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Abstract 

During the lift-off of a launch vehicle, the acoustic pressure fluctuations caused by the 

engine exhaust gases produce high noise levels inside the cavity of the fairing and can 

damage the payload inside the fairing. Hence reducing the noise transmitted into the 

payload bay is an important area of research. Work presented in this thesis investigates the 

external acoustic pressure excitations on the fairing of a launch vehicle during the lift-off 

acoustic environment. In particular, it investigates the external sound pressure levels in the 

low frequency range from 50Hz to 400Hz, on the fairing during the lift-off of a launch 

vehicle.  

This study establishes theoretical and numerical models for the prediction of external 

sound pressure loading on composite structures representing launch vehicles, such as a 

large composite cylinder referred to as a Boeing cylinder and a Representative Small 

Launch Vehicle Fairing (RSLVF). To predict the external sound pressure loading, various 

incident wave conditions were investigated, including incident plane waves, oblique plane 

waves and oblique plane waves with random phases that strike the circumference of the 

composite structures.  

For the theoretical model, both the incident and scattered sound pressure fields due to 

incident plane waves; perpendicular to an idealised long cylinder were investigated. The 

results show that the scattered sound pressure field plays a major role in determining the 

total circumferential sound pressure field at the surface of the cylinder and cannot be 

ignored for the launch case.  
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The theoretical model was developed further for a point source, line source and oblique 

incident waves, and modified to determine the incident, scattered and total sound pressure 

fields away from the cylinder. The approach developed overcomes some limitations of 

previous analytical derivations. 

An experiment was undertaken to determine the sound pressure patterns at the surface of a 

cylinder at various frequencies due to a point source positioned at a finite distance from the 

cylinder surface. The experimental work confirmed the accuracy of the theoretical model 

for a point source at a finite distance from the cylinder. 

The Boundary Element Method (BEM), approach was used for the numerical investigation 

of the acoustic loadings. The numerical analysis was developed for various acoustic 

loading conditions and verified with the theoretical results, which showed that the 

numerical and theoretical models agree well. Both models were extended to a Boeing 

composite cylinder and an RSLVF for various acoustic loading conditions. 

The complex acoustic environment generated during the lift-off of a launch vehicle was 

investigated and used as a basis for the acoustic loading on an RSLVF. To predict the 

acoustic excitations on an RSLVF, two different source allocation techniques were 

investigated, which considered acoustic sources along the rocket engine exhaust flow. The 

investigations were conducted both numerically and analytically. Both results agree well 

and show that it is possible to predict the acoustic loads on the fairing numerically and 

analytically. 
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5.4 Directivity patterns of the total sound pressure at the surface of a cylinder of radius a = 

1.23m (Boeing cylinder radius), due to a point source placed at various distances from the 

origin of the cylinder, for 5=ka . [Source strength, iQs +=1  m3/s  and reference 

pressure 20µPa] 

 

 

 
90 
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The source of strength iQs +=1 m
3
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various values of ka  at the surface of a cylinder of radius a = 1.23m (Boeing cylinder 
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3
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axis (see Figure 5.5) and at a distance of ar 3−=′   from the origin of the cylinder. 
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3
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cylinder of length 5m, for plane waves incident on the front face, for ka = 1, and 5 

respectively. [Reference pressure 20µPa and incident pressure magnitude Pa1=οP ] 

 

 
159 
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8.28 3D arrangement of a line source. 164 

8.29(a-b) Numerical results of the total sound pressure distribution at the surface of the extended  
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cylinder of length 5m and radius 0.057m, due to a line source of 15 point sources of 

arbitrary amplitudes and phases (Table 5.1 was used) placed on the negative X axis, for  f 

= 1.5kHz and ka = 1.57. [Reference pressure 20µPa] 
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8.30 Total sound pressure comparison between the 3D BEM and analytical results calculated 

on the circumferential nodes at the middle (z = 2.5m, see Figures 8.19a and 8.19b) of the 

extended cylinder of length 5m and radius 0.057m, due to a line source of 15 point 
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8.31(a-j) 2D BEM results showing the scattered and total pressure fields around the Boeing cylinder, 

for plane waves incident from the left, for different values of ka. The scales for the scattered 
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8.34 FEA model of the Boeing cylinder. 171 
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8.36(a-h) Numerical results for the total sound pressure distribution at the surface of the Boeing 

cylinder due to incident plane waves on the front face for various values of ka. [Reference 
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8.39(a-b) Numerical results for the sound pressure distribution at the surface of the Boeing cylinder 

due to incident plane waves on the front face, for ka = 10. [Reference pressure 20µPa and 
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175 
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8.41(a-b) Numerical results for the total sound pressure distribution at the surface of the Boeing 

cylinder due to a point source of 250Hz placed at X = - 20D m, Y = 0m and Z = 0m (see 

