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Abstract

During the lift-off of a launch vehicle, the acoustic pressure fluctuations caused by the
engine exhaust gases produce high noise levels inside the cavity of the fairing and can
damage the payload inside the fairing. Hence reducing the noise transmitted into the
payload bay is an important area of research. Work presented in this thesis investigates the
external acoustic pressure excitations on the fairing of a launch vehicle during the lift-off
acoustic environment. In particular, it investigates the external sound pressure levels in the
low frequency range from 50Hz to 400Hz, on the fairing during the lift-off of a launch

vehicle.

This study establishes theoretical and numerical models for the prediction of external
sound pressure loading on composite structures representing launch vehicles, such as a
large composite cylinder referred to as a Boeing cylinder and a Representative Small
Launch Vehicle Fairing (RSLVF). To predict the external sound pressure loading, various
incident wave conditions were investigated, including incident plane waves, oblique plane
waves and oblique plane waves with random phases that strike the circumference of the

composite structures.

For the theoretical model, both the incident and scattered sound pressure fields due to
incident plane waves; perpendicular to an idealised long cylinder were investigated. The
results show that the scattered sound pressure field plays a major role in determining the
total circumferential sound pressure field at the surface of the cylinder and cannot be

ignored for the launch case.
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Abstract
The theoretical model was developed further for a point source, line source and oblique
incident waves, and modified to determine the incident, scattered and total sound pressure
fields away from the cylinder. The approach developed overcomes some limitations of

previous analytical derivations.

An experiment was undertaken to determine the sound pressure patterns at the surface of a
cylinder at various frequencies due to a point source positioned at a finite distance from the
cylinder surface. The experimental work confirmed the accuracy of the theoretical model

for a point source at a finite distance from the cylinder.

The Boundary Element Method (BEM), approach was used for the numerical investigation
of the acoustic loadings. The numerical analysis was developed for various acoustic
loading conditions and verified with the theoretical results, which showed that the
numerical and theoretical models agree well. Both models were extended to a Boeing

composite cylinder and an RSLVF for various acoustic loading conditions.

The complex acoustic environment generated during the lift-off of a launch vehicle was
investigated and used as a basis for the acoustic loading on an RSLVF. To predict the
acoustic excitations on an RSLVF, two different source allocation techniques were
investigated, which considered acoustic sources along the rocket engine exhaust flow. The
investigations were conducted both numerically and analytically. Both results agree well
and show that it is possible to predict the acoustic loads on the fairing numerically and

analytically.
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Numerical results for the sound pressure distribution at the surface of the RSLVF, due to
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sources along the exhaust flow (see Figure 9.3), for each one-third-octave band centre
frequency from 50Hz to 100Hz. The data used for the analytical calculation for each point
source are given in Tables 9.3, 9.4, 9.5 and 9.6. [x, =15D,, x, =5D, and reference

pressure 20zPa] 231

9.20 Analytically calculated overall sound pressure level at the circumferential surface of
section two (see Figure 7.5) at a height of z=2.17m from the bottom face of the RSLVF,
using the non-unique source allocation method, for a line source of 10 individual point
sources along the exhaust flow (see Figure 9.3), for each one-third-octave band centre
frequency from 125Hz to 200Hz. The data used for the analytical calculation for each
point source are given in Tables 9.3, 9.4, 9.5 and 9.6. [x, =15D,, x, =5D, and

reference pressure 20uPa] 231

9.21 Analytically calculated overall sound pressure level at the circumferential surface of
section two (see Figure 7.5) at a height of z=2.17m from the bottom face of the RSLVF,
using the non-unique source allocation method, for a line source of 10 individual point
sources along the exhaust flow (see Figure 9.3), for each one-third-octave band centre
frequency from 250Hz to 400Hz. The data used for the analytical calculation for each
point source are given in Tables 9.3, 9.4, 9.5 and 9.6. [x, =15D,, x, =5D, and

reference pressure 20z/Pa] 232

9.22 (a-t) Numerically calculated sound pressure excitation at the surface of the RSLVF at various
one-third-octave band centre frequencies from 50Hz to 400Hz, using the non-unique
source allocation method. The data used for the numerical calculation for each point
source are given in Tables 9.3, 9.4, 9.5 and 9.6. [x, =15D,, x, =5D, and reference

pressure 20.Pa] 237

9.23 Numerically calculated sound pressure levels on the circumferential nodes at a height of z
= 2.17m from the bottom face of the RSLVF at various one-third-octave centre
frequencies from 50Hz to 100Hz, using the non-unique source allocation method. The
data used for the numerical calculation for each point source are given in Tables 9.3, 9.4,
9.5and 9.6. [ x, =15D,, x, =5D, and reference pressure 20.Pa] 237

9.24 Numerically calculated sound pressure levels on the circumferential nodes at a height of z
= 2.17m from the bottom face of the RSLVF at various one-third-octave centre
frequencies from 125Hz to 200Hz, using the non-unique source allocation method. The
data used for the numerical calculation for each point source are given in Tables 9.3, 9.4,
9.5and 9.6. [x, =15D,, x, =5D, and reference pressure 20zPa] 238

9.25 Numerically calculated sound pressure levels on the circumferential nodes at a height of z
= 2.17m from the bottom face of the RSLVF at various one-third-octave centre
frequencies from 250Hz to 400Hz, using the non-unique source allocation method. The
data used for the numerical calculation for each point source are given in Tables 9.3, 9.4,

