fi(t)) − ρ
(

υ−2
υ

)1/2
V

√

1 − ρ2

}

. (1.10.4)

The large portfolio loss distribution for this factor model is

F∞(x) = tῡ

(

√

1 − ρ2t−1
ῡ (x) − z

ρ

)

. (1.10.5)

One problem with this model is that it has the tendency to overprice senior

tranches, which suggests this model builds in too much Kurtosis.

NIG Model. The NIG distribution is a mixture of the Gaussian and inverse

Gaussian distribution, see [64]:

FNIG(x) =

∫ ∞

0

Φ

(

x− (µ+ βy)√
y

)

fIG(y, δγ, γ2)dy (1.10.6)
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and fIG is the density function of the inverse Gaussian distribution for random

variable Y, and having parameters α > 0 and β > 0. That is

fIG(y;α, β) =











α√
2πβ

y−3/2exp
(

− (α−βy)2
2βy

)

, if y ≥ 0

0, if y ≤ 0.

(1.10.7)

The loss distribution for a large homogeneous portfolio associated with this exam-

ple (the NIG copula) is described in [88]. Two other factor models are described

in [110] and [97]. These models appear to be relatively easy to implement.

1.10.2 Alternatives to Factor Models

A very simple alternative to the GOFM is the positive linear Spearman copula [1]:

C(u1, u2) =











[u1 + ρs(1 − u1)]u2, if u2 ≤ u1

[u2 + ρs(1 − u2)]u1, if u2 > u1

, (1.10.8)

where ρs ∈ [0, 1] is Spearman’s rank correlation coefficient. Another alternative

copula used in [69] is the mixture copula Cm shown in equation (1.4.3).

A very different method for pricing CDO tranches was described in [77]. These

authors imply a distribution of hazard rate paths from market prices instead

of implying a correlation coefficient. They have eliminated the need to specify

a particular copula in their method. Other contrasting models can be found

in [84], which is based on a number of gamma processes, and [155], which uses

one variable for loss given default instead of a random variable for default and

another for loss.



Chapter 2

Copula-based Regression

Formulae

2.1 Introduction

As mentioned previously, the original idea of copula functions is attributed to

Sklar [154]. Initially, such functions were used in the theory of probabilistic

metric spaces and have only been used as practical statistical tools in the last

three decades, see [130] and references therein. The use of copula functions

is now quite popular in areas such as credit risk, genetics, hydrology, image

analysis, etc. Many of the properties of bivariate copulas and their construction

have been described in the literature; however there is enormous scope for the

development of simple and practical tools in this area. In particular, copula-

based quantile regression models, which have been neglected to some extent in

the literature. For example, the earliest papers on the application of copula-

based quantile regression to data are [15] and [49]. More recently, it has been

demonstrated that computer algebra can be used as a tool for generating and

transforming copula based quantile functions, [151]. The problem with some of

67
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these approaches is that they rely on specific software and involve a considerable

amount of computation. Models which make use of simple formulae and are

computationally inexpensive are more practically useful. A simple copula-based

regression formulae is provided in this chapter, with a view to broadening the

range of statistical tools available for analysis of non-linear dependence between

random variables. The copula families we focuss on in this chapter are the Farlie-

Gumbel-Morgenstern, Gaussian and Archimedean copula families.

2.1.1 Background

Before describing our approach, we return to the idea of linear correlation and

regression in order to explain why one might prefer to use copula functions instead

of other methods. Suppose we want to capture the dependence between two

random variables, X and Y , with distributions G and F respectively. Assume

that both X and Y are jointly normal, and G and F are univariate normal

distributions. That is, F = G = Φ, where

Φ(z) =
1√
2π

∫ z

−∞
exp

(

−1

2
w2

)

dw.

Then the conditional expectation of Y , given X, is

E[Y | X] = a+ bX,

where the constants a and b are such that E[Y − a − bX]2 is minimized. In

this case, the expectation formula represents a simple model of linear regression,

and the slope of the regression line, b, can be related back to the linear corre-

lation coefficient between the variables. Linear correlation, however, is only a

measure of the overall strength of the association between the variables, not a

measure of changes across the distribution [86]. Therefore, if two distributions

were strongly dependent at one extreme and marginally dependent elsewhere, a
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linear correlation coefficient would not be able to capture that information ade-

quately. Consequently, linear models may produce poor estimates the conditional

mean at various sites in such data sets.

Another limitation of linear correlation is that it is not invariant under trans-

formations of the underlying distributions, whereas copula-based dependence is.

Therefore, copulas and their dependence parameters overcome many of the lim-

itations inherent in existing methods. The dependence parameters may also be

expressed in terms of population versions of Kendall’s τ and Spearman’s ρ, which

is useful when fitting a particular copula to data.

The intention of this chapter is to provide flexible regression models represented

by a copula-based function h, as an alternative to what is currently available.

The conditional expectation of Y , given X, is

E[Y | X] = h(X),

and X and Y do not have to be normal or jointly normal in terms of their

distribution. Such models will most often be nonlinear, however they will not

be much more complicated than the original linear regression formulae. We now

describe the theory of conditional expectation in terms of copula functions. Most

of the examples in this chapter will be bivariate examples. Some generalizations in

higher dimensions are also provided. We make use of Farlie-Gumbel-Morgenstern,

Gumbel, Clayton and Gaussian copulas, since these are relatively easy to use.

Suppose Y and X1, X2, . . . , Xn are real valued random variables defined on the

same probability space and let Pr{Y ≤ y | X1, X2, . . . , Xn} be the conditional

probability that Y ≤ y given Xi, i = 1, 2, . . . , n. The corresponding conditional

expectation is given by

E[Y |X1, X2, . . . , Xn] =

∫

R

y∇yPr{Y ≤ y | X1, X2, . . . , Xn}dy, (2.1.1)

where ∇y is the partial derivative with respect to y. Before providing examples
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of the formula in (2.1.1), we need to describe the conditional probability, housed

within the integral, in terms of copulas.

The simplest case, Pr{Y ≤ y | X = x}, was established in [24]. Suppose that

continuous random variables Y and X have joint distribution H . If the marginal

distributions of Y and X are F and G, respectively, then the joint distribution

can be given by the copula

C(u1, u2) = H(F (−1)(u1), G
(−1)(u2)), u1, u2 ∈ [0, 1].

Typically this copula will belong to a parameterized family; so we write

C(u1, u2; θ), θ ∈ Θ

for such a copula. Assume that C is continuous and twice differentiable in [0, 1],

then the conditional probability of Y given X is

Pr{Y ≤ y | X = x} = ∇u2
C(F (y), G(x); θ),

where ∇u2
is the partial derivative with respect to the second argument of the

copula. Examples of this conditional probability formula are

Pr{Y ≤ y | X = x} =

(

F (y)−1/θ +G(x)−1/θ − 1
)−θ−1

G(x)−1−1/θ
, θ > 0,

for the Clayton copula and

Pr{Y ≤ y | X = x} = exp
(

−
[

(− ln(F (y)))α + (− ln(G(x)))α
]1/α)×

[

(− ln(F (y)))α + (− ln(G(x)))α
]−1−1/α[− ln(G(x))

]α−1
,

α ∈ [1,∞), for the Gumbel copula.

For a 3-copula, C(u1, u2, u3), the conditional probability of Y given X1 and X2 is

Pr{Y ≤ y | X1 = x1, X2 = x2} =
∇u2,u3

C(F (y), G1(x1), G2(x2); θ)

∇u2,u3
C(1, G1(x1), G2(x2); θ)

. (2.1.2)



CHAPTER 2. COPULA-BASED REGRESSION FORMULAE 71

The derivation of (2.1.2) is given in Appendix 2.A.

At this point we omit the θ in the notation until specific examples of the pa-

rameters are required, such as the α in the Clayton copula. For completeness,

however, we provide the formula for a continuous, smooth n-copula: Suppose that

F,G1, G2, . . . , Gn are the marginal distributions of Y,X1, X2, . . . , Xn respectively

and that the joint distribution of the random variables is H . Then

C(u1, u2, . . . , un) = H(F (−1)(u1), G
(−1)
1 (u2), . . . , G

(−1)
n (un)),

and the conditional probability of Y given all Xi, i = 1, 2, . . . , n, is

Pr(Y ≤ y | X1 = x1, . . . , Xn = xn) =
∇u2,...,unC(F (y), G1(x1), . . . , Gn(xn))

∇u2,...,unC(1, G1(x1), . . . , Gn(xn))
.

A similar formula for the conditional density of a multivariate copula is provided

in [6] and [49]. Now, from (2.1.1), we have

E[Y |X1 = x1, . . . , Xn = xn]

=

∫

R

y
∇y∇u2,...,unC(F (y), G1(x1), . . . , Gn(xn))

∇u2,...,unC(1, G1(x1), . . . , Gn(xn))
dy

=

∫

R

y
∇u1,u2,...,unC(F (y), G1(x1), . . . , Gn(xn))

∇u2,...,unC(1, G1(x1), . . . , Gn(xn))
F ′(y)dy.

2.1.2 Farlie-Gumbel-Morgenstern Copulas

The Farlie-Gumbel-Morgenstern (FGM) copulas are a commonly used one pa-

rameter family of distributions. The simplest bivariate case with parameter

θ ∈ [−1, 1] is defined as

Cθ(u1, u2) = u1u2 + θu1(1 − u1)u2(1 − u2), u1, u2 ∈ [0, 1].

In this case, the conditional expectation is

E[Y | X = x] = E[Y ] + θ(1 − 2G(x))

∫

R

y(1 − 2F (y))F ′(y)dy.
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This equation was established in relation to the FGM distribution, rather than

to the FGM Copula, in [148]. It can also be expressed as

E[Y | X = x] = E[Y ] − θ(1 − 2G(x))

∫

R

F (y)(1 − F (y))dy. (2.1.3)

We now provide particular examples of this formula, which represent the condi-

tional mean, Y , given realizations of X. In these examples, it was possible to

work out the integrals explicitly (see Appendix 2.B). In cases where numerical

integration is required, for example if we chose Pareto distributions in the copula,

simple techniques such as the Trapezoidal method or quadrature formulae could

be used.

Example 2.1. Suppose that the marginal distributions are both N(0, 1). Then

(2.1.3) reduces to

E[Y | X = x] = − θ√
π

(

1 − 2Φ(x)
)

, θ ∈ [−1, 1]. (2.1.4)

The solution of the integral component in (2.1.3), under the assumptions set in

Example 2.1, is given in Appendix 2.B.

Figure 2.1.1 illustrates the use of the expectation formula (2.1.4) with parameter

θ = 0.8418. The nonlinear expectation (conditional mean) curve is superimposed

on a scatter plot of the data. The data (100 pairs (x,y) of points) was simu-

lated using a copula-based Gibbs sampling algorithm. Data were simulated in

MATLAB version 7 in order to illustrate the nature of the FGM copula-based

expectation curve. A simple linear fit to the data may have overestimated the

upper tail of the data in this case.

In later sections of this chapter we use real data, which presents us with the

problem of estimating the copula parameters, for example θ. In all cases we use

the non-parametric technique described in [58] to obtain the required parameters.

This method involves matching observed scale-free parameters such as Kendall’s

τ and Spearman’s ρ to θ, given simple equations based on the distributional
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Figure 2.1.1: Scatter plot and conditional mean of Y, given X, for FGM model 1

(simulation with normal marginal distributions).

version of the parameters. In the case of the FGM copula, it has a limitation in

that the relationship between τ and θ is τ = 2θ/9. That is, τ must not exceed

the given range, since in that case the original FGM function involved would not

be a copula function and would not represent a joint probability distribution.

Therefore, if we wish to use this technique to find θ, we are limited to using data

pairs which give rise to τ ∈ [−2/9, 2/9].

In cases in which τ and ρ are closer to ±1, it is possible to use the method in [58],

provided one chooses another copula function, and have a formula linking its

parameter with those mentioned. For example, the Clayton copula parameter α

is linked to τ by τ = α/(α+2). The relationship of τ to the Gaussian correlation

coefficient and the Gumbel copula parameter are shown later sections of this

chapter.

Example 2.2. Suppose F (y) is N(0, 1) and G(x) is Gaussian with mean µ and
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variance σ2. We have

E[Y | X = x] = − θ√
π

(

1 − 2Φ

(

x− µ

σ

))

.

Example 2.3. Suppose F (y) is N(0, 1), and G(x) = 1 − exp(− exp(x+ξ
α

)), that

is negative Gumbel, with α = 1 and ξ = 0. Then we have

E[Y | X = x] = − θ√
π

(

2 exp(− exp(x)) − 1
)

.

Example 2.4. Suppose that the marginal distributions are negative exponential,

F (y) = 1 − exp(−λY y), G(x) = 1 − exp(−λXx),

where λX , λY > 0. The expectation formula reduces to

E[Y | X = x] =
1

λY
+

θ

2λY

(

1 − 2 exp(−λXx)
)

.
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Figure 2.1.2: Scatter plot and conditional mean of Y, given X, for FGM model 4

(simulation with exponential marginal distributions).

Figure 2.1.2 illustrates the use of the expectation formula in Example 2.4 with

parameter θ = −0.9. The nonlinear expectation curve is superimposed on a
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scatter plot of the data (100 pairs (x,y) of points). The data were simulated in

MATLAB, as in the previous example. It is clear that the expected value of Y

increases as the given value X gets closer to zero, as in the basic trend of the

data.

The general formula for an FGM 3-copula is

C(u1, u2, u3) = u1u2u3

[

1 + θ12(1 − u1)(1 − u2) + θ13(1 − u1)(1 − u3)

+ θ23(1 − u2)(1 − u3) + θ123(1 − u1)(1 − u2)(1 − u3)
]

,

such that the parameters θ12, θ13, θ23 and θ123 ∈ [−1, 1]. In terms of an FGM

3-copula and random variables Y , X1 and X2, the formula for the conditional

expectation is

E[Y | X1 = x1, X2 = x2] = E[Y ] − η(x1, x2)

∫

R

F (y)(1 − F (y))dy,

where

η(x1, x2) =
θ12(1−2G1(x1)) +θ13(1−2G2(x2))+θ123(1−2G1(x1))(1−2G2(x2))

1 + θ23(1−2G1(x1))(1−2G2(x2))
,

and θ12, θ13, θ23 and θ123 correspond to those parameters in the general FGM 3-

copula formula shown above.

2.1.3 Iterated FGM Distributions

The first iteration in the family of iterated Farlie-Gumbel-Morgenstern distribu-

tions, with parameters α and β, is

H(u1, u2) = u1u2+αu1u2(1−u1)(1−u2)+βu1
2u2

2(1−u1)(1−u2), u1, u2 ∈ [0, 1],

and the second mixed derivative is

H12(u1, u2) = 1 + α(1 − 2u1)(1 − 2u2) + βu1u2(2 − 3u1)(2 − 3u2).



CHAPTER 2. COPULA-BASED REGRESSION FORMULAE 76

Conditions under which H12(u1, u2) is a density are given in [70] as

|α| ≤ 1, α + β ≥ −1, and β ≤ 2−1(3 − α + (9 − 6α− 3α2)1/2).

A more tractable way of expressing the permitted range of values is to set β = αγ

and require that both α and γ ∈ [−1, 1].

We obtain

E[Y | X = x] = E[Y ] + α(1 − 2G(x))

∫

R

y(1 − 2F (y))F ′(y)dy

+ αγG(x)(2 − 3G(x))

∫

R

yF (y)(2− 3F (y))F ′(y)dy.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

M
A

Q
(d

ay
s)

Pd (cm3/s)

Figure 2.1.3: Conditional mean and scatter plot of annual Discharge (days), given

Peak Discharge (cm3/s).

Example 2.5. Suppose that the marginal distributions are N(0, 1). Then the

conditional expectation formula reduces to

E[Y | X = x] = − α√
π

(1 − 2Φ(x)) − β

2
√
π

Φ(x)(2 − 3Φ(x)). (2.1.5)
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The expectation formula given in (2.1.5) is applied to groundwater data which

were obtained with permission from the Mekong River Commission (Personal

communication from Dr A. Metcalfe), see Figure 2.1.3. Mean annual discharge

(MAQ, days), which is the length of the flood season in days, represents one

distribution, and Peak discharge (Pd, cm3/s) of the Mekong River at Vientiane

represents the other. It is assumed that both distributions are Gaussian and they

have been standardized so that they are N(0, 1). The copula parameters are α =

β(αγ) = 0.9746. Using the method in [58] involved obtaining Spearman’s ρ and

using the following formula to estimate the copula parameters, ρ = α/3+αγ/12,

see also [71]. For ease of computation, we set γ = 1 and then having calculated

ρ in MATLAB, we obtain α = 12ρ/5.

If one wishes to use another method to find parameters, such as a more general

minimization technique, one must still ensure the copula parameters satisfy the

conditions above (α ∈ [−1, 1] and γ ∈ [−1, 1]). Neither of the methods above are

flawless, and the main aim here is to obtain a nonlinear curve which follows the

basic trend of the data set. The expectation curve in Figure 2.1.3 overestimates

the mean in the lower tail, but otherwise follows the trend in the data quite well.

Enabling us to predict the conditional mean MAQ reasonably well, given Peak

discharge.

Example 2.6. Suppose that the marginal distributions are negative exponential,

as in Example 2.4. Then the conditional expectation formula reduces to

E[Y | X = x] =
1

λY
− α

2λY
[2 exp(−λXx) − 1]

− 5β

6λY
[1 − exp(−λXx)][3 exp(−λXx) − 1]. (2.1.6)
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2.1.4 Gaussian Copula

If we have a bivariate Gaussian copula, with dependence parameter ρ, we obtain

E[Y | X = x] =

∫

R

y∇y

(

Φ

(

Φ−1(F (y)) − ρΦ−1(G(x))
√

1 − ρ2

))

dy, (2.1.7)

where ∇y is the partial derivative with respect to y. If both marginal distributions

F and G were N(0, 1), the copula would revert back to the bivariate normal

distribution. The Gaussian copula, however, gives us more flexibility, since it can

house any types of univariate distributions, F and G. In (2.1.7), we choose one

marginal distribution to be Gaussian to simplify part of the formula, and leave

the other one open to choice; F (y) ∼ N(0, 1), and G(x) is assumed to be a given

non-Gaussian distribution. Equation (2.1.7) reduces to

E[Y | X = x] =
1

√

1 − ρ2

∫

R

yφ

(

y − ρΦ−1(G(x))
√

1 − ρ2

)

dy

=
1

√

2π(1 − ρ2)
exp

[−ρ2[Φ−1(G(x))]2

2(1 − ρ2)

]
∫

R

y exp

[−y2 + 2yρΦ−1(G(x))

2(1 − ρ2)

]

dy.