Figure 7.1 for the source geometry). [Diameter of the cylinder, D = 2.46m and reference 

pressure 20µPa] 
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8.42 Total sound pressure comparison between the 3D BEM and analytical results calculated 
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for the source geometry). [Diameter of the cylinder, D = 2.46m, and reference pressure 

20µPa] 

 

 

 

 
177 

8.43(a-b) Numerical results for the total sound pressure distribution at the surface of the Boeing 

cylinder, due to a line source of fifteen point sources (see Figure 8.28 for the line source 

geometry) of arbitrary amplitudes (see Table 5.1), placed on the negative X axis. Each 
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source of fifteen point sources (see Figure 8.28 for the line source geometry) of arbitrary 
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8.45(a-b) Numerical results for the total sound pressure distribution at the surface of the Boeing 

cylinder, due to a line source of varying frequencies corresponding to one-third-octave 

centre frequencies from 50Hz to 315Hz. Arbitrary strengths given in Table 5.1 were used 

for each point source. [Reference pressure 20µPa] 
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placed on the negative X axis at the bottom of the Boeing cylinder. Arbitrary strengths 

given in Table 5.1 were used for each point source. [Reference pressure 20µPa] 
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8.47 FEA model of an RSLVF 182 

8.48 RSLVF surface elements and nodes. Geometry imported into the Open BEM. The blue 

circles show the circumferential nodes at a height of  z = 2.065m on the RSLVF. 
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8.49(a-t) Numerical results for the sound pressure distribution at the surface of the RSLVF for 

plane waves incident on the front face at various 1/3-octave band centre frequencies from 

50Hz to 400Hz. [Reference pressure 20µPa and incident pressure magnitude 1=οP Pa] 
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the circumferential nodes at a height of  z =  2.065m (see Figure 8.48) on the RSLVF, for 

plane waves incident on the front face, for 1/3-octave band centre frequency of 400Hz. 
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8.54(a-b) Numerical results for the sound pressure distribution at the surface of the RSLVF, due to 

a point source (see Figure 7.1 for the point source geometry) of 50Hz located at  X = -20D 

m (Diameter, D = 1.266m, see Figure 7.5), Y = 0m and Z = 0m. [Reference pressure 

20µPa] 
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for a point source of 50Hz located at X = -20D m (Diameter, D = 1.266m, see Figure 7.5), 

Y = 0m and Z = 0m. [Reference pressure 20µPa] 
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8.56(a-b) Numerical results for the total sound pressure distribution at the surface of the RSLVF, 

due to a line source of fifteen point sources (see Figure 8.28 for the line source geometry) 

of arbitrary amplitudes (see Table 5.1) placed on the negative X axis. Each source 

generated a frequency of 50Hz. [Reference pressure 20µPa] 
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8.57(a-b) Numerical results for the total sound pressure distribution at the surface of the RSLVF, 

due to a line source consisting of ten point sources of varying frequencies corresponding 

to one-third-octave band centre frequencies from 50Hz to 400Hz. Arbitrary strengths 

given in Table 5.1 were used for each point source. [Reference pressure 20µPa] 
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8.58 Total sound pressure comparison between the 3D BEM and analytical results calculated 

on the circumferential nodes at a height of  z = 2.065m (see Figure 8.48) on the RSLVF, 

for a line source consisting of fifteen point sources (see Figure 8.28 for the line source 

geometry) of arbitrary amplitudes (see Table 5.1) placed on the negative X axis. Each 

source generated a frequency of 50Hz. [Reference pressure 20µPa] 
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8.59 Total sound pressure comparison between the 3D BEM and analytical results calculated 

on the circumferential nodes at a height of  z = 2.065m on the RSLVF, due to a line 

source consisting of ten point sources (see Figure 8.28 for the line source geometry) of 

varying frequencies corresponding to one-third octave band centre frequencies from 50Hz 

to 400Hz, placed on the negative X axis at the bottom of the RSLVF. Arbitrary strengths 

given in Table 5.1 were used for each point source. [Reference pressure 20µPa] 
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9.4 Estimated relative sound power levels for each one-third-octave band centre frequency 

from 50Hz to 400Hz. [Data estimated from Figure 5, presented in NASA-SP-8072 

(1971)] 
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9.5 Estimated source locations for each one-third-octave band centre frequency from 50Hz to 