9.5and 9.6. [x, =15D,, x, =5D, and reference pressure 20zPa] 238
Al Characteristic behavior of Bessel functions of the first kind of order 0, and 1 with respect

to the argument Z . 251
A2 Characteristic behavior of Bessel functions of the second kind of order 0 and 1 with

respect to the argument Z . 252
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Glossary of Symbols

a Radius of a cylinder
a Observation point
a, Speed of sound in the exhaust flow
A, Coefficients [defined by equations (3.16)]
b Distance between two point sources [see Figure (5.8)]; also, frequency band (Ch.9)
c Speed of sound
C(g) Solid angle from volume V' [defined by equations (8.7)]
d Distance between the nearest source and the cylinder surface [see Figure (5.8)]
D, Nozzle exit diameter
E;n Amplitudes of the incident waves [see equation (3.22)]
E, Amplitudes of the outgoing waves [see equations (3.22), (3.26) and (3.27)]
f Frequency of sound
F Driving force in the medium (Ch.3); also, thrust of the rocket engine (Ch.9)
G(alr'),G(ry,ry),
G(R) Acoustic Green’s function [see equations (5.1), (5.2) and (8.1)]
H, Bessel function of the 3" kind or Hankel function
H,,4 Hankel Function of (m +1)th order
H, 4 Hankel Function of (m —1)th order
Hrln (2) Hankel function for incoming waves [defined by equation (A.5)]
H r%l (2) Hankel function for outgoing waves [defined by equation (A.6)]
H,, Derivatives of the Hankel function of mth order
Hy Derivatives of the Hankel function of Oth order
H, Derivatives of the Hankel function of first order
I (r,k,4) Scattered sound intensity as a function of radial distance », wavelength &k and
azimuthal angle ¢; [defined by equation (4.4)]
I Bessel function of the first kind of mth order
I Derivatives of the mth order Bessel function
I sl Bessel function of (m + 1)th order
I Bessel function of (m —1)th order
Jo Derivatives of the Oth order Bessel function
Ji Bessel function of first order
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Glossary of Symbols

Wave number

Length of a cylinder

Sound pressure level at a frequency band b of interest [defined by equation (9.8)]
Overall sound pressure level [defined by equation (9.9)]

Sound pressure level corresponding to each segment at a frequency band b of
interest [defined by equation (9.14)]

Overall sound pressure level over the entire segments of the exhaust flow at a
frequency band b of interest [defined by equation (9.15)]

Overall acoustic power level [defined by equation (9.2)]
Acoustic power level at a frequency band b of interest [defined by equation (9.5)]
Overall acoustic power level of exhaust flow segments [defined by equation (9.10)]

Acoustic power level of exhaust flow segments at a frequency band b of interest
[defined by equation (9.11)]

Number of the point sources (Chs.5, 7); also, number of nozzles (Ch.9)

Total number of point sources (Ch.5); also, number of surface elements (Ch.8)
Element shape functions [see equation (8.11)]

Bessel function of the 2™ kind or Neumann function

Derivatives of the mth order Neumann function

Neumann function of the (m + 1)th order
Neumann function of the (m —1)th order

Derivatives of the Oth order Neumann function
Neumann function of first order

Resultant pressure as a function of cylinder radius @ and azimuthal
angle ¢; [defined by equations (3.21) and (3.24)]

Resultant sound pressure at the surface of a cylinder [defined by equation (3.26)]

Incident wave pressure [see equation (3.7)]
Acoustic pressure

Acoustic pressure at a point p (Ch.8)

Constant nodal pressure on a point p ; also, constant nodal pressure for ith elements
[see equations (8.9) and (8.10)]

Equilibrium pressure in the medium

Scattered sound pressure as a function of radial distance 7 and azimuthal angle
@ [defined by equation (3.20)]

Incident wave pressure [defined by equation (7.1)]

Incident wave pressure as a function of cylinder radius a , wave number £ and
azimuthal angle ¢; [defined by equation (3.10)]
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Glossary of Symbols

Incident sound pressure as a function of radial distance », wave number £ and
azimuthal angle ¢, [defined by equation (4.1)]

Scattered sound pressure

Scattered sound pressure as a function of cylinder radius a , wave number &k and
azimuthal angle ¢; [defined by equation (3.11)]

Scattered pressure as a function of radial distance », wave number & and
azimuthal angle ¢; [defined by equation (4.3)]

Incident acoustic pressure at point ¢ (Ch.8)

Incident acoustic pressure on the field points [see equation (8.18)]

Total sound pressure as a function of cylinder radius a, wave number k and
azimuthal angle ¢; [defined by equation (3.18)]

Total sound pressure at the surface of a cylinder due to a point source [defined by
equation (5.5)]

Spatially dependent factor [defined by equation (5.4)]
Source strength [see equations (5.4), (9.7) and (9.13)]

Distance between the origin of the cylinder to the nth number of point sources
[defined by equation (5.6)]

Distance to integration point on the boundary from the centre of the body (Ch.8)

Distance to point g from the centre of the body (Ch.8)

Source distance [see equation (5.1)]

Distance between a point source and observation point [see equation (5.2)]; also,
oblique resultant distance between a point source and an observation point [defined
by equation (7.3)]

Distances between a point source and ith number of observation points [see
equations (5.3) and (7.4)]

Distance between a point source and an projected observation point [see Figure
(7.1); also, defined by equation (7.2)]

Boundary surface (Ch.8)
Time
Directional particle velocity

Outward normal particle velocity at a point p (Ch.8)

Fully expanded exit velocity

Acoustic power of a source at a frequency band b of interest [defined by equation

(9.6)]

Acoustic power of a source corresponding to a segment of exhaust flow at a
frequency band b of interest [defined by equation (9.12)]

Distance travelled by sound waves along the x -axis; also, node position along the
x coordinate (Ch.8)
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Glossary of Symbols

X, Core length

y node position along the y coordinate (Ch.8)

z Cylinder axis

w Angular frequency

p Elevation angle

% Specific heat ratio
Vm Phase angles for mth order

b Azimuthal or circumferential angle

VLW, Velocity potential
W (a,k,é;) Velocity potential as a function of cylinder radius @, wavelength & and azimuthal

angle ¢; [defined by equation (4.2)]

A Wavelength

Density of air in the exhaust flow

Lo Equilibrium density in the fluid
Sla-r"), O(r, —1y) Dirac delta function [see equations (5.1) and (8.1)]
r Gamma function [defined by equation (A.3)]
Em Constant terms used in the equations
\% Laplacian operator or differential operator
Length of exhaust flow slices
Afy Bandwidth of the frequency band, b
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Appendix A

A. Bessel’s Differential Equation

The Bessel functions, Neumann functions and Hankel functions are also known as
cylindrical functions or Bessel functions of the first, second and third kind respectively, and
are the solutions of well known Bessel’s differential equation (McLachlan, 1941)

zz(dzyJ+z[?j+(zz—m2)y=0, (A1)

dz* z

where z = ka. To understand the derivations of the above differential equation in terms of
different types of Bessel functions the reader can consult with Kreyszig (1983), Morse &

Ingard (1986) and Abramowitz & Stegun (1965).