(2.1.8)

Exchange rate data for the Swiss Franc [CHF] and Japenese Yen [JPY] relative

to the Australian dollar[AUD] for 2006, were taken from the Reserve Bank of

Australia website. Figure 2.1.4 illustrates the application of (2.1.8) to the bank

data above. The conditional mean of Y , given X, is superimposed on a scatter

plot of the data. Values of the JPY/AUD from 2006 (N =115) were assumed

to be Gaussian and were standardized so that they were N(0, 1). Therefore,

the Gaussian marginal distribution F (y) is associated with the Japanese data

(JPY/AUD), and G(x) = 1−exp(− exp(x+ξ
α

)), with parameters ξ = −0.9544 and

α = 0.015409 is associated with the Swiss data (CHF/AUD). The dependence

parameter ρ = 0.7750 was calculated by first obtaining Kendall’s τ from the data

and using the relationship

ρ = sin(
πτ

2
).
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Figure 2.1.4: Scatter plot and conditional mean of JPY/AUD, given the

CHF/AUD.

In this example, the numerical integration was carried out using the Trapezoidal

method. The overshoot at the upper end of the data suggests that perhaps that

the Gaussian copula-based expectation formula is not the best choice in this case.

Choosing the best copula for any data set is still the subject of debate, and this

point is discussed in the conclusion of this chapter.

2.1.5 Archimedean Copulas

Archimedean copulas are a large family defined by

ϕ(C(u1, u2, . . . , un)) = ϕ(u1) + ϕ(u2) + . . .+ ϕ(un),

where ϕ is the generating function (see [115], Chapter 4). The simplest bivariate

case of the conditional expectation is given by

E[Y | X = x] = −ϕ′(G(x))

∫

R

y
ϕ′′(C(F (y), G(x)))ϕ′(F (y))

[ϕ′(C(F (y), G(x)))]3
F ′(y)dy. (2.1.9)
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Recall that the Gumbel copula formula is

Cθ(u1, u2) = exp
[

−{(− ln(u1))
θ + (− ln(u2))

θ}1/θ
]

, θ ≥ 1,

and the Clayton copula formula is

Cα(u1, u2) = max{(u1
−α + u2

−α − 1)−1/α, 0}, α ∈ [−1,∞) \ {0}.

The relationship between Kendall’s τ and the Archimedean copula parameters in

these examples is θ = 1/(1 − τ) and τ = α/(α+ 2), respectively; see [109].

Figure 2.1.5 demonstrates the application of (2.1.9) with the Clayton copula

to exchange rate data. The data come from the Reserve Bank as above. In

this example, we use the Hong Kong dollar [HKD] and Korean Won [KRW],

relative to the Australian Dollar [AUD]. We want to predict the HKD/AUD,

given the KRW/AUD. The estimate for the Clayton parameter was α = 1.2987.

As both marginal distributions were standardized to N(0, 1), we were able to

use a form of Gauss-Hermite Quadrature to perform the numerical integration

in MATLAB. Test data for Figures 2.1.6 and 2.1.7 were obtained from the Mass

and Physical Measurements for Male Subjects study on the StatSci.org website.

Body measurements were taken from 22 males between the ages of 16 and 30

years. All measurements are in centimetres, and the marginal distributions are

assumed to be Gaussian. The data were standardized. In the first example,

Figure 2.1.6, we are given maximum circumference of the Forearm and want to

predict the expected Waist size. The Gumbel copula with θ = 2.2647 was used.

The value of θ was estimated from Kendall’s τ as described above. In Figure

2.1.7, we want to predict the chest size from the waist size. In this case, we used

the Clayton copula with α = 2.3582, estimated from Kendall’s τ . A small amount

of numerical instability became evident when calculating the expectation curves

in Figures 2.1.6 and 2.1.7, due to the sparse amount of data. The curves are still

able to provide a good indication of the basic trend in the data.
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Figure 2.1.5: Scatter plot and conditional mean of HKD/AUD, given KRW/AUD.
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Figure 2.1.6: Scatter plot and conditional mean of waist size of male subjects,

given their forearm size.

A general pattern for the n-copula case appears to be elusive, so we provide for-

mulae for n = 3, 4, 5. In the trivariate case, assume ϕ is three times differentiable,
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Figure 2.1.7: Scatter plot and conditional mean of chest size of male subjects,

given their waist size.

C is a copula and the marginal distributions are F , G1 and G2. Then

E[Y | X1 = x1, X2 = x2] = γ(x1, x2)

∫

R

yϕ′(F (y))(β1(y, x1, x2)−β2(y, x1, x2))F
′(y)dy,

where

γ(x1, x2) =

[

ϕ′(C(1, G1(x1), G2(x2)))
]3

ϕ′′(C(1, G1(x1), G2(x2)))
,

β1(y, x1, x2) =
ϕ(3)(C(F (y), G1(x1), G2(x2)))
[

ϕ′(C(F (y), G1(x1), G2(x2)))
]4 ,

β2(y, x1, x2) =
3
[

ϕ′′(C(F (y), G1(x1), G2(x2)))
]2

[

ϕ′(C(F (y), G1(x1), G2(x2)))
]5 ,

and ϕ(3) is the third derivative of ϕ.

Conditional copulas required for conditional expectation formulae in cases n = 4

and n = 5 follow. Suppose u = (u1, u2, u3, u4), the first four derivatives of ϕ exist
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and C is a smooth copula, then

∇u1,u2,u3,u4
C(u) = −

4
∏

j=1

ϕ′(uj) (ω1 − ω2 + ω3) ,

where

ω1 =
ϕ(4)(C(u))
[

ϕ′(C(u))
]5 , ω2 =

10ϕ(3)(C(u))ϕ′′(C(u))
[

ϕ′(C(u))
]6 and ω3 =

15
[

ϕ′′(C(u))
]3

[

ϕ′(C(u))
]7 .

Similarly, suppose u = (u1, . . . , u5), the first five derivatives of ϕ exist and C is a

smooth copula on [0, 1], then

∇u1,...,u5
C(u) = −

5
∏

j=1

ϕ′(uj) (α1 + α2 + α3 + α4) ,

where

α1 =
ϕ(5)(C(u))
[

ϕ′(C(u))
]6 , α2 = −

(

15ϕ(4)(C(u))ϕ′′(C(u)) + 10
[

ϕ(3)(C(u))
]2

[

ϕ′(C(u))
]7

)

,

α3 =
105ϕ(3)(C(u))[ϕ′′(C(u))]2

[

ϕ′(C(u))
]8 and α4 = −105

[

ϕ′′(C(u))
]4

[

ϕ′(C(u))
]9 .

2.1.6 Other simple copulas

Another simple copula established in [36] is

Cη(u1, u2) = u1u2 +
2η − 1

π2
sin(πu1) sin(πu2) u1, u2 ∈ [0, 1]

In this case, we obtain

E[Y | X = x] = E[Y ] + (2η − 1) cos(πG(x))

∫

R

y cos(πF (y))F ′(y)dy.
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2.2 Conclusion

In this chapter, we have provided several simple models such as that of (2.1.4),

which for the most part require only that one can calculate the combinations of the

cumulative distributions in the examples. General formulae such as in (2.1.8) and

(2.1.9), which can easily be computed using either Gauss-Hermite Quadrature or

the Trapezoidal method, have also been described. The computer code required

to implement the mathematics is not very complicated. The expectation curves

are easily generated in MATLAB and other languages such as R (S-Plus). The

resulting nonlinear copula-based regression curves are meant to enable one to

make reasonable predictions of one random variable given another. This method

may not be as accurate as spline fitting or alternatives, but it is also not as

complicated and is designed for those having to make many similar calculations

very quickly. We have used the parameter-fitting method suggested in [58] for

ease of computation, but other methods may be used.

Deciding which marginal distributions fit the data is much easier than deciding

which copula to choose. It is our view that, out of the three copula families we

have chosen to try, the Archimedean copulas have the most potential as non-

linear regressors. There are a great variety of Archimedean copulas, and the

numerical integration involved in the calculation of the required curves is rapid

and uncomplicated. Overall, the choice of copula and the goodness of fit is a

problem of current research. We make no apology for this, since techniques are

still being developed for deciding which copula is the best choice for a given data

set; see [10], [142], [122] and [39]. Fortunately there are many copulas from

which to choose and as the area progresses, methods for copula calibration and

specification will become more handable. Given that copulas have recently be-

come so popular, it is hoped that these formulae will be of use to actuaries and

statisticians.
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2.3 Appendix 2.A

Derivation of equation(2.1.2). Let Y , X1 and X2 be continuous random vari-

ables with distribution functions F , G1 and G2, respectively.

Pr{Y ≤ y | X1 = x1, X2 = x2}

= lim
ǫ→0+

η→0+

Pr{Y ≤ y | X1 ∈ (x1 − ǫ, x1], X2 ∈ (x2 − η, x2]}

= lim
ǫ→0+

η→0+

Pr{Y ≤ y,X1 ∈ (x1 − ǫ, x1], X2 ∈ (x2 − η, x2]}
Pr{X1 ∈ (x1 − ǫ, x1], X2 ∈ (x2 − η, x2]}

= lim
ǫ→0+

η→0+

P1 − P2 − P3 + P4

P5 − P6 − P7 + P8

= lim
ǫ→0+

η→0+

C1 − C2 − C3 + C4

C5 − C6 − C7 + C8

= lim
ǫ→0+

η→0+

C1 − C2 − C3 + C4

{G1(x1) −G1(x1 − ǫ)}{G2(x2) −G2(x2 − η)} ÷

C5 − C6 − C7 + C8

{G1(x1) −G1(x1 − ǫ)}{G2(x2) −G2(x2 − η)}

=
∇u2,u3

C(F (y), G1(x1), G2(x2))

∇u2,u3
C(1, G1(x1), G2(x2))

,

where

P1 = Pr{Y ≤ y,X1 ≤ x1, X2 ≤ x2},

P2 = Pr{Y ≤ y,X1 ≤ x1, X2 ≤ x2 − η},

P3 = Pr{Y ≤ y,X1 ≤ x1 − ǫ,X2 ≤ x2},

P4 = Pr{Y ≤ y,X1 ≤ x1 − ǫ,X2 ≤ x2 − η},

P5 = Pr{X1 ≤ x1, X2 ≤ x2},

P6 = Pr{X1 ≤ x1, X2 ≤ x2 − η},

P7 = Pr{X1 ≤ x1 − ǫ,X2 ≤ x2},

P8 = Pr{X1 ≤ x1 − ǫ,X2 ≤ x2 − η}
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and

C1 = C(F (y), G1(x1), G2(x2)),

C2 = C(F (y), G1(x1), G2(x2 − η)),

C3 = C(F (y), G1(x1 − ǫ), G2(x2)),

C4 = C(F (y), G1(x1 − ǫ), G2(x2 − η)),

C5 = C(1, G1(x1), G2(x2)),

C6 = C(1, G1(x1), G2(x2 − η)),

C7 = C(1, G1(x1 − ǫ), G2(x2)),

C8 = C(1, G1(x1 − ǫ), G2(x2 − η)).

2.4 Appendix 2.B

Solution of the integral component in equation(2.1.3), assuming F (y) is

N(0, 1).

Suppose that

F (y) = Φ(y) =
1

2
+

1

2
erf(y/

√
2).
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Then

−
∫

R

y(2F (y)− 1)F ′(y)dy

= −
∫

R

y[2(
1

2
+

1

2
erf(y/

√
2)) − 1]

1√
2π

exp(−y2/2)dy

=
1√
2π

∫

R

d

dy

(

exp(−y2/2)
)

erf(y/
√

2)dy

= lim
b→∞

1√
2π

exp(−b2/2)erf(b/
√

2) − lim
a→−∞

1√
2π

exp(−a2/2)erf(a/
√

2)

− 1√
2π

∫

R

exp(−y2/2)

√
2√
π

exp(−y2/2)dy

= −1

π

∫ +∞

−∞
exp(−y2)dy

= −1

π

√
π

= − 1√
π
.



Chapter 3

Pricing Synthetic CDOs

3.1 Introduction

As mentioned in Chapter 1, the current standard for pricing Collateralized Debt

Obligations (CDOs) is the Gaussian one factor model (GOFM). One of the fun-

damental problems with the GOFM is that once it has been calibrated to a single

tranche of a CDO, it does not price any of the other tranches very accurately.

To be more precise, one of the assumptions of the GOFM is that all asset values

in a CDO portfolio are dependent on a common external factor. That depen-

dence is modeled with a dependence or correlation parameter. Calibrating the

model to real data (usually related the lowest tranche of the CDO), gives rise to

an implied dependence value. Using that implied dependence value to price the

rest of the tranches will result in the underpricing the rest of the CDO. The pri-

mary reason for the underpricing is that CDO tranche loss distributions have fat

tails, whereas the standard Gaussian copula function does not. In order to over-

come this problem, practitioners fit a Gaussian copula to each tranche separately

and thus obtain a different dependence parameter each time. Having a separate

parameter for each tranche provides some additional information regarding the

88
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riskiness of that tranche, however, it is also cumbersome and complicated. It

would be preferable to be able to fit a suitable copula function to the CDO and

only use a single dependence parameter for all tranches.

Underlying a CDO, a transaction which transfers credit risk [61], is a reference

portfolio of risky assets. In the case of a Synthetic CDO, the reference portfolio

contains credit default swaps. In this chapter distortion functions are applied to

the Gaussian copula in order to produce a fat tailed portfolio loss distribution for

a Synthetic Collateralized Debt Obligation (sCDO). The process of distorting the

copula function results in more realistic CDO tranche prices than those produced

via the Gaussian copula alone. Accurate pricing is the key to understanding

the real risk of credit derivatives such as CDOs. Distortion functions have not

previously been used in this area. In fact, there are very few applications of

distortion functions in the literature at all, and this is one of the motivations

behind the present chapter. Two different models will be used to generate the

tranche prices from the loss distribution,

1. a mixture model combined with the JPMorgan algorithm and

2. the model described in [61], which uses a recursion method which was first

described in [5].

The new models only require a single dependence parameter for the entire port-

folio rather than one parameter per tranche. The intention behind the reduction

of parameters in the models is to provide practitioners with a simpler and more

flexible alternative to current CDO pricing methods.

3.2 Distortions of Copulas

The first formal description of distortions of copulas appeared in [35]. More

recently distortions have been discussed in [113], [92] and [123]. These functions
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are also known as transformations [35] and multiplicative generators in [115].

Regardless of the name, these functions are bijective maps which take existing

copulas to new copulas.

Let C be a bivariate copula and ψ : [0, 1] → [0, 1] be a distortion function, then

Cψ(u1, u2) = ψ[−1](C(ψ(u1), ψ(u2))), u1, u2 ∈ [0, 1]. (3.2.1)

is also a copula function if

(c1) ψ is concave on [0,1]

(c2) ψ is strictly increasing on [0,1]

(c3) ψ is continuous and twice differentiable on [0,1], and

(c4) ψ(0) = 0 and ψ(1) = 1,

see [35]. Conditions (c1) to (c4) are the strongest assumptions for ensuring that

Cψ(u1, u2) is a copula. Condition (c3) can be replaced by the weaker assump-

tion that ψ be continuous and piecewise linear, since functions can be uniformly

approximated by a sequence of functions satisfying (c1) to (c4). Another weak

condition for Cψ(u1, u2) to be a copula, which does not require (c1), however, it

requires that one can prove that the transformed density function of Cψ(u1, u2)

is positive on the open interval (0, 1)× (0, 1) is given in [35]. It may also be noted

that a distortion is called strict if ψ[−1](t) = ψ−1 (max{t, ψ(0)}) then ψ[−1] ≡ ψ−1.

That is, ψ has an inverse ψ−1, as opposed to the weaker condition of having a

psuedo-inverse ψ[−1].

Assuming Cψ is smooth, then the distorted copula density cψ is given by

cψ(u1, u2) = ∇u1,u2
Cψ(u1, u2)

= η

{

[ψ′(Cψ)]2∇12C(ψ(u1), ψ(u2))

− ψ′′(Cψ)∇1C(ψ(u1), ψ(u2))∇2C(ψ(u1), ψ(u2))

}

,

(3.2.2)
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where

η =
ψ′(u1)ψ

′(u2)

[ψ′(Cψ)]3

and ∇i is the partial derivative with respect to the i-th argument in the copula.

In the following sections we describe known and new distortion functions. The

performance of several distortion functions in the context of CDO pricing is tested

via simulation later in this chapter.

3.2.1 Distortions Described by Durrleman, Nikeghbali and

Roncalli.

Authors described how the properties of copulas are changed after distortions

have been applied in [35]. The specific distortions described are shown in Table

3.2.1.

ψ(t) ψ−1(t) Restrictions

(D1) t1/α tα α ≥ 1

(D2) sin(πt
2
) 2

π
arcsin(t)

(D3) (β1+β2)t
β1t+β2

β2t
β1+β2−β1t

β1, β2 > 0

(D4) 4
π

arctan(t) tan(πt
4
)

(D5)

(

∫ 1

0
f(t)dt

)−1
∫ x

0
f(t)dt - f ∈ L1(]0, 1[), f(x) ≥ 0,

f ′(x) ≤ 0

Table 3.2.1: Distortions described by Durrleman, Nikeghbali and Roncalli.

The second conjecture in [35], allows us to form new distortions from convex

combinations of existing distortions. If ψ1(t) is a continuous, twice differentiable

distortion with inverse ψ−1
1 (t) for t ∈ [0, 1], then ψ(t) = 1 − ψ−1

1 (1 − t) is also a

distortion. Therefore, the functions in Table 3.2.2 are examples of distortions.
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ψ(t) ψ−1(t) Restrictions

(γ+1)−exp[ln(γ+1)(1−t)]
γ

1 − ln(γ(1−t)+1)
ln(γ+1)

γ > 0

1+ln[t+(1−t) exp(−α)]
α

exp[−α(1−t)]−exp(−α)
1−exp(−α)

α > 0

1 −
(

2−2t
2−t
)1/α 2−2(1−t)α

(1−t)α−2
α > 1/3

1 −
√

2erf−1[erf(1/
√

2)(1 − t)] 1 − erf((1−t)/
√

2)

erf(1/
√

2)

Table 3.2.2: New distortions from combinations of known distortions.

3.2.2 Distortions Described by Morillas.

A total of twenty four distortions are shown in [113]. Three of those distortions

ψ(·) and their inverses ψ−1(·), are shown in Table 3.2.3.

ψ(t) ψ−1(t) Restrictions

(M1) ln(γt+1)
ln(γ+1)

(

exp[t ln(γ + 1)] − 1
)

/γ γ > 0

(M2) 1−exp(−αt)
1−exp(−α)

−
(

ln[1 − (1 − exp(−α))t)]
)

/α α > 0

(M3) tα

2−tα
(

2t
1+t

)1/α
α ∈ (0, 1/3].

Table 3.2.3: Distortions described by Morillas.

The distortions ψ(t) used in Figure 3.2.1 are (D3) with β1 = 1 and β2 = 1/4,

indicated by [- -] , (D2), indicated by [-.-], (M1) with γ = 3, indicated by [—],

and the identity t, indicated by [....].

Several other ways of combining known distortions in order to create new distor-

tions were described in [113].
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Figure 3.2.1: Comparison of distortions.