400Hz. [Data estimated from Figure 14, presented in NASA-SP-8072 (1971)] 
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9.6 Calculated sound power levels at each one-third-octave bandwidth from 50Hz to 400Hz. 206 

9.7 Simple directivity curve is used in calculations. [Data estimated from Figure 10, presented 

in NASA-SP-8072 (1971)] 
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9.8 Analytically calculated sound pressure levels at the surface of section two (see Figure 7.5 

in Chapter 7) at a height of z = 2.17m from the bottom face of the RSLVF, using the 

unique source allocation method, for an equivalent single point source for each one-third-

octave band centre frequency from 50Hz to 100Hz. For the equivalent point source 

location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and reference pressure  

20µPa] 
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9.9 Analytically calculated sound pressure levels at the surface of section two (see Figure 7.5 

in Chapter 7) at a height of z = 2.17m from the bottom face of the RSLVF, using the 

unique source allocation method,  for an equivalent single point source for each one-third-
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octave band centre frequency from 125Hz to 200Hz. For the equivalent point source 

location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and reference pressure  

20µPa] 
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9.10 Analytically calculated sound pressure levels at the surface of section two (see Figure 7.5 

in Chapter 7) at a height of z = 2.17m from the bottom face of the RSLVF, using the 

unique source allocation method,  for an equivalent single point source for each one-third-

octave band centre frequency from 250Hz to 400Hz. For the equivalent point source 

location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and reference pressure  

20µPa] 
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9.11 Analytically calculated overall sound pressure level at the surface of section two (see 

Figure 7.5 in Chapter 7) at a height of z = 2.17m from the bottom face of the RSLVF, 

using the unique source allocation method,  for the entire spectrum of one-third-octave 

band centre frequency range from 50Hz to 400Hz. For the equivalent point source 

location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and reference pressure 

20µPa] 
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9.12 Analytically calculated directivity pattern of the overall sound pressure level at the 

surface of section two (see Figure 7.5 in Chapter 7) at a height of z = 2.17m from the 

bottom face of the RSLVF, using the unique source allocation method, for the entire 

spectrum of one-third-octave band centre frequency range from 50Hz to 400Hz. For the 

equivalent point source location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  

and reference pressure  20µPa] 
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9.13 (a-t) Numerically calculated sound pressure excitation at the surface of the RSLVF using the 

unique source allocation method, for various one-third-octave band centre frequencies 

from 50Hz to 400Hz. For the equivalent point source location at each frequency see Table 

9.2. [ eDx 151 = , eDx 52 =  and reference pressure  20µPa] 
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9.14 (a-b) Numerically calculated overall sound pressure excitation at the surface of the RSLVF 

using the unique source allocation method, for the entire spectrum of one-third-octave 

band centre frequency range from 50Hz to 400Hz. For the equivalent point source 

location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and reference pressure  

20µPa] 
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9.15 Numerically calculated sound pressure levels on the circumferential nodes at a height of  z 

= 2.17m from the bottom face of the RSLVF, using the unique source allocation method, 

for various one-third-octave centre frequencies from 50Hz to 100Hz. For the equivalent 

point source location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and 

reference pressure  20µPa] 
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9.16 Numerically calculated sound pressure levels on the circumferential nodes at a height of  z 

= 2.17m from the bottom face of the RSLVF, using the unique source allocation method, 

for various one-third-octave centre frequencies from 125Hz to 200Hz. For the equivalent 

point source location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and 

reference pressure  20µPa] 
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9.17 Numerically calculated sound pressure levels on the circumferential nodes at a height of  z 

= 2.17m from the bottom face of the RSLVF, using the unique source allocation method, 

for various one-third-octave centre frequencies from 250Hz to 400Hz. For the equivalent 

point source location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and 

reference pressure  20µPa] 
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9.18 Comparison of the overall sound pressure level between the numerical and analytical 

results calculated on the circumferential nodes at a height of  z = 2.17m from the bottom 

of the RSLVF, using the unique source allocation method, for the entire spectrum of one-

 

 

 