A.1 Bessel Function of the First Kind (J )

The first linear independent solutions of the above second order differential equation are

given by (Abramowitz & Stegun, 1965)

k
J (2)= (Ejm ii (A2)

2) EkKT(m+k+1)’
which is the Bessel function of the first kind of order m . I'(m) is the gamma function and

defined by the integral (Kreyszig, 1983)

[C(m) = ?e’ "t (A.3)
0

Figure A1 shows the variations in amplitudes of different orders of the Bessel functions of

University of Adelaide 250 Mir Md. Maruf Morshed



Appendix A

the first kind with respect to the argument z, where J, is finite and J, =0; when z=0.
For each case, the amplitude of J,, decreases and tends to zero as the value of argument z
increases. The values of J,, calculated using MATLAB are also provided in Tables Al to

A8. The values of J,, corresponding to the values of m = 0, 1 and 2 have been verified

with Abramowitz & Stegun (1965, Table 9.1).
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0 2 4 6 8 10 12 14 16 18 20

Figure Al: Characteristic behavior of Bessel functions of the first kind of order 0, and 1 with respect to the
argument Z .

A.2 Bessel Function of the Second Kind (N ,,)

Also known as Neumann function and denoted by N,,. The Neumann function is the

second linear independent solution of the second order differential equation (A.1) and

defined as (Abramowitz & Stegun, 1965; Kreyszig, 1983)

J (z)cosmm —J_ (z
Nm:[m() ' L] s
simmimT
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A. Bessel’s Differential Equation
Figure A2 shows the variations in amplitudes of the Bessel functions of the second kind of

order zero and one with respect to the argument z, where Njand N,are infinite when
z=0. For each case, the amplitude of N,, decreases and tends to zero as the value of the
argument z increases. The values of N, calculated using MATLAB are also provided in

Tables Al to A8. The values of N,, corresponding to the values of m = 0, 1 and 2 have

been verified with Abramowitz & Stegun (1965, Table 9.1).

Figure A2: Characteristic behaviour of Bessel functions of the second kind of order 0 and 1 with respect to
the argument Z .

A.3 Bessel Function of the Third Kind (H,,)

Also known as Hankel function and denoted by H,,. This is the combination of Bessel
Sfunction of first J, and second kind N, respectively. The relationships between the

Hankel function and Bessel functions are as follows:
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Appendix A

HP(2)=J,(2) +iN (2), A3
HP(2)=J,(2)-iN ,(2), A6

where the superscripts (1) and (2) represent the incoming waves and outgoing waves,

respectively. The superscript (2) has been used in this thesis for the scattered waves.
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A. Bessel’s Differential Equation

Table A.1: Values of cylindrical Bessel functions calculated using MATLAB for ka=1.

University of Adelaide

m J , (ka) N, (ka)

0 0.76519768655797 0.08825696421568

1 0.44005058574493 -0.78121282130029

2 0.11490348493190 -1.65068260681625

3 0.01956335398267 -5.82151760596473

4 0.00247663896411 -33.27842302897213

5 | 2.497577302112346e-004 | -2.604058666258123¢+002
6 | 2.093833800238928¢-005 | -2.570780243229151e+003
7 | 1.502325817436808¢-006 | -3.058895705212400¢+004
8 | 9.422344172604498¢-008 | -4.256746184865068¢+005
9 | 5.249250179911874¢-009 | -6.780204938731985¢+006
10 | 2.630615123687453e-010 | -1.216180142786892¢+008
11 | 1.198006746303138¢-011 | -2.425580080635053¢+009
12 | 4.999718179448416e-013 | -5.324114375969247¢+010
13 | 1.925616764480169¢-014 | -1.275361870151984¢+012
14 | 6.885408200044238¢-016 | -3.310616748019190e+013
15 | 2.297531532210353¢-017 | -9.256973275752211¢+014
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Appendix A

Table A.2: Values of cylindrical Bessel functions calculated using MATLAB for ka=3.

m J , (ka) N, (ka)
0 -0.26005195490193 0.37685001001279

1 0.33905895852594 0.32467442479180

2 0.48609126058589 -0.16040039348492

3 0.30906272225525 -0.53854161610503

4 0.13203418392461 -0.91668283872514

5 0.04302843487705 -1.90594595382867

6 0.01139393233221 -5.43647034070377

7 0.00254729445180 -19.83993540898641

8 | 4.934417762088341e-004 -87.14989490123281

9 | 8.439502130909183¢-005 | -4.449595040642552e+002
10 | 1.292835164571588¢-005 |  -2.582607129484299¢+003
11 | 1.793989662347444¢-006 |  -1.677242135916440e+004
12 | 2.275725448320574¢-007 |  -1.204151495043880e+005
13 | 2.659069630901111e-008 | -9.465487746759396e+005
14 | 2.880156512705533¢-009 | -8.083007564353754¢+006
15 | 2.907644762406028¢-010 | -7.449485515929242¢-+007
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A. Bessel’s Differential Equation

Table A.3: Values of cylindrical Bessel functions calculated using MATLAB for ka=5.

m J o (ka) N, (ka)

