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An accurate and comprehensive model of thin
fluid flows with inertia on curved substrates

By A. J. ROBERTS AND ZHENQUAN LI
Department of Mathematics and Computing, University of Southern Queensland,

Toowoomba, Queensland 4350, Australia
aroberts@usq.edu.au; li z@usp.ac.fj

(Received 30 January 2004 and in revised form 30 August 2005)

Consider the three-dimensional flow of a viscous Newtonian fluid upon a curved
two-dimensional substrate when the fluid film is thin, as occurs in many draining,
coating and biological flows. We derive a comprehensive model of the dynamics of
the film, the model being expressed in terms of the film thickness η and the average
lateral velocity ū. Centre manifold theory assures us that the model accurately and
systematically includes the effects of the curvature of substrate, gravitational body
force, fluid inertia and dissipation. The model resolves wavelike phenomena in the
dynamics of viscous fluid flows over arbitrarily curved substrates such as cylinders,
tubes and spheres. We briefly illustrate its use in simulating drop formation on
cylindrical fibres, wave transitions, three-dimensional instabilities, Faraday waves,
viscous hydraulic jumps, flow vortices in a compound channel and flow down and up
a step. These models are the most complete models for thin-film flow of a Newtonian
fluid; many other thin-film models can be obtained by different restrictions and
truncations of the model derived here.

1. Introduction
Mathematical models and numerical simulations for the flow of a thin film of

fluid have important applications in industrial and natural processes (Roskes 1969;
Ruschak 1985; Moriarty, Schwartz & Tuck 1991; Chang 1994; Grotberg 1994;
Schwartz & Weidner 1995; Schwartz, Weidner & Eley 1995; Decré & Baret 2003).
The dynamics of a thin fluid film spreading or retracting from the surface of a
supporting liquid or solid substrate has long been an active area of research because
of its impact on many technological fields: for example, applications of coating
flows (Ruschak 1985) range from a single decorative layer on packaging, to multiple-
layer coatings on photographic film; coated products include adhesive tape, surgical
dressings, magnetic and optical recording media, lithographic plates, paper and fabrics.
Oron, Davis & Bankoff (1997) reviewed a wide variety of thin fluid film models in
detail. In this section, we summarize some of the results on mathematical models for
three-dimensional thin fluid film flows on a solid curved substrate and relate these
results to the new comprehensive model derived herein.

In a three-dimensional and very slow flow, a ‘lubrication’ model for the evolution of
the thickness η of a film on a general curved substrate was shown by Roy, Roberts &
Simpson (2002) (see also Howell 2003) to be

∂ζ

∂t
≈ − 1

3
We ∇ ·

[
η2ζ∇κ̃ − 1

2
η4(κI − K) · ∇κ

]
, (1)



34 A. J. Roberts and Z. Li

where ζ = η − 1
2
κη2 + 1

3
k1k2η

3 is proportional to the amount of fluid locally ‘above’ a
small patch of the substrate; κ̃ is the mean curvature of the free surface of the film
owing to both substrate and fluid thickness variations (κ̃ ≈ κ+∇2η); K is the curvature
tensor of the substrate; k1, k2 and κ = k1 + k2 are the principal curvatures and the
mean curvature of the substrate, respectively (positive curvature is concave); the
Weber number We characterizes the strength of surface tension; and the differential
operator ∇ is defined in a coordinate system fitted to the curved substrate. Based upon
a systematic analysis of the continuity and Navier–Stokes equations for a Newtonian
fluid, this model accounts for any general curvature of the substrate and that of the
surface of the film. Decré & Baret (2003) found good agreement between a linearized
version of lubrication models such as (1) and experiments of flow over various shaped
depressions in the substrate.

In many applications, the lubrication model, such as (1), of slow flow of a thin
fluid film is too limited. Indeed, Pumir, Manneville & Pomeau (1983) and Ruyer-
Quil & Manneville (2000) show that such lubrication models may have finite time
singularities for moderate Reynolds numbers. Instead, as we develop here, a model
expressed in terms of the dynamics of both the fluid layer thickness η and an overall
lateral velocity ū (or momentum flux) is required to resolve faster wavelike dynamics
in many situations: falling films (Nguyen & Balakotaiah 2000; Chang 1994, p. 110);
wave transitions (Chang, Demekhin & Saprikin 2002) to solitary waves (Ruyer-Quil
& Manneville 2000); higher Reynolds-number flows (Prokopiou, Cheng & Chang
1991, equation (19)); in rising film flow and a slot coater (Kheshgi 1989, equation
(37)); and rivulets under a sloping cylinder (Alekseenko, Markovich & Shtork 1996).
Oron et al. (1997, p. 975) comment that ‘upgrading the importance of inertia has been
shown to be crucial in the study of falling films’. Most of these models are only for
two-dimensional flow, not the three-dimensional flow explored here. Roberts (1998)
also derived a similar model for two-dimensional flow, approximately

∂η

∂t
≈ −∂(ηū)

∂x
, (2)

Re
∂ū

∂t
≈ −

[
π2

4

ū

η2
+ 3κ

ū

η

]
+

π2

12

(
We

∂κ̃

∂x
+ Gr gs

)
, (3)

where Re is a Reynolds number of the flow, ū is the lateral velocity averaged over
the fluid thickness, and Gr gs is the lateral component of gravity. Compare such
a model and the lubrication model (1) for slow flows: in the simplest situation of
two-dimensional flow on a flat substrate without gravity, the lubrication model (1)
reduces to a nonlinear diffusion like equation ηt = − 1

3
We(η3ηxxx)x; whereas models

such as (2)–(3) reduce to

∂η

∂t
≈ −∂(ηū)

∂x
, Re

∂ū

∂t
= −π2

4

ū

η2
+

π2

12
We

∂3η

∂x3
, (4)

which as well as the diffusive-like dynamics on large lateral scales, also supports
decaying wavelike dynamics at finite lateral length scales.† Furthermore, models such
as (2)–(3) resolve finer details in space than a lubrication model, see § 5, and resolve
faster dynamics in time, see § 4, than do lubrication models such as (1).

† On a film of non-dimensional thickness 1, small perturbations in η and ū proportional to
exp(ikx + λt) of wavenumber k and governed by (4) have frequency Im λ ≈ k2π

√
We /(12 Re), for

lateral wavenumbers k � 1/
4

√
ReWe, while decaying with rate Re λ = −π2/(8 Re).
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t = 0 t = 4

t = 8 t = 12

Figure 1. Around a nearly horizontal cylinder of radius R = 2 (not shown) we start with a
fluid layer of thickness η = 1 except for a small bump discernible off the top dead centre of the
cylinder. With Reynolds number Re = 10 in a vertical gravitational field, the fluid bump first
slides around the cylinder to the bottom by non-dimensional time t = 12. The other sections
of the fluid also slide down to the bottom of the cylinder, but not so fast.

Here, we greatly extend the model (2)–(3) by deriving in § 5 the approximate model
for the flow of a three-dimensional thin liquid layer of an incompressible Newtonian
fluid over an arbitrary solid, stationary and curved substrate, such as the flow about
a cylinder shown in figures 1 and 2. The derived accurate model (57)–(58) for the
film thickness η and an average lateral velocity ū, defined in (47), encompasses many
interactions between the various physical processes of fluid conservation, inertia,
gravity, surface tension and substrate curvature. A simpler version of the model just
describes the leading influences of these physical processes and is‡

∂η

∂t
≈ −∇ · (ηū), (5)

Re
∂ ū
∂t

≈ −
[

π2

4

ū
η2

+ (2K + κI) · ū
η

]
+

π2

12
(We ∇κ̃ + Gr gs), (6)

where Gr gs is the component of gravity tangential to the substrate. The conservation
of fluid equation (5) naturally generalizes equation (2) to three-dimensional flow. The
momentum equation (6) similarly generalizes (3) to three-dimensional flow through
a non-trivial effect of substrate curvature upon the drag. The important feature of
this model, as in (2)–(3), is the incorporation of the dynamics of the inertia of the
fluid, represented here by the leading-order term Re ∂ ū/∂t , which enables the model
to resolve wavelike behaviour. In contrast, the lubrication model of thin films (1) only
encompasses a much more restricted range of dynamics. Many models have previously
been derived to incorporate inertia, although mostly only for two-dimensional
flow, for example, Shkadov (1967) integrated across the fluid film the approximate

‡ The approximate equality in the conservation of mass equation (5) becomes exact equality when
ζ replaces η on the left-hand side. The higher-order analysis leading to (57) does this automatically.
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t = 24 t = 36

t = 48 t = 60

Figure 2. Around the nearly horizontal cylinder of radius R = 2 (not shown but at angle
0.1 radians to the horizontal) the fluid lump now, t = 24, at the bottom of the cylinder slowly
pulls in fluid from the two ends of the cylinder under surface tension. By non-dimensional
times t = 48 and 60, surface tension forms a large off-centre bead which slowly slides along
the cylinder, surrounded by a thin layer, η ≈ 0.1, still covering the cylinder.

boundary-layer equations to produce the widely used ibl model for two-dimensional
flow on a flat plate (see Chang 1994, p. 110); Nguyen & Balakotaiah (2000) and
Ruschak & Weinstein (2003) developed a model for the steady two-dimensional flow
over a curved substrate based on assuming a cubic cross-film velocity structure;
Ruyer-Quil & Manneville (2000) and Chang et al. (2002) use a small number of
Galerkin modes for the cross-film structure to model the flow down an inclined flat
plate; and Khayat, Kim & Delosquer (2004) implement a spectral numerical method
to simulate axisymmetric flows on an axisymmetric substrate. Instead, we base the
derivation of the model (5)–(6) on the approach established in § 4 that is supported by
centre manifold theory. The approach is founded on viscosity damping all the lateral
shear modes of the thin fluid film except the shear mode of slowest decay. Then
all the physical interactions between spatial varying quantities, substrate curvature,
surface tension and gravitational forcing, as seen in the particular simulation shown in
figures 1 and 2, are systematically incorporated into the modelling, to some controlled
order of error, because the centre manifold is made up of the slowly evolving solutions
of the Navier–Stokes and continuity equations, see the discussion in § 4.† For example,
the π2/12 coefficient in the momentum equations of models (3) and (6) is not 1: the
coefficient of these terms would be 1 in modelling based upon the heuristic of cross-
sectional averaging as in the ibl (e.g. Chang 1994, p. 110); but π2/12 = 0.8224 is
correct because it must be 1/3 of the viscous decay rate π2/4 in order to match
the leading 1/3 coefficient in the lubrication model (1). In our approach, the model
is based upon actual solutions of the Navier–Stokes equations and so obtains all
coefficients correctly.

† Although our models are expressed in terms of cross-film averaged lateral velocities, our
methodology does not average the equations. The lateral velocity averages are merely useful
parameters to characterize the local fluid flow.
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To begin, and following Roy et al. (2002), we introduce in § 2 an orthogonal
curvilinear coordinate system fitted to the substrate. The analysis then starts from
the incompressible Navier–Stokes equations and boundary conditions recorded in § 3
for this special coordinate system. Thus, we derive the model for general smoothly
curving substrates.

The derived model (57)–(58) reduces to a model for three-dimensional fluid flow on
flat substrates upon setting the principal curvatures of the substrate, k1 and k2, equal
to zero. For example, on a flat substrate, the simpler model (6) becomes

Re
∂ ū
∂t

≈ −π2

4

ū
η2

+
π2

12
(We ∇3η + Gr gs). (7)

The higher-order accurate version of this model, recorded in § 6.1 as (64)–(66),
extends to three-dimensional fluid flows the models for two-dimensional flows on flat
substrates derived by Roberts (1998). In § 6.1, we report on the linearized dynamics,
η = 1 + h where both h and ū are small. One result is that

Re ω̄t = −π2

4
ω̄ + ∇2ω̄, (8)

where ω̄ = v̄x − ūy is a measure of the mean vorticity normal to the substrate in the
flow of the film. Thus, we predict that mean normal vorticity just dissipates owing
to drag (−ω̄π2/4) and diffusion (∇2ω̄). However, letting δ̄ = ūx + v̄y , which measures
the mean divergence of the flow of the fluid and hence indicates whether the film is
thinning or thickening, we find

ht = −δ̄, (9)

Re δ̄t = −π2

4
δ̄ +

π2

12
[Gr gn∇2h + We ∇4h] + 4.0930 ∇2δ̄. (10)

Observe that this divergence δ̄ diffuses with a larger coefficient, namely 4.093, than that
of pure molecular diffusion; this effect is analogous to the enhanced Trouton viscosity
of deforming viscous sheets (e.g. Ribe 2001, p. 143). The enhanced viscous dissipation
is due to interactions with the shear flow similar to those giving rise to enhanced
dispersion of a passive tracer in pipes (e.g. Mercer & Roberts 1994). From (10) observe
that the divergence of the film’s velocity is simply driven by gravity and surface tension
acting on variations of the film’s thickness and is dissipated by substrate drag and the
enhanced lateral diffusion. Nonlinearities and substrate curvature modify this simple
picture of the dynamics.