List of Figures 

University of Adelaide   Mir Md. Maruf Morshed xxvi 

third-octave band centre frequency range from 50Hz to 400Hz. For the equivalent point 

source location at each frequency see Table 9.2. [ eDx 151 = , eDx 52 =  and reference 

pressure  20µPa] 
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9.19 Analytically calculated overall sound pressure level at the circumferential surface of 

section two (see Figure 7.5) at a height of  z = 2.17m from the bottom face of the RSLVF, 

using the non-unique source allocation method, for a line source of 10 individual point 

sources along the exhaust flow (see Figure 9.3), for each one-third-octave band centre 

frequency from 50Hz to 100Hz. The data used for the analytical calculation for each point 

source are given in Tables 9.3, 9.4, 9.5 and 9.6. [ eDx 151 = , eDx 52 =  and reference 

pressure  20µPa] 
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9.20 Analytically calculated overall sound pressure level at the circumferential surface of 

section two (see Figure 7.5) at a height of  z = 2.17m from the bottom face of the RSLVF, 

using the non-unique source allocation method, for a line source of 10 individual point 

sources along the exhaust flow (see Figure 9.3), for each one-third-octave band centre 

frequency from 125Hz to 200Hz. The data used for the analytical calculation for each 

point source are given in Tables 9.3, 9.4, 9.5 and 9.6. [ eDx 151 = , eDx 52 =  and 

reference pressure  20µPa] 
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9.21 Analytically calculated overall sound pressure level at the circumferential surface of 

section two (see Figure 7.5) at a height of z = 2.17m from the bottom face of the RSLVF, 

using the non-unique source allocation method, for a line source of 10 individual point 

sources along the exhaust flow (see Figure 9.3), for each one-third-octave band centre 

frequency from 250Hz to 400Hz. The data used for the analytical calculation for each 

point source are given in Tables 9.3, 9.4, 9.5 and 9.6. [ eDx 151 = , eDx 52 =  and 

reference pressure  20µPa] 
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9.22 (a-t) Numerically calculated sound pressure excitation at the surface of the RSLVF at various 

one-third-octave band centre frequencies from 50Hz to 400Hz, using the non-unique 

source allocation method. The data used for the numerical calculation for each point 

source are given in Tables 9.3, 9.4, 9.5 and 9.6. [ eDx 151 = , eDx 52 =  and reference 

pressure  20µPa] 
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9.23 Numerically calculated sound pressure levels on the circumferential nodes at a height of  z 

= 2.17m from the bottom face of the RSLVF at various one-third-octave centre 

frequencies from 50Hz to 100Hz, using the non-unique source allocation method. The 

data used for the numerical calculation for each point source are given in Tables 9.3, 9.4, 

9.5 and 9.6. [ eDx 151 = , eDx 52 =  and reference pressure  20µPa] 
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9.24 Numerically calculated sound pressure levels on the circumferential nodes at a height of  z 

= 2.17m from the bottom face of the RSLVF at various one-third-octave centre 

frequencies from 125Hz to 200Hz, using the non-unique source allocation method. The 

data used for the numerical calculation for each point source are given in Tables 9.3, 9.4, 

9.5 and 9.6. [ eDx 151 = , eDx 52 =  and reference pressure  20µPa] 
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9.25 Numerically calculated sound pressure levels on the circumferential nodes at a height of z 

= 2.17m from the bottom face of the RSLVF at various one-third-octave centre 

frequencies from 250Hz to 400Hz, using the non-unique source allocation method. The 

data used for the numerical calculation for each point source are given in Tables 9.3, 9.4, 

9.5 and 9.6. [ eDx 151 = , eDx 52 =  and reference pressure  20µPa] 
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Glossary of Symbols 

a  Radius of a cylinder 

a  Observation point 

ea  Speed of sound in the exhaust flow 

mA  Coefficients [defined by equations (3.16)] 

b  Distance between two point sources [see Figure (5.8)]; also, frequency band (Ch.9) 

c  Speed of sound 

)(qC  Solid angle from volume V  [defined by equations (8.7)] 

d  Distance between the nearest source and the cylinder surface [see Figure (5.8)] 

eD  Nozzle exit diameter 

i
mE  Amplitudes of the incident waves [see equation (3.22)] 

o
mE  Amplitudes of the outgoing waves [see equations (3.22), (3.26) and (3.27)] 

f  Frequency of sound 

F  Driving force in the medium (Ch.3); also, thrust of the rocket engine (Ch.9) 

)(

),,(),/(

RG

rrGraG qp′
 

 

Acoustic Green’s function [see equations (5.1), (5.2) and (8.1)] 

mH  Bessel function of the 3
rd
 kind or Hankel function 

1+mH  Hankel Function of th)1( +m  order 

1−mH  Hankel Function of th)1( −m  order 

)(1 zHm  Hankel function for incoming waves [defined by equation (A.5)] 