3.2.3 New Distortions

Distortion using Erf Function. We obtained the following distortion.

ψ(t) =
erf(t/

√
2)

erf(1/
√

2)
. (3.2.3)

The inverse of the erf distortion is

ψ−1(t) =
√

2erf−1[erf(1/
√

2)t].

The second derivative of (3.2.3) is

ψ
′′

(t) =
−t

√
2 exp(−t2/2)

√
πerf(1/

√
2)

It is clear that ψ is strictly increasing since

erf(a/
√

2) < erf(b/
√

2)

is true for a, b ∈ [0, 1] such that a < b. It is easy to verify that the other conditions

required for ψ to be a distortion function are also satisfied.
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Given the relationship between the erf function, standard normal distribution

function, Φ, then

ψ(t) =
2Φ(t) − 1

2Φ(1) − 1
(3.2.4)

is also a distortion.

Piecewise Linear Distortion. Piecewise linear distortions were first presented

in [157]. More recently, related work was presented by these authors in [158]. An

N knot piecewise linear distortion is defined as

ψ(t) =

N
∑

i=0

yi(t)1{βi<t≤βi+1}, (3.2.5)

where

y0(t) = η1
β1
t, if 0 ≤ t ≤ β1

yi(t) = ηi +
( ηi+1−ηi

βi+1−βi

)

(t− βi), if βi < t ≤ βi+1, i = 1, . . . , N − 1

yN(t) = ηN +
(

1−ηN

1−βN

)

(t− βN ), if βN < t ≤ 1

and for concavity, we require that

ηi − ηi−1

βi − βi−1

>
ηi+1 − ηi
βi+1 − βi

.

The inverse of the N knot distortion is

ψ−1(t) =
N
∑

i=0

gi(t)1{ηi<t≤ηi+1}, (3.2.6)

where

g0(t) = β1

η1
t, if 0 ≤ t ≤ η1

gi(t) = βi +
(βi+1−βi

ηi+1−ηi

)

(t− ηi), if ηi < t ≤ ηi+1, i = 1, . . . , N − 1

gN(t) = βN +
(

1−βN

1−ηN

)

(t− ηN), if ηN < t ≤ 1

An example of a four knot piecewise linear distortion is shown in Figure 3.2.2. In

this example the parameters are β = [0.1 0.3 0.5 0.7] and η = [0.4 0.7 0.85 0.95].
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Figure 3.2.2: Piecewise linear distortion.

3.2.4 Composition of Distortions

Creating new distortions from the composition of existing distortions gives us

greater flexibility. Suppose ψ1(t) and ψ2(t) are continuous, twice differentiable

distortions for t ∈ [0, 1], then so is their composition ψ(t) = ψ1(ψ2(t)). For

example,
ln(γt1/α + 1)

ln(γ + 1)
, α ≥ 1, γ > 0,

2Φ
[ (β1+β2)t
β1t+β2

]

− 1

2Φ(1) − 1
, γ, β1, β2 > 0

and
ln
(

γ 2Φ(t1/α)−1
2Φ(1)−1

+ 1
)

ln(γ + 1)
, α ≥ 1, γ > 0.

A large number of alternative compositions are possible and lead to new families

of copulas when applied to existing copulas.
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3.2.5 Conditional Distributions Expressed as Copulas

Suppose that we have uniformly distributed random variables U1, U2 on [0, 1].

Given that

Pr{U1 ≤ u1, U2 ≤ u2} = Cψ(u1, u2),

the conditional distribution

Pr{U1 ≤ u1 | U2 = u2} = ∇u2
Cψ(u1, u2).

In particular

∇u2
Cψ(u1, u2) =

∇u2
C(ψ(u1), ψ(u2))

ψ′[ψ−1{C(ψ(u1), ψ(u2))}]
ψ′(u2). (3.2.7)

Substituting for u1 and u2 with known marginal distributions F1(x1), F2(x2), one

obtains

Pr{X1 ≤ x1 | X2 = x2} =
∇u2

C(ψ(F1(x1)), ψ(F2(x2)))

ψ′[ψ−1{C(ψ(F1(x1)), ψ(F2(x2)))}]
ψ′(F2(x2)), (3.2.8)

where ψ′ is the first derivative of the distortion function. Thus, the partial deriva-

tive of the copula now represents the conditional distribution Pr{X1 ≤ x1 | X2 =

x2}, which often plays an important role in credit derivative pricing. The effec-

tiveness of various conditional distributions will be compared the next section of

this chapter.

3.3 Distorted Gaussian Copula Model

We have chosen two CDO pricing algorithms, that of

(a) JPMorgan and

(b) Gibson, in which to incorporate the distorted copula and simulate synthetic

CDO tranche prices.
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In all cases, the results are compared to those of the original Gaussian one fac-

tor model (GOFM). In framework 1, we followed the pricing algorithm set out

in [105]. In framework 2, we used the pricing algorithm described in [61].

We assume that the underlying portfolio has a mixture of risky assets. Default

occurs when the asset falls below a particular threshold. In Model 1 the default

probability is tied to credit spread and horizon time, whereas in Model 2 it is tied

to credit spread and default time.

Recall that for random variables, asset value (A) with cumulative distribution

F1(a), and global factor (V ), with cumulative distribution F2(v), the Gaussian

copula represents the joint distribution

Pr{A ≤ a, V ≤ v} = Φ2(Φ
−1(F1(a)),Φ

−1(F2(v)); ρ), (3.3.1)

where ρ is the correlation parameter. In the new framework we want the joint

distribution to be represented by the distorted copula,

Pr{A ≤ a, V ≤ v} = ψ(−1)[Φ2(Φ
−1(ψ[F1(a)]),Φ

−1(ψ[F2(v)]; ρ)]. (3.3.2)

In the original Gaussian copula model [100], the marginal distributions for log

asset return and global variables are considered to be standard normal random

variables. The Gaussian copula reverts back to the bivariate Gaussian distribu-

tion in this case, since Φ−1(Φ(a)) = a and Φ−1(Φ(v)) = v. The parameter ρ is a

factor loading linked to pairwise asset correlation, which is ρ2 if we assume that

the dependence is the same for all assets.

In the models of this chapter, we also assume that ρ is the Gaussian copula

correlation coefficient and captures the dependence between asset value and global

factor. The conditional distribution for firm/credit default, given the realization

of a global factor, is arrived at by differentiating the copula. This method for

deriving the conditional distribution is simpler than that of the original GOFM.

The distribution F2 is assumed to be standard normal. From equation (3.2.8), the
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conditional probability that a firm/credit defaults given the realization of global

factor V , p(V ) is

p(V ) =

Φ

(

Φ−1(ψ[F1(a)])−ρΦ−1(ψ[F2(v)])√
1−ρ2

)

ψ′(F2(v))

ψ′(ψ(−1)[Φ2(Φ−1(ψ[F1(a)]),Φ−1(ψ[F2(v)]); ρ)])
. (3.3.3)

3.3.1 Model 1: JPMorgan CDO Pricing Model

We now describe the most important parameters in the JPMorgan framework,

and show how the distortion can be incorporated into the existing model. The

horizon date, h, is defined as

h = (DM −DV )/360,

where DM is maturity date and DV is the valuation date, measured in days. The

Cleanspread (Cs) of the portfolio is

Cs =
spd

1 − R
,

where R is the recovery rate and spd is the average credit spread of the entire

portfolio in basis points (bps). For example, if we have 125 credit default swaps

in the portfolio then we would have to calculate the mean of the 125 associated

credit spreads.

In order to obtain a single value for individual credit default probability, we take

the mean of all individual default probabilities in the portfolio:

Pr{Ai ≤ x∗} = PD(h)

= 1 − e−(Cs × h/10000). (3.3.4)

Thus, all firms/credits are assumed to have the same default distribution PD and

this is substituted for F1 in the copula. Therefor, the conditional distribution
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represented by the original GOFM takes the form

p(V ) = Φ

(

Φ−1(PD(h)) −√
̺V√

1 − ̺

)

. (3.3.5)

From equation (3.3.3) we obtain the conditional default distribution in terms of

distorted copula

p(V ) =

Φ

(

Φ−1(ψ[PD(h)])−ρΦ−1(ψ[F2(v)])√
1−ρ2

)

ψ′(F2(v))

ψ′(ψ(−1)[Φ2(Φ−1(ψ[PD(h)]),Φ−1(ψ[F2(v)]); ρ)])
(3.3.6)

and substitute the result into the equation for portfolio loss PFL, given any

particular realization of V ,

PFL(v) = p(V=v)(1 − R). (3.3.7)

Let Ntl be the notional of the entire portfolio, then tranche loss TL, given any

particular realization of V is

TL(v) = min{max{PFL(v)Ntl, 0}, KUNtl}/Ntl, (3.3.8)

where KU is the tranche upper attachment point. The total expected tranche

loss is calculated numerically by approximating the standard formula

E[TL] =

∫

R

TL(v)f2(v)dv. (3.3.9)

We integrate across all values of V using a simple method such as the Trapezoidal

method. If f2 is standard normal then a modified Gaussian quadrature formula

can be used. Figure 3.3.1 compares the expected tranche loss using

• the original Gaussian copula, indicated by [*],

• the distortion (D3) applied to the Gaussian copula, indicated by [+] with

β1 = 1 and β2 = 0.5, and

• the piecewise multinode distortion also applied to the Gaussian copula,

indicated by [o] with β = [ 0.3 0.4 0.5 0.7] and η = [0.65 0.85 0.93 0.97].

F2 is assumed to be standard normal in these simulations. It is evident that both

distortions lift the tail of the loss distribution markedly.
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Figure 3.3.1: Comparison of Expected tranche loss.

Results of Model 1

Tables 3.3.3 to 3.3.6 show simulated tranche prices, whereas Table 3.3.1 shows

real MID quotes (mean of BID and ASK prices) of the iTraxx Series 3 and Series

4 CDO tranches on dates specified. Except for the 0− 3% tranche, quotes are in

basis points (bps). The partial set of data were kindly provided by CreditFlux

Newsletter. Given that a complete set of data was not accessible, it was not

possible to make a direct comparison between the real data and simulations, so

feasible parameter values were chosen and fair tranche prices were simulated from

those. A variety of distorted Gaussian copulas were used (see paragraph with each

Table for details) and a maturity date (horizon time, h) of one year or five years.

The parameter settings were

• Portfolio Notional = $1 Million

• Recovery rate = 40%

• Discount rate = 2%
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TRANCHE QUOTE (S4) IMPLIED QUOTE (S3) BASE

21 FEB 06 CORR 12 APRIL 05 CORR

% bps % bps %

0-3 26.3% 12% 23.8% 20

3-6 78.0 3 151.0 29

6-9 25.0 12 46.0 37

9-12 11.5 17 21.0 43

12-22 5.3 24 13.5 59

Table 3.3.1: iTraxx Europe series 3 and 4 MID quotes.

In comparison 1, Table 3.3.2 and comparison 3, Table 3.3.4, CDO tranche prices

were simulated using

1. the original Gaussian copula (GOFM),

2. distortion (D3) from Table 3.2.1 with β1 = 1 and β2 = 0.5 , applied to the

Gaussian copula (DURL) and

3. the piecewise linear multiknot distortion with β = [ 0.3 0.4 0.5 0.7] and η

= [0.65 0.85 0.93 0.97] applied to the Gaussian copula (PWLD).

Average credit spread spd = 40 bps, h = 5 years and the dependence parameter

is as indicated in the last column of each table.

Two different logarithmic distortions of the Gaussian copula are compared to that

of the original Gaussian copula (GOFM) in comparison 2, Table 3.3.3, comparison

4, Table 3.3.5, comparison 7, Table 3.3.8 and comparison 8, Table 3.3.9. The first

distortion is (M1) from Table 3.2.3 with γ = 5 (LOG), and the second is the

composition of (M1) and
√
t, with γ = 5 (LOG SQ).

The Durrleman (D3) and piecewise linear distortions lead to much larger increases

in tranche values compared to the logarithmic distortions. All distortions pro-

duced far more realistic values in relation to the highest tranche. Lowering the
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TRANCHE GOFM DURL PWLD SIM CORR

% bps bps bps %

0-3 14.3% 9.9% 9.1% 45

3-6 262.2 300.2 376.4 45

6-9 79.8 152.5 170.4 45

9-12 28.0 83.9 80.9 45

12-22 4.9 26.7 20.6 45

Table 3.3.2: Comparison 1 of simulated fair prices, 5yrs.

TRANCHE GOFM LOG LOG SQ SIM CORR

% bps bps bps %

0-3 14.3% 10.8% 13.4% 45

3-6 262.2 286.9 242.7 45

6-9 79.8 138.9 96.1 45

9-12 28.0 74.2 45.7 45

12-22 4.9 22.7 12.9 45

Table 3.3.3: Comparison 2 of simulated fair prices, 5yrs.

TRANCHE GOFM DURL PWLD SIM CORR

% bps bps bps %

0-3 18.9% 12.7% 11.2% 30

3-6 159.7 296.6 423.8 30

6-9 16.9 115.2 116.1 30

9-12 1.9 43.6 29.0 30

12-22 0.1 6.0 2.57 30

Table 3.3.4: Comparison 3 of simulated fair prices, 5yrs.

dependence parameter tended to deflate the highest tranche prices and cause a

mixture of changes in the lower tranches.
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TRANCHE GOFM LOG LOG SQ SIM CORR

% bps bps bps %

0-3 18.9% 13.8% 16.3% 30

3-6 159.7 268.8 199.5 30

6-9 16.9 96.2 57.7 30

9-12 1.9 34.2 20.0 30

12-22 0.1 4.3 3.1 30

Table 3.3.5: Comparison 4 of simulated fair prices, 5yrs.

The horizon time in comparison 5, Table 3.3.6, comparison 6, Table 3.3.7 and

comparison 7, Table 3.3.8 is one year.

TRANCHE GOFM DURL PWLD SIM CORR

% bps bps bps %

0-3 18.76% 16.51% 17.22% 45

3-6 67.13 194.75 160.99 45

6-9 9.75 50.25 33.73 45

9-12 1.95 15.03 8.81 45

12-22 0.18 2.12 1.08 45

Table 3.3.6: Comparison 5 of simulated fair prices, 1yr.

In comparison 6, the average credit spread spd = 35 bps and the dependence

parameter ρ = 0.45. The parameters in the Durrleman (D3) distortion were set

the same as in the previous example, whereas in the multiknot distortion, β =

[0.17 0.23 0.35 0.6] and η = [0.55 0.7 0.85 0.9].

The same log distortions with γ = 5 are used in comparison 8, Table 3.3.9,

however the spd = 35 bps.

In comparisons 1 and 2, the distortions increase all prices except for the lowest

tranche which is decreased. The combination of log and square root distortions
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TRANCHE GOFM DURL PWLD SIM CORR

% bps bps bps %

0-3 16.34% 14.60% 14.18% 45

3-6 49.60 153.39 181.52 45

6-9 6.78 36.93 43.38 45

9-12 1.29 10.48 12.49 45

12-22 0.11 1.40 1.71 45

Table 3.3.7: Comparison 6 of simulated fair prices, 1yr.

TRANCHE GOFM LOG LOG SQ SIM CORR

% bps bps bps %

0-3 18.76% 16.80% 17.45% 45

3-6 67.13 178.66 133.33 45

6-9 9.75 44.88 36.40 45

9-12 1.95 13.099 11.83 45

12-22 0.18 1.79 1.78 45

Table 3.3.8: Comparison 7 of simulated fair prices, 1yr.

TRANCHE GOFM LOG LOG SQ SIM CORR

% bps bps bps %

0-3 16.34% 14.83% 15.28% 45

3-6 49.60 140.59 107.10 45

6-9 6.78 32.93 27.9 45

9-12 1.29 9.12 8.66 45

12-22 0.11 1.18 1.22 45

Table 3.3.9: Comparison 8 of simulated fair prices, 1yr.

was able to decrease the value of both of the lowest CDO tranches. This was not

a typical result. In most cases, the distortions increased all tranche values except
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for the equity tranche, relative to the tranche values of the GOFM.

Many other combinations of distortions could be applied to the copulas and may

give quite promising results. The piecewise linear distortion has an extra ad-

vantage in that it can be fitted to any other distortion. However, some of the

distortions may be faster to compute or easier to fit to data. The marginal dis-

tributions may also be changed, for example we could assume that F2 is a Skew

t distribution or exponential distribution.

3.3.2 Model 2: Gibson Algorithm with Recursion

One of the assumptions of the previous model is that as the number of risky as-

sets in the portfolio gets large, the total portfolio loss converges to the conditional

Gaussian copula formula originally used. The distortion is then used to induce

a skew in the portfolio loss distribution. Some may find it undesirable to use

the distortion globally after the asymptotics have been finalized in a theoretical

setting. Therefore, we present another method, that in [61] combined with the

recursion formula described in [5], since no such assumptions are made. This

method has capacity to handle a variety of individual conditional default distri-

butions if required. The original recursion formula taken from [5] was described

briefly in Chapter 1. Since the author uses vastly different notation in [61] to

that used in [5], the formulae is redescribed below.

Let the cumulative distribution F2 be associated with global factor be V and the

default time probability distribution Qi(t), i = 1, 2, . . . , N be associated with the

default time τ of each credit default swap. The distorted copula represents the

joint probability that the credit default swap defaults before time t and the global

factor is less than some value v,

Pr{τ ≤ t, V ≤ v} = Cψ(Qi(t), F2(v)).
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The default probability for each credit default swap, conditional on V , be qVi,t,

i = 1, . . . , N . The In the original GOFM, Qi(t | V ) is set to the conditional

Gaussian copula. In this model we apply a distortion function to the conditional

Gaussian copula in the same way as Model 1, so

qVi,t =

Φ

(

Φ−1(ψ[Qi(t)])−ρΦ−1(ψ[F2(v)])√
1−ρ2

)

ψ′(F2(v))

ψ′(ψ(−1)[Φ2(Φ−1(ψ[Qi(t)]),Φ−1(ψ[F2(v)]); ρ)])
, (3.3.10)

Note that the distribution F1(a), individual credit default swap default probabil-

ity of Model 1 is replaced by the distribution, Qi(t) for all items in the portfolio,

i = 1, 2, . . . , N . Both distributions are exponential in nature, in particular, given

the hazard rate h, Qi(t) = 1 − exp(−ht).