0 -0.17759677131434 -0.30851762524903

1 -0.32757913759147 0.14786314339123

2 0.04656511627775 0.36766288260552

3 0.36483123061367 0.14626716269319

4 0.39123236045865 -0.19214228737369

5 0.26114054612017 -0.45369482249110

6 0.13104873178169 -0.71524735760851

7 0.05337641015589 -1.26289883576932

8 0.01840521665480 -2.82086938254560

9 0.00552028313948 -7.76388318837658

10 0.00146780264731 -25.12911009561009

11 | 3.509274497662084¢-004 -92.75255719406377

12 | 7.627813166084566e-005 -3.829821415582704e+002
13 | 1.520758220584946e-005 -1.745561722285635e+003
14 | 2.801295809571661e-006 -8.693938814327028e+003
15 | 4.796743277517957e-007 -4.694049563794573e+004
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Table A.4: Values of cylindrical Bessel functions calculated using MATLAB for ka=10.

m J, (ka) N, (ka)

0 -0.24593576445135 0.05567116728360

1 0.04347274616886 0.24901542420695

2 0.25463031368512 -0.00586808244221

3 0.05837937930519 -0.25136265718384

4 -0.21960268610201 -0.14494951186809

5 -0.23406152818679 0.13540304768936

6 -0.01445884208479 0.28035255955746

7 0.21671091768505 0.20102002377959

8 0.31785412684386 0.00107547373396

9 0.29185568526512 -0.19929926580524

10 0.20748610663336 -0.35981415218340

11 0.12311652800160 -0.52032903856156

12 0.06337025497016 -0.78490973265203

13 0.02897208392678 -1.36345431980331

14 0.01195716323946 -2.76007149883658

15 0.00450797314372 -6.36474587693912

16 0.00156675619170 -16.33416613198079
17 5.056466697193248e-004 -45.90458574539942

18 1.524424853455242¢-004 -1.397414254023773e+002
19 4.314627752456253e-005 -4.571645457031588e+002
20 1.151336924781339e-005 -1.597483848269627¢+003

University of Adelaide

257

Mir Md. Maruf Morshed



A. Bessel’s Differential Equation

Table A.5: Values of cylindrical Bessel functions calculated using MATLAB for ka=15.

m J o (ka) N, (ka)

0 -0.01422447282678 0.20546429603892

1 0.20510403861352 0.02107362803687

2 0.04157167797525 -0.20265447896734

3 -0.19401825782012 -0.07511482242816

4 -0.11917898110330 0.17260854999607

5 0.13045613456503 0.16717271575940

6 0.20614973747999 -0.06116007282314

7 0.03446365541896 -0.21610077401791

8 -0.17398365908896 -0.14053398292691

9 -0.22004622511385 0.06619785889587

10 -0.09007181104766 0.21997141360196

11 0.09995047705030 0.22709735924007

12 0.23666584405477 0.11310471328348

13 0.27871487343733 -0.04612981798650

14 0.24643993656993 -0.19306306446008

15 0.18130634149321 -0.31425456900565

16 0.11617274641649 -0.43544607355122

17 0.06652885086197 -0.61469705457029

18 0.03462598220398 -0.95786725014144

19 0.01657350642758 -1.68418434576916

20 0.00736023407922 -3.30873309247376

21 0.00305378445035 -7.13910390082753

22 0.00119036238175 -16.68075782984334

23 4.379452027907171e-004 -41.79111906671292
24 1.526695734729023e-004 -1.114786739747429¢+002
25 5.059743232257010e-005 -3.149406376524644e+002
26 1.598853426899810e-005 -9.383234515334716e+002
27 4.829486476623289¢-006 -2.937913994330237e+003
28 1.397617046845745e-006 -9.638166928055382e+003
29 3.882838316008275e-007 -3.304457587040985e+004
30 1.037471020107873e-007 -1.181341931041960e+005
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Table A.6: Values of cylindrical Bessel functions calculated using MATLAB for ka =20.

m J , (ka) N, (ka)

0 0.16702466434058 0.06264059680938

1 0.06683312417585 -0.16551161436252

2 -0.16034135192300 -0.07919175824564

3 -0.09890139456045 0.14967326271339

4 0.13067093355486 0.12409373705965

5 0.15116976798239 -0.10003576788953

6 -0.05508604956367 -0.17411162100442

7 -0.18422139772059 -0.00443120471312

8 -0.07386892884075 0.17100977770524

9 0.12512625464799 0.14123902687731

10 0.18648255802395 -0.04389465351566

11 0.06135630337595 -0.18513368039297

12 -0.11899062431040 -0.15975239491661

13 -0.20414505254843 -0.00656919350696

14 -0.14639794400256 0.15121244335756

15 | -8.120690551536038¢-004 0.21826661420754

16 0.14517984041983 0.17618747795375

17 0.23309981372688 0.06363335051846

18 0.25108984291587 -0.06801078207236

19 0.21886190352168 -0.18605275824872
20 0.16474777377533 -0.28548945860020
21 0.11063364402897 -0.38492615895169
22 0.06758287868551 -0.52285547519834
23 0.03804868907916 -0.76535588648466
24 0.01992910619655 -1.23746306371638
25 0.00978116579257 -2.20455546643466
26 0.00452380828487 -4.27392560237026
27 0.00198073574809 -8.90765109972802
28 | 8.241782349825159¢-004 -19.77673236689541
29 | 3.269633098572617¢-004 -46.46719952757916
30 | 1.240153636035431e-004 | -1.149781462630842¢+002
31 | 4.508278095336757¢-005 | -2.984672392616736¢+002
32 | 1.574125735189640e-005 | -8.102702954481043¢+002
33 | 5.289242572700920e-006 | -2.294397706172262¢+003
34 | 1.713243138016636e-006 | -6.761242134920362¢+003
35 | 5.357840965556445¢-007 | -2.069382555255698¢+004
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A. Bessel’s Differential Equation

Table A.7: Values of cylindrical Bessel functions calculated using MATLAB for ka =25.

m J , (ka) N, (ka)