Circular cylinders are a specific substrate of wide interest. For example, Jensen
(1997) studied the effects of surface tension on a thin liquid layer lining the interior of
a cylindrical tube and derived a corresponding evolution equation; Alekseenko et al.
(1996) studied evolution of rivulet flow underneath a sloping cylinder; Atherton &
Homsy (1976), Kalliadasis & Chang (1994) and Kliakhandler, Davis & Bankoff (2001)
considered coating flow down vertical fibres and gave nonlinear lubrication models
for axisymmetric slow flow. Thus, in § 6.2, we also record the accurate model for
flow both inside and outside a cylinder as used in the simulation for figures 1 and 2.

Axisymmetric flows are often of interest in coating flows. Using s as the axial coordi-
nate, a basic model for axisymmetric fluid film flow along a cylinder of radius R is

∂

∂t

(
η ± η2

2R

)
= −∂(ηū)

∂s
, (11)
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Re
∂ū

∂t
≈ −π2

4

ū

η2
± ū

Rη
− 0.6487

ū

R2

+
π2

12
We

(
1

R2

∂η

∂s
+

∂3η

∂s3

)
+ Gr

(
π2

12
gs ± 0.4891

gsη

R

)
, (12)

where the upper/lower sign corresponds to flow on the outside/inside surfaces of the
cylinder. Observe that the curvature of the substrate: in (11) modifies the expression
of conservation of mass; drives a beading effect through ηs/R

2 in (12); and modifies
the drag terms in (12). These are just some special cases of the models on different
substrates which are recorded in detail in § 6.

The centre manifold approach we use to derive low-dimensional dynamical
models such as (5)–(6) has many advantages: as discussed in detail in § 4, theory
supports the existence, flexible construction and, importantly, the relevance of the
modelling. Moreover, the approach leads to straightforward algebraic techniques
for the derivation of the low-dimensional models (Roberts 1997), and to the correct
modelling of initial conditions (Roberts 1989; Cox & Roberts 1995; Suslov & Roberts
1998) and boundary conditions (Roberts 1992). However, herein we limit attention
to deriving the basic differential equations of the dynamical flow of the fluid. Other
aspects of modelling remain for further study. At the end of § 5, we investigate high-
order refinements of the basic linearized surface-tension-driven dynamics of (8)–(10)
and determine that the model (57)–(58) derived here requires that spatial gradients
are significantly less than the limit |∇η| < 1.9, see (62). This is the first time such a
good estimate of the limit of applicability of inertia resolving models for fluid flow
has been obtained. This quantitative indication of the extent of the model’s spatial
resolution is significantly better than that for lubrication models such as (1) which
require the surface slope to be significantly less than 0.74 instead. Such quantitative
estimates of the range of applicability are found through the systematic nature of the
centre manifold approach to modelling.

2. The orthogonal curvilinear coordinate system
In this section we describe the general differential geometry necessary to consider

flows in general non-Cartesian orthogonal coordinate system adapted to the curving
substrate. Following Roy et al. (2002), we introduce the geometry of the substrate,
then extend a coordinate out into space and establish the orthogonal curvilinear
coordinate system used to describe the fluid flow.

Let S denote the solid substrate. When S has no umbilical point, that is, there is
no point on S at which the two principal curvatures coincide, then there are exactly
two mutually orthogonal principal directions in the tangent plane at every point in
S (Guggenheimer 1963, Theorem 10-3). Let e1 and e2 be the unit vectors in these
principal directions, and let e3 be the unit normal to the substrate to the side of the
fluid so that e1, e2 and e3 form a right-handed curvilinear orthonormal set of unit
vectors. Such a coordinate system is called a Darboux frame (Guggenheimer 1963).
Let x1 and x2 be two parameters such that the unit tangent vector of a parameter
curve x2 = constant is e1, the unit tangent vector of a parameter curve x1 = constant
is e2, and let y measure the normal distance from the substrate. Then on the substrate,
points P ∈ S,

ei =
1

mi

∂ P
∂xi

, (13)
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for subscript i = 1, 2 here and later, with substrate scale factor

mi =

∣∣∣∣∂ P
∂xi

∣∣∣∣ . (14)

Further, the unit normal varies along the substrate with

∂e3

∂xi

= −mikiei , (15)

where ki are the corresponding principal curvatures of the substrate. The unit
vectors ei are independent of the normal coordinate y. At any point in the fluid,
written as

X(x1, x2, y) = P(x1, x2) + ye3(x1, x2),

the scale factors of the spatial coordinate system are, since positive curvature
corresponds to a concave coordinate curve,

hi =

∣∣∣∣∂ X
∂xi

∣∣∣∣ = mi(1 − kiy), h3 =

∣∣∣∣∂ X
∂y

∣∣∣∣ = 1.

The spatial derivatives of the curvilinear unit vectors are (Batchelor 1979, p. 598)

∂ei

∂xi

= −hi,i ′

hi ′
ei ′ + mikie3,

∂ei

∂y
=

∂e3

∂y
= 0,

∂e3

∂xi

= −mikiei ,
∂ei

∂xi ′
=

hi ′,i

hi

ei ′ .

where i ′ = 3 − i is the complementary index of i, hi,j denotes ∂hi/∂xj , and repeated
subscripts i or i ′ do not denote summation.

A fundamental geometric quantity is the free-surface mean curvature κ̃ which is
involved in the effects of surface tension through the energy stored in the free surface.
As derived by Roy et al. (2002), see their equation (37), the mean curvature of the
free surface

κ̃ =
1

h̃1h̃2

[
∂

∂x1

(
h̃2

2ηx1

A

)
+

∂

∂x2

(
h̃2

1ηx2

A

)]
+

1

A

[(
h̃2

1 + η2
x1

)m2k2

h̃1

+
(
h̃2

2 + η2
x2

)m1k1

h̃2

]
,

where h̃i = mi(1 − kiη) are the metric coefficients evaluated on the free surface (as
generally indicated by the tilde), and where

A =
√

h̃2
1h̃

2
2 + h̃2

2η
2
x1

+ h̃2
1η

2
x2

,

is proportional to the free-surface area above a patch dx1 × dx2 of the curving
substrate.

We assume the film of fluid is thin. However, we adopt a non-dimensionalization
based on the thickness of the fluid film. Thus, on the scale of the fluid thickness, the
viscous fluid is of large horizontal extent on a slowly curving substrate. Consequently,
we treat as small the lateral spatial derivatives of the fluid flow and the curvatures
of the substrate; Decré & Baret (2003, p. 162) report experiments showing that even
apparently rapid changes in the substrate may be treated as slow variations in the
mathematical model. Then, an approximation to the curvature of the free surface is

κ̃ = ∇2η +
k1

1 − k1η
+

k2

1 − k2η
+ O(κ3 + ∇3η), (16)
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where in the substrate coordinate system the Laplacian

∇2η =
1

m1m2

[
∂

∂x1

(
m2

m1

∂η

∂x1

)
+

∂

∂x2

(
m1

m2

∂η

∂x2

)]
. (17)

For later use, also observe that on the free surface, two unit tangent vectors t̃ i and
unit normal vector ñ are

t̃ i = (h̃ie1 + ηxi
e3)/

√
h̃2

i + η2
xi
, (18)

ñ = (−h̃2ηx1
e1 − h̃1ηx2

e2 + h̃1h̃2e3)/A. (19)

We describe the dynamics of the fluid using these formulae in a coordinate system
determined by the substrate upon which the fluid film flows.

3. Equations of motion and boundary conditions
Having developed the intrinsic geometry of general three-dimensional surfaces,

we proceed to record the Navier–Stokes equations and boundary conditions for a
Newtonian fluid in this curvilinear coordinate system.

Consider the Navier–Stokes equations for an incompressible fluid moving with
velocity field u and with pressure field p. The flow dynamics are driven by pressure
gradients along the substrate which are caused by both surface-tension forces,
coefficient σ (the forces varying owing to variations of the curvature of the free
surface of the fluid), and an acceleration due to gravity, g, of magnitude g in the
direction of the unit vector ĝ. Then the continuity and Navier–Stokes equations are

∇ · u = 0, (20)

∂u
∂t

+ u · ∇u = − 1

ρ
∇p +

µ

ρ
∇2u + g. (21)

We adopt a non-dimensionalization based on the characteristic thickness of the film H ,
and some characteristic lateral velocity U : for a specific example, in a regime where
surface tension drives a flow against viscous drag, the characteristic velocity U = σ/µ,
and the Weber number then becomes We = σ/(Uµ) = 1. Reverting to the general case,
the reference length is H , the reference time H/U , and the reference pressure µU/H .
Then the non-dimensional fluid equations are

∇ · u = 0, (22)

Re

[
∂u
∂t

+ u · ∇u
]

= −∇p + ∇2u + Gr ĝ, (23)

where Re = UHρ/µ is a Reynolds number characterizing the importance of the
inertial terms compared to viscous dissipation, and Gr = gρH 2/(µU ) is a gravity
number analogously measuring the importance of the gravitational body force
compared to viscous dissipation; the gravity number Gr = Re / Fr for Froude number
Fr = U 2/gH so that when the reference velocity is chosen to be the inviscid shallow-
water wave speed U =

√
gH , then Fr = 1 and the gravity number Gr = Re.

In the curvilinear coordinate system defined in § 2, the non-dimensional continuity
and Navier–Stokes equations for the velocity field u = u1e1 + u2e2 + ve3 are (adapted
from Batchelor 1979, p. 600):

∂

∂x1

(h2u1) +
∂

∂x2

(h1u2) +
∂

∂y
(h1h2v) = 0, (24)
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Re

{
∂u
∂t

+ e1

[
u · ∇u1 +

u2

h1h2

(
u1

∂h1

∂x2

− u2

∂h2

∂x1

)
− m1k1

vu1

h1

]

+ e2

[
u · ∇u2 +

u1

h1h2

(
u2

∂h2

∂x1

− u1

∂h1

∂x2

)
− m2k2

vu2

h2

]

+ e3

[
u · ∇v + m1k1

u1
2

h1

+ m2k2

u2
2

h2

]}
= −∇p − ∇ × ω + Gr ĝ, (25)

where ω is the vorticity of the fluid given by the curl

ω = ∇ × u =
e1

h2

[
∂v

∂x2

− ∂(h2u2)

∂y

]
+

e2

h1

[
∂(h1u1)

∂y
− ∂v

∂x1

]

+
e3

h1h2

[
∂(h2u2)

∂x1

− ∂(h1u1)

∂x2

]
,

and where

u · ∇ =
u1

h1

∂

∂x1

+
u2

h2

∂

∂x2

+ v
∂

∂y
.

We solve these partial differential equations with the following boundary conditions.
(i) The fluid does not slip along the stationary substrate S:

u = 0 on y = 0. (26)

(ii) The fluid satisfies the free-surface kinematic boundary condition

∂η

∂t
= v − u1

h̃1

∂η

∂x1

− u2

h̃2

∂η

∂x2

on y = η. (27)

(iii) Surface tension causes the normal surface stress to be, in non-dimensional
form,

ñ · τ̃ · ñ = p̃ + We κ̃, (28)

where τ̃ is the deviatoric stress tensor on free surface, p̃ is the fluid pressure at the
surface relative to the assumed zero pressure of the negligible medium above the fluid,
and ñ is the unit normal to the free surface.

(iv) The free surface has zero tangential stress

t̃ · τ̃ · ñ = 0, (29)

where t̃ is any tangent vector to the free surface. We use the two linearly independent
tangent vectors in (18) to ensure the boundary condition is satisfied for all tangent
vectors.
In this curvilinear coordinate system the components of the non-dimensional
deviatoric stress tensor τ are (Batchelor 1979, p. 599)

τii = 2

(
1

hi

∂ui

∂xi

+
hi,i ′

hihi ′
ui ′ − miki

hi

v

)
,

τ12 =
1

h2

∂u1

∂x2

+
1

h1

∂u2

∂x1

− h1,2

h1h2

u1 − h2,1

h1h2

u2,

τi3 =
1

hi

∂v

∂xi

+
∂ui

∂y
+

miki

hi

ui,

τ33 = 2
∂v

∂y
.
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(30)
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4. Centre manifold theory supports the model
We adapt the governing fluid equations (24)–(25) and the four boundary

conditions (26)–(29) to a form suitable for the application of centre manifold theory
and techniques to provide the low-dimensional dynamical model with firm theoretical
support.