In order to keep the model simple, one distortion will be applied per portfolio

simulation, so that all distributions qVi,t for i = 1, . . . , N , will be equal. In a

portfolio of size k, let pk(j, t | V ) be the probability that exactly j defaults

occur by time t, conditional on V . The idea is to assume one knows the default

distribution of k credit default swaps and denote this

pk(j, t | V ), j = 0, . . . , k. (3.3.11)

Adding one more credit default swap, gives us the default distribution for k + 1

swaps.

pk+1(0, t | V ) = pk(0, t | V )[1 − qVk+1,t]

pk+1(j, t | V ) = pk(j, t | V )[1 − qVk+1,t] + pk(j − 1, t | V )qVk+1,t

j = 1, . . . , k

pk+1(k + 1, t | V ) = pk(k, t | V )qVk+1,t. (3.3.12)

Initially, we choose p0(0, t | V ) = 1 for k = 0, then solve pN(j, t | V ) for

j = 0, . . . , N credit default swaps. Suppose that f2 is the probability density
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associated with V , then the unconditional default distribution (that j defaults

occur by time t) is

p(j, t) =

∫ ∞

−∞
pN(j, t | V )f2(V )dV. (3.3.13)

The integral above has to be solved numerically. Given that f2(V ) was assumed

to be standard normal, we chose to use a Gaussian Quadrature formula to obtain

a solution.

Payments are calculated quarterly. Expected tranche loss up to payment time Ti

is

E[Li] =

N
∑

j=0

p(j, Ti) max{min{jA(1 − R), KU} −KL, 0}, (3.3.14)

where R is the recovery rate, N = 100 is the number of credit default swaps,

Ai is notional amount of credit default swap i. Therefore, the loss from the i-th

default is Ai(1−R). The upper and lower tranche attachment points are KU and

KL, as in the previous model. The Protection or Contingent Leg, Ct, which is

the expected discounted payment the tranche investor must make when defaults

impact on the tranche, is

Ct =

N
∑

i=1

Di(E[Li] − E[Li−1]), (3.3.15)

where Di is the risk-free discount factor for payment date i.

The Default Leg, DefL, (the fee) the tranche investor receives for providing a

type of insurance is

DefL = s
n
∑

i=1

Di∆i((KU −KL) − E[Li]), (3.3.16)

where ∆i ≈ Ti − Ti−1 and s is the spread per annum paid to the investor. Given

that MTM = Default Leg - Contingent, and setting MTM = 0 results in

spar =
Ct

∑n
i=1Di∆i((KU −KL) − E[Li])

(3.3.17)
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Results of Model 2

Parameters were initially identical to those in [61], that is

• Single-name spread = 60 bps

• Notional amount per credit = $10 Million

• Recovery Rate = 40%

• Default hazard rate = 1%, so qi(t) = 1 − exp(−0.01t) and

• Asset dependence (correlation) parameter = 30%

• Maturity date = 5 years

• Total number of credit default swaps, N = 100

• Constant interest rate = 5% (continuously compounded)

It was possible to replicate the tranche fair prices (par spread) in [61] with good

accuracy, so that a comparison could be made between prices from the Gaussian

Copula and those from the distorted Gaussian Copula. To be specific, the original

tranche fair prices in the Gibson paper were 1507 (tranche 0-3), 315 (tranche 3-

10)and 7(tranche 10-100) bps, which are close to the values in column 1 (GOFM)

of Table 3.3.10. Results for three tranche levels and GOFM, Durrleman (D3),

Table 3.2.1 and Log distortion (M1), Table 3.2.3 models are shown in Table

3.3.10. Parameter values in the Durrleman distortion (D3) of the Gaussian copula

TRANCHE GOFM DURL LOG SIM CORR

bps bps bps bps %

0-3 1512.3 1061.4 1223.5 30

3-10 314.9 330.6 322.5 30

10-100 7.4 14.5 11.9 30

Table 3.3.10: Comparison 1 of simulated fair prices using recursion, 5yrs.
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(DURL) were β1 = 1.0 and β2 = 0.5, and that in the log distortion (M1) was

γ = 3.0. These distortions cause changes in the weighting of the tranche prices

in the CDO. More specifically, the highest tranche is given much greater value.

In Table 3.3.11, we compare GOFM and two different piecewise linear distortion

models. Parameters for PWLD1 were β =[0.25 0.3 0.5 0.6] and η = [0.35 0.4 0.6

TRANCHE GOFM PWLD1 PWLD2 SIM CORR

bps bps bps bps %

0-3 1512.3 1227.4 730.9 30

3-10 314.9 332.8 392.4 30

10-100 7.4 10.0 19.2 30

Table 3.3.11: Comparison 2 of simulated fair prices using recursion, 5yrs.

0.7], and for PWLD2 the values were β =[0.2 0.3 0.7 0.8] and η = [0.61 0.65 0.8

0.9]. The second piecewise linear distortion adds considerable value to the higher

tranche prices, while taking considerable weight out of the lowest tranche. The

TRANCHE GOFM DURL LOG SIM CORR

bps bps bps bps %

0-3 1105.2 793.9 903.6 45

3-10 326.3 325.0 324.0 45

10-100 13.8 20.4 18.0 45

Table 3.3.12: Comparison 3 of simulated fair prices using recursion, 5yrs.

highest tranche increases in value in this case, while the lowest tranche decreases.

The effect of the distortions in comparison 5 and 6 are similar to that of the

previous tables.

In the following tables the maturity to one year, so that more comparisons could

be made. In most cases the highest two tranches increase in value, while the
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TRANCHE GOFM PWLD1 PWLD2 SIM CORR

bps bps bps bps %

0-3 1105.2 904.4 602.3 45

3-10 326.3 340.8 369.9 45

10-100 13.8 16.4 24.0 45

Table 3.3.13: Comparison 4 of simulated fair prices using recursion, 5yrs.

TRANCHE GOFM DURL LOG SIM CORR

bps bps bps bps %

0-3 2078.5 1438.5 1668.3 15

3-10 272.5 323.6 305.6 15

10-100 1.9 8.1 5.5 15

Table 3.3.14: Comparison 5 of simulated fair prices using recursion, 5yrs.

TRANCHE GOFM PWLD1 PWLD2 SIM CORR

bps bps bps bps %

0-3 2078.5 1680.9 932.4 15

3-10 272.5 302.0 396.6 15

10-100 1.9 3.6 13.1 15

Table 3.3.15: Comparison 6 of simulated fair prices using recursion, 5yrs.

TRANCHE GOFM DURL LOG SIM CORR

bps bps bps bps %

0-3 1802.2 1438.3 1563.8 30

3-10 152.1 244.7 213.0 30

10-100 1.4 4.2 3.2 30

Table 3.3.16: Comparison 7 of simulated fair prices using recursion, 1yr.

lowest tranche decreases. If the original bank were to retain the equity tranche

instead of trading it, then adjustments could be made for the decrease in tranche
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TRANCHE GOFM PWLD1 PWLD2 SIM CORR

bps bps bps bps %

0-3 1802.2 1662.5 1408.9 30

3-10 152.1 184.2 270.2 30

10-100 1.4 2.1 4.5 30

Table 3.3.17: Comparison 8 of simulated fair prices using recursion, 1yr.

TRANCHE GOFM DURL LOG SIM CORR

bps bps bps bps %

0-3 1268.2 1089.9 1198.6 45

3-10 273.3 310.1 286.4 45

10-100 6.8 9.1 7.7 45

Table 3.3.18: Comparison 9 of simulated fair prices using recursion, 1yr.

price. At the same time, the higher tranches which would be traded, would not

be underpriced like they are when the Gaussian copula is used by itself. It should

be acknowledged that the results would differ slightly if the model were calibrated

to real data.

TRANCHE GOFM PWLD1 PWLD2 SIM CORR

bps bps bps bps %

0-3 1268.2 1304.1 1047.9 45

3-10 273.3 264.0 329.2 45

10-100 6.8 6.4 9.6 45

Table 3.3.19: Comparison 10 of simulated fair prices using recursion, 1yr.
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TRANCHE GOFM DURL LOG SIM CORR

bps bps bps bps %

0-3 2144.5 1830.8 1952.9 15

3-10 53.4 152.7 115.0 15

10-100 0.0 0.6 0.3 15

Table 3.3.20: Comparison 11 of simulated fair prices using recursion, 1yr.

TRANCHE GOFM PWLD1 PWLD2 SIM CORR

bps bps bps bps %

0-3 2144.5 1999.0 1763.3 15

3-10 53.4 81.7 187.4 15

10-100 0.0 0.1 0.7 15

Table 3.3.21: Comparison 12 of simulated fair prices using recursion, 1yr.

3.4 Conclusion

We have been able to incorporate several distortion functions into existing syn-

thetic CDO tranche pricing systems. In all cases, the distortion functions prove

to be a good tool for inducing a fat tail in the portfolio loss distribution. In

framework 1 (JP Morgan), we simulated tranche prices similar to those of iTraxx

series 3 and 4 in the case of h = 1 year. In framework 2 (recursion method) it

was possible to apply the distortions to individual credit default swap conditional

default probabilities and induce a fat tail in the final CDO tranche prices. The

second of the piecewise linear distortions used in framework 2 was one of the best

for shifting the fair value of the tranches. Framework 2 is preferable to framework

1, since it is more flexible and makes less assumptions.

There are many other distortions which could be tried in the future and may

prove useful in this field. These functions have the potential to enable analysts to

price credit risk with greater accuracy. Furthermore, the combination of copulas
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and distortion functions could be used to price a variety of credit derivatives, or

even to create new financial products.



Chapter 4

Constructing n-Copulas

We have seen many classes of bivariate copulas in Chapter 1, however, there

are situations in which we may want a joint distribution between three or more

variables.

When one has several random variables of interest, it is generally easy to fit each

variable to a univariate distribution. Choosing a joint distribution or dependence

structure for all the variables, however, is not so easy and the choices are not so

obvious. If each variable has a standard normal distribution and the correlation

matrix is known, then their joint distribution may be assumed to be multivari-

ate normal. In many physical situations, however, variables may follow extreme

value distributions or a mixture of distributions such that no obvious joint dis-

tribution fits the information available. One choice of dependence structure in

these situations is a n-copula. The construction of new classes of n-copulas is a

relatively new area, so that there are not many methods or examples described in

the literature. The purpose of this chapter is to combine more than one method

of constructing n-copulas in order to produce new examples. We also build on

the results described in [90].

114
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4.1 Background

The following new class of bivariate copulas is described in [132]:

Cθ(u1, u2) = u1u2 + θf(u1)g(u2), for all u1, u2 ∈ [0, 1], (4.1.1)

where f and g are non-zero real functions with the following properties

1. f , g are absolutely continuous,

2. f(0) = f(1) = g(0) = g(1) = 0,

3. θ ∈ [−1/max{αγ, βδ},−1/min{αδ, βγ}]

and

min{αδ, βγ} ≥ −1

α = inf{f ′(u1) : u1 ∈ A} < 0,

β = sup{f ′(u1) : u1 ∈ A} > 0,

γ = inf{g′(u2) : u2 ∈ B} < 0,

δ = sup{g′(u2) : u2 ∈ B} > 0,

A = {u1 ∈ [0, 1] : f ′(u1) exists},

B = {u2 ∈ [0, 1] : f ′(u2) exists}.

A typical example of f is f(u) = u(1 − u) which is an inverted parabola. The

Farlie-Gumbel-Morgenstern family of copulas fits into this class of copulas. The

bivariate copulas are generalized further in [90], so that one may incorporate

copulas which are vastly different from the Farlie-Gumbel- Morgenstern family.

The first generalization of bivariate copulas is

Cθ(u1, u2) = C∗(u1, u2) + f(u1)g(u2), for all u1, u2 ∈ [0, 1], (4.1.2)
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where f and g are absolutely continuous and

min{αδ, βγ} ≥ − ∆∗

(ub − ua)(vb − va)
(4.1.3)

such that ua, ub, va, vb ∈ [0, 1]. ∆∗ is the volume of C∗(u1, u2), that is

∆∗ = C∗(ub, vb) − C∗(ub, va) − C∗(ua, vb) + C∗(ua, va). (4.1.4)

The second generalization is

Cθ(u1, u2) = C∗(u1, u2) + θf(u1)g(u2), for all u1, u2 ∈ [0, 1], (4.1.5)

where C∗(u1, u2) is any known bivariate copula and f and g have the same prop-

erties as those listed previously.

Note 1 : The following condition on θ ensures that Cθ is a copula

θ ≥ −∆∗

f ′(u1)g′(u2)
, f ′(u1)g

′(u2) ≥ 0. (4.1.6)

4.2 Method 1 for n-copula Construction

Authors in [30] have recently extended the class of copulas shown in equation

(4.1.1) to n dimensions:

Cθ(u) =
n
∏

i=1

ui + θ
n
∏

i=1

fi(ui), for all u ∈ [0, 1]n, (4.2.1)

where u = (u1, u2, . . . , un) and the component functions f have the same prop-

erties as those in the bivariate case, and the admissible range of θ is

−1/ sup
u∈D+

(

n
∏

i=1

f ′
i(ui)

)

≤ θ ≤ −1/ inf
u∈D−

(

n
∏

i=1

f ′
i(ui)

)

, (4.2.2)
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where

D− = {u ∈ [0, 1]n :

n
∏

i=1

f ′
i(ui) < 0}

D+ = {u ∈ [0, 1]n :
n
∏

i=1

f ′
i(ui) > 0}.

4.3 Bivariate Copulas Containing Distortions

In Chapter 1 and Chapter 3 we described distortions which can be applied to

known copulas in order to obtain a new ones:

Cψ(u1, u2) = ψ[−1] (C(ψ(u1), ψ(u2))) , for all u1, u2 ∈ [0, 1],

provided that

1. ψ is concave;

2. ψ is strictly increasing;

3. ψ is continuous and twice differentiable, and

4. ψ(0) = 0 and ψ(1) = 1

on the interval [0, 1]. In this section we suggest an alternative method of obtaining

new copulas by combining distortions with known copulas. We obtained the idea

from [90], in which the authors suggest that a copula may be constructed from

univariate probability distributions in the following way; Suppose that F1, F2, G1

and G2 are univariate distribution functions. If

f(u1) =
F1(u1)

F1(1)
− F2(u1)

F2(1)
and g(u2) =

G1(u2)

G1(1)
− G2(u2)

G2(1)
, (4.3.1)

then

C(u1, u2) = C∗(u1, u2) +

{

F1(u1)

F1(1)
− F2(u1)

F2(1)

}{

G1(u2)

G1(1)
− G2(u2)

G2(1)

}

(4.3.2)

is a copula. We noticed that non-negative univariate probability distribution

functions have similar properties to distortion functions. Therefore we propose
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Theorem 4.1. Given a known absolutely continuous copula C∗(u1, u2) and dis-

tinct distortion functions ψ1 and ψ2, then

C(u1, u2) = C∗(u1, u2)+[ψ1(u1)−ψ2(u1)][ψ1(u2)−ψ2(u2)] for all u1, u2 ∈ [0, 1]

(4.3.3)

is also a copula, given the conditions below, and assuming that

[ψ1(u1) − ψ2(u1)][ψ1(u2) − ψ2(u2)] ≤ min{u1, u2} − C∗(u1, u2). (4.3.4)

Assume also that the known copula is continuous, twice differentiable and the

distortions are at least once differentiable on [0, 1], then the density of the new

copula is

∇u1,u2
C(u1, u2) = ∇u1,u2

C∗(u1, u2) + [ψ′
1(u1) − ψ′

2(u1)][ψ
′
1(u2) − ψ′

2(u2)], (4.3.5)

which is non-negative if

[ψ′
1(u1) − ψ′

2(u1)][ψ
′
1(u2) − ψ′

2(u2)] ≥ −∇u1,u2
C∗(u1, u2). (4.3.6)

Proof of general copula properties:

C(0, u2) = C∗(0, u2) + [ψ1(0) − ψ2(0)][ψ1(u2) − ψ2(u2)]

= 0 + (0 − 0)[ψ1(u2) − ψ2(u2)]

= 0,

C(u1, 0) = C∗(u1, 0) + [ψ1(u1) − ψ2(u1)][ψ1(0) − ψ2(0)]

= 0 + [ψ1(u1) − ψ2(u1)](0 − 0)

= 0
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and

C(1, u2) = C∗(1, u2) + [ψ1(1) − ψ2(1)][ψ1(u2) − ψ2(u2)]

= u2 + (1 − 1)[ψ1(u2) − ψ2(u2)]

= u2,

C(u1, 1) = C∗(u1, 1) + [ψ1(u1) − ψ2(u1)][ψ1(1) − ψ2(1)]

= u1 + [ψ1(u1) − ψ2(u1)](1 − 1)

= u1.

The simplest generalization of this new subclass of copulas is

C(u1, u2) = C∗(u1, u2) + θ[ψ1(u1) − ψ2(u1)][ψ1(u2) − ψ2(u2)] (4.3.7)

for some parameter θ such that

θ ≥ −∇u1,u2
C∗(u1, u2)

[ψ′
1(u1) − ψ′

2(u1)][ψ′
1(u2) − ψ′

2(u2)]
and [ψ′

1(u1)−ψ′
2(u1)][ψ

′
1(u2)−ψ′

2(u2)] ≥ 0.

In this context we only require that ψ is once differentiable and may be able to

relax the concavity condition as long as the derivatives of the distortions satisfy

the condition shown above. In this case the relationship between Spearman’s ρ

of the new copula and that of the given copula ρ̃s is

ρs = ρ̃s + 12

∫ 1

0

{ψ1(u1) − ψ2(u1)}du1

∫ 1

0

{ψ1(u2) − ψ2(u2)}du2.

Example 4.1.

C(u1, u2) = u1u2 +

{

ln(γu1 + 1)

ln(γ + 1)
− u1

}{

ln(γu2 + 1)

ln(γ + 1)
− u2

}

, γ ∈ (0, 5.2]

and

ρs = 12

[

1

2
+

ln(γ + 1) − γ

γ ln(γ + 1)

]2

.
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Example 4.2.

C(u1, u2) = Φ2(Φ
−1(u1),Φ

−1(u2); ρ) + [sin(
π

2
u1) − u1][sin(

π

2
u2) − u2],

ρ ∈ [−0.6, 0], (4.3.8)

where Φ2(·) is the bivariate normal, and Φ−1(·) inverse univariate normal distri-

bution, and

ρs =
6

π
arcsin(

ρ

2
) + 12

(

2

π
− 1

2

)2

.

Figure 4.3.1 shows the density of the copula in Example 4.2, with ρ = −0.1.
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Figure 4.3.1: Copula density of distribution in (4.3.8)

Example 4.3.

C(u1, u2) = u1u2 +

{

1 − e−λu1

1 − e−λ
− u1

}{

1 − e−λu2

1 − e−λ
− u2

}

, λ ∈ (0, 2.1]

and

ρs = 12

[

2 − e−λ

−λ(1 − e−λ)
− 1

2

]2

.

An example in which the distortion is convex is
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Example 4.4.

C(u1, u2) = u1u2 + θ

{

u1 −
u1

2 − u1

}{

u2 −
u2

2 − u2

}

, θ ∈ [−1, 2] (4.3.9)

and

ρs = 12θ

(

3

2
− 2 ln(2)

)2

.

Example 4.5.

C(u1, u2) = Φ2(Φ
−1(u1),Φ

−1(u2); ρ) +

{

u1 −
u1

2 − u1

}{

u2 −
u2

2 − u2

}

ρ ∈ [−0.6, 0.1]

and

ρs =
6

π
arcsin(

ρ

2
) + 12

(

3

2
− 2 ln(2)

)2

.