0 0.09626678327596 -0.12724943226801

1 -0.12535024958029 -0.09882996478324

2 -0.10629480324238 0.11934303508535

3 0.10834308106151 0.11792485039689

4 0.13229714269714 -0.09104107099009

5 -0.06600799539842 -0.14705799311372

6 -0.15870034085651 0.03221787374460

7 -0.01016816821270 0.16252257251113

8 0.15300616665740 0.05879476686163

9 0.10809211487344 -0.12489392171969
10 -0.07517984394852 -0.14871839049981

11 -0.16823599003226 0.00591920931984

12 -0.07286782727986 0.15392729470127

13 0.09828287584359 0.14185099359337

14 0.17508201815719 -0.00640226136416

15 0.09780898449247 -0.14902152632123

16 -0.05771123676623 -0.17242357022132

17 -0.17167936755325 -0.07168064356206

18 -0.17577270310618 0.07493789497692

19 -0.08143332491966 0.17959121232883
20 0.05199404922830 0.19804074776289
21 0.16462380368494 0.13727398409180
22 0.22457394096240 0.03257954551133
23 0.23062633240888 -0.07993398399185
24 0.19977851066994 -0.17965807605634
25 0.15294840807741 -0.26500952203633
26 0.10611830548487 -0.35036096801631
27 0.06777766733113 -0.46374129143760
28 0.04028145595036 -0.65132022148891
29 0.02245279399769 -0.99521600469755
30 0.01180902612427 -1.65758090940941
31 0.00588886870056 -2.98297817788503
32 0.00279536825312 -5.74020497174547
33 0.00126727402742 -11.71194654978338
34 | 5.502351792759557¢-004 -25.17933391968267
35 | 2.293656602088348¢-004 -56.77584171175352
36 | 9.198866930878187¢-005 -1.337930228732272¢+002
37 | 3.556170740045715¢-005 -3.285480641631411e+002
38 | 1.327398459657133¢-005 -8.387092470496709¢+002
39 | 4.791205773119736¢-006 -2.221128046867860e+003
40 | 1.674577415562247¢-006 -6.091210259178055¢+003
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Table A.8: Values of cylindrical Bessel functions calculated using MATLAB for ka =30.

m J i (ka) N,, (ka)

0 -0.08636798358104 -0.11729573168666

1 -0.11875106261662 0.08442557066175

2 0.07845124607327 0.12292410306411

3 0.12921122875972 -0.06803569025320

4 -0.05260900032132 -0.13653124111475

5 -0.14324029551208 0.03162735928926

6 0.00486223515063 0.14707369421118

7 0.14518518957233 0.02720211839521

8 0.06289085331646 -0.13437937229341

9 -0.11164340113688 -0.09887111695169

10 -0.12987689399859 0.07505670212240

11 0.02505880513782 0.14890891836662

12 0.14825335109966 0.03414317134646

13 0.09354387574190 -0.12159438128946

14 -0.06718199212334 -0.13952496846399

15 -0.15624706839036 -0.00862892261027

16 -0.08906507626701 0.13089604585372

17 0.06124432037221 0.14825137152090

18 0.15847530602218 0.03712217520330

19 0.12892604685441 -0.10370476127694
20 0.00483101999340 -0.16848153948743
21 -0.12248468686321 -0.12093729137296
22 -0.17630958160189 -8.306684347197038e-004
23 -0.13610269948624 0.11971897766871
24 -0.03238122427700 0.18439976752674
25 0.08429274064303 0.17532065037407
26 0.17286912534872 0.10780131643005
27 0.21534707662809 0.01153496477135
28 0.21475561258184 -0.08703837984162
29 0.18553006685800 -0.17400660714238
30 0.14393585001031 -0.24937439396697
31 0.10234163316261 -0.32474218079157
32 0.06757019185909 -0.42175944633560
33 0.04180810947011 -0.57501130472439
34 0.02440764897515 -0.84326542405804

35 0.01351589487357 -1.33639032314051

36 0.00712943906317 -2.27497866326982

37 0.00359475887804 -4.12355846870706

38 0.00173763283600 -7.89646555954094

39 8.072443064970693e-004 -15.88082094879666
40 3.612023608896573e-004 -33.39366890733039
41 1.559619892086842¢-004 -73.16896280408443
42 6.509374294741310e-005 -1.666014960905005e+002
43 2.630049104407255e-005 -3.933152262493173e+002
44 1.030099804559497¢-005 -9.609021524908767e+002
45 3.915769889672700e-006 -2.425331087723923e+003
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Appendix B

B. Values of Phase Angle ¥ and Coefficient 4

The values of phase angle y,, (the angle between the incident and scattered waves) and

coefficient 4, (which satisfies the boundary condition for the hard wall cylinder)

calculated using equations (3.16) and (3.17) are provided in Tables B1 to B4, for various

values of ka.

Table B.1: Values of y,, and A4, calculated using MATLAB for ka=1and3.

ka=1

ka

3

Absolute 4,,

Y (rad)