First, summarize centre manifold theory to clarify the support it gives to modelling
fluid dynamics. See, for example, Carr (1981), Iooss & Peroueme (1993) and Kuznetsov
(1995) for more details. Consider a dynamical system for the evolution of the physical
variables v(t) (such as fluid velocity) in the form

∂v

∂t
= Lv + f (v, ε), (31)

where L is a linear operator (such as cross-film diffusion), f is a smooth nonlinear
function of v and ε (such as advection of momentum) and ε is a vector of parameters
(such as the magnitude of lateral slowly varying gradients, and the gravitational
forcing Gr). The precondition for the theory is that the linear operator has some
eigenvalues λ, say n of them, with zero real part (such as those associated with
conservation principles) and the remaining eigenvalues have strictly negative real
parts, Re λ < −α < 0 (such as those of viscous damping). The theory asserts that the
n modes corresponding to the eigenvalues of zero real part can be used to describe the
long-term evolution from quite general initial conditions: thus, let the n-dimensional
vector a, say, measure the amplitude (such as the fluid thickness and the mean lateral
velocities) of the n critical modes. Then three crucial theorems follow in some finite
size neighbourhood of the origin in (v, ε)-space. Here, the ‘finite size neighbourhood’
are those slow flows where the lateral derivatives are small enough; for example,
analysis leading to the upper bound (62) suggests one bound on the size of the
neighbourhood is that gradients of the fluid thickness must satisfy |∇η| < 1.9. The
following theorems hold for this neighbourhood of the origin.

Existence. Solutions exist to the physical equations (31) parameterized by evolving
amplitudes a(t) and constant parameters ε:

v = V (a, ε) such that
∂a
∂t

= G(a, ε), (32)

for some smooth functions V and G; the hypersurface v = V (a, ε) is called the
centre manifold. In applications, ∂a/∂t = G forms the model, such as (2)–(3), whereas
V describes the physical fields such as those we see later in (50)–(52).

The model (32) describes only a subset of the possible solutions of the full physical
problem (31), namely that subset lying within the centre manifold. In our application
to fluid film dynamics, the subset of flows described by the model are those with
relatively simple cross-film shear structure (for example, see the cross-film structure
functions plotted in figure 4). Modes with convoluted cross-film shear flow are rapidly
damped by viscosity and lead to the following relevance theorem.

Relevance. All solutions of the physical problem (31) are attracted exponentially
quickly in time to solutions of the model (32). Express this more rigorously as: for all
solutions v(t) of (31) which stay in the neighbourhood, there exists a solution a(t) of
the model (32) such that ‖v(t)− V (a(t), ε)‖ = O(exp(−αt)) for some upper bound −α

on the negative eigenvalues of the linear operator L.
This property is immensely important as it asserts the model is faithful to the

physical dynamics. Most other modelling methodologies either appeal only to some
asymptotic self-consistency, such as the method of multiple scales, or to a shadowing
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property (there is a nearby system that the model follows). However, centre manifold
theory assures us that once initial transients have decayed in time, the original system
does follow the model. Furthermore, this assurance applies in some finite domain (the
neighbourhood), the assurance is not just asymptotic.

Approximation. The limitation is that we can only construct the centre manifold
model (32) approximately, usually as an asymptotic expansion in the amplitudes a
and parameters ε. However, the approximation theorem asserts that substituting (32)
into the physical system (31) and hence solving

∂v

∂t
=

∂V
∂a

G = LV + f (V , ε) (33)

to some order of error in (a, ε) results in the model (32) being correct to the same
order of error. That is, the order of error of the model is the same as the order of
residuals of the physical equations.

This property also has immense repercussions in application as it empowers us with
enormous flexibility in truncating asymptotic approximations to the model. Thus, as
we use here, we justify creating models resolving many and varied physical effects
which in different situations, or even on different parts of the substrate, have different
physical balances. Moreover, the centre manifold model need not be constructed
within the straight jacket of one scenario of relative magnitudes of the physical
parameters, but can, as here, be constructed quite generally for later truncation in
any given circumstance as required by the particular application. The approximation
theorem asserts that such flexible truncations form consistent models.

Three mathematical artifices place the equations within the centre manifold
framework; these artifices fit the parameter regime of viscous flow varying relatively
slowly over a substrate.

(i) We introduce the small parameter ε to characterize both the small lateral
gradients along the substrate, ∂/∂xi , and the small curvatures of the substrate (as
curvatures are also lateral gradients, namely the partial derivatives of the unit normal
with respect to xi). The parameter ε may be viewed either as a mathematical artifice
that simply counts the number of lateral derivatives in a term, or as being equivalent
to the multiple-scale assumption of variations occurring only on a large lateral length
scale (large compared to the thickness of the fluid).† The two viewpoints provide
exactly the same results. In either case, let the lateral variations scale with the
parameter ε:

∂

∂xi

= ε
∂

∂x∗
i

, k1 = εk∗
1, k2 = εk∗

2, κ = εκ∗,

where ∗ denotes quantities which have been scaled by ε.
(ii) The presumed small gravitational forcing is treated as a perturbing effect by

expressing the model in a series in powers of the gravity number Gr.
(iii) We base the analysis on a problem where the mean lateral velocity becomes a

natural amplitude (sometimes called an ‘order parameter’). As introduced by Roberts
(1998), the convenient way we choose to do this is to artificially force the lateral
flow at the free surface, then remove the forcing to recover a model for the physical

† Basing the analysis upon long-wave asymptotics implies the model will not necessarily resolve
the finite wavenumber (Tollmien–Schlichting) instabilities of the shear flow that Floryan, Davis &
Kelly (1987) and Burya & Shkadov (2001) identify as the dominant instability on a nearly horizontal
substrate. However, on a curved substrate, we expect long-wavelength dynamics generally to
dominate as only limited parts of the substrate will be nearly horizontal.
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fluid flow. Thus, we modify the tangential stress condition (29) on the free surface, to
become (39), using a parameter γ : at γ = 0, the lateral shear mode of slowest decay
becomes a marginally stable mode; whereas at γ = 1, the modification vanishes to
restore the physical stress-free boundary condition (29). The modification to arrive
at (39) is necessary to create the necessary three modes of the centre manifold model.
Subsequently, evaluating at γ = 1 removes the modification to obtain a model for
the physically correct dynamics. We present evidence in § 5 that the evaluation of the
model at γ = 1 is sound.

Such modification, in conjunction with the centre manifold approach elaborated
upon later in this section, is a very powerful tool for rational modelling of complicated
physical processes; for example, similar modifications of the free-surface conditions
enabled the large-scale modelling of turbulent floods by Mei, Roberts & Li (2003)
based upon the k–ε turbulence closure. Such modification could also be employed in
conjunction with other asymptotic modelling methods, such as the method of multiple
scales.

(iv) Note: we do not rescale the velocity and pressure fields. In the centre manifold
approach, the scalings for the physical fields follow in the solution of the fluid
equations within the slowly varying assumption. For example, we later derive the
pressure field (50) which shows p = O(εκ + ε2 + ε|ū| + Gr) as a consequence of only
the assumptions (i)–(iii) above. Our model of the pressure field is valid no matter which
is the dominant physical influence, be it substrate curvature, free-surface curvature,
gradients of velocity, or gravitational forcing, respectively seen in this order of
magnitude. This is essential here where, for example, the substrate curvature may
dominate in one locale, but not others. In the presence of complicated interactions
between varied physical mechanisms, as we encompass here, we derive expressions
for the physical fields that are valid over a wide range of different conventional
scalings. We need not assume a scaling for the unknown fields at the time of derivation –
this is a major advantage of the centre manifold approach that follows from the
approximation theorem. Instead, we just require that the rates of specified physical
processes are in some sense ‘small’ compared to the viscous decay of cross-film
shear. We place no restriction nor relation on the relative magnitude of the various
‘small’ effects. The approximation theorem assures us that the errors in the model
are of the same order in these ‘small’ effects as the residuals of the governing fluid
equations.

Now rewrite the governing fluid equations according to the above three artifices so
that we may apply centre manifold theory. The following fluid equations (34)–(40)
correspond to equation (31) in the previous discussion of centre manifold theory: for
example, if the introduced parameters ε and γ are set to one, then we recover precisely
the physical Navier–Stokes equations and boundary conditions of § 3. For convenience,
we drop the ‘∗’ superscript on all re-scaled variables hereinafter. Equations (24)–(25)
become

ε
∂

∂x1

(h2u1) + ε
∂

∂x2

(h1u2) +
∂

∂y
(h1h2v) = 0, (34)

Re

{
∂u
∂t

+ e1

[
ε
u1

h1

∂u1

∂x1

+ ε
u2

h2

∂u1

∂x2

+ v
∂u1

∂y
+ ε

u2

h1h2

(
u1

∂h1

∂x2

− u2

∂h2

∂x1

)

− εm1k1

vu1

h1

]
+ e2

[
ε
u1

h1

∂u2

∂x1

+ ε
u2

h2

∂u2

∂x2

+ v
∂u2

∂y

+ ε
u1

h1h2

(
u2

∂h2

∂x1

− u1

∂h1

∂x2

)
− εm2k2

vu2

h2

]
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+ e3

[
ε
u1

h1

∂v

∂x1

+ ε
u2

h2

∂v

∂x2

+ v
∂v

∂y
+ εm1k1

u2
1

h1

+ εm2k2

u2
2

h2

]}

= − ε
e1

h1

∂p

∂x1

− ε
e2

h2

∂p

∂x2

− e3

∂p

∂y
+

1

h2

[
ε
∂ω3

∂x2

− ∂ω2

∂y

]
e1

+
1

h1

[
∂ω1

∂y
− ε

∂ω3

∂x1

]
e2 +

ε

h1h2

[
∂ω2

∂x1

− ∂ω1

∂x2

]
e3 + Gr ĝ, (35)

where the scale factors are hi = mi(1 − εkiy), and the components of the vorticity are
(recall i ′ = 3 − i)

ωi ′ =
(−1)i

hi

[
ε

∂v

∂xi

− ∂(hiui)

∂y

]
, ω3 =

ε

h1h2

[
∂(h2u2)

∂x1

− ∂(h1u1)

∂x2

]
.

The boundary conditions (26)–(29) on the bed and the free surface become

u = 0 on y = 0, (36)

∂η

∂t
= v − ε

u1

h̃1

∂η

∂x1

− ε
u2

h̃2

∂η

∂x2

on y = η, (37)

ñ · τ̃ · ñ = p̃ + We κ̃, (38)

t̃ i · τ̃ · ñ = (1 − γ )
mim1m2ui

ηli l
on y = η, (39)

where

li =
√

h̃2
i + ε2η2

xi
, l =

√
(εh̃2ηx1

)2 + (εh̃1ηx2
)2 + (h̃1h̃2)2,

the unit tangent vectors

t̃ i = (h̃iei + εηxi
e3)/li,

and unit normal vector

ñ = (−εh̃2ηx1
e1 − εh̃1ηx2

e2 + h̃1h̃2e3)/l.

The asymptotic expressions for the deviatoric stress τ̃ on the free surface are

τ̃ii = 2ε

(
1

m1

∂ui

∂xi

+
hi,i ′

mim
′
i

ui − kiv

)
+ O(ε2),

τ̃12 = ε

(
1

m2

∂u1

∂x2

+
1

m1

∂u2

∂x1

− h1,2

m1m2

u1 − h2,1

m1m2

u2

)
+ O(ε2),

τ̃i3 =
∂ui

∂y
+ ε

(
kiui +

1

mi

∂v

∂xi

)
+ O(ε2),

τ̃33 = 2
∂v

∂y
,


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(40)

and the mean curvature of the free surface κ̃ , expanded in powers of ε, is

κ̃ = εκ + ε2[∇2η − κ2η] + O(ε3),

where ∇2η is the same as that in (17) and κ2 = k2
1 + k2

2 .
The tangential stress boundary condition (39) is modified by the introduction of

the artificial parameter γ . We recover the physically correct boundary condition when
γ = 1. However, when γ = 0, the boundary condition (39) linearizes to

∂ui

∂y
=

ui

η
on y = η,
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which leads to two neutral horizontal shear modes, ui ∝ y. The above equations
generalize the physical equations by introducing the extra artificial parameters ε and γ .
Then by adjoining the trivial equations

∂ε

∂t
= 0,

∂γ

∂t
= 0,

∂ Gr

∂t
= 0, (41)

we obtain a new but equivalent dynamical system in the variables u, η, p, ε, γ

and Gr. The original system will be recovered by setting ε = 1 and γ = 1. However,
the two systems are quite different with regard to center manifold theory. The theory
now treats all terms that are multiplied by the three small parameters as ‘nonlinear’
perturbing effects on the system. So the dynamics we describe will be suitable only
when there are slow lateral variations in xi of the curvatures of the substrate, of u, p

and η, small ε, and a relatively weak gravitational forcing on the system, small Gr.
In § 5, we argue that evaluating at γ = 1 is sound – that is, γ = 1 lies within
the neighbourhood referred to in the theory – and towards the end of § 5 we give
evidence that lateral variations are slow enough when the logarithmic derivative of
the gradients are significantly less than 1.9/η.