Example 4.6.

C(u1, u2) =

{

ln(γ1u1 + 1)

ln(γ1 + 1)
− ln(γ2u1 + 1)

ln(γ2 + 1)

}{

ln(γ1u2 + 1)

ln(γ1 + 1)
− ln(γ2u2 + 1)

ln(γ2 + 1)

}

+ Φ2(Φ
−1(u1),Φ

−1(u2); ρ).

The range of suitable values for ρ will depend on the ranges for γ1 and γ2. Both

γ1 and γ2 should be at least n > 0. The range for parameters such as ρ was

calculated numerically in these examples. Figure 4.3.2 shows the density of the

copula in Example 4.4, with θ = 0.5.

4.3.1 Other Subclasses of Copulas

Another method of obtaining a new copula is

C(u1, u2) = ψ
[−1]
1 [C∗(ψ1(u1), ψ1(u2))] + [ψ2(u1) − ψ3(u1)][ψ2(u2) − ψ3(u2)],

for all u1, u2 ∈ [0, 1]. In this case, at least ψ1 must be concave.
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Figure 4.3.2: Copula density for distribution in (4.3.9)

4.4 Method 2 for n-copula Construction

A method by which lower dimensional copulas can be used to construct higher

dimensional ones was described in [129] and [24]. We now apply that method to

a combination of bivariate copulas in order to obtain 3-copulas.

Example 4.7. Suppose we have two specified bivariate copulas such that

C(u1, 1, u3) = C13(u1, u3), C(u1, u2, 1) = C12(u1, u2),

C12(u1, u2) = u1u2 + θ1u1(1 − u1)u2(1 − u2), θ1 ∈ [−1, 1] and

C13(u1, u3) = u1u3 + θ2

[

sin(
π

2
u1) − u1

] [

sin(
π

2
u3) − u3

]

, θ2 ∈ [−1, 1.7].

Now, if we let C23(x, y) = xy, for all x, y ∈ [0, 1], then we may use

C(u1, u2, u3) =

∫ u1

0

C23(∇u1
C12(t, u2),∇u1

C13(t, u3))dt

to construct the 3-copula

C(u1, u2, u3)=θ1u1(1 − u1)u2(1 − u2)u3 + θ1θ2u2(1 − u2)
[

sin(
π

2
u3) − u3

]

+ u1u2u3 + θ2u2

[

sin(
π

2
u1) − u

] [

sin(
π

2
u3) − u3

]

× ϑ,
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where

ϑ =

[

sin(
π

2
u1)(1 − 2u1) −

4

π
{cos(

π

2
u1) − 1} − u1(1 − u1)

]

.

Example 4.8. Let C23(x, y) = xy,

C12(u1, u2) = u1u2 +

{

ln(γu1 + 1)

ln(γ + 1)
− u1

}{

ln(γu2 + 1)

ln(γ + 1)
− u2

}

, γ ∈ (0, 5.2]

and

C13(u1, u3) = u1u3 +

{

ln(γu1 + 1)

ln(γ + 1)
− u1

}{

ln(γu3 + 1)

ln(γ + 1)
− u3

}

, γ ∈ (0, 5.2].

then

C(u1, u2, u3) = u1u2u3 +

(

ln(γu2 + 1)

ln(γ + 1)
− u2

)(

ln(γu3 + 1)

ln(γ + 1)
− u3

)

× Z

+

[

ln(γu1 + 1)

ln(γ + 1)
− u1

] [

u2

(

ln(γu3 + 1)

ln(γ + 1)
− u3

)

+ u3

(

ln(γu2 + 1)

ln(γ + 1)
− u2

)]

,

where

Z =

{

γ2u1

[ln(γ + 1)]2(γu1 + 1)
− 2

ln(γu1 + 1)

ln(γ + 1)
+ u1

}

.

Example 4.9. Similarly, let C12(u1, u2) = u1u2 + θ1u1(1 − u1)u2(1 − u2), with

θ1 ∈ [−1, 1],

C23(x, y) = xy and C13(u1, u3) = u1u3+θ2

{

1 − e−λu1

1 − e−λ
− u1

}{

1 − e−λu3

1 − e−λ
− u3

}

,

where

θ2 ≥
−(1 − e−λ)2

(λe−λu1 − 1 + e−λ)λe−λu2 − 1 + e−λ)
,

then

C(u1, u2, u3) = u1u2u3 + θ1u3u1(1 − u1)u2(1 − u2) + θ1θ2u2(1 − u2)Y

+ θ2u2

[

1 − e−λu1

1 − e−λ
− u1

] [

1 − e−λu3

1 − e−λ
− u3

]

,

where

Y =

(

1 − e−λu3

1 − e−λ
− u3

)[

u1(u1 − 1) +
(2u1 − 1)e−λu1 + 1

1 − e−λ
− 2(1 − e−λu1)

λ(1 − e−λ)

]

.
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Example 4.10. Let C12(u1, u2) = u1u2 + θ1u1(1 − u1)u2(1 − u2), θ1 ∈ [−1, 1],

C23(x, y) = xy and

C13(u1, u3) = u1u3 +

{

ln(γu1 + 1)

ln(γ + 1)
− u1

}{

ln(γu3 + 1)

ln(γ + 1)
− u3

}

, γ ∈ (0, 5.2].

then

C(u1, u2, u3) = u1u2u3 + θ1u3u1(1 − u1)u2(1 − u2) + θ1u2(1 − u2)Υ

+ u2

[

ln(γu1 + 1)

ln(γ + 1)
− u1

] [

ln(γu3 + 1)

ln(γ + 1)
− u3

]

,

where

Υ =

[

ln(γu3 + 1)

ln(γ + 1)
− u3

]{−2γu1 + (2 + γ) ln(γu1 + 1)

ln(γ + 1)
+ u1(u1 − 1)

}

. (4.4.1)

Another interesting example based on the original class of copulas suggested

in [132] is

Example 4.11. Given n,m ∈ N
∗, let C23(x, y) = xy,

C12(u1, u2) = u1u2 + θ1u1(u1
n − 1)u2(u2

n − 1), θ1 ∈ [− 1

n2
, 1]

and

C13(u1, u3) = u1u3 + θ2u1(u1
m − 1)u3(u3

m − 1), θ2 ∈ [− 1

m2
, 1],

then

C(u1, u2, u3) = u1u2u3 {1 + θ1(u2
n − 1)(u1

n − 1) + θ2(u3
m − 1)(u1

m − 1)}

+ u1u2u3

(

θ1θ2(u2
n − 1)(u3

m − 1)

[

(n+ 1)(m+ 1)

n+m+ 1
u1

n+m − u1
n − u1

m + 1

])

,

with

ρs = 12θ1

(

1

n + 2
− 1

2

)2

and

ρs = 12θ2

(

1

m+ 2
− 1

2

)2

.
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4.5 Summary and Suggestions for Future Work

In this chapter we have extended the class of copula functions described in [90].

The new class of bivariate copulas includes a variety of distortion functions, in-

cluding those which are non-negative probability distributions. We have also

used a construction method to build 3-copulas from specified 2-copulas. The

construction may be extended to n-dimensions. This method allows us to pro-

vide explicit examples of unique higher dimensional copulas. Given the results

in [30], functions such as

Conjecture 1. Given a known copula C∗ and distortions ψ1 and ψ2 then

C(u1, u2) = C∗(u1, u2) + θ[ψ1(u1) − ψ2(u1)]
n[ψ1(u2) − ψ2(u2)]

n

is also a copula.

Conjecture 2. Let u = (u1, u2, . . . , un). Given a known copula C∗ and distortions

ψ1 and ψ2, then

C(u) = C∗(u) + θ
n
∏

i=1

[ψ1(ui) − ψ2(ui)]

is also a copula.

It is also possible to derive 3-copulas which are a combination of explicit expres-

sions in u1, u2, u3, but also contain an integral component, which can be solved

numerically.



Chapter 5

Time and Space Dependent

Copulas

5.1 Introduction and motivation

Mapping joint probability distribution functions to copula functions is straight

forward when they are static, due to Sklar’s Theorem. On the other hand, map-

ping time dependent probability functions to copula functions is more problem-

atic. In this chapter we

(a) review the techniques for creating time dependent copulas and

(b) extend the method described in [53], [54], since it incorporates both time

and space. These equations are the first of their kind in higher dimensions,

since only 2-dimensional examples have previously been described.

There are at least two areas in which the time dependent copulas of this chapter

are applicable,

• Credit derivatives. We would assume in this application that we have a port-

folio of n firms, and the stochastic process Xi(t) is the value of a i-th firm’s

126
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assets at time t. Each marginal distribution associated with Xi(t) would

represent the probability of the firm’s value falling below some threshold,

given certain information at time zero. The time varying copula would rep-

resent the evolution of the joint distribution or state of the entire portfolio.

• Genetic drift. For example, each Xi(t) may represent the frequency of a

particular gene at time t. Each marginal distribution would represent the

probability that the frequency of a particular gene had fallen below some

threshold. The copula would relate to the evolution of a group of genes of

interest.

5.1.1 Notation and Definitions

In order to understand some of the issues surrounding the mapping of copulae

to distributions it is necessary to go back to some of the basic definitions and

some notation in relation to the probability distributions of interest. We will

assume throughout the chapter that we have an underlying probability space

(Ω,F ,Pr), where Ω is a set of points ω, F is a σ-algebra of subsets of Ω, and Pr

is a probability on F .

Let Xk(tk) : T × Ω → R be the k–th stochastic process for tk ∈ T , where T ⊂ R

is an interval of time. The notation used for a transitional probability function

in this chapter is

Pr{Xk(ti) ≤ xi | Xk(tj) = xj} = F (ti, xi | tj , xj), ti > tj . (5.1.1)

If tj = 0 then it is quite common to suppress the zero and so the notation the

distribution in this case would be F (ti, xi | xj0).

Definition 5.0. Filtration (adapted process). A filtration on (Ω,F) is a family

F = (Ft)t∈T of σ-algebras Ft ⊂ F such that for s < t, Fs ⊂ Ft, [145].
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A common filtration is the Brownian Filtration, which will be assumed to be the

default filtration in Subsection 5.1.5 and Section 5.2.

5.1.2 Method of Darsow et al

Authors in [24] were the first to attempt to map a transitional probability function

to a copula. To understand this mapping we introduce the Markov Property and

Process.

Definition 5.1. Markov Property. A stochastic process Xi(t) with a ≤ t ≤ b

is said to satisfy the Markov property if for any a ≤ t1 ≤ t2 . . . ,≤ tn ≤ t, the

equality

Pr{Xi(t) ≤ xi | Xi(t1), Xi(t2), . . . , Xi(tn)} = Pr{Xi(t) ≤ xi | Xi(tn)}

holds for any xi ∈ R. A stochastic process is called a continuous-time Markov

Process if it satisfies the Markov property described in Definition 5.1. The fol-

lowing notation will be used for an unconditional cumulative probability function

at time ti ≥ 0

Pr{Xi(ti) ≤ xi} = Fti(xi) (5.1.2)

for a stochastic process Xi(ti) and xi ∈ R, and also let

∇xi
F =

∂F

∂xi
,

then the corresponding density function f in this case is such that

f(xi) = ∇xi
F (xi).

Provided Ftj is continuous and C is at least once differentiable, then a univariate

transitional probability function F (Markov process) can be mapped to a bivariate

copula C by setting

F (ti, xi | tj , xj) = ∇u2
C
(

Fti(xi), Ftj (xj))
)

, (5.1.3)
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where ∇u2
is the partial derivative with respect to the second argument in C [24].

Note that u2 = Ftj (xj). Thus, the partial derivative of the copula now represents

a transitional probability since the first marginal distribution is associated with

time ti and the second with time tj. In this chapter we will assume that the

random variables considered are continuous, however several results can also be

formulated if we suppose a standard way for associating a unique copula to a set

of discontinuous random variables [24], [145].

This method is particularly useful for building Markov chains, since this is the

case in which the random variables are discontinuous. One of the most important

innovations which enabled the authors [24] to link copulas to Markov processes

was to introduce the idea of a copula product;

Definition 5.2. Copula product. Let Ca and Cb be bivariate copulas, then the

product of Ca and Cb is the function Ca ∗ Cb : [0, 1]2 → [0, 1], such that

(Ca ∗ Cb)(x, y) =

∫ 1

0

∇zCa(x, z)∇zCb(z, y)dz. (5.1.4)

This product is essentially the copula equivalent of the Chapman-Kolmogorov

equation, as stated in Theorem 3.2 of [24]. We restate that theorem here (with

modified notation).

Theorem 3.2. Let Xi(t), t ∈ T be a real stochastic process, and for each s, t ∈ T

let Cst denote the copula of the random variables Xi(s) and Xi(t). The following

are equivalent:

1. The transition probabilities F (t,A | s, xs) = Pr{Xi(t) ∈ A | Xi(s) = xs} of

the process satisfy the Chapman-Kolmogorov equations

F (t,A | s, xs) =

∫

R

F (t,A | u, ξ)F (u, dξ | s, xs) (5.1.5)

for all Borel sets A, for all s < t ∈ T , for all u ∈ (s, t) ∩ T and for almost

all xs ∈ R.
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2. For all s, u, t ∈ T satisfying s < u < t,

Cst = Csu ∗ Cut. (5.1.6)

This paper has advanced both the theory of copulas and techniques for building

Markov processes. This method was used in [165] to formulate a Markov chain

model of the dependence in credit risk. The discrete stochastic variable Xi(t)

is interpreted as the rating grade of a firm at a particular point in time. A

variety of copulas were fitted to the data and gave mixed results. Therefore, no

copula was the best for all data sets. This type of mapping of the transition

distribution to the copula is very simple, however, one consequence is that an n-

dimensional transition function requires a 2n-dimensional copula. In other words,

as the dimension of the copula increases, the calculation of the transition function

becomes more and more computationally cumbersome.

The method in [24] has also been extended in [145], so that an n-dimensional

Markov process can be represented by a combination of bivariate copulas and

margins. Hence,

Pr{Xi(t1) ≤ x1, . . . , Xi(tn) ≤ xn}

=
n
∏

i=2

Pr{Xi(ti) ≤ xi | Xi(t1) = x1, . . . , Xi(ti−1) = xi−1}Pr{Xi(t1) ≤ x1}

=

n
∏

i=2

Pr{Xi(ti) ≤ xi | Xi(ti−1) = xi−1}Pr{Xi(t1) ≤ x1}

=

∏n
i=2Cti−1,ti(Fti−1

(xi−1), Fti(xi))
∏n−1

i=2 Fti(xi)
. (5.1.7)

5.1.3 Conditional Copula of Patton

Another approach to building time into a copula was formulated in [125]. In order

to explain this approach, we need to recall more definitions and set up notation.
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Firstly, let F be a σ-algebra or conditioning set, then

Pr{Xi ≤ xi | F} = Fi(xi | F) (5.1.8)

The multivariate analogue of equation (5.1.8) is

Pr{X ≤ x | F} = H(x | F) (5.1.9)

for x = (x1, x, . . . , xn)
T such that the volume of H , VH(R) ≥ 0, for all rectangles

R ∈ R
n with their vertices in the domain of H , [145],

H(+∞, xi,+∞, . . . ,+∞ | F) = Fi(xi | F), and

H(−∞, xi, . . . , xn | F) = 0 for all x1, . . . , xn ∈ R.

Here Fi is the i-th univariate marginal distribution of H . See [125] for a bivariate

version of H . As expected, the density of the conditional H is

h(x | F) = ∇x1,...,xnH(x | F). (5.1.10)

In equation (5.1.8), the distribution is atypical since it may be conditional on

a vector of variables, not just one, as opposed to a typical univariate transition

distribution.

The author in [125] mapped the conditional distribution H(x | F), defined above,

to a copula of the same order. That is, for all xi ∈ R and i = 1, 2, . . . , n,

H(x1, . . . , xn | F) = C(F1(x1 | F), F2(x2 | F), . . . , Fn(xn | F) | F). (5.1.11)

F is a sub-algebra or in other words a conditioning set. Such conditioning is

necessary for C to satisfy all the conditions of a conventional copula. The rela-

tionship between the conditional density h and copula density c is

h(x1, x2, . . . , xn | F) = c(u1, u2, . . . , un | F)

n
∏

i=1

fi(xi | F), (5.1.12)
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where ui ≡ Fi(xi | F), i = 1, 2, . . . , n and fi, i = 1, 2, . . . , n are univariate

conditional densities.

In terms of time varying distributions, we can think of the conditioning set as the

history of all the variables in the distribution. In the case of the Markov processes,

it is only the last time point which is of importance. The implication of this type

of conditioning is that the marginal distributions in the copula can no longer be

typical transition probabilities, but are atypical conditional probabilities. Hence,

if each Xi represented the value of an asset at time t, the associated distribution

Fi would represent the distribution of Xi, given that we knew the value of all the

assets in the model, X1, X2, . . . , Xn, at some previous time, for example t − 1.

In other words, we can rewrite the time-varying version of the distribution and

copula above as

Ht(x
1
t , x

2
t , . . . , x

n
t | Ft−1)

= Ct(F
1
t (x1

t | Ft−1), F
2
t (x2

t | Ft−1), . . . , F
n
t (xnt | Ft−1) | Ft−1), (5.1.13)

where

Ft−1 = σ(x1
t−1, x

2
t−1, . . . , x

n
t−1, x

1
t−2, x

2
t−2, . . . , x

n
t−2, . . . , x

1
1, x

2
1, . . . , x

n
1 ).

In [125], the marginal distributions are characterized by Autoregressive (AR) and

generalized autoregressive conditional heteroskedasticity (GARCH) processes. Ul-

timately, they are handled in the same way as other time series processes. More

recent work of Patton, which also employs time varying copulas, appears in [124].

5.1.4 Pseudo-copulas of Fermanian and Wegkamp

As we have seen above, Markov processes are only defined with respect to their

own history, not the history of other processes. Therefore, the method in [125]

is good for some applications but not practical for others. If we want marginal
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distributions of processes, conditional on their own history, for example Markov

processes, and want to use a mapping similar to that shown in [125], then it is

possible via a conditional pseudo-copula. Authors in [41] introduced the notion

of conditional pseudo-copula in order to cover a wider range of applications than

the conditional copula in [125]. The definition of a pseudo-copula is

Definition 5.3. Pseudo-copula. A function C : [0, 1]n → [0, 1] is called an

n-dimensional pseudo-copula if

1. for every u ∈ [0, 1]n, C(u) = 0 when at least one coordinate of u is zero,

2. C(1, 1, . . . , 1) = 1, and

3. for every u,v ∈ [0, 1]n such that u ≤ v, the volume of C, VC ≥ 0.