Absolute A4,

9.815701056113450e-001

-8.070669278081472e-001

1.444523426204905e+000

7.005388936977347¢-001

9.467491880057284¢-001

1.623040535524163e+000

1.662723211618244e-001

-3.473541952377166¢-002

6.945686989078533¢-002

7.109337193914309e-003

-4.378482745549908e-001

8.479834067202392¢-001

1.517265006371177¢-004

-1.921537934956991e-001

3.819469792679719¢-001

1.935526198686778e-006

-2.668523998615176¢-002

5.336414599328023¢-002

1.637106915364312e-008

-2.257226244892119¢-003

4.514448656209731e-003

9.852954606702583e-011

-1.333990167462702e-004

2.667980327012486e-004

4.436034794632272¢-013

-5.793427572056148¢-006

1.158685514404748¢-005

1.550599327929817e-015

-1.925552631814174¢-007

3.851105263628324e-007

4.330469969898725e-018

-5.059024628555041e-009

1.011804925711008e-008

9.885688430622688e-021

-1.077866847723124e-010

2.155733695446247e-010

1.879247435818829¢-023

-1.900886121413640e-012

3.801772242827279e-012

3.021113907088511e-026

-2.821849676750080e-014

5.643699353500161e-014

4.161128368430790e-029

-3.575871848800525¢-016

7.151743697601050e-016

4.965381284296204e-032

-3.914292838087428e-018

7.828585676174856e-018

m ¥ (rad)
0 5.129905576941148¢-001
1 -3.578587592841100e-001
2 -8.323222727963338e-002
3 -3.554676082935588¢-003
4 -7.586325039132730e-005
5 -9.677630993435400e-007
6 -8.185534576821557¢-009
7 -4.926477303351291e-011
8 -2.218017397316136e-013
9 -7.752996639649086¢-016
10 | -2.165234984949363¢-018
11 | -4.942844215311344¢-021
12 | -9.396237179094143¢-024
13 | -1.510556953544256¢-026
14 | -2.080564184215395e-029
15 | -2.482690642148102¢-032
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Appendix B

Table B.2: Values of y,, and 4, calculated using MATLAB for ka=5and10.

ka=5 ka=10

m ¥ (rad) Absolute A4,, Y (rad) Absolute 4,

0 1.146794186699486¢+000 | 1.822899435379958e+000 | -1.728366890879051e-001 3.439549243654551¢-001
1 -3.201103732051438e-001 | 6.293426577107429¢-001 1.448470828374209¢+000 1.985055122061599¢+000
2 1.568491367272447¢+000 | 1.999994687163952e+000 | 2.978193133768141e-002 5.955505790448190e-002
3 5.518774895373773e-001 1.048573825267000e+000 | -1.285519169911724e+000 | 1.919167382153724e+000
4 -1.711381685866357e-001 3.406080017284482¢-001 6.474057960114398¢-001 1.206238335735818e+000
5 -4.615519094212114¢-001 8.906763282257302¢-001 -4.494270076194941e-001 8.688990268135356e-001
6 -2.513226110746530e-001 | 4.973704735767570e-001 | -1.426245964905165¢+000 | 1.979141550293708e+000
7 -5.344560443122232¢-002 | 1.068403282069836¢-001 8.718997926595900e-001 1.531105187435059¢+000
8 -7.361233316724204¢-003 1.472233367090385¢-002 1.855528219829056¢-001 3.689797883187202¢-001
9 -7.592445756170732e-004 | 1.518489005344717¢-003 -2.967895669323028e-001 5.849032902601247¢-001
10 -6.082405383791230e-005 | 1.216481076008171e-004 | -4.839316644315005¢-001 9.305259277249190e-001
11 -3.888536335587284e-006 | 7.777072671154969e-006 | -3.268596837277858e-001 6.421411266487378e-001
12 -2.031207683566750e-007 | 4.062415367133472¢-007 | -1.112006430983138¢-001 2.219432159087718e-001
13 -8.840960041582735¢-009 [ 1.768192008316547¢-008 | -2.602393670333672¢-002 5.204199874282658e-002
14 -3.258751944539170e-010 | 6.517503889078341¢-010 | -4.891519597680763¢-003 9.783000182337135¢-003
15 -1.031028612814559¢-011 | 2.062057225629119¢-011 -7.654584190870611¢-004 1.530916688673312¢-003
16 -1.012226269415207¢-004 | 2.024452535373316e-004
17 -1.146053898817935¢-005 | 2.292107797585693¢-005
18 -1.124593778208000e-006 | 2.249187556415525¢-006
19 -9.667628099929709¢-008 1.933525619985939¢-007
20 -7.348789493061785e-009 1.469757898612357¢-008
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B. Values of Phase Angle y,, and Coefficient 4,

Table B.3: Values of y,, and 4, calculated using MATLAB for ka =15 and 20 .