The linear dynamics are fundamental to the application of centre manifold
techniques to derive a low-dimensional model. The linear part of system (34)–(39),
that is, omitting the nonlinear advection and all terms multiplied by a small parameter
ε, γ or Gr, is

∂v

∂y
= 0, (42)

Re
∂u
∂t

+ e3

∂p

∂y
− ∂2u

∂y2
= 0, (43)

with the boundary conditions (36)–(39) linearized to

u = 0 on y = 0,
∂η

∂t
− v = 0 on y = η,

2
∂v

∂y
− p = 0 on y = η,

∂ui

∂y
− ui

η
= 0 on y = η.




(44)

Note that there are no curvature nor lateral variations in the above linear equations
as in the slowly varying approximation such variations do not affect the viscous decay
of lateral shear that is the dominant linear process. The linear dynamical system has
three types of solution:

(i) a motionless fluid film of constant thickness u = v = p = 0, η = constant;
(ii) the family of decaying lateral shear modes – the mode with non-dimensional

cross-film wavenumber 
 is ui ∝ sin(
y/η) exp(λt) where

λ = − 
2

Re η2
, such that 
 cot 
 = 1; (45)

(iii) the trivial parameters ε, γ and Gr being independently constant.
Thus, the six modes corresponding to zero eigenvalues, the so-called critical modes,
are the four modes with η, ε, γ and Gr arbitrarily constant, and the two lateral shear
modes with ui ∝ y (obtained in the limit as the cross-film wavenumber 
 → 0). All
other modes have strictly negative eigenvalues from (45) and correspond to viscously
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damped lateral shear modes. Consequently, the centre manifold model which we
create has six modes: three corresponding to critical physical modes; and three
corresponding to trivial parameter modes.

The above eigenanalysis applies independently at each lateral location x of the
substrate. However, as argued by Roberts (1988), under the slowly varying assumption,
we view each ‘position’ as a physical locale that is laterally much wider than the
depth of the fluid, but much smaller than the lateral length scales of interest.
Thus, the critical physical modes of the centre manifold arise independently at each
locale (Roberts 1988), and so the centre manifold is parameterized by the amplitude
of the critical modes at the ‘infinite number’ of locations on the substrate, that is, by
the average lateral velocity ū(x, t) and the fluid thickness η(x, t) at each x. Then in
the later fully nonlinear analysis, the lateral derivatives in the governing equations
couple neighbouring locations together to obtain a model expressed in the classic form
of a system of partial differential equations such as (5)–(6). In the slowly varying
regime, this coupling is weak and the ‘small’ parameter ε systematically organizes the
interactions for us in the full nonlinear analysis. In this manner, we base the ‘infinite
dimensional’ centre manifold model upon the above cross-film dynamics.

Centre manifold techniques are justifiably applied to infinite dimensional dynamical
systems with a separation of linear dynamics and such that the nonlinear perturbation
terms in the system are smooth and bounded (Gallay’s 1993, theorem 4.1)
(alternatively see Chicone & Latushkin 1997). Here, the linear dynamics (42)–(44) have
a well-structured centre space and stable space identified through the eigenvalues (45);
the main novelty is that the cross-film dynamics apply at each position independently
of each other and hence generate an ‘infinite dimensional’ centre manifold. However,
here the perturbation terms in system (34)–(35), as they involve spatial derivatives, are
unbounded so Gallay’s (1993) prerequisite condition (A 2) is not satisfied; nonetheless,
by restricting the Banach space to sufficiently slowly varying functions (Roberts 1988)
the derivatives remain bounded and the theory then assures us that a centre manifold
model exists. (Alternatively, we could replace all the lateral derivatives by bounded
operators that match the physical derivatives for long waves, but which are bounded
for high wavenumbers. Then centre manifold theory applies strictly and assures the
existence of a model that is identical for long-wave phenomena to that obtained
here. However, asymptotic completeness has not yet been proved for such ‘infinite
dimensional’ centre manifold models as we derive and as others justify using formal
heuristics.) With this proviso, a low-dimensional model of the system is justified using
centre manifold techniques. The critical aspect of the theory is that it provides a
systematic and flexible framework for constructing those solutions of the governing
Navier–Stokes equations that emerge when viscosity damps most of the lateral shear
modes.

Denote the physical fields by v(t) = (η, u1, u2, v, p). Centre manifold theory
guarantees that there exist physical fields described by functions V and G of the
critical modes where the critical modes evolve in time, that is, (32) here becomes

v(t) = V (η, ū1, ū2) such that
∂

∂t


 η

ū1

ū2


 = G(η, ū1, ū2), (46)

where there is implicit dependence upon the parameters (ε, γ, Gr), which are treated
as small constants, and where ūi are depth-averaged lateral velocities defined precisely
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as

ūi =
1

η

∫ η

0

ui(1 − ki ′y) dy. (47)

This definition ensures that the fluid flux over a point on the substrate is simply ηū.
We proceed to find functions V and G such that the evolving fluid fields v(t)
as described by (46) are actual solutions of the Navier–Stokes equations (34)–(35)
satisfying boundary conditions (36)–(39).

The major modifications are found to be successful. A key part of our analysis
is that the tangential stress boundary condition (29) can have major modifications
to (39) and still form a useful base for physical modelling with centre manifold
techniques. The critical issue is whether the physical problem with γ = 1 is accessible
by power series in γ about the artificial case of γ = 0. Here, we consider briefly
just the linear dynamics of the lateral shear velocity u(y, t) to show evidence of the
convergence of this power series; in § 5 we show further evidence of convergence for
other parts of the model. The equations for the dynamics of the lateral shear modes
are

Re
∂u

∂t
=

∂2u

∂y2
with u|y=0 = 0,

∂u

∂y
=

1 − γ

η
u on y = η. (48)

For all γ , separation of variables straightforwardly leads us to the complete solution

u =

∞∑
n=0

exp(λnt) sin(
ny/η) where λn(γ ) = − 
2
n

Re η2

and the non-dimensional wavenumbers 
n(γ ) are the solutions of 
 cot 
 = 1 − γ .
Figure 3 shows how the square of the wavenumbers 
n are analytic functions of
the parameter γ , hence so is λ0 = −
2

0/(Re η2), and so will be represented by a
power series convergent in some domain: our model involves the viscous decay of
the fundamental shear mode, hence involves λ0 and thus is based upon the branch
emanating from 
 = 0 for γ = 0 and reaching 
 = π/2 for γ = 1. Evidently this
power series should converge at γ = 1; we present further evidence in § 5.
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Furthermore, from γ = 0 to γ = 1 there is a wide spectral gap between the
model’s rate of evolution, 0 � Re η2λ0 � −π2/4, and the leading transient’s rate of
evolution, −20.19 � Re η2λ1 � −9π2/4 = −22.21. The spectral gap ratio is λ1/λ0 � 9
throughout. This spectral gap underlies our modelling of thin fluid dynamics (Roberts
1998). (Indeed theorem 4.1 of Gallay’s (1993) also applies to this situation to ensure
the existence of a type of centre manifold based at γ = 1. The difference is that the
theory only assures us the centre manifold has its first nine derivatives continuous
(from the spectral gap). However, our practical construction of the model is far easier
when based on the zero eigenvalues found at γ = 0 and so we use this as the base.)

Moreover, the spectral gap from the resolved mode, the left-most branch in figure 3,
to the first neglected lateral shear mode, the branch with 
 ≈ 5 in figure 3, indicates
the time scales that the model will resolve. The model will not resolve dynamics
on the time scale of this first neglected shear mode. This mode has a decay rate
of roughly −20/(Re η2) and so the model resolves dynamics on time scales longer
than roughly Re η2/20. In contrast, lubrication models such as (1) neglect the leading
branch in figure 3 and so only resolve dynamics of an order of magnitude longer
time scales.

To solve by iteration, we construct the centre manifold model, V and G, by
iteration using computer algebra (Roberts 1997). (At the time of writing the source
code for the computer algebra may be downloaded from http://www.sci.usq.edu.au/
staff/aroberts/CAthreed.red). Based upon driving the residuals of the governing
equations to zero, the critical calculations are straightforward to check in our
approach. In outline, suppose that an approximation Ṽ and G̃ has been found, and
let V ′ and G′ denote corrections we seek in order to improve Ṽ and G̃. Substituting

v = Ṽ + V ′,
∂

∂t


 η

ū1

ū2


 = G̃ + G′,

into (34)–(35) and its boundary conditions, then rearranging, dropping products of
corrections, and using the linear approximation wherever factors multiply corrections
(see Roberts 1997, for more details), we obtain a system of linear equations for
corrections that improve Ṽ and G̃. The resulting system of equations is in the
homological form

LV ′ + AG′ = R̃, (49)

where L is the linear operator on the left-hand side of system (42)–(44), A is a
matrix, and R̃ is the residual of the governing pdes (34)–(35) and their boundary
conditions (36)–(39) using the reigning approximations Ṽ and G̃. The procedure for
solving the homological equation (49), familiar from the method of multiple scales,
is as follows: first, choose G′ such that R̃ − AG′ is in the range of L; secondly, solve
LV ′ = right-hand side, making the solution satisfy the boundary conditions (36)–(39)
and the definitions (47). Then regard Ṽ + V ′ and G̃ + G′ as the new approximation
Ṽ and G̃, respectively. Repeat the iteration until satisfied with the approximation.
The ultimate purpose is to make the residual R̃ become zero to a specified order in
small parameters, then the approximation theorem (Carr 1981) in centre manifold
theory assures us that the low-dimensional model has the same order of error.

This correspondence between residual and error is a critical and important feature
of the centre manifold approach: we solve the governing physical equations in a
systematic framework with no assumptions about the detailed structure of the fluid
field; in contrast, other methods assume at the outset that the fluid flows with some
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prescribed shear, usually parabolic. However, for example, the numerical solutions
by Malamataris, Vlachogiannis & Bontozoglou (2002) of the full Navier–Stokes
equations show that under the front of solitary waves, such as those shown in
figure 6, the velocity profile is markedly not parabolic, see their figure 7. We also
show (figure 10) the non-parabolic velocity field under a hydraulic jump observed in
experiments (e.g. Bohr et al. 1996). Thus, our centre manifold modelling encompasses
a much wider range of flows than other approaches.

5. The high-order model of film flow
The computer algebra program derives the physical fields of slowly varying thin-

film fluid flow, and also obtains the evolution thereon as a set of coupled partial
differential equations for the evolution of the film thickness η and the averaged
lateral velocities ū.

The description of the velocity and pressure fields rapidly becomes very complicated
as more terms are computed in their approximations. Thus, here we first record the
dominant terms in their expressions as an example to aid later discussion. Computing
to low order in the small parameters, we determine the pressure and velocity fields in
terms of the parameters and a scaled normal coordinate Y = y/η:

p = −ε We κ − ε2 We ∇2η + εη−1∇η · ū(Y − 1)(2 + γ /2) − ε2 We ηκ2

+ ε∇ · ū (γ (Y − 3)/2 − 2(Y + 1)) + Gr ηgn(Y − 1)

+ O(ε3 + ū3 + Gr 3/2, γ 2); (50)

u = ū(2Y − γ (Y 3 − Y/2)) + η2(ε2 We ∇κ + Gr gs)
(
− 3

80
γ Y 5

+ 23
240

γ Y 3 − 17
480

γ Y + 1
4
Y 3 − 1

2
Y 2 + 5

24
Y

)
+ εηκ ū

(
3
20

γ Y 5 − 1
2
γ Y 4 − 23

60
γ Y 3 + 1

4
γ Y 2 + 13

120
γ Y

− 1
2
Y 3 + Y 2 + 11

12
Y

)
+ εηK · ū

(
3
10

γ Y 5 + 17
60

γ Y 3

− 19
60

γ Y − Y 3 − 5
6
Y

)
+ O(ε3 + ū3 + Gr 3/2, γ 2); (51)

v = ε∇η · ū(γ (−3Y 4 + Y 2)/4 + Y 2)

+ εη∇ · ū(γ (Y 4 − Y 2)/4 − Y 2)

+ O(ε3 + ū3 + Gr 3/2, γ 2); (52)

where gn is the component of gravity in the direction normal to the substrate. The error
terms in these and later expressions involve ū = ‖ū‖, and then O(εp + ūq + Grm, γ n)
encompasses all terms which

either contain p′ lateral derivatives and curvature factors, q ′ lateral velocity factors,
and m′ gravity forcing factors where p′/p + q ′/q + m′/m � 1,

or contain a factor γ n′
for n′ � n.