The pseudo-copula satisfies most of the conditions of a conventional copula except

for C(1, 1, uk, 1, . . . , 1) = uk, so the marginal distributions of a pseudo-copula may

not be uniform. The definition of a conditional pseudo-copula is

Definition 5.4. Conditional pseudo-copula. Given a joint distribution H as-

sociated with X1, X2, . . . , Xn, an n-dimensional conditional pseudo-copula with

respect to sub-algebras

F = (F1,F2, . . . ,Fn) and G is a random function C(· | F ,G) : [0, 1]n → [0, 1]

such that

H(x1, x2, . . . , xn) = C(F1(x1 | F1), F2(x2 | F2), . . . , Fn(xn | Fn) | F ,G) (5.1.14)

almost everywhere, for every (x1, x2, . . . , xn)
T ∈ R

n, see [40].

5.1.5 Galichon model

More recently, a dynamic bivariate copula was used to correlate Markov diffusion

processes, see [53], [54]. Unlike the previous models of time dependent copulas,

this model addresses the issue of spacial as well as time dependence. The model
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uses a partial differential approach to obtain a representation of the time depen-

dent copula. An outline of the main result follows. Consider two Markov diffusion

processes X1(t) and X2(t), t ∈ [0, T ], which represent two risky financial assets,

for example options with a maturity date T . The diffusions are such that

dX1(t) = µ1(X(t))dt+ σ̃1(X(t))dB1(t)

dX2(t) = µ2(X(t))dt+ σ̃2(X(t))dB2(t)

dB1(t)dB2(t) = ρ12(X1(t), X2(t))dt, (5.1.15)

where X(t) = (X1(t), X2(t))
T , µi, σ̃i, for i = 1, 2, are the drift and diffusion coef-

ficients, respectively. The Brownian motion terms are correlated with coefficient

ρ12 ∈ [−1, 1]. One would like an expression for the evolution of a copula between

the distributions F1, F2 of X1(t) and X2(t), conditional on information at time

t = 0, Ft0. Firstly a joint bivariate distribution H is mapped to a copula C, by

H(t, x1, x2 | Ft0) = C(t, F1(t, x1 | Ft0), F2(t, x2 | Ft0) | Ft0) (5.1.16)

then the Kolmogorov forward equation is used to obtain an expression for ∇tC.

Letting

u1 = F1(t, x1 | Ft0) and u2 = F2(t, x2 | Ft0), u1, u2 ∈ [0, 1],



CHAPTER 5. TIME AND SPACE DEPENDENT COPULAS 135

x = (x1, x2)
T and shortening the notation for the copula to C(t, u1, u2), then the

time dependent copula in [53] is

∇tC(t, u1, u2)

=
1

2
σ̃2

1(x)f
2
1 (t, x1 | Ft0)∇2

u1
C(t, u1, u2)

+
1

2
σ̃2

2(x)f
2
2 (t, x2 | Ft0)∇2

u2
C(t, u1, u2)

− ∇u1
C(t, u1, u2)B1F1(t, x1 | Ft0)

+

∫

(−∞,x2]

∇u1,u2
C(t, u1, u2)f2(t, z2 | Ft0)B1F1(t, z1 | Ft0)dz2

− ∇u2
C(t, u1, u2)B2F2(t, x2 | Ft0)

+

∫

(−∞,x1]

∇u1,u2
C(t, u1, u2)f1(t, z1 | Ft0)B2F2(t, z2 | Ft0)dz1

+ σ̃1(x)σ̃2(x)ρ12(x1, x2)f1(t, x1 | Ft0)f2(t, x2 | Ft0)∇u1,u2
C(t, u1, u2),

(5.1.17)

where B1 and B2 are the following operators, given any function g ∈ C2(R),

B1g =

{

∇x1

(

1

2
σ̃2

1(x)

)

− µ1(x)

}

∇x1
g +

(

1

2
σ̃2

1(x)

)

∇2
x1
g

B2g =

{

∇x2

(

1

2
σ̃2

2(x)

)

− µ2(x)

}

∇x2
g +

(

1

2
σ̃2

2(x)

)

∇2
x2
g

and

∇xi
g =

∂g

∂xi
, ∇2

xi
g =

∂2g

∂x2
i

.

For the greatest flexibility we would choose

inf{xi : Fi(t, xi | Ft0) ≥ ui} = F−1
i (t, ui | Ft0), ui ∈ [0, 1].

That is, F−1
i is the pseudo-inverse. If X1(t) and X2(t) are individually Markov,

that is, σ̃i and µi depend only on xi, for i = 1, 2, then the formula for the time

dependent copula simplifies to

∇tC(t, u1, u2) = σ̃1(x)σ̃2(x)ρ12(x1, x2)f1(t, x1 | Ft0)f2(t, x2 | Ft0)∇u1,u2
C(t, u1, u2)

+
1

2
σ̃2

1(x)f
2
1 (t, x1 | Ft0)∇2

u1
C(t, u1, u2) +

1

2
σ̃2

2(x)f
2
2 (t, x2 | Ft0)∇2

u2
C(t, u1, u2).

(5.1.18)
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Another sophisticated dynamic copula model based on Markov chains, referred

to as the Markov Copula, appears in [12]. The Markov Copula is a tool for

pricing and hedging credit index derivatives and ratings-triggered corporate step-

up bonds.

The main aim of this chapter is to extend the two dimensional dynamic copula

model of Galichon. We derive an n-dimensional version of the model in [53]. A

reformulation is also given, in which linear combinations of independent Brownian

motion terms are used.

5.2 n-dimensional Galichon Model for CDOs

Suppose we have an n × n system of stochastic differential equations, such that

X(t) ∈ R
n and B(t) is an n-dimensional Brownian motion. The vector X(t)

could represent a portfolio of risky assets, as in a CDO. We want to find a partial

differential equation with respect to a time dependent n-copula, which gives us

information on the riskiness of the package of assets. As in the 2-dimensional

model, t is a scalar such that t ∈ (0, T ]. Throughout this section the default

filtration will be the Brownian Filtration at time t0, so that we may say each

stochastic process Xi(t), i = 1, 2, . . . , n is conditional on Ft0 . In this case the

diffusions are such that

dX(t) = µ(X(t))dt+ ÃdB(t) (5.2.1)

dBi(t)dBj(t) = ρij(Xi(t), Xj(t))dt, (5.2.2)

where

dX(t) =

















dX1(t)

dX2(t)
...

dXn(t)

















, dB(t) =

















dB1(t)

dB2(t)
...

dBn(t)
















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µ(X(t)) =

















µ1(X(t))

µ2(X(t))
...

µn(X(t))

















, σ̃(X(t)) =

















σ̃1(X(t))

σ̃2(X(t))
...

σ̃n(X(t))

















.

Note that in this case µ and σ̃ are n-vector functions which represent the drift

and diffusion coefficients of the process, respectively. Let Ã be

Ã = diag(σ̃(X(t))) =

















σ̃1(X(t)) 0 . . . . . . 0

0 σ̃2(X(t)) 0 . . . 0
...

...

0 . . . . . . 0 σ̃n(X(t)).

















The correlation coefficients ρij ∈ [−1, 1] and let ρ be

ρ =

















1 ρ12(X1(t), X2(t)) . . . ρ1n(X1(t), Xn(t))

ρ21(X2(t), X1(t)) 1 . . . ρ2n(X2(t), Xn(t))
...

...

ρn1(Xn(t), X1(t)) . . . . . . 1

















.

Three conditions are required for the existence and uniqueness of a solution to

equation (5.2.1):

1. Coefficients µ(x) and σ̃(x) must be defined for x ∈ R
n and measurable with

respect to x.

2. For x, y ∈ R
n, there exists a constant K such that

‖ µ(x) − µ(y) ‖ ≤ K ‖ x− y ‖,

‖ σ̃(x) − σ̃(y) ‖ ≤ K ‖ x− y ‖,

‖ µ(x) ‖2 + ‖ σ̃(x) ‖2 ≤ K2(1+ ‖ x ‖2)

and

3. X(0) does not depend on B(t) and E[X(0)2] <∞.



CHAPTER 5. TIME AND SPACE DEPENDENT COPULAS 138

Theorem 5.1. The time dependent n-copula ∇tC(t, u) between a vector of dis-

tributions ui = Fi(t, xi | x0), i = 1, . . . , n, associated with the Markov diffusions

X(t) = [X1(t), . . . , Xn(t)]
T , conditional on information at time t = 0, Ft0 = x0 is

∇tC(t, u) =
1

2

n
∑

i=1

∫

(−∞,x̄]

σ̃i(z)
2f 2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄

+

n
∑

i=1

(

−∇ui
C(t, u)BitFi(t, xi | x0) +

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)BitFi(t, zi | x0)dz̄

)

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

ρij(xi, xj)σ̃i(z)σ̃j(z)fi(t, xi|x0)fj(t, xj |x0)∇z1,.,ẑi,ẑj ,.,zn∇ui,uj
C(t, u)dž,

(5.2.3)

where xi = F−1
i (t, ui | Ft0), i = 1, . . . , n. The intervals for the integration are

(−∞, x̄] = (−∞, x1] × . . .× (−∞, xi−1] × (−∞, xi+1] × . . .× (−∞, xn] and

(−∞, x̌] = (−∞, x1] × . . .× (−∞, xi−1] × (−∞, xi+1] × . . .× (−∞, xj−1]

×(−∞, xj+1] . . .× (−∞, xn].

Also note that

dz̄ = dz1dz2 . . . dzi−1dzi+1 . . . dzn−1dzn and

dž = dz1dz2 . . . dzi−1dzi+1 . . . dzj−1dzj+1 . . . dzn−1dzn.

Thus, the i-th term is excluded in the first two integrals on the right hand side of

Theorem 5.1. Similarly, in the last integral the i-th and j-th terms are excluded.

Furthermore, for any smooth function g

∇z1,.,ẑi,.,zng =
∂n−1g

∂z1 . . . ∂zi−1∂zi+1 . . . ∂zn

and ∇z1,.,ẑi,ẑj ,.,zng =
∂n−2g

∂z1 . . . ∂zi−1∂zi+1 . . . zj−1∂zj+1 . . . ∂zn
.

The operators Bit, i = 1, . . . , n are the same as in the two dimensional model. If

the diffusions are individually Markov, that is, each σk and µk depends only on
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xk then the expression for ∇tC simplifies to

∇tC(t, u) =
1

2

n
∑

i=1

σ̃i(xi)
2f 2
i (t, xi | x0)∇2

ui
C(t, u)

+
1

2
Tr
{[

HC
u (t, u) − diag{∇2

u1
C(t, u),∇2

u2
C(t, u), . . . ,∇2

un
C(t, u)}

]

DÃρÃTDT
}

,

where

D =

















f1 0 . . . 0

0 f2 . . . 0

0 0 . . . 0

0 0 . . . fn

















.

Proof. In this case 1-dimensional Ito formula for each component of X(t) is

dg(Xi(t)) =
{

∇xi
g(Xi(t))µi(X(t)) +

1

2
∇2
xi
g(Xi(t))σ̃

2
i (X(t))

}

dt

+ ∇xi
g(Xi(t))σ̃i(X(t))dBi(t).

Define the vector ∇x of partial derivatives with respect to components of x, as

∇xg(X(t)) =

















∇x1
g(X(t))

∇x2
g(X(t))

...

∇xng(X(t))

















and the Hessian matrix of g(X(t))

Hg
x(X(t)) ≡

((

∇xixj
g(X(t))

))

1≤i,j≤n
. (5.2.4)

In this case, assume g ∈ C2(Rn), then the n-dimensional Ito formula for g(X(t))

is

dg(X(t))

=
{

〈∇xg(X(t)), µ(X(t))〉+
1

2
Tr
(

Hg
x(X(t))ÃρÃT

)}

dt+ ∇xg(X(t))T ÃdB(t),

where 〈a, b〉 = aT b for any vectors a and b. Let the operators A on distributions

(Kolmogorov backward equations), analogous to those in [53], [54], be called Ai
t
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and An
t for the 1- an n-dimensional case, respectively. With respect to typical

distributions Fi(t, xi | τ, ξi) and H(t, x | τ, ξ), the operators are

Ai
tFi(t, xi | τ, ξi) = µi(x)∇ξiFi(t, xi | τ, ξi) +

1

2
σ̃2
i∇2

ξi
Fi(t, xi | τ, ξi) (5.2.5)

and

An
tH(t, x | τ, ξ) = 〈∇ξH(t, x | τ, ξ), µ(x)〉 +

1

2
Tr
(

HH
ξ (t, x | τ, ξ)ÃρÃT

)

. (5.2.6)

The operators Ai
t, i = 1, . . . , n and An

t are not used in the rest of the formulation,

but are mentioned briefly, in view of the fact the Kolmogorov forward equations,

which are required, are the associated adjoint operators of these. Assuming the

density functions of H and F are h and f , respectively, then the adjoint operators

Ai∗
t , i = 1, . . . , n and An∗

t have the form

Ai∗
t fi(t, xi | τ, ξi) = −∇xi

[

µi(x)fi(t, xi | τ, ξi)
]

+ ∇2
xi

[1

2
σ̃2
i fi(t, xi | τ, ξi)

]

(5.2.7)

and

An∗
t h(t, x | τ, ξ)

= −
n
∑

i=1

∇xi

[

µi(x)h(t, x | τ, ξ)
]

+
1

2

n
∑

i,j=1

∇xi,xj

[

ρij(xi, xj)σ̃i(x)σ̃j(x)h(t, x | τ, ξ)
]

.

(5.2.8)

The marginal density functions fi and joint density h, are such that

fi(t, xi | Ft0) = fi(t, xi | x0), and H(t, x | Ft0) = H(t, x | x0), where

x0 = (x1 = X1(0), x2 = X2(0), . . . , xn = Xn(0)), see Appendix 5.A. In other

words, the assumption made here is that all the distributions are conditional on

the entire vector of realizations of x at time zero. As in the 2-dimensional case,

it is possible to express the operator An∗
t in terms of the operators Ai∗

t associated

with the univariate distributions;

An∗
t g =

n
∑

i=1

Ai∗
t g +

1

2

n
∑

i,j=1
i6=j

∇xi,xj

[

ρij(xi, xj)σ̃i(x)σ̃j(x)g
]

. (5.2.9)
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Given that

∇tfi(t, xi | x0) = Ai∗
t fi(t, xi | x0), (5.2.10)

we can integrate the left hand side of (5.2.10) with respect to xi, call it Bit, and

we obtain

BitFi(t, xi | x0) =

∫

(−∞,xi]

∇tfi(t, zi | x0)dzi

=

∫

(−∞,xi]

∇t∇zi
Fi(t, zi | x0)dzi

= ∇tFi(t, xi | x0). (5.2.11)

Integrating the right hand side of (5.2.10) with respect to xi gives us

∫

(−∞,xi]

Ai∗
t fi(t, zi | x0)dzi = −µi(x)fi(t, xi | x0) + ∇xi

[1

2
σ̃2
i (x)fi(t, xi | x0)

]

=
[

∇xi
{1

2
σ̃2
i (x)} − µi(x)

]

∇xi
Fi(t, xi | x0) +

1

2
σ̃2
i (x)∇2

xi
Fi(t, xi | x0),

so

BitFi(t, xi | x0) =
[

∇xi
{1

2
σ̃2
i (x)}−µi(x)

]

∇xi
Fi(t, xi | x0)+

1

2
σ̃2
i (x)∇2

xi
Fi(t, xi | x0).

(5.2.12)

Similarly, integrating over An∗
t will give us the analogous operator Bin for the

multivariate distribution H . Now, since

∫

(−∞,x]

An∗
t h(t, z | x0)dz

=

n
∑

i=1

∫

(−∞,x]

Ai∗
t h(t, z | x0)dz +

1

2

n
∑

i,j=1
i6=j

∫

(−∞,x]

∇zi,zj

[

ρij(zi, zj)σ̃i(z)σ̃j(z)h(t, z | x0)
]

dz,

(5.2.13)

where (−∞, x] = (−∞, x1] × . . . × (−∞, xn], it is possible to get an expression

for Bnt in terms of Bit. That is, let Bnt H(t, x | x0) = ∇tH(t, x | x0) and given that
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h(t, x | x0) = ∇x1,.,xnH(t, x | x0), we have

Bnt H(t, x | x0) =
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x]

∇zi,zj

[

ρij(zi, zj)σ̃i(z)σ̃j(z)∇z1,...,znH(t, z | x0)
]

dz

+

n
∑

i=1

∫

(−∞,x]

Ai∗
t ∇z1,...,znH(t, z | x0)dz. (5.2.14)

The right hand side of equation (5.2.14) can be expressed in terms in terms of

the univariate operators Bit, i = 1, 2 . . . , n.

Bnt H(t, x | x0) =
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

ρij(xi, xj)σ̃i(z)σ̃j(z)∇z1,.,ẑi,ẑj ,.,zn∇zi,zj
H(t, z | x0)dž

+
n
∑

i=1

∫

(−∞,x̄]

Bit∇z1,.,ẑi,.,znH(t, z | x0)dz̄. (5.2.15)

Let

H(t, x | x0) = C(t, F1(t, x1 | x0), F2(t, x2 | x0), . . . , Fn(t, xn | x0) | x0) (5.2.16)

where C is an n-copula defined on [0, T ] × [0, 1]n. At this point we shorten the

notation so that C(t, F (t, x | x0)) is the same copula as above. We now seek

an expression for Bnt C(t, F (t, x | x0)) by substituting for H with C in equation

(5.2.15). Letting Fi(t, xi | x0) = ui, i = 1, 2, . . . , n, and u = (u1, . . . , un)
T , then
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from the first term in equation (5.2.15) we obtain

n
∑

i=1

∫

(−∞,x̄]

Bit∇z1,.,ẑi,.,znH(t, z | x0)dz̄

=
n
∑

i=1

∫

(−∞,x̄]

Bit∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

=

n
∑

i=1

(
∫

(−∞,x̄]

{

∇zi

σ̃2
i (z)

2
− µi(z)

}

∇zi
∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

+

∫

(−∞,x̄]

σ̃2
i (z)

2
∇2
zi
∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

)

=

n
∑

i=1

(
∫

(−∞,x̄]

{

∇zi

σ̃2
i (z)

2
− µi(z)

}

fi(t, zi | x0)∇ui
∇z1,.,ẑi,.,znC(t, u)dz̄

+

∫

(−∞,x̄]

σ̃2
i (z)

2
f 2
i (t, zi | x0)∇2

ui
∇z1,.,ẑi,.,znC(t, u)dz̄

+

∫

(−∞,x̄]

σ̃2
i (z)

2
∇zi

fi(t, zi | x0)∇ui
∇z1,.,ẑi,.,znC(t, u)dz̄

)

=
n
∑

i=1

(
∫

(−∞,x̄]

{

∇zi

σ̃2
i (z)

2
− µi(z)

}

∇zi
Fi(t, zi | x0)∇ui

∇z1,.,ẑi,.,znC(t, u)dz̄

+

∫

(−∞,x̄]

σ̃2
i (z)

2
∇2
zi
Fi(t, zi | x0)∇ui

∇z1,.,ẑi,.,znC(t, u)dz̄

+

∫

(−∞,x̄]

σ̃2
i (z)

2
f 2
i (t, zi | x0)∇2

ui
∇z1,.,ẑi,.,znC(t, u)dz̄

)

=
n
∑

i=1

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)BitFi(t, zi | x0)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

σ̃2
i (z)f

2
i (t, zi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄.