ka=15 ka=20
m ¥ (rad) Absolute A4,, ¥ (rad) Absolute 4,
0 -1.468409567169597¢+000 | 1.989526106112857e+000 | 3.837755213627880e-001 7.488480212048134¢-001
1 1.358731100035741e-001 2.709108509234867¢-001 | -1.161956013763683¢+000 | 1.835164936100895¢+000
2 -1.334306078216666e+000 | 1.944332535266784e+000 | 4.840995653939255¢-001 9.308231572404798¢-001
3 4.047198797823924¢-001 7.875225715036970e-001 -9.610468049359370e-001 | 1.639582965816753e+000
4 -9.294056003052285¢-001 | 1.602528893915081e+000 | 7.861227456868406e-001 1.415237905139315e+000
5 9.477214392904160e-001 1.624175988285900e+000 | -5.570995325832132e-001 | 1.057453062333633e+000
6 -2.454061584077767e-001 | 4.859006684047293e-001 1.293107310234694e+000 | 1.923383049486138e+000
7 -1.364948539789900e+000 | 1.957776102201738e+000 | 5.437033885542456e-002 1.086871102979039¢-001
8 7.336777287726852¢-001 1.339211336470739¢+000 | -1.130702708831674e+000 | 1.809423567340156e+000
9 -2.286897443228369¢-001 4.534031525720936¢-001 8.807347599056423¢-001 1.542413647842460e+000
10 -1.104898360135292¢+000 | 1.786837073143745e+000 | -1.929589279921929¢-001 3.835274876059444¢-001
11 1.254691622585824e+000 | 1.900907086523142¢+000 | -1.208284705726481e+000 | 1.870018186584987¢+000
12 5.793712547193060e-001 1.094995813120668¢+000 | 9.787276790287275e-001 1.659575974021412¢+000
13 3.191313673145584¢-002 6.381544005468122¢-002 8.790923718903068e-002 1.755921066738230e-001
14 -3.484699701194874e-001 6.829202766725837¢-001 -7.352198818432639¢-001 | 1.341500509078510e+000
15 -4.931518759745609¢-001 9.468090992651105e-001 | -1.485350092813664e+000 | 1.992703382139249¢+000
16 -3.649180648264603e-001 7.137455113727033e-001 9.866749758175952e-001 1.668393906898669¢+000
17 -1.548443684402772¢-001 3.084526632931428e-001 4.092206824449433¢-001 7.957889573091576¢-001
18 -4.667569373144138e-002 | 9.331749494908553e-002 | -5.696155097379290e-002 1.138615057778784e-001
19 -1.159765272778880e-002 | 2.319478547619298e-002 | -3.779295513914702¢-001 7.379938467228678¢-001
20 -2.478440636635322e-003 | 4.956876198526215¢-003 | -4.983845887514055¢-001 9.560145138711387¢-001
21 -4.614014243027709e-004 | 9.228028158627629¢-004 | -3.885374559080056¢-001 7.576705774123097¢-001
22 -7.548880577554636¢-005 1.509776114077002¢-004 | -1.885313290668023¢-001 3.748329014696935¢-001
23 -1.094636728777335e-005 | 2.189273457510948e-005 | -6.658664646475423¢-002 1.330749045302063¢-001
24 -1.418079638116890e-006 | 2.836159276232830e-006 | -1.963861688027927e-002 | 3.927470909960197¢-002
25 -1.653043508449735e-007 | 3.306087016899455e-007 | -5.073392324601202¢-003 1.014674112071970e-002
26 -1.744887942892248¢-008 | 3.489775885784497¢-008 | -1.163705092404372¢-003 | 2.327409659508599¢-003
27 -1.677147095982643e-009 | 3.354294191965287¢-009 | -2.386425913610900e-004 | 4.772851781919254e-004
28 -1.475156117706648e-010 | 2.950312235413296e-010 | -4.403067945144659¢-005 | 8.806135887443909¢-005
29 -1.192550538887372¢-011 2.385101077774745e-011 | -7.354542781579203¢-006 1.470908556302580e-005
30 -8.896084926199342¢-013 1.779216985239868e-012 | -1.118573351024911e-006 | 2.237146702049354¢-006
31 -1.557246207634564e-007 | 3.114492415269115e-007
32 -1.993733701668540e-008 | 3.987467403337080e-008
33 -2.357264425422621e-009 | 4.714528850845241e-009
34 -2.583481679882387¢-010 | 5.166963359764773e-010
35 -2.633423480662658¢-011 5.266846961325315¢-011
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Table B.4: Values of y,, and A4, calculated using MATLAB for ka =25and30.

Appendix B

ka=25 ka =30
m Y (rad) Absolute 4,, ¥ (rad) Absolute A4,,
0 -9.031498545162312¢-001 | 1.570562002874435¢+000 | 9.527618930620101e-001 1.630037893699097¢+000
1 6.876797027321421e-001 | 1.269491900638269¢+000 | -6.013485183944878e-001 | 1.131509879828849¢+000
2 -8.229841507836738¢-001 | 1.466356844348570e+000 | 1.019524387811775¢+000 | 1.703718012714104e+000
3 8.481427419518632e-001 1.500106702199820e+000 | -4.677479980047470e-001 9.017546502068058¢-001
4 -5.819584734936241¢-001 | 1.099322149335750e+000 | 1.220114790829969¢+000 | 1.878277595024381e+000
5 1.170134202011234e+000 | 1.841605897170514e+000 | -1.999379145395230e-001 | 3.972169650548421e-001
6 -1.784537452343424e-001 | 3.550161740243803e-001 1.555454777805881e+000 | 1.999764641490898e+000
7 | -1.485739486799945¢+000 | 1.992769694617742e+000 | 2.033260575782419¢-001 4.038559674973831e-001
8 3.903461629514864e-001 | 7.610171231760509¢-001 | -1.114467482533474e+000 | 1.795352516579824e+000
9 -8.328101446455971e-001 | 1.479649906859031e+000 | 7.439793764119969¢-001 1.354442418842547¢+000
10 | 1.128656011584647¢+000 | 1.807675893780715e+000 | -5.041535231015206e-001 | 9.661329042161707¢-001
11 | -7.639202562924609¢-003 | 1.527825652490938e-002 | 1.424741752443500e+000 | 1.978705955324396e+000
12| -1.099159431544762e+000 | 1.781651533343220e+000 | 2.479660405334953¢-001 4.908654405343420e-001
13 9.968002299998394¢-001 | 1.679475673880457¢+000 | -8.923308602923813e-001 | 1.557073413638677¢+000
14 | -1.629204890077758¢-003 | 3.258408338684871e-003 1.146081170131993e+000 | 1.822312285641953e+000
15 | -9.512856066505748¢-001 | 1.628325296063118¢+000 | 8.074632993221909e-002 1.613172291868681¢-001
16 | 1.291316189698432e+000 | 1.922397950975966e+000 | -9.459062793819344e-001 | 1.622054895123637¢+000
17 4.453095560580564¢-001 8.614745365433665e-001 1.208678627626263e+000 | 1.870297429601288e+000
18 | -3.448090866225010e-001 | 6.760340143849237¢-001 2.624298564125032¢-001 5.188559590788061e-001
19 | -1.075293277870644e+000 | 1.759459268686940e+000 | -6.417603508745922¢-001 | 1.197212970594315e+000
20 | 1.400481140085656e+000 | 1.971062787854546e+000 | -1.502360033580368¢+000 | 1.995318301437199e+000
21 8.064537024673810e-001 | 1.443674917017773e+000 | 8.240545286761650e-001 1.467811795755167¢+000
22 2.950015364445492¢-001 5.814826403934716¢-001 5.652670170012471e-002 1.129932070311056e-001
23 | -1.163014110812219¢-001 | 2.320788116750408e-001 | -6.605728747200401e-001 | 1.227138635838244e+000
24 | -3.973808551863186e-001 | 7.740092345055428e-001 | -1.323671608228672¢+000 | 1.939239543253116e+000
25 | -5.018244485089077e-001 | 9.620516880035583¢-001 1.213608860155135¢+000 | 1.873767807548617e+000
26 | -4.048917115995046e-001 | 7.878384598645760e-001 6.748369388880091¢-001 1.249540010953998e+000
27 | -2.153640823416572e-001 | 4.274062280120701¢-001 2.117563044458241¢-001 4.203545949970555¢-001
28 | -8.507548532012769¢-002 | 1.699457907080428e-001 | -1.593402323536887¢-001 | 3.173336627305930e-001
29 | -2.828773423760244e-002 | 5.656792353401878e-002 | -4.113642803623179¢-001 | 7.997203331336086e-001
30 | -8.332758389048688¢-003 | 1.666532391745631e-002 | -5.042879110602239¢-001 | 9.663682313014828¢-001
31 | -2.207806324585138e-003 | 4.415609061920983e-003 | -4.170130360408832e-001 | 8.100625487007372¢-001
32 | -5.294548043237669¢-004 | 1.058909559174856e-003 | -2.373158963960077¢-001 | 4.701892030906603¢-001
33 | -1.154955589765259¢-004 | 2.309911174395115e-004 | -1.020450977085217¢-001 | 2.037361743879085¢-001
34 | -2.303192751755968e-005 | 4.606385503104678¢-005 | -3.714208388743552¢-002 | 7.426708935884561e-002
35 | -4.219049314865390e-006 | 8.438098629705748e-006 | -1.206761990000982¢-002 | 2.413465401204692¢-002
36 | -7.131117045746308e-007 | 1.426223409149141e-006 | -3.559560663551193e-003 | 7.119106293340530e-003
37 | -1.116653043475810e-007 | 2.233306086951615¢-007 | -9.591420692166756e-004 | 1.918283844311328¢-003
38 | -1.625849470486460e-008 | 3.251698940972920e-008 | -2.370887376238219¢-004 | 4.741774708053066e-004
39 | -2.208358866419114e-009 | 4.416717732838228e-009 | -5.398358616045319¢-005 1.079671722684662¢-004
40 [ -2.806559057706346e-010 | 5.613118115412692e-010 | -1.136853624796371e-005 | 2.273707249543764e-005
41 -2.222907048356745¢-006 | 4.445814096709828e-006
42 -4.050070638628128e-007 | 8.100141277256036¢-007
43 -6.898237394153560e-008 | 1.379647478830711e-007
44 -1.101601694100731e-008 | 2.203203388201461e-008
45 -1.653786687641506e-009 | 3.307573375283011e-009
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Appendix C