These orders of errors come via the approximation theorem from the order of residuals
in solving the fluid equations (34)–(39). Note that we chose to derive expressions for
the fluid fields which have the same absolute order of error. One may prefer instead
to derive expressions to the same relative order of error; finding an extra order in
the pressure p and vertical velocity v for example, but this would require scaling the
continuity and and the vertical momentum equation. Whereas it is arguable that there
may be some benefit in doing this rescaling in deriving the lubrication model, there
is no benefit here because such extra terms just add complication without improving
the model’s lateral momentum equation below. Thus, using the above fluid fields with
their absolute order of errors, the corresponding evolution to this order of accuracy
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ū/η2 gs ūκ/η

1 0 +0.75000 −1.50000
γ −3.00000 +0.10000 +0.60000
γ 2 +0.60000 −0.03286 −0.10286
γ 3 −0.06857 +0.00571 0
γ 4 0 −0.00032 +0.00321
γ 5 +0.00128 −0.00009 −0.00024
γ 6 −0.00008 +0.00002 −0.00014
γ 7 −0.00004 +0.00000 +0.00003

Table 1. Some higher-order terms in the series expansions in γ of selected coefficients in the
low-dimensional model (58) showing that these expansions are effectively summed at γ = 1.

is
∂η

∂t
= −ε∇ · (ηū) + O

(
ε3 + ū3 + Gr 3/2, γ 2

)
, (53)

Re
∂ ū
∂t

= (ε2 We ∇κ + Gr gs)
(

3
4

+ 1
10

γ
)

− εη−1K · ū
(
3 − 6

5
γ
)

− εη−1κ ū
(

3
2

− 3
5
γ
)

− 3η−2ūγ + O
(
ε3 + ū3 + Gr3/2, γ 2

)
. (54)

Throughout, K is the curvature tensor, which in the special coordinate system chosen
to fit the substrate takes the diagonal form

K =

(
k1 0
0 k2

)
. (55)

Although derived in the special coordinate system, the above and later more refined
results in this section are all written in a coordinate free form. The differential
operators that appear are those of the substrate. In the special orthogonal coordinate
system, they involve the substrate scale factors mi as in the Laplacian (17).

To recover the original model, we must set γ = 1 so that (39) reverts to the physically
correct stress-free boundary condition. However, the above model has errors of O(γ 2)
which will be rather large at γ = 1. Thus, we proceed to use computer algebra
to compute sufficient higher order terms in γ to evaluate the model reasonably
accurately.

In the asymptotic expansions, every coefficient is a series in γ , and the ratios of
the coefficients of γ n−1 to γ n in all such series appear to be greater than about 1.5
for n > 2 from further calculation. That is, the radii of convergence of the various
series in γ are greater than about 1.5. Table 1 shows the coefficients of the γ series of
some terms in a higher-order version of the low dimensional model (54). Evidently,
the convergence of at least these series’ is very good – we expect five decimal place
accuracy from the terms shown and similar for the other coefficients. Roberts (1996,
1998) and Mei et al. (2003) report similar convergence in other similar problems.
Hence, we justifiably substitute γ = 1 into the series of every coefficient to obtain
the physical model. Hereinafter, we calculate every coefficient in the evolution from
the terms in the series up to and including those of order γ 7. Computer memory
and time limitations preclude us from computing higher orders in γ for the wide
range of physical interactions we resolve here. We also now set ε = 1 to recover
the unscaled model of the original dynamics. With higher-order corrections in γ , the
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Figure 4. The normal structure of the lateral velocity field (51): +, component ∝ ū;
×, component ∝ ki ′ui; �, component ∝ kiui; and �, 10× component ∝ We ∇κ + Gr gs .

low-dimensional model (54) then becomes the model (6) discussed briefly in § 1. Based
on the above evidence, the coefficients in the models given in § 1 and the models we
discuss here in after should be accurate to at least four decimal places.

The expressions (50)–(52), when γ = ε = 1, approximate the physical state of the
fluid flow corresponding to a given η, ū1 and ū2. Using the accurate expressions,
determined by computing to γ 7, figure 4 shows the normal cross-film structure of the
lateral velocity field u. The +-curve shows the fundamental structure of the lateral
velocity in the normal direction; qualitatively, it is dominantly parabolic, but it is
actually indistinguishable from the trigonometric (π/2) sin(πY/2) as required for the
viscous decay of the gravest lateral shear mode (Roberts 1996), and thus is slightly
faster at the free surface than the parabolic profile with the same flux. The ×-curve
shows that in order to maintain the flux ū along a trough, ki ′ > 0 (recall that
i ′ = 3 − i), the flow ui(Y ) has to be proportionally faster. The ◦-curve shows that
flow curving upward, around an internal corner, is slower at the free surface and
conversely faster for flow around an external corner; part of this effect could be
attributed to solid-body rotation being the dissipation free mode for turning a corner.
Lastly, the �-curve, exaggerated by a factor of ten, shows the very small adjustment
made to the profile when the flow is driven by gravity or lateral pressure gradients –
observe the velocity at the free surface will decrease slightly so that when lateral
forces exactly balance the drag on the substrate the profile will then be the familiar
parabolic Nusselt flow. These show how just some of the physical processes affect the
details of the physical fields and thus indirectly influence the evolution.

The shear stress on the substrate is of interest:

τ y =2.467
ū
η

+ 0.1775 η(We ∇κ + Gr gs) + (κI − 3.609 K) · ū + O
(
∂3

x + ū3 + Gr 3/2
)
. (56)

The first term is just the viscous drag on a flat substrate. The next is the enhanced
stress transmitted to the substrate when the fluid is driven by a body force or pressure
gradients, equivalently. The third and last term accounts for the effects of curvature
on the velocity field affecting the velocity profile near the bed.

With computer algebra we readily compute a more comprehensive model which is
higher order in lateral derivatives ε, gravitational forcing Gr, and overall velocity ū.
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Atherton & Homsy (1973), Lange, Nandakumar & Raszillier (1999) and Roy et al.
(2002) similarly considered high-order models of thin-film flows obtained via computer
algebra, but only in the lubrication approximation. Computing to the next order in
spatial gradients ε, velocity field ū, and gravitational forcing Gr, we write the model as
(recall ζ = η − κη2/2 + k1k2η

3/3 is proportional to the amount of fluid locally ‘above’
a small patch of the substrate)†

∂ζ

∂t
= −∇ · (ηū), (57)

Re
∂ ū
∂t

= −
[

π2

4

ū
η2

+ (2K + κI) · ū
η

(drag) +(3.2974 K · K − 1.1080 κK + 0.6487 κ2I) · ū
]

(tension) + We

[
π2

12
∇(κ + ηκ2 + ∇2η) + 1.0779 ηK · ∇κ − 0.4891 ηκ∇κ

]

(gravity) + Gr

[
π2

12
(gs + gn∇η) + 0.2554 ηK · gs − 0.4891 ηκ gs)

]
(advect) − Re [1.3464 ū · ∇ū + (0.1483 ū · ∇η/η + 0.1577 ∇ · ū) ū]

(viscous) +
4.0930

η0.8348
∇[η0.4886∇ · (η0.3461ū)] − 1

η0.4377
∇ ×

[
1

η1.0623
∇ ×

(
η3/2ū

)]

+ 0.9377
1

η
∇η × (∇ × ū) − 2.4099

ū
η0.8299

∇2(η0.8299)

+ O(∇4 + ū4 + Gr 2), (58)

where the differential operators are those of the substrate coordinate system, noting
in particular that (Batchelor 1979, p. 599)

∇ × ū = e3

1

m1m2

[
∂(m2ū2)

∂x1

− ∂(m1ū1)

∂x2

]
,

∇ × (e3ω) = e1

1

m2

∂ω

∂x2

− e2

1

m1

∂ω

∂x1

,

ū · ∇ū = e1

[
ū · ∇ū1 +

ū2

m1m2

(
ū1

∂m1

∂x2

− ū2

∂m2

∂x1

)]

+ e2

[
ū · ∇ū2 +

ū1

m1m2

(
ū2

∂m2

∂x1

− ū1

∂m1

∂x2

)]
.

Observe that (57) conserves fluid. In the above model, (58), for the average lateral
velocity field, we identify the apparent physical source of the terms in the various
lines by the key words on the left-hand side. Generally the viscous drag on the
bed, surface tension forces and gravitational forcing show some subtle effects of the
curvature of the substrate. In faster flows of higher Reynolds number, the most usually
modelled part of the advection terms, the self-advection term ū · ∇ū, has the definite
coefficient 1.3464. However, note that some of the self-advection is also encompassed
within the (∇ · ū)ū term. This modelling settles (see for example Prokopiou et al.
1991, equation (19)) the correct theoretical value for this and other coefficients. It

† Some of the constants that appear here are tentatively identified: 1.0779 = (π2 + 16)/24,
0.4891 = (π2 − 4)/12, 2.4099 = π2/7 + 1 and perhaps 4.0930 = (8π2 + 7)/21.
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seems most natural to express the lateral damping via viscosity in a mixed form
involving both the general grad-div operator and the curl-curl operator (recall the
vector identity ∇2u = ∇(∇ · u) − ∇ × (∇ × u)). The involvement of fractional powers of
the film thickness within the scope of these operators is a convenient way of reducing
the number of terms within the equation; as yet we have not discerned any interesting
physical significance to this arrangement. You may truncate the above model in a
variety of consistent ways depending upon the parameter regimes of the application
you wish to consider.

Lubrication models such as (1) may be derived from (57)–(58). Obtain simple
low-order accurate models simply by the adiabatic approximation of balancing
the drag terms, dominantly (π2/4)ū/η2, against the driving forces expressed by
the surface tension and gravity terms. This then expresses the average velocity
field ū as a function of the film thickness η. Substitute this expression into the
conservation of fluid equation, (57), to form a lubrication model. Form higher-order
more sophisticated models by taking into account the consequent time dependence
of the weaker previously neglected terms in (58). Any resultant lubrication model is
correct because rational mathematical modelling is transitive: a coarser model of a
model of some dynamics is the same as the coarser model derived directly.

Slower flow occurs when, in a specific application, the velocity field is predominantly
driven by surface tension acting because of curvature gradients, whence ū= O(∇κ).
The lateral velocities are significantly damped by viscous drag on the substrate. In
this case, truncate (58) to

Re
∂ ū
∂t

= −
[

π2

4

ū
η2

+ (2K + κI) · ū
η

]
+ We

[
π2

12
∇κ̃ + 1.0779 ηK · ∇κ − 0.4891 ηκ∇κ

]

+ Gr

[
π2

12
(gs + gn∇η) + 0.2554 ηK · gs − 0.4891 ηκ gs)

]
+ O(∇4 + ū2 + Gr2);

(59)

the difference is that many terms in (58) are swept into the ū2 term in the order of
error term in the simpler model (59). That is, you may adjust the dynamical model (58)
to suit a particular application by choosing an appropriate consistent truncation.