Since z is a dummy variable and the multiple integrals exclude that over (−∞, xi],

we can write

n
∑

i=1

∫

(−∞,x̄]

Bit∇z1,.,ẑi,.,znH(t, z | x0)dz̄

=
n
∑

i=1

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)BitFi(t, zi | x0)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

σ̃2
i (z)f

2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄. (5.2.17)
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From the second term in equation (5.2.15) we have

1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

ρij(xi, xj)σ̃i(z)σ̃j(z)∇z1,.,ẑi,ẑj,.,zn∇zi,zj
H(t, z | x0)dž

=
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

ρij(xi, xj)σ̃i(z)σ̃j(z)∇z1,.,ẑi,ẑj ,.,zn∇zi,zj
C(t, F (t, z | x0))dž

=
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

ρij(xi, xj)σ̃i(z)σ̃j(z)fi(t, xi |x0)fj(t, xj |x0)∇z1,.,ẑi,ẑj ,.,zn∇ui,uj
C(t, u)dž

(5.2.18)

so

Bnt C(t, u) =

n
∑

i=1

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)BitFi(t, zi | x0)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

σ̃2
i (z)f

2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

ρij(xi, xj)σ̃i(z)σ̃j(z)fi(t, xi |x0)fj(t, xj |x0)∇z1,.,ẑi,ẑj ,.,zn∇ui,uj
C(t, u)dž.

(5.2.19)

Now, we also have

∇tH(t, x | x0) = Bnt H(t, x | x0)

= ∇tC(t, F (t, x | x0)) +
n
∑

i=1

∇ui
C(t, F (t, x | x0))∇tFi(t, xi | x0)

= ∇tC(t, u) +

n
∑

i=1

∇ui
C(t, u)BitFi(t, xi | x0). (5.2.20)
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Matching equation (5.2.19) and (5.2.20) and rearranging, we obtain

∇tC(t, u)

=

n
∑

i=1

(

−∇ui
C(t, u)BitFi(t, xi | x0) +

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)BitFi(t, zi | x0)dz̄

)

+
1

2

n
∑

i=1

∫

(−∞,x̄]

σ̃2
i (z)f

2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

ρij(xi, xj)σ̃i(z)σ̃j(z)fi(t, xi|x0)fj(t, xj |x0)∇z1,.,ẑi,ẑj ,.,zn∇ui,uj
C(t, u)dž.

If the equations are individually Markov, so that each σk and µk depends only

on xk, then

n
∑

i=1

(

−∇ui
C(t, u)BitFi(t, xi | x0)+

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)BitFi(t, zi | x0)dz̄

)

= 0,

so the expression for ∇tC simplifies to

∇tC(t, u) =
1

2

n
∑

i=1

σ̃i(xi)
2f 2
i (t, xi | x0)∇2

ui
C(t, u)

+
1

2
Tr
{[

HC
u (t, u) − diag{∇2

u1
C(t, u),∇2

u2
C(t, u), . . . ,∇2

un
C(t, u)}

]

DÃρÃTDT
}

.

�

5.2.1 Generalized n-dimensional model with uncorrelated

Brownian Motions.

In this case, we start with an n × n system of stochastic differential equations

such that X(t) ∈ R
n and B(t) is an n-dimensional Brownian motion. We want

to find a partial differential equation with respect to a time dependent n-copula.

As in the previous formulation, t a scalar such that t ∈ (0, T ]. In this case the

diffusions are such that

dX(t) = µ(X(t))dt+ σ(X(t))TdB(t), (5.2.21)
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where

dX(t) =

















dX1(t)

dX2(t)
...

dXn(t)

















, µ(X(t)) =

















µ1(X(t))

µ2(X(t))
...

µn(X(t))

















, dB(t) =

















dB1(t)

dB2(t)
...

dBn(t)

















and

σ(X(t)) =











σ11(X(t)) σ21(X(t)) . . . σn1(X(t))

. . . . . . . . . . . .

σ1n(X(t)) σ2n(X(t)) . . . σnn(X(t))











= [σ1(X(t)), σ2(X(t)), . . . , σn(X(t))] .

In this model, σ is a matrix, rather than a vector. The coefficients µ(X(t))

and σ(X(t)) represent the drift and diffusion of the process, respectively. Three

conditions are required for the existence and uniqueness of a solution to equation

(5.2.21):

1. Coefficients µ(x) and σ(x) must be defined for x ∈ R
n and are measurable

with respect to x.

2. For x, y ∈ R
n, there exists a constant K such that

‖ µ(x) − µ(y) ‖ ≤ K ‖ x− y ‖,

‖ σ(x) − σ(y) ‖ ≤ K ‖ x− y ‖,

‖ µ(x) ‖2 + ‖ σ(x) ‖2 ≤ K2(1+ ‖ x ‖2)

and

3. X(0) does not depend on B(t) and E[X(0)2] <∞.

In this case the components of B(t) are independent Brownian motions, so that

dBi(t)dBj(t) = 0, i 6= j.
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Theorem 5.2. The time dependent n-copula ∇tC(t, u) between a vector of

distributions Fi(t, xi | x0), i = 1, . . . , n, associated with the Markov diffusions

X(t) = [X1(t), . . . , Xn(t)]
T , conditional on information at time t = 0, Ft0 = x0 is

∇tC(t, u) =
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2f 2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄

+

n
∑

i=1

(

−∇ui
C(t, u)GitFi(t, xi | x0) +

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)GitFi(t, zi | x0)dz̄

)

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

(

σ(z)Tσ(z)
)

ij
fi(t, xi | x0)fj(t, xj | x0)∇z1,.,ẑi,ẑj ,.,zn∇ui,uj

C(t, u)dž.

(5.2.22)

If the equations are individually Markov, that is each σk and µk depends only on

xk then the expression for ∇tC simplifies to

∇tC(t, u) =
1

2

n
∑

i=1

‖σi(xi)‖2f 2
i (t, xi | x0)∇2

ui
C(t, u)

+
1

2
Tr

{

σ̄(x)T σ̄(x)D
[

HC
u (t, u) − diag{∇2

u1
C(t, u), . . . ,∇2

un
C(t, u)}

]

DT

}

,

(5.2.23)

where D = diag(f) as in the previous model.
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Proof. The 1-dimensional Ito formula for each component of X(t) is

dg(Xi(t)) = ∇xi
g(Xi(t))dXi(t) +

1

2
∇2
xi
g(Xi(t))(dXi(t))

2

=
{

∇xi
g(Xi(t))µi(X(t)) +

1

2
∇2
xi
g(Xi(t))‖σi(X(t))‖2

}

dt

+ ∇xi
g(Xi(t))〈σi(X(t)), dB(t)〉, (5.2.24)

for i = 1, 2, . . . , n. Now define the vector ∇x of partial derivatives with respect

to components of x, as

∇xg(X(t)) =

















∇x1
g(X(t))

∇x2
g(X(t))

...

∇xng(X(t))

















and the Hessian matrix of g(X(t))

Hg
x(X(t)) ≡

((

∇xi,xj
g(X(t))

))

1≤i,j≤n
. (5.2.25)

In this example, assume g ∈ C2(Rn), then the n-dimensional Ito formula for

g(X(t)) is

dg(X(t)) = 〈∇xg(X(t)), dX(t)〉+
1

2
dX(t)THg

x(X(t))dX(t)

=
{

〈∇xg(X(t)), µ(X(t))〉+
1

2
Tr
[

σ(X(t))Tσ(X(t))Hg
x(X(t))

]}

dt

+ ∇xg(X(t))Tσ(X(t))TdB(t), (5.2.26)

where Tr is the trace of the matrix; Tr(A) =
∑

i aii.

Suppose τ and t are scalars such that τ ∈ [0, t) and t ∈ (0, T ], xi, ξi ∈ R and

x, ξ ∈ R
n. The Kolmogorov backward equations restated in terms of the operators

Lit, Lnt for Xi(t) and X(t), respectively, are

LitFi(t, xi | τ, ξi) = µi(ξi)∇ξiFi(t, xi | τ, ξi)+
1

2
‖σi(ξi)‖2∇2

ξi
Fi(t, xi | τ, ξi) (5.2.27)
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for i = 1, 2, . . . , n, where ‖a‖2 =
∑n

k=1 a
2
k and

LntH(t, x | τ, ξ) = 〈∇ξH(t, x | τ, ξ), µ(ξ)〉+
1

2
Tr{σ(ξ)Tσ(ξ)HH

ξ (t, x | τ, ξ)}.
(5.2.28)

The general form of the adjoint operators Li∗t , Ln∗t , which are required in this

model are

Li∗t fi(t, xi | τ, ξi) = −∇xi
[µi(x)fi(t, xi | τ, ξi)] +

1

2
∇2
xi

[

‖σi(x)‖2fi(t, xi | τ, ξi)
]

,

(5.2.29)

assuming τ ∈ [0, T ) and t ∈ (τ, T ], and

Ln∗t h(t, x | τ, ξ)

= −
n
∑

i=1

[µi(x)∇xi
h(t, x | τ, ξ)] + 1

2

n
∑

i,j=1

∇xi,xj

[(

σ(x)Tσ(x)
)

ij
h(t, x | τ, ξ)

]

.

(5.2.30)

The marginal density functions which we will assume to have in this example are

fi(t, xi | x0), where x0 = (x1 = X1(0), x2 = X2(0), . . . , xn = Xn(0)), see appendix

A. Thus, fi = fi(t, xi | x0), h = h(t, x | x0), Fi = Fi(t, xi | x0) and H = H(t, x |
x0). Thus, the assumption here is that all distributions are conditional on the

entire vector of realizations of x at time zero. It is also possible to have variations

with regard to the distributions and this will be discussed at the end of the

derivation. As in the two dimensional case, it is possible to express the operator

Ln∗t in terms of the operators associated with the univariate distributions Li∗t ;

Ln∗t g =

n
∑

i=1

Li∗t g +
1

2

n
∑

i,j=1
i6=j

∇xi,xj

[(

σ(x)Tσ(x)
)

ij
g
]

. (5.2.31)

for g ∈ C2(Rn). Integrating Li∗t fi as in equation (5.2.29) with respect to xi gives

us
∫

(−∞,xi]

Li∗t fi(t, zi | x0)dzi = −µi(x)fi +
1

2
∇xi

[

‖σi(x)‖2fi
]

. (5.2.32)
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for i = 1, 2, . . . , n. Given that ∇xi
Fi(t, xi | x0) = fi(t, xi | x0), then

∫

(−∞,xi]

Li∗t fi(t, zi | x0)dzi

= −µi(x)∇xi
Fi(t, xi | x0) +

1

2
∇xi

[

‖σi(x)‖2∇xi
Fi(t, xi | x0)

]

= −µi(x)∇xi
Fi(t, xi | x0) +

1

2
∇xi

‖σi(x)‖2∇xi
Fi(t, xi | x0)

+
1

2
‖σi(x)‖2∇2

xi
Fi(t, xi | x0)

=

(

1

2
∇xi

‖σi(x)‖2 − µi(x)

)

∇xi
Fi(t, xi | x0)

+
1

2
‖σi(x)‖2∇2

xi
Fi(t, xi | x0). (5.2.33)

If we let ∇tFi(t, xi | x0) = GitFi(t, xi | x0), then the operator Git on Fi is

GitFi(t, xi | x0) =
[1

2
∇xi

‖σi(x)‖2 − µi(x)
]

∇xi
Fi(t, xi | x0)

+
1

2
‖σi(x)‖2∇2

xi
Fi(t, xi | x0). (5.2.34)

Similarly,
∫

(−∞,x]

Ln∗t h(t, z | x0)dz

=
n
∑

i=1

∫

(−∞,x]

Li∗t h(t, z | x0)dz +
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x]

∇zi,zj

[(

σ(z)Tσ(z)
)

ij
h(t, z | x0)

]

dz,

(5.2.35)

where (−∞, x] = (−∞, x1] × . . .× (−∞, xn]. Suppose that

Gnt H(t, x | x0) = ∇tH(t, x | x0) =

∫

(−∞,x]

Ln∗t h(t, z | x0)dz.

We find that Gnt can be expressed in terms of Git ;

Gnt H(t, x | x0) =

n
∑

i=1

∫

(−∞,x̄]

Git∇z1,.,ẑi,.,znH(t, z | x0)dz̄

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

(

σ(z)Tσ(z)
)

ij
∇z1,.,ẑi,ẑj ,.,zn∇zi,zj

H(t, z | x0)dž.

(5.2.36)
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When each σk only depends on xk, then equation (5.2.36) simplifies further to

Gnt H(t, x | x0) =
n
∑

i=1

∫

(−∞,x̄]

Git∇z1,.,ẑi,.,znH(t, z | x0)dz̄

+
1

2
Tr
{

σ̄(x)T σ̄(x)
(

HH
x (t, x |x0) − diag{∇2

x1
H(t, x |x0), . . . ,∇2

xn
H(t, x |x0)}

) }

,

(5.2.37)

where

σ̄(x) =











σ11(x1) σ21(x2) . . . σn1(xn)

. . . . . . . . . . . .

σ1n(x1) σ2n(x2) . . . σnn(xn)











.

Let

H(t, x | x0) = C(t, F1(t, x1 | x0), F2(t, x2 | x0), . . . , Fn(t, xn | x0) | x0) (5.2.38)

be an n-copula defined on [0, T ] × [0, 1]n. At this point we shorten the notation

so that C(t, F (t, x | x0)) is consistent with the notation used in Theorem 5.1.

Applying the most general form of Gnt in equation (5.2.36) to C(t, F (x | x0)), we

obtain

Gnt C(t, F (t, x | x0)) =
n
∑

i=1

∫

(−∞,x̄]

Git∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

(

σ(z)Tσ(z)
)

ij
∇z1,.,ẑi,ẑj ,.,zn∇xi,xj

C(t, F (t, z | x0))dž. (5.2.39)

Let Fi(t, xi | x0) = ui, for all i = 1, 2, . . . , n, and u = (u1, . . . , un)
T then first term

on the right hand side becomes

n
∑

i=1

∫

(−∞,x̄]

Git∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

=
n
∑

i=1

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)GitFi(t, zi | x0)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2f 2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄, (5.2.40)
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since
n
∑

i=1

∫

(−∞,x̄]

Git∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

=

n
∑

i=1

∫

(−∞,x̄]

[1

2
∇zi

‖σi(z)‖2 − µi(z)
]

∇zi
∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

+
n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2 ∇2
zi
∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

=

n
∑

i=1

∫

(−∞,x̄]

[1

2
∇zi

‖σi(z)‖2 − µi(z)
]

fi(t, zi | x0)∇ui
∇z1,.,ẑi,.,znC(t, u)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2f 2
i (t, zi | x0)∇2

ui
∇z1,.,ẑi,.,znC(t, u)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2∇zi
fi(t, zi | x0)∇ui

∇z1,.,ẑi,.,znC(t, u)dz̄

=

n
∑

i=1

∫

(−∞,x̄]

[1

2
∇zi

‖σi(z)‖2 − µi(z)
]

∇zi
Fi(t, zi | x0)∇ui

∇z1,.,ẑi,.,znC(t, u)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2f 2
i (t, zi | x0)∇2

ui
∇z1,.,ẑi,.,znC(t, u)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2∇2
zi
Fi(t, zi | x0)∇ui

∇z1,.,ẑi,.,znC(t, u)dz̄

=
n
∑

i=1

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)GitFi(t, zi | x0)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2f 2
i (t, zi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄. (5.2.41)

since z is a dummy variable and the multiple integrals exclude that over (−∞, xi],

we can write

n
∑

i=1

∫

(−∞,x̄]

Git∇z1,.,ẑi,.,znC(t, F (t, z | x0))dz̄

=
n
∑

i=1

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)GitFi(t, zi | x0)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2f 2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄. (5.2.42)
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With regard to the second term, we obtain

1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

(

σ(z)Tσ(z)
)

ij
∇z1,.,ẑi,ẑj ,.,zn∇xi,xj

C(t, F (t, z | x0))dž

=
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

(

σ(z)Tσ(z)
)

ij
fi(t, xi | x0)fj(t, xj | x0)∇z1,.,ẑi,ẑj ,.,zn∇ui,uj

C(t, u)dž.

(5.2.43)

Setting Gnt H(t, x | x0) = Gnt C(t, F (t, x | x0)), we obtain

Gnt H(t, x | x0) =
n
∑

i=1

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)GitFi(t, zi | x0)dz̄

+
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2f 2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

(

σ(z)Tσ(z)
)

ij
fi(t, xi | x0)fj(t, xj | x0)∇z1,.,ẑi,ẑj ,.,zn∇ui,uj

C(t, u)dž.

(5.2.44)

We also have

∇tH(t, x | x0) = Gnt H(t, x | x0)

= ∇tC(t, F (t, x | x0)) +
n
∑

i=1

∇ui
C(t, F (t, x | x0))∇tFi(t, xi | x0)

= ∇tC(t, u) +

n
∑

i=1

∇ui
C(t, u)GitFi(t, xi | x0). (5.2.45)

Matching equation (5.2.44) and (5.2.45) and rearranging, we obtain

∇tC(t, u) =
1

2

n
∑

i=1

∫

(−∞,x̄]

‖σi(z)‖2f 2
i (t, xi | x0)∇z1,.,ẑi,.,zn∇2

ui
C(t, u)dz̄

+

n
∑

i=1

(

−∇ui
C(t, u)GitFi(t, xi | x0) +

∫

(−∞,x̄]

∇z1,.,ẑi,.,zn∇ui
C(t, u)GitFi(t, zi | x0)dz̄

)

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

(

σ(z)Tσ(z)
)

ij
fi(t, xi | x0)fj(t, xj | x0)∇z1,.,ẑi,ẑj ,.,zn∇ui,uj

C(t, u)dž.

(5.2.46)
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If the equations are individually Markov, that is each σk and µk depends only on

xk then the expression for ∇tC simplifies to

∇tC(t, u) =
1

2

n
∑

i=1

‖σi(xi)‖2f 2
i (t, xi | x0)∇2

ui
C(t, u)

+
1

2
Tr

{

σ̄(x)T σ̄(x)D
[

HC
u (t, u) − diag{∇2

u1
C(t, u), . . . ,∇2

un
C(t, u)}

]

DT

}

,

(5.2.47)

where D = diag(f) as in the previous model. �

5.3 Geometric Brownian Motion Model

Suppose we have an n × n system of stochastic differential equations, such that

X(t) ∈ R
n and B(t) is an n-dimensional Brownian motion.

dX(t) = UX(t)dt+ AY dB(t) (5.3.1)

dBi(t)dBj(t) = ρij(Xi(t), Xj(t))dt, (5.3.2)

where

dX(t) =

















dX1(t)

dX2(t)
...

dXn(t)

















, dB(t) =

















dB1(t)

dB2(t)
...

dBn(t)

















In this example, the drift and volatility (diffusion) coefficients, µ́i, σ́i, respectively,

are constants in R and let

U =

















µ́1 0 . . . . . . 0

0 µ́2 0 . . . 0
...