C. Wronskian Relationship
The left hand side of equation (3.25), in Chapter 3, is

J,, (ka)H! (ka)—J' (ka)H,, (ka). (C.1)
Using equation (3.12), and solving the above equation (C.1) gives
J,, (ka)[J!,(ka)+ i N! (ka)| - J' (ka)[J,, (ka)+ i N, (ka)]
=J, (ka)J! (ka)+iJ, (ka)N!,(ka) - J, (ka)J! (ka)—iJ! (ka) N, (ka)
=iJ, (ka)N! (ka)—iJ! (ka)N,, (ka)
=i[J,,(ka) N, (ka) - J;,(ka) N, (ka)]. )

According to Wronskian (Junger & Feit, 1993)

J,(ka)N, (ka)—J, (ka)N,,(ka) = % (C.3)

Ka

Now, substituting equation (C.3) in equation ((C.2), one can find out the Wronskian

relationship for equation (C.1), which is

J, (kayH',(ka) - J! (ka)H, (ka) = % (C.4)
a
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Appendix D

D. Corrections in the Real-time theory presented by Friot ef al.,
(2004):

The mathematical derivations given by Friot ef al., (2004) are same to those by Junger &
Feit (1993); the later derivations have already been discussed and presented in Section 3.4
in Chapter 3, of this thesis. First of all, the equations for sound pressure field of a cylinder

are given by (Friot ef al., 2004)

J, (ka)

H;Z(l) (ka) Hy(ll) (kp)cos(ng); (D.1)

ps(p3¢) :_ia)pv Zgn (_i)n
n=0

0 J' k
p(p.p)=iwp D&, |J,kpu) _ _Julka)

HOY (k poe) | HY (kpy,, ) cos(ng), (D.2)
2 20 (k) (k Pint) (kpgyp)cos(ng), (

where equation (D.1) is for scattered sound pressure and p, is the fluid density. The

Authors have mentioned in their work that equation (D.2) is also for scattered sound

pressure and denoted it by p,, same as denoted the scattered sound pressure in equation

(D.1). Apparently, equation (D.2) is for total sound pressure, because it is addition of

incident and scattered sound pressures, as already shown in equation (3.21) in Chapter 3. It

is noticeable in equation (D.2); H"(kp, ) term has been used for the scattered waves.
According to the Authors, H ,(11) represents the Hankel function for the outgoing waves.

However, they have used a supplement term H ,(,1) (kpgy,) 0 equation (D.2), for an infinite

line of monopoles parallel to the cylinder at some coordinates, which is ambiguous and not

making it clear whether that represents the incoming waves or outgoing waves.
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Appendix E

E. Rocket Engine Noise Prediction Comparison
with Gierke Method

According to Gierke Method, the overall acoustic power level of a rocket engine can be

determined by the following expression (Potter & Crocker, 1966)

L, =78+13.5log;((0.676 U, F) (E.1)
where

U, = exhaust velocity, m/s

F

thrust of the engine, N

Using the specifications given for engine ‘E’ in Table 9.1 in Chapter 9, and solving the

above equation (E.1), the overall acoustic power level of engine ‘E’ is

L, =78 +13.5log,, [(0.676)(2670)(31803)]

L, =182.75dB

Recalling equation (9.2), the overall acoustic power level of engine ‘E’ is

L, =120 +10log,,[(0.005)(31803)(2670)]
L, =176.28 dB

The difference between the results obtained using equation (E.1) and (9.2) is 6.47dB.
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