Order one gradients are encompassed by the model (58). ‘Long wave’ models such
as (58) and (59) are based on the assumption that the lateral spatial gradients are
small. We here quantify what a ‘small gradient’ means in this context following
similar arguments for the Taylor model of shear dispersion (Mercer & Roberts
1990; Watt & Roberts 1995). We modify a simpler version of the computer algebra
derivation to find the centre manifold model of the linear dynamics about a stationary
constant thickness fluid with surface tension but no gravity: η = η0 + αη′ + O(α2) and
u = αu′ + O(α2) where†

∂η′

∂t
= −η0∇·ū′ + O(α), (60)

∂ ū′

∂t
=

1

η2
0

[
−2.47 + 4.09 η2

0∇2 + 0.734 η4
0∇4 + 0.0611 η6

0∇6 + 0.0223 η8
0∇8

]
ū′

+
We

η3
0

[
0.822 η3

0∇3 + 0.116 η5
0∇5 + 0.00168 η7

0∇7 + 0.00298 η9
0∇9

]
η′

+ O(α, ∇10). (61)

† The coefficients in the linear model (61) come from evaluating at γ = 1 an expansion with
errors O(γ 7). The coefficients used here should be accurate as discussed earlier and demonstrated
in table 1.
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Figure 5. Domb–Sykes plot of the formal expansions (61) extended to O(∇20), × and +,
showing that the radius of convergence, 1/n → 0, may be roughly in the range 1/0.15
to 1/0.35. ⊕, the Domb–Sykes plot for the analogous lubrication model (63), showing its
radius of convergence is 1/1.83.

Evidently, the linear dynamics are a formal expansion in η2
0∇2. This expansion

converges when the lateral gradients are not too steep. Suppose that locally a solution
has spatial structure approximated by an exponential variation, say η′ ∝ eνx for
possibly complex ν, then the above expansions become power series expansion in η2

0ν
2.

The Domb–Sykes plot (Mercer & Roberts 1990) of the ratio of successive coefficients
in figure 5 suggests that the power series converges for η2

0ν
2 less than something

roughly in the range 1/0.15 to 1/0.35. The constant sign of the coefficients in (61)
indicates the convergence limiting singularity occurs for real steep gradients. However,
the strong period 3 oscillations in the Domb–Sykes plot of the ratio indicates that a
complex conjugate pair of singularities occurs at an angle of ±π/3 to the real axis
at nearly the same ‘distance’. The generalization of the Domb–Sykes plot to cater
for multiple comparable limiting singularities (Watt & Roberts 1995) indicates that
the three singularities are at a distance about 1/0.28; that is, for any quantity w, the
magnitude of the logarithmic derivative of the lateral structure

|∇(log w)| =

∣∣∣∣∇w

w

∣∣∣∣ <
1.9

η
, (62)

for the model to converge. For example, apply this limit to the surface thickness,
w = η, to deduce that the steepness of the fluid variations |∇η| < 1.9, and that
accurate approximation is achieved for steepnesses significantly less than this rough
limit. Hence, steepnesses up to about one should be reasonably well represented by
those low-order terms appearing in the model (58).

For interest, we also investigated the analogous but poorer spatial resolution of the
lubrication model (1) of thin-film flow (e.g. Roy et al. 2002). The analogous high-order
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but linear model is

∂η′

∂t
= We

[
−0.333 η3

0∇4 − 0.6 η5
0∇6 − 1.09 η7

0∇8 − 2.00 η9
0∇10 − 3.67 η11

0 ∇12
]
η′

+ O(α, ∇14). (63)

Continuing this expansion to errors O(∇30), see in its Domb–Sykes plot in figure 5 that
this power series converges only for much less rapid variations than the model (58).
For example, the fluid thickness steepness |∇η| < 0.74, and so should be less than
about a third, say, in order for the usual first term in the lubrication model ηt =
1
3
We ∇ · (η3∇3η) to be reasonable. Thus, expect the model (58) developed here to

resolve spatial structure roughly three times as fine as a lubrication model could.

6. The model on various specific substrates
The model (57)–(58) contains many terms as a consequence of the wide range of

physical interactions encompassed by the model. It is not obvious how the model will
appear in any particular geometry. Thus in this section we record the model for four
common substrate shapes: flat, cylindrical, channel and spherical. The models are
given in terms of elementary derivatives rather than vector operators for easier use in
specific problems. Some example flows in each case illustrate the dynamics resolved
and we also make some quantitative comparisons with other models.

6.1. Flow on a flat substrate resolves a radial hydraulic jump

The simplest example is the flow on a flat substrate. We discuss wave transitions,
compare solitary waves, simulate Faraday waves, explore divergence and vorticity in
the linearized dynamics, and demonstrate that modelling the inertia enables us to
resolve hydraulic jumps in a radial flow.

On a flat substrate, use a Cartesian coordinate system (x, y) and let the mean lateral
velocity ū have components ū and v̄, respectively (note that in this subsection y is a
tangential coordinate, not the normal coordinate as used before). The substrate has
scale factors m1 = m2 = 1, and curvatures k1 = k2 = 0. The model (57)–(58) becomes,
where gn is the direction cosine of gravity normal to the substrate into the fluid layer
and where subscripts on η denote partial derivatives,

∂η

∂t
≈ −∂(ηū)

∂x
− ∂(ηv̄)

∂y
, (64)

Re
∂ū

∂t
≈ −π2

4

ū

η2
+

π2

12
[Gr(gx + gnηx) + We(ηxxx + ηxyy)]

− Re

[
1.5041 ū

∂ū

∂x
+ 1.3464 v̄

∂ū

∂y
+ 0.1577 ū

∂v̄

∂y
+ 0.1483

ū

η

(
ūηx + v̄ηy

)]

+

[
4.0930

∂2ū

∂x2
+

∂2ū

∂y2
+ 3.0930

∂2v̄

∂x∂y
+ 4.8333

ηx

η

∂ū

∂x
+

ηy

η

∂ū

∂y

+1.9167
ηx

η

∂v̄

∂y
+ 1.9167

hy

η

∂v̄

∂x

+

(
−0.5033

η2
y

η2
− ηyy

2η
+ 0.1061

η2
x

η2
− 0.5834

ηxx

η

)
ū

+

(
0.6094

ηyηx

η2
− 0.0833

ηxy

η

)
v̄

]
, (65)
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Re
∂v̄

∂t
≈ −π2

4

v̄

η2
+

π2

12
[Gr(gy + gnηy) + We(ηxxy + ηyyy)]

− Re

[
1.3464 ū

∂v̄

∂x
+ 1.5041 v̄

∂v̄

∂y
+ 0.1577 v̄

∂ū

∂x
+ 0.1483

v̄

η

(
ūηx + v̄ηy

)]

+

[
∂2v̄

∂x2
+ 4.0930

∂2v̄

∂y2
+ 3.0930

∂2ū

∂x∂y

+ 4.8333
ηy

η

∂v̄

∂y
+

ηx

η

∂v̄

∂x
+ 1.9167

ηx

η

∂ū

∂y
+ 1.9167

hy

η

∂ū

∂x

+

(
−0.5033

η2
x

η2
− ηxx

2η
+ 0.1061

η2
y

η2
− 0.5834

ηyy

η

)
v̄

+

(
0.6094

ηyηx

η2
− 0.0833

ηxy

η

)
ū

]
. (66)

Observe that the substrate drag, gravitational and surface-tension terms are
straightforward. However, the self-advection terms exhibit subtle interactions between
the components of the velocity fields owing to the specific shape of the velocity
profiles. Further subtleties occur in the viscous terms which not only show explicitly
a differential lateral dispersion of momentum, but also a complex interaction with
variations in the free-surface shape.

Ruyer-Quil & Manneville (2000) also derive a model for three-dimensional flow
on a flat plate using Galerkin projection. Their model, equations (53)–(54) in their
work, is based on the flow down an inclined plate and consequently is anisotropic;
for example, their model has no second-order viscous dissipation for any flow in the
direction across the slope. Our isotropic model above retains second-order dissipation
independent of the dominant direction of flow.

As used next and in agreement with Roberts (1996), this model simplifies
considerably for two-dimensional flow to

∂η

∂t
≈ −∂(ηū)

∂x
, (67)

Re
∂ū

∂t
≈ −π2

4

ū

η2
+

π2

12
[Gr(gx + gnηx) + We ηxxx]

− Re

[
1.5041 ū

∂ū

∂x
+ 0.1483

ū

η
ūηx

]

+

[
4.0930

∂2ū

∂x2
+ 4.8333

ηx

η

∂ū

∂x
+

(
0.1061

η2
x

η2
− 0.5834

ηxx

η

)
ū

]
; (68)

but for further comparison with falling films, in this simple situation of two-
dimensional flow on a flat substrate, we also compute the next higher-order terms in
the Reynolds number (which agree with Roberts 1996) to be

+
Gr gx Re

100
[0.7985 η2ūx + 2.527 ηηxū]

+
Re2

100

[
0.118 η2ūū2

x + 0.783 η2ū2ūxx + 0.044 ηηxū
2ūx

− 1.88 η2
xū

3 − 1.03 ηηxxū
3
]
. (69)



58 A. J. Roberts and Z. Li

20 40 60 80 100 120 140 160 180 2000

0.4

0.8

1.2

1.6

2.0

20 40 60 80 100 120 140 160 180 2000

0.4

0.8

1.2

1.6

2.0

(a)

(b)

Figure 6. Two instants of a two-dimensional fluid falling down a vertical plane substrate with
Reynolds number Re = 20, gravity and Weber number Gr = We = 3. The fluid thickness η
as a function of distance x shows that white noise at the inlet x = 0 is selectively amplified
to solitary pulses that move and merge: the close pair of pulses near x ≈ 130 in (a) at time
t = 145, move and merge to the large pulse at x ≈ 165 in (b) at time t = 160.

Wave transitions. The model (67)–(68) resolves one-dimensional wave transitions
such as those reported by Ramaswarmy, Chippada & Joo (1996), Vlachogiannis &
Bontozoglou (2001) and Chang et al. (2002). The parabolicized Navier–Stokes
equation (1) of Chang et al. (2002) corresponds to our non-dimensional Navier–Stokes
equation (23) with Gr = We = 3 and our Reynolds number Re = 15δ for Chang
et al.’s parameter δ. See in figure 6 the corresponding simulations of our model (67)–
(68) restricted to two-dimensional flow (as in Roberts 1996) and forced by small white
noise at the inlet (the noise is superimposed upon plane parallel Nusselt flow). The
forcing here is a little larger than that of Chang et al. (2002), but the evolution and
merger of the solitary pulses are qualitatively the same; the only noticeable difference
is that the retained second-order viscous dissipation in our modelling almost entirely
removes the surface tension waves in front of the solitary pulses.

For a quantitative comparison, we look at the linear stability of the Nusselt
flow down an inclined plane. Adopt the non-dimensionalization of Ruyer-Quil &
Manneville (1998) to compare with their results: set Re = Gr = gx = 1, gn = B , We =
Wh2

0 and consider the stability of the uniform Nusselt flow with fluid thickness η = h0

and mean velocity ū = h2
0/3. Seeking perturbations proportional to exp(ikx/h0 + λt),

asymptotic analysis of our model (67)–(68) for small non-dimensional wavenumber k

leads to growth rates

λ

h0

= − ik + k2(0.3841R − 0.3333B) + ik3(1.027 + 0.5443R2 − 0.4723BR)

+ k4(−2.092R − 0.9506R3 − 0.3333W + 0.5529B + 0.9805BR2

− 0.1351B2R) + O(k5), (70)
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in terms of a different Reynolds number R = h3
0/3: the imaginary terms in ik and ik3

determine the wave speed of perturbations; the real terms in k2 and k4 determine
their stability. Compare this with the exact asymptotic results of the Orr–Sommerfeld
equation (Ruyer-Quil & Manneville 1998, equation (88))

λ

h0

= − ik + k2(0.4R − 0.3333B) + ik3(1 + 0.5714R2 − 0.4762BR)

+ k4(−2.103R − 1.011R3 − 0.3333W + 0.6B + 1.002BR2

− 0.1333B2R) + O(k5). (71)

Our model has all the relevant dependencies upon the physical parameters, which
improves on the first-order model of Ruyer-Quil & Manneville (1998). The values of
the coefficients are slightly different in (70) and (71): for example, the onset of roll
wave instability, controlled by the k2 term, is slightly altered by a difference of 4% in
the coefficient of the Reynolds-number R dependence. However, conversely, the decay
of parallel shear flow to the Nusselt flow is at exactly the correct rate of −π2/(4h2

0)
for our model (68), whereas the first-order and second-order simplified model of
Ruyer-Quil & Manneville (2000) has a slightly incorrect decay rate of −5/(2h2

0), an
error of 1.3%. Further, the coefficients in our asymptotic growth rates (70) are largely
corrected by including the higher-order terms (69) originally derived by Roberts
(1996); these stability predictions would then be comparable to the second-order
model (78)–(80) of Ruyer-Quil & Manneville (1998). We do not proceed here to seek
higher-order accuracy obtainable with the terms (69) because our emphasis is on the
complex models required to cater for three-dimensional flow over complex substrate
curvatures rather than the relatively simple two-dimensional falling film.