...

0 . . . . . . 0 µ́n

















, A =

















σ́1 0 . . . . . . 0

0 σ́2 0 . . . 0
...

...

0 . . . . . . 0 σ́n



















CHAPTER 5. TIME AND SPACE DEPENDENT COPULAS 155

and

Y =

















X1(t) 0 . . . 0

0 X2(t) . . . 0

0 0 . . . 0

0 0 . . . Xn(t)

















.

The correlation coefficients ρij ∈ [−1, 1] and let ρ be

ρ =

















1 ρ12(X1(t), X2(t)) . . . ρ1n(X1(t), Xn(t))

ρ21(X2(t), X1(t)) 1 . . . ρ2n(X2(t), Xn(t))
...

...

ρn1(Xn(t), X1(t)) . . . . . . 1

















.

Theorem 5.3. The time dependent n-copula ∇tC(t, u) between a vector of

distributions Fi(t, xi | x0), i = 1, . . . , n, associated with the geometric Brownian

motions X(t) = [X1(t), . . . , Xn(t)]
T , conditional on information at time t = 0,

Ft0 = x0 is

∇tC(t, u) =
1

2

n
∑

i=1

x2
i σ́

2
i f

2
i (t, xi | x0)∇2

ui
C(t, u)

+
1

2

n
∑

i,j=1
i6=j

σ́iσ́jxixjρij(xi, xj)fi(t, xi | x0)fj(t, xj | x0)∇uiuj
C(t, u).

(5.3.3)

Proof. In this case 1-dimensional Ito formula, given a function g ∈ C2(R) for

each component of X(t) is

dg(Xi(t))

= Xi(t)
{(

∇xi
g(Xi(t))µ́i +

1

2
∇2
xi
g(Xi(t))σ́

2
iXi(t)

)

dt+ ∇xi
g(Xi(t))σ́idBi(t)

}

.

(5.3.4)
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Similarly, assume g ∈ C2(Rn), and define the Hessian Hg
x(X(t)), and vectors

∇xg(X(t)), dB(t) and dX(t) as in the previous models. Letting

Y =

















X1(t) 0 . . . 0

0 X2(t) . . . 0

0 0 . . . 0

0 0 . . . Xn(t)

















,

then the n-dimensional Ito formula for g(X(t)) is

dg(X(t))

=
{

∇xg(X(t))TUX(t) +
1

2
Tr
(

Hg
x(X(t))AY ρY A

)}

dt+ ∇xg(X(t))TAY dB(t).

Let the operators J on distributions of Xi(t), i = 1, . . . , n and X(t) be called

J i
t and J n

t for the 1- an n-dimensional case, respectively. With respect to typ-

ical distributions Fi(t, xi | τ, ξi) and H(t, x | τ, ξ), the operators (Kolmogorov

backward equations) are

J i
t Fi(t, xi | τ, ξi) = µ́ixi∇ξiFi(t, xi | τ, ξi) +

1

2
σ́2
i x

2
i∇2

ξi
Fi(t, xi | τ, ξi) (5.3.5)

and

J i
tH(t, x | τ, ξ) = ∇ξH(t, x | τ, ξ)TUξ +

1

2
Tr
(

HH
ξ (t, x | τ, ξ)AY ρY A

)

, (5.3.6)

where

ξ =

















ξ1

ξ2
...

ξn

















, ∇ξH(t, x | τ, ξ) =

















∇ξ1H(t, x | τ, ξ)
∇ξ2H(t, x | τ, ξ)

...

∇ξnH(t, x | τ, ξ)

















.

The adjoint operators J i∗
t and J n∗

t , that is the Kolmogorov forward equations,

required for this model are

J i∗
t Fi(t, xi | τ, ξi) = −∇xi

[µixiFi(t, xi | τ, ξi)] +
1

2
∇2
xi

[σ́ixiFi(t, xi | τ, ξi)] (5.3.7)
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and

J n∗
t = −

n
∑

i=1

∇xi
[µixiH(t, x | τ, ξ)]+ 1

2

n
∑

i,j=1

∇xi,xj
[ρij(xi, xj)σ́iσ́jxixjH(t, x | τ, ξ)].

(5.3.8)

The derivation of the 1-dimensional case for the distribution we require, p(t, xi |
x0), is given in Appendix 5.B. As in the previous case, it is possible to express

the operator J n∗
t in terms of the operators J i∗

t ,i = 1, . . . , n, associated with the

univariate distributions;

J n∗
t g =

n
∑

i=1

J i∗
t g +

1

2

n
∑

i,j=1
i6=j

∇xi,xj

[

ρij(xi, xj)σ́iσ́jxixjg
]

. (5.3.9)

Integrating over these operators in a similar way to those of the previous models,

we get new operators Ki
t and Kn

t

Ki
tFi(t, xi | x0) =

[

σ́2
i − µ́i+

1

2
xi∇xi

σ́2
i

]

xi∇xi
Fi(t, xi | x0)+

1

2
x2
i σ́

2
i∇2

xi
Fi(t, xi | x0),

(5.3.10)

Kn
tH(t, x | x0) =

n
∑

i=1

∫

(−∞,x̄]

Ki
t∇z1,.,ẑi,.,znH(t, z | x0)dz̄

+
1

2

n
∑

i,j=1
i6=j

∫

(−∞,x̌]

ρij(xi, xj)σ́iσ́jxixj∇z1,.,ẑi,ẑj ,.,zn∇zi,zj
H(t, z | x0)dž.

(5.3.11)

We map the distribution H to a copula C in the usual way and seek an expression

for Kn
t C(t, F (t, x | x0)). In this example the dynamic copula is

Kn
t C(t, F (t, x | x0))

=
n
∑

i=1

∇ui
C(t, u)Ki

tFi(t, xi | x0) +
1

2

n
∑

i=1

x2
i σ́

2
i f

2
i (t, xi | x0)∇2

ui
C(t, u)

+
1

2

n
∑

i,j=1
i6=j

ρij(xi, xj)σ́iσ́jxixjfi(t, xi | x0)fj(t, xj | x0)∇ui,uj
C(t, u),
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since the coefficients are constant and the ρij depends only on xi and xj . As

before, we also have

∇tH(t, x | x0) = Kn
tH(t, x | x0)

= ∇tC(t, F (t, x | x0)) +
n
∑

i=1

∇ui
C(t, F (t, x | x0))∇tFi(t, xi | x0)

= ∇tC(t, u) +

n
∑

i=1

∇ui
C(t, u)Ki

tFi(t, xi | x0). (5.3.12)

Matching equation (5.3.12) and (5.3.12) and canceling terms, we obtain

∇tC(t, u) =
1

2

n
∑

i=1

x2
i σ́

2
i f

2
i (t, xi | x0)∇2

ui
C(t, u)

+
1

2

n
∑

i,j=1
i6=j

σ́iσ́jxixjρij(xi, xj)fi(t, xi | x0)fj(t, xj | x0)∇uiuj
C(t, u).

(5.3.13)

�
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5.4 Appendix 5.A

For each component Xi(t) of X(t), we have a one dimensional diffusion process

dXi(t) = µi(X(t))dt+ σi(X(t))dBi(t), (5.4.1)

with a ≤ t ≤ b and xi ∈ R. Three conditions are required for the existence and

uniqueness of a solution to equation (5.4.1);

1. Coefficients µi(x) and σi(x) must be defined for x ∈ R
n and are measurable

with respect to x.

2. For x, y ∈ R
n, there exists a constant K such that

‖ µi(x) − µi(y) ‖ ≤ K ‖ x− y ‖,

‖ σi(x) − σi(y) ‖ ≤ K ‖ x− y ‖,

‖ µi(x) ‖2 + ‖ σi(x) ‖2 ≤ K2(1+ ‖ x ‖2)

and

3. Xi(0) does not depend on B(t) and E[Xi(0)2] <∞.

We now require the adjoint operator on the density functions rather than the

distribution functions, which can be arrived at from the Kolmogorov forward

equations. The derivation of the 1-dimensional case is as follows, see [152]. For

any function g and random process Xi(t) with density p(t, yi | x0), we have

E[g(Xi(t)) | X(0) = x0] =

∫ ∞

0

p(t, yi | x0)g(yi)dyi. (5.4.2)

Suppose we also have the diffusion process shown in equation (5.4.1), and

x0 = (x1 = X1(0), x2 = X2(0), . . . , xn = Xn(0)), then

E[g(Xi(t)) | X(0) = x0] = g(Xi(0))

+ E[

∫ t

t0

(

∇xi
g(Xi(s))µi(X(s)) +

1

2
∇2
xi
g(Xi(s))σ

2
i (X(s))

)

ds | X(0) = x0].

(5.4.3)
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From the definition of expectation

E[

∫ t

t0

∇xi
g(Xi(s))µi(X(s))ds | X(0) = x0] =

∫ t

t0

∫ ∞

0

∇yi
g(yi)µi(y)p(s, yi | x0)dyids

and

E[

∫ t

t0

1

2
∇2
xi
g(Xi(s))σ

2
i (X(s))ds | X(0) = x0]

=

∫ t

t0

∫ ∞

0

1

2
∇2
yi
g(yi)σ

2
i (y)p(s, yi | x0)dyids,

so

∫ ∞

0

p(t, yi | x0)g(yi)dyi = g(Xi(0)) +

∫ t

t0

∫ ∞

0

∇yi
g(yi)µi(y)p(s, yi | x0)dyids

+

∫ t

t0

∫ ∞

0

1

2
∇2
yi
g(yi)σ

2
i (y)p(s, yi | x0)dyids. (5.4.4)

Differentiating both sides with respect to t, we have

∫ ∞

0

∇tp(t, yi | x0)g(yi)dyi =

∫ ∞

0

∇yi
g(yi)µi(y)p(t, yi | x0)dyi

+
1

2
∇2
yi
g(yi)σ

2
i (y)p(t, yi | x0)dyi. (5.4.5)

Integrating the first term of the right hand side of equation 5.4.5 by parts, we

obtain

∫ ∞

0

∇yi
g(yi)µi(y)p(t, yi | x0)dyi

= g(yi)µi(y)p(t, yi | x0)
∣

∣

∣

∞

0
−
∫ ∞

0

g(yi)∇yi
[µi(y)p(t, yi | x0)]dyi

= −
∫ ∞

0

g(yi)∇yi
[µi(y)p(t, yi | x0)]dyi



CHAPTER 5. TIME AND SPACE DEPENDENT COPULAS 161

since the first component is zero. Similarly, integrating the second term on the

right hand side of equation (5.4.5) by parts, we obtain
∫ ∞

0

1

2
∇2
yi
g(yi)σ

2
i (y)p(t, yi | x0)dyi

=
1

2
∇yi

g(yi)σ
2
i (y)p(t, yi | x0)

∣

∣

∣

∞

0
−
∫ ∞

0

1

2
∇yi

g(yi)∇yi
[σ2
i (y)p(t, yi | x0)]dyi

= −
∫ ∞

0

1

2
∇yi

g(yi)∇yi
[σ2
i (y)p(t, yi | x0)]dyi

= −1

2
g(yi)∇yi

[σ2
i (y)p(t, yi | x0)]

∣

∣

∣

∞

0
+

1

2

∫ ∞

0

g(yi)∇2
yi

[σ2
i (y)p(t, yi | x0)]dyi

=
1

2

∫ ∞

0

g(yi)∇2
yi

[σ2
i (y)p(t, yi | x0)]dyi,

so

∫ ∞

0

g(yi)∇tp(t, yi | x0)dyi

=

∫ ∞

0

g(yi)

{

−∇yi
[µi(y)p(t, yi | x0)] +

1

2
∇2
yi

[σ2
i (y)p(t, yi | x0)]

}

dyi

and we have the implied relationship

∇tp(t, yi | x0) = −∇yi
[µi(y)p(t, yi | x0)] +

1

2
∇2
yi

[σ2
i (y)p(t, yi | x0)] (5.4.6)

with the initial condition

lim
t→t0

p(t, yi | x0) = δxi(0)(yi),

where δxi(0)(yi) is the Dirac delta function. The Kolmogorov forward equation

can be written in terms of the operator A∗, which is the adjoint of A (from the

Kolmogorov backward equation),

∇tp(t, yi | x0) = Ai∗
t p(t, yi | x0).

5.5 Appendix 5.B

For each component Xi(t) of X(t), we have a one dimensional diffusion process

dXi(t) = µ́iXi(t)dt+ σ́i(X(t))Xi(t)dBi(t). (5.5.1)
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The derivation of the Kolmogorov forward equation for the 1-dimensional case is

as follows. Suppose we have the diffusion process shown in equation (5.5.1), and

x0 = (x1 = X1(0), x2 = X2(0), . . . , xn = Xn(0)), then

E[g(Xi(t)) | X(0) = x0] = g(Xi(0))

+ E[

∫ t

t0

{

Xi(s)∇xi
g(Xi(s))µ́i +

1

2
X2
i (s)∇2

xi
g(Xi(s))σ́

2
i

}

ds | X(0) = x0].

(5.5.2)

From the definition of expectation in equation (5.4.2) and the equation above

E[

∫ t

t0

Xi(s)∇xi
g(Xi(s))µ́ids | X(0) = x0] =

∫ t

t0

∫ ∞

0

yi∇yi
g(yi)µ́ip(s, yi | x0)dyids

and

E[

∫ t

t0

1

2
X2
i (s)∇2

xi
g(Xi(s))σ́

2
i ds |X(0) = x0]=

∫ t

t0

∫ ∞

0

1

2
y2
i∇2

yi
g(yi)σ́

2
i p(s, yi |x0)dyids,

so

∫ ∞

0

p(t, yi | x0)g(yi)dyi = g(Xi(0)) +

∫ t

t0

∫ ∞

0

yi∇yi
g(yi)µ́ip(s, yi | x0)dyids

+

∫ t

t0

∫ ∞

0

1

2
y2
i∇2

yi
g(yi)σ́

2
i p(s, yi | x0)dyids. (5.5.3)

Differentiating both sides with respect to t, we have

∫ ∞

0

∇tp(t, yi | x0)g(yi)dyi =

∫ ∞

0

{

yi∇yi
g(yi)µ́ip(t, yi | x0)

+
1

2
y2
i∇2

yi
g(yi)σ́

2
i p(t, yi | x0)

}

dyi.

Integrating the first term of the right hand side of equation (5.5.4) by parts, we

obtain

∫ ∞

0

yi∇yi
g(yi)µ́ip(t, yi | x0)dyi

= yig(yi)µi(y)p(t, yi | x0)
∣

∣

∣

∞

0
−
∫ ∞

0

g(yi)∇yi
[µi(y)p(t, yi | x0)]dyi

= −
∫ ∞

0

g(yi)∇yi
[yiµi(y)p(t, yi | x0)]dyi
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since the first component is zero. Similarly, integrating the second term on the

right hand side of equation (5.5.4) by parts, we obtain

∫ ∞

0

1

2
y2
i∇2

yi
g(yi)σ́

2
i p(t, yi | x0)dyi

=
1

2
y2
i∇yi

g(yi)σ́
2
i p(t, yi | x0)

∣

∣

∣

∞

0
−
∫ ∞

0

1

2
y2
i∇yi

g(yi)∇yi
[y2
i σ́

2
i p(t, yi | x0)]dyi

= −
∫ ∞

0

1

2
y2
i∇yi

g(yi)∇yi
[y2
i σ́

2
i p(t, yi | x0)]dyi

= −1

2
g(yi)∇yi

[y2
i σ́

2
i p(t, yi | x0)]

∣

∣

∣

∞

0
+

1

2

∫ ∞

0

g(yi)∇2
yi

[y2
i σ́

2
i p(t, yi | x0)]dyi

=
1

2

∫ ∞

0

g(yi)∇2
yi

[y2
i σ́

2
i p(t, yi | x0)]dyi,

so

∫ ∞

0

g(yi)∇tp(t, yi | x0)dyi

=

∫ ∞

0

g(yi)
{

−∇yi
[yiµ́ip(t, yi | x0)] +

1

2
∇2
yi

[y2
i σ́

2
i p(t, yi | x0)]

}

dyi

and we have the implied relationship

∇tp(t, yi | x0) = −∇yi
[yiµ́ip(t, yi | x0)] +

1

2
∇2
yi

[y2
i σ́

2
i p(t, yi | x0)]

with the initial condition

lim
t→t0

p(t, yi | x0) = δxi(0)(yi),

where δxi(0)(yi) is the Dirac delta function. The Kolmogorov forward equation

can be written in terms of the operator J ∗;

∇tp(t, yi | x0) = J i∗
t p(t, yi | x0).



Chapter 6

Concluding Remarks

Refinements which could be carried out as part of a post-doctoral project are as

follows,

(a) Hedging and Sensitivity Calculations. Hedging and sensitivity calcu-

lations for CDOs is a under-explored area. No research has been done on

hedging CDOs which have been priced using distorted copulas. There are

very few results of sensitivity tests which show how variations in individual

CDS prices influence the final tranche prices. Similarly, tests on the effect

of changing individual default distributions have also not been carried out,

so research could be carried out in that area.

(b) Extending Specialized CDO Models. It is possible to extend the CDO

models of Greenberg et al. [63] and Schönbucher [147]. For example, in the

case of [63], one could extend the work to four dimensions or more providing

one has an algorithm for calculating the multivariate normal distribution.

It may be possible to form a similar type of implementation using other

types of factor copulas, approximations, etc.

(c) Making Links to Individual Default. Asset values are usually not ob-

servable on the market. Instead of asset values, analysts have to rely on
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equity, volatility and other parameters [13]. Therefore, there may be room

for research into which variables can be used as the best indicators of a

firm’s probability of default.

(d) Quantile Research. There is still much to be explored in relation to the use

of pth quantiles, which involves the generalization of work done in Chapter

2 on the conditional mean. Numerical experiments could be carried out to

find properties of the conditional median of copulas and distorted copulas.

(e) Estimating Parameters. Parameters in copulas can be estimated in sev-

eral ways, maximum likelihood method, method of inference functions for

margins, canonical maximum likelihood method and using dependence mea-

sures such as Kendall’s tau, the empirical copula and other techniques re-

lated to moment generating functions. Some of these methods could be

developed further, in order to make parameter estimation easier.

(f) The Squaring of CDOs. Another under-explored area in the world of

CDOs is the CDO2. This squaring of CDOs involves taking a portfolio

of synthetic CDO tranches and tranching those, and thereby providing an

extra layer to the so-called capital structure [7]. The authors in [7] have

started modelling CDO2s. The super tranches created in that model need

to be priced. Thus we have yet another area where work could be done in

the future.

(g) Distorting n-copulas. The theory of distorted copulas may be extended

to higher dimensions, so that sampling experiments and data fitting in n

dimensions can be carried out. This would include generating formulae for

n-copula densities.
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