Solitary waves. Ruyer-Quil & Manneville (2000) explored the solitary waves
predicted by various thin-film models. One wide-ranging comparison was of the
solitary waves falling down a vertical plate on different thicknesses of fluid. The
solitary wave speeds and the peak solitary wave heights are a function of a Reynolds
number R = h2

0/3 where h0 is the non-dimensional upstream and downstream film
thickness. Figure 7 plots the predictions for our model (67)–(68) and our higher-order
model (67)–(69) compared to three other models taken from figure 2 of Ruyer-Quil &
Manneville (2000). (The agreement between the circle points digitized from figure 2
of Ruyer-Quil & Manneville (2000) and the underlying curve computed by us using
their model (41) confirms that our numerical scheme is reasonably accurate.) The
overall trends agree between the four models: the quantitative agreement between
our higher-order model and that of Ruyer-Quil & Manneville (2000) is good up
to about R = 2.3, but for larger R, the models are all a little different. We have
no indications about which is the most accurate for larger R. In particular, the
moderate agreement between our model and Shkadov’s integral boundary layer
model (Ruyer-Quil & Manneville 2000, equations (2)–(3)) is probably fortuitous
owing to Shkadov’s higher bed drag ameliorating the lack of ‘Trouton’ viscosity that
we resolve: Shkadov’s solitary waves have more extensive oscillatory ripples than we
predict.

Three-dimensional-instabilities. Three-dimensional instabilities of waves flowing
down a vertical plate occur in at least two different forms (Liu, Schneider & Gollub
1995). Consider our model (65)–(66) of three-dimensional flow with periodic boundary
conditions in the two horizontal dimensions of the flat substrate. Numerical evolution
of the model (65)–(66) plotted in figure 8 shows the growth of a nearly synchronous
instability (spanwise deformations of adjacent wave fronts have nearly the same



60 A. J. Roberts and Z. Li

c
h2

0

1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

+

+
+

(a)

hmax

h0

1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0
1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

+

+

+            

(b)

R = h 2
0 /3

⊕⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

×
×

×

×

×

×

×

×

Figure 7. (a) Solitary wave speed c, and (b) solitary wave peak height hmax as a function of
a Reynolds number R on vertically falling films of different non-dimensional thicknesses h0:
the plain curve is from our model (67)–(68); the curve (our computations) with circles is
the simplified second-order model (41) from Ruyer-Quil & Manneville (2000) (digitized from
figure 2); the curve with crosses is our higher-order model (67)–(69); the curve with diamonds
is the Shkadov model (Ruyer-Quil & Manneville 2000, equations (2)–(3)); and the plus points
(also digitized) are the results of Chang, Demekhin & Kopelevich (1993). Parameters are
Re = Gr = gx = 1, gn = 0 and We = 252 to match.

transverse phase), which not only affects the wave shape but also has a marked effect
on the depth of the trough, as noted in the experiments of Liu et al. (1995).

Faraday waves. Vigorous vertical vibration of a layer of fluid on a flat plate leads to
a rich repertoire of spatio-temporal dynamics (e.g. Miles & Henderson 1990; Perlin &
Schultz 2000; Burya & Shkadov 2001), such as those shown in figure 9. Using our
model (65)–(66) of three-dimensional flow, with periodic boundary conditions in the
two horizontal dimensions, we choose the reference velocity to be the shallow-water
wave speed U =

√
gH then the non-dimensional parameters Re = Gr. Achieve

the vertical vibration simply by modulating the normal gravity in (65)–(66) by, for
example, the factor 1 + 0.55 sin(2.2 t). This frequency is roughly twice that of waves
with wavelength 5 and see in figure 9 that these waves are generated by a Mathieu-like
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Figure 8. (a) Roll waves on the fluid flowing down a vertical plate exhibit (b) the
three-dimensional synchronous instability to break up the simple pattern: for mean fluid
thickness 1, Re = 20, Gr = We = 3.
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Figure 9. Two instants of unsteady waves on a vertically vibrating flat plate simulating the
Faraday waves vacillating between (a) ordered patterns and (b) irregular patterns: for mean
fluid thickness 1, no surface tension, Re = Gr = 40, and normal gravity modulated by the
factor 1 + 0.55 sin(2.2 t).

instability. However, involved nonlinear interactions lead to complex evolution of the
spatial pattern of waves, as is well known in experiments.

Vorticity and divergence. Consider the linearized dynamics of small variations on
a film of nearly constant thickness when governed by the model (64)–(66): η =
1 + h(x, y, t) where h and the lateral velocity ū are small. The linearized versions
of (64)–(66) are

ht = −ūx − v̄y,

Re ūt = −π2

4
ū +

π2

12
[Gr(gx + gnhx) + We(hxxx + hxyy)]

+ (1 + � )ūxx + ūyy + �v̄xy,

Re v̄t = −π2

4
v̄ +

π2

12
[Gr(gy + gnhy) + We(hxxy + hyyy)]

+ v̄xx + (1 + � )v̄yy + �ūxy,

where � = 3.0930 (the term � is chosen because its value is coincidentally close
to π).
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(i) Take ∂y of the second from ∂x of the third to deduce equation (8) governing
the mean normal vorticity ω̄ = v̄x − ūy . Observe that linearly it is decoupled from the
other components of the fluid dynamics: the mean normal vorticity simply decays by
drag on the substrate and by lateral diffusion.

(ii) Conversely, the first of the linearized equations together with the divergence
of the second two equations decouple from the mean normal vorticity to give (9)–(10)
for the film thickness and the mean flow divergence δ̄ = ūx + v̄y as discussed briefly in
§ 1. A little analysis shows that in the absence of gravity (Gr = 0) this model predicts
damped waves for lateral wavenumbers

a > ac =
π/2√

π
√

Re We /3 − (1 + � )
.

Numerical solutions of the physical eigenvalue problem agree closely with this for
ReWe > 30, even though the critical wavenumber is as large as ac ≈ 0.65. Recall
that the limit (62) on logarithmic derivatives in this model implies the wavenumber
must be less than 1.9/η; here, the critical ac ≈ 0.65 on a fluid of depth near 1 is
comfortably within the limit. Waves cannot be captured by the single mode of a
lubrication model such as (1).

(iii) In this linear approximation, lateral components of gravity just induce a mean
flow in the direction of the lateral component.
Substrate curvature and the nonlinear effects of advection and large-scale variations
in the thickness modify this description of the basic dynamics of the fluid film.

Radial flow with axisymmetry. Turn on a tap producing a steady stream into a
basin with a flat bottom; the flow spreads out in a thin layer, then at some radial
distance, it undergoes a hydraulic jump to a thicker layer spreading more slowly (e.g.
Bohr et al. 1996). A model with inertia is essential for modelling such a hydraulic
jump. Here, use polar coordinates (r, θ), whence the substrate has zero curvature
k1 = k2 = 0, but scale factors m1 = 1 and m2 = r . Then describe axisymmetric dynamics
by neglecting angular flow and variations while retaining the radial velocity ū in our
three-dimensional flow model (64)–(66):

ηt = −1

r
∂r (rūη),

Re ūt = −π2

4

ū

η2
+ 1.4167

ηr

rη
ū +

π2

12

[
Gr gnηr + We ∂r

{
1

r
∂r (rηr )

}]

− Re

[
1.5041 ūūr + 0.1577

1

r
ū2 + 0.1483

ηr

η
ū2

]

+

[
4.0930 ∂r

{
1

r
∂r (rū)

}
+ 4.8333

ηr

η
ūr +

(
0.1061

η2
r

η2
− 0.5834

ηrr

η2

)
ū

]
.

The above equations may be integrated in time to see evolving dynamics in a radial
flow in a similar manner to the solutions just discussed. However, here we focus on
steady flow and so adopt Newton iteration to find solutions. We fix the inlet condition
of flow leaving the tap with prescribed thickness and velocity (in figure 10 the flow has
η = 2.25 and ū = 2.62 at radius r = 5) and exiting the domain with some prescribed
mean velocity at large distance (ū = 0.16 at r = 50 in figure 10). Newton iteration
then finds the steady solutions for fluid thickness η(r) and mean velocity ū(r) shown
in figure 10(a). The flow spreads out in a supercritical thin (η ≈ 1) fast flow before
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Figure 10. Steady axisymmetric radial flow on a flat substrate: (a) free-surface thickness η and
mean velocity ū versus radius r; (b) streamlines showing a recirculation under the hydraulic
jump at r ≈ 33. The Reynolds number Re = 15, gravity number Gr = 1 and no surface
tension, We = 0.

undergoing a hydraulic jump at distance r ≈ 33 to a subcritical thick (η ≈ 4) slow
flow. The streamlines in figure 10(b), obtained from the velocity fields (51)–(52), show
the presence of a recirculation under the jump, as also seen in the experiments by Bohr
et al. (1996), see also Watanabe, Putkaradze & Bohr (2003). Our model expressed in
depth-averaged quantities resolves such non-trivial internal flow structures.

The steady flow in figure 10 is near the limit of applicability of the model. Although
the free surface looks steep in the figure, the slope is everywhere less than 1.08
which, although less than the limit (62) identified earlier, is about as large as we
could reasonably use. For interest, other lateral derivatives have the following ranges:
ηrr ∈ [−0.88, 0.74], ūr ∈ [−0.15, 0] and ūrr ∈ [−0.08, 0.11]. We also find the hydraulic
jump with recirculation in less extreme flows than that shown in figure 10. However,
we have not yet found any flows with an extra eddy at the surface of the hydraulic
jump, as reported for experiments with larger jumps (discussed by Watanabe et al.
2003, § 2.1).

6.2. Flow outside a cylinder resolves evolving beads

Thin-film flows on the outside or inside of circular cylinders or tubes are important
in a number of biological and engineering applications. For example, Jensen (1997)
studied the effects of surface tension on a thin liquid layer lining the interior of
a cylindrical and curving tube and derived a corresponding evolution equation in
the lubrication approximation. Our model (57)–(58) could be used to extend his
modelling to flows with inertia. Similarly, Atherton & Homsy (1976), Kalliadasis &
Chang (1994) and Kliakhandler et al. (2001) considered coating flow down vertical
fibres and similarly derived nonlinear lubrication models. Alekseenko et al. (1996)
observed the instabilities of rivulet flow underneath a sloping cylinder and called for
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an appropriate theoretical model. Here we record the model (57)–(58) as it appears
in full for flows both inside and outside a circular cylinder. The specific model for a
circular tube which is bent and twisted is left for later work.

Use a coordinate system with s the axial coordinate and θ the angular coordinate;
denote the averaged axial and angular velocities by ū with components ū and v̄,
respectively. The substrate has scale factors m1 = 1 and m2 = R, where R is the
radius of the cylinder, and curvatures k1 = 0 and k2 = ∓1/R, where the upper/lower
sign is for flow outside/inside of the cylinder. Then the model on a cylinder is, where
here ζ = η ± η2/(2R),

∂ζ

∂t
≈ −∂(ηū)

∂s
− 1

R

∂(ηv̄)

∂θ
, (72)

Re
∂ū

∂t
≈ −π2

4

ū

η2
± ū

Rη
− 0.6487

ū

R2
+ We

π2

12

[
1

R2
ηs + ηsss +

1

R2
ηsθθ

]

+ Gr

[
π2

12
(gs + gnηs) ± 0.4891

gsη

R

]

− Re

[
1.5041 ū

∂ū

∂s
+ 1.3464

v̄

R

∂ū

∂θ
+ 0.1577

ū

R

∂v̄

∂θ
+ 0.1483

ū

η

(
ūηs +

v̄

R
ηθ

)]

+

[
4.0930

∂2ū

∂s2
+

1

R2

∂2ū

∂θ2
+ 3.0930

1

R

∂2v̄

∂s∂θ

+ 4.8333
ηs

η

∂ū

∂s
+

ηθ

R2η

∂ū

∂θ
+ 1.9167

ηs

Rη

∂v̄

∂θ
+ 1.9167

ηθ

Rη

∂v̄

∂s

+

(
−0.5033

η2
θ

R2η2
− ηθθ

2R2η
+ 0.1061

η2
s

η2
− 0.5834

ηss

η

)
ū

+

(
0.6094

ηθηs

Rη2
− 0.0833

ηsθ

Rη

)
v̄

]
, (73)

Re
∂v̄

∂t
≈ −π2

4

v̄

η2
± 3v̄

Rη
− 2.8381

v̄

R2
+ We

π2

12

[
1

R2

ηθ

R
+

1

R
ηssθ +

1

R3
ηθθθ

]

+ Gr

[
π2

12

(
gθ + gn

ηθ

R

)
± 0.2337

gθη

R

]

− Re

[
1.3464 ū

∂v̄

∂s
+ 1.5041

v̄

R

∂v̄

∂θ
+ 0.1577 v̄

∂ū

∂s
+ 0.1483

v̄

η

(
ūηs +

v̄

R
ηθ

)]

+

[
∂2v̄

∂s2
+ 4.0930

1

R2

∂2v̄

∂θ2
+ 3.0930

1

R

∂2ū

∂s∂θ
+ 4.8333

ηθ

R2η

∂v̄

∂θ
+

ηs

η

∂v̄

∂s

+1.9167
ηs

Rη

∂ū

∂θ
+ 1.9167

ηθ

Rη

∂ū

∂s
+

(
− 0.5033

η2
s

η2
− ηss

2η
+ 0.1061

η2
θ

R2η2

− 0.5834
ηθθ

R2η

)
v̄ +

(
0.6094

ηθηs

Rη2
− 0.0833

ηsθ

Rη

)
ū

]
, (74)

For a non-trivial example, see the beading of fluid on a thin fibre in figures 1 and 2
(from solutions using periodic boundary conditions along the cylinder): vertical
gravity first rather quickly moves a lump of fluid to below the nearly horizontal
cylinder of the fibre (gravity number Gr = 0.5 in the figures); thereafter, surface ten-
sion more slowly gathers more fluid into the beading fluid which beads mainly below,
but also above the fibre (Weber number We = 20 in the figures); gravity causes the
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fluid bead to stabilize off the centre of the fibre (curiously, there is more in the bead
above the fibre than in the original lump); and finally the bead slides along the fibre
as it is angled downward a little. The three time scales in this evolution, the fast
gravity forced flow, the slower surface-tension-driven flow, and the even longer-term
sliding, are captured in our model.

Obtain axisymmetric flows by setting to zero any derivatives with respect to θ , and
also setting gn = gθ = 0 as non-zero values would break the symmetry. The equation
for v̄ then just describes the decay of angular flow around the cylinder, so also
set v̄ = 0. Thus, the axisymmetric model is

∂ζ

∂t
≈ −∂(ηū)

∂s
, (75)

Re
∂ū

∂t
≈ −π2

4

ū

η2
± ū

Rη
− 0.6487

ū

R2
+ We

π2

12

[
1

R2
ηs + ηsss

]

+ Gr

[
π2

12
gs ± 0.4891

gsη

R

]

− Re

[
1.5041 ū

∂ū

∂s
+ 0.1483

ū

η
ū

∂η

∂s

]
+

[
4.0930

∂2ū

∂s2

+ 4.8333
ηs

η

∂ū

∂s
+

(
0.1061

η2
s

η2
− 0.5834

ηss

η

)
ū

]
; (76)

recall that the upper/lower sign is for flow outside/inside of the cylinder. As in
lubrication models (Roy et al. 2002, p. 254), see that surface tension in the cylindrical
geometry acts through the term We ηs/R

2 in (76) or (73) rather like a radially outward
body force such as the term Gr gnηs in (73).

Now consider the stability to axisymmetric disturbances of a uniform layer of
fluid flowing down a cylindrical fibre. Choose the velocity scale so that Gr = 1 to
match the experiments and analysis of Kliakhandler et al. (2001). Upon a cylinder of
non-dimensional radius R = 2, relative to the fluid thickness, the equilibrium mean
fluid velocity down the cylinder is predicted to be ū = 0.501; seeking disturbance
proportional to exp(ikx + λt) in (75)–(76), we find the asymptotic expression for the
growth rate

λ = −1.106 ik + k2(0.06437 We +0.1162 Re) + ik3(1.393

+ 0.034 Re We+0.06136 Re 2) + k4(−0.3812 We −0.9588 Re

− 0.001946 Re We 2 − 0.02498 Re 2 We −0.03875 Re 3) + O(k5). (77)

For the very slow flow case presented by Kliakhandler et al. (2001), Re = 0, we predict
a growth rate Re(λ) = We k2(0.06437 − 0.3812 k2) which gives the unstable band of
wavenumbers as |k| < 0.41. This matches reasonably the numerically exact band of
|k| < 0.33 shown in figure 3(b) of Kliakhandler et al. (2001), given the significant
substrate curvature κ = 1/R = 1/2 of this cylinder.

6.3. Flow about a small channel grows vortices

Consider the flow on a substrate with a small channel aligned downhill. We compare
this viscous flow with the high-Reynolds-number experiments of Bousmar (2002) and
Bousmar & Zech (2003) who modelled turbulent flow over flood plains and channels
in a flume with water of variable depth, but of the order of 5 cm deep.

First, create the coordinate system. Bousmar’s channel and flood plain had constant
shape along the stream, the depth varied only across the stream. Thus, here let s = x1
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Figure 11. (a) An example channel is three times as deep in the middle as the surrounding
shallows; the substrate has curvature kr ; and the fluid flow is eight times as fast in the channel
as in the shallows; (b) this base flow is unstable to superimposed travelling vortices on the
shear near the sides of the channel as shown by the cross-channel velocity. Here, Re = Gr = 80
on a substrate at angle ϑ = 0.1 rad, with We = 0.

be the along stream coordinate, and r = x2 be the horizontal distance across the
stream on the substrate. (There is no good reason for using the variable name r

for distance horizontally across the stream, only that it is next to the letter s in
the alphabet. In this subsection the variable r is not used to indicate any sort of
radius.) The curved substrate is located a distance d(r) > 0 from the (s, r)-plane in
a normal direction, that is the substrate position P(s, r) = r i − d(r) j + sk using j ,
k and i as the vertical and two horizontal unit vectors, see the example d(r) in the
middle curve of Figure 11(a). Thus, the unit vectors, scale factors and curvature of the
substrate coordinate system are (useful relationships are: m2

r = 1 + d ′2, d ′′ = −krm
3
r ,

and m′
r = −d ′krm

2
r )

es = k, er =
1√

1 + d ′2
(i − d ′ j ), en =

1√
1 + d ′2

(d ′ i + j ),

ms = 1, mr =
√

1 + d ′2,

ks = 0, kr = − d ′′

(1 + d ′2)3/2
.

This expression for the curvature kr is well known. The normal coordinate y is not
the vertical coordinate, and so a flat fluid surface located at, say, the location of
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the reference (s, r)-plane is represented by the varying y = d(1 + d ′2)1/2. Similarly
non-trivial, as the channel slopes down at an angle ϑ = 0.1 radians to the horizontal
and not sideways tilted, the gravitational forcing is in the direction

ĝ = sin ϑ es +
d ′

mr

cos ϑ er − 1

mr

cosϑ en. (78)

This coordinate system suits any flow where the substrate is almost arbitrarily curved
in only one direction, not just flow along a channel. (The model (79)–(81) reduces to
that for the flow outside/inside a cylinder, (72)–(74), when r = θ and the substrate
scale factors are set to kr = ∓1/R and mr = R (only the direction of gravity (78)
is incorrect). This algebraic connection occurs despite the cylinder not being strictly
encompassed by a depth d(r) below any reference plane. Indeed, the beading flow
on a cylinder shown in figures 1 and 2 was actually obtained using code for the
model (79)–(81) of this subsection.)

Secondly, computer algebra gives the model on this substrate as, where here
ζ = η − krη

2/2,

∂ζ

∂t
≈ −∂(ηū)

∂s
− 1
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∂(ηv̄)
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, (79)
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Lastly, as expected, simulations (with periodic boundary conditions in both lateral
dimensions for both the flow and the substrate) show that fast flow develops in
the deeper channel and slow flow on the shallow regions, see figure 11(a). However,
the shear in the mean downstream velocity (figure 11a) is unstable to relatively
weak horizontal vortices that grow in the shear and travel downstream, see them
in the mean lateral velocity shown in figure 11(b);† analogous notable vortices were
observed by Bousmar (2002) and Bousmar & Zech (2003) in their turbulent flows. As
also noted by Bousmar, see that the vortices here similarly extend into the shallows,
albeit weakly.

The simulation reported here has a change in depth of the substrate sufficiently
big so that the nonlinear nature of the derived model is certainly essential: (Decré
& Baret 2003, p. 155), comment that nonlinear theories are required in viscous flow
if the change in substrate profile is larger than half the shallow fluid depth; here the
factor is about three, that is, six times the linear limit identified by Decré & Baret
(2003).

Stokes flow across topography is obtained by tilting this channel substrate in the
r direction instead of the s direction. Mazouchi & Homsy (2001) numerically solved
for the two-dimensional Stokes flow, Re = 0, across a step down and step up which,
for significant surface tension We > 5, exhibited damped upstream capillary waves.
See in figure 12 that our model (79)–(81), with periodic boundary conditions in lateral
position r , predicts exactly the same sort of phenomena in the same parameter regime.
The main difference is that we require the substrate to be a smooth base for the local
coordinate system and so do not cater for the sharp changes in substrate used for the
flows reported by Mazouchi & Homsy (2001). Consequently, our upstream capillary
waves in figure 12 are not as large as theirs.

6.4. Flow on the outside of a sphere

For flow on the outside of a sphere we use a coordinate system with θ the co-latitude
coordinate, φ the azimuthal (longitude) coordinate, and co-latitude and azimuthal
velocity components ū and v̄, respectively. The substrate has scale factors m1 = R

and m2 = R sin θ where R is the radius of the sphere, and curvatures k1 = k2 = −1/R.

† The vortices apparent in figure 11(b) fill the computational domain and thus may possibly
be an artifice of the domain size. However, otherwise identical simulations on twice the channel
length show twice as many vortices, whereas simulations in a domain half as long again show a rich
modulation among vortices of roughly the shown length. We deduce that the displayed vortices are
not solely an artifice of the computational domain.
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Figure 12. Fluid film thickness for two Weber numbers We = 10 (+) and 100 (×) for flow
to the right over the shown substrate with a smoothed step-down and a smoothed step-up,
as predicted by model (79)–(81): for near Stokes flow, Re = 0.1; scaled to the gravitational
forcing Gr = 1; on a substrate at an angle θ = 0.2 rad to the horizontal.

On a sphere, every point is an umbilical point; nonetheless, the earlier analysis is
valid in this conventional spherical coordinate system. Then the model on a sphere
is, where here ζ = η + η2/R + η3/(3R2),

∂ζ

∂t
≈ − 1

R

∂(ηū)
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ū

R

∂v̄

∂θ
+ 1.5041

(
1

R sin θ

∂v̄

∂φ
+

cos θ

R sin θ
ū
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∂θ∂φ

+ 4.8333
ηφ

R2 sin2 θ η

∂v̄

∂φ
+

ηθ

R2η

∂v̄

∂θ
+ 1.9167

ηθ

R2 sin θ η

∂ū
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(84)

These models look very complicated, but recall that depending upon the application,
simpler truncations are often appropriate; two such examples are (6) and (59). These
models have the assurance of centre manifold theory that all physical effects are
included to the controllable specified accuracy.

7. Conclusion
We systematically analysed the Navier–Stokes equations for the flow of a thin layer

of a Newtonian fluid over an arbitrarily smoothly curved substrate. The resulting
general model (57)–(58) resolves the dynamical effects and interactions of inertia,
surface tension and a gravitational body force as well as the substrate curvature.
We presented evidence towards the end of § 5 that this model applies to flows where
the lateral gradients of the fluid thickness are somewhat less than 2, see the more
precise limit (62), and (in § 4) where the time scales of the flow are reasonably longer
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than the decay of the second lateral shear mode, that is, longer than 0.045 η2/ν. The
centre manifold paradigm for dynamical modelling is based upon actual solutions
of the governing Navier–Stokes equations, here parameterized in terms of cross-film
averaged velocities. Further, the paradigm implicitly arranges the interaction terms
between various physical processes to support flexible truncation of the model as
appropriate for different parameter regimes; thus, the relatively complex model (57)–
(58) may be justifiably simplified as required by your application.

To illustrate a range of applications, we briefly reported some simulations of: two-
and three-dimensional wave transitions on a sloping flat plate, Faraday waves on
a vibrating flat plate, and a viscous hydraulic jump in radial flow (see § 6.1); the
formation and sliding of beads on a cylindrical fibre with surface tension and gravity
(see § 6.2); and the generation of vortices in the shear flow between a channel and
surrounding shallows (see § 6.3), as well as slow flow up and down smooth steps in the
substrate. These simulations demonstrate the resolution of the complex interactions
between the varied physical processes encompassed by the model.

We thank the Australian Research Council for a grant to help support this work,
and the referees for their many valuable comments.
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