)(2 zHm  Hankel function for outgoing waves [defined by equation (A.6)] 

mH ′  Derivatives of the Hankel function of thm order 

0H ′  Derivatives of the Hankel function of th0 order 

1H  Derivatives of the Hankel function of first order 

),,( i
s krI φ  Scattered sound intensity as a function of radial distance r , wavelength k  and 

azimuthal angle iφ [defined by equation (4.4)] 

mJ  Bessel function of the first kind of thm order 

mJ ′  Derivatives of the thm  order Bessel function 

1+mJ  Bessel function of th)1( +m order 

1−mJ  Bessel function of th)1( −m order 

0J ′  Derivatives of the th0  order Bessel function 

1J  Bessel function of first order 
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k  Wave number 

L  Length of a cylinder 

ibpL φ,,  Sound pressure level at a frequency band b of interest [defined by equation (9.8)] 

ipL φ,OA,  Overall sound pressure level [defined by equation (9.9)] 

ibsegpL φ,,,  Sound pressure level corresponding to each segment at a frequency band b of 

interest [defined by equation (9.14)] 

ibsegpL φ,,OA,,  Overall sound pressure level over the entire segments of the exhaust flow at a 

frequency band  b  of interest [defined by equation (9.15)] 

wL  Overall acoustic power level [defined by equation (9.2)] 

bwL ,  Acoustic power level at a frequency band  b  of interest  [defined by equation (9.5)] 

segwL ,  Overall acoustic power level of exhaust flow segments [defined by equation (9.10)] 

bsegwL ,,  Acoustic power level of exhaust flow segments at a frequency band b  of interest 

[defined by equation (9.11)] 

n  Number of the point sources (Chs.5, 7); also, number of nozzles (Ch.9) 

N  Total number of point sources (Ch.5); also, number of surface elements (Ch.8) 

)(ξiN  Element shape functions [see equation (8.11)]  

mN  Bessel function of the 2
nd
 kind or Neumann function 

mN ′  Derivatives of the thm order Neumann function 

1+mN  Neumann function of the th)1( +m order 

1−mN  Neumann function of the th)1( −m order 

0N ′  Derivatives of the th0  order Neumann function 

1N  Neumann function of first order 

),( iap φ  Resultant pressure as a function of cylinder radius a  and azimuthal 

angle iφ [defined by equations (3.21) and (3.24)] 

ap  Resultant sound pressure at the surface of a cylinder [defined by equation (3.26)] 

ip  Incident wave pressure [see equation (3.7)] 

P  Acoustic pressure 

)(),( prPpP  Acoustic pressure at a point p  (Ch.8) 

( )pP , )( pPi  Constant nodal pressure on a point  p ; also, constant nodal pressure for ith elements 

[see equations (8.9) and (8.10)] 

οP  Equilibrium pressure in the medium 

),( φrPs∞  Scattered sound pressure as a function of radial distance r  and azimuthal angle 

φ [defined by equation (3.20)] 

iP  Incident wave pressure [defined by equation (7.1)] 

),,( i
i kaP φ  Incident wave pressure as a function of cylinder radius a , wave number k  and 

azimuthal angle iφ  [defined by equation (3.10)] 
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),,( i
i krP φ  Incident sound  pressure as a function of radial distance r , wave number k  and 

azimuthal angle iφ [defined by equation (4.1)] 

sP , sp  Scattered sound pressure  

),,( i
s kaP φ  Scattered sound pressure as a function of cylinder radius a , wave number k  and 

azimuthal angle iφ   [defined by equation (3.11)] 

),,( i
s krP φ  Scattered pressure as a function of radial distance r , wave number k  and 

azimuthal angle iφ  [defined by equation (4.3)] 

)(qP I  Incident acoustic pressure at point q  (Ch.8) 

I
fP  Incident acoustic pressure on the field points [see equation (8.18)] 

( )i
t
a kaP φ,,  Total sound pressure as a function of cylinder radius  a, wave number  k and 

azimuthal angle iφ  [defined by equation (3.18)] 

),,,,( sii
t
a QakRP φ  Total sound pressure at the surface of a cylinder  due to a point source [defined by 

equation (5.5)] 

)( iRP′  Spatially dependent factor [defined by equation (5.4)] 

sQ , bsQ , , bsegsQ ,,  Source strength [see equations (5.4), (9.7) and (9.13)] 

nr  Distance between the origin of the cylinder to the thn  number of point sources 

[defined by equation (5.6)] 

pr  Distance to integration point on the boundary from the centre of the body (Ch.8) 

qr  Distance to point q from the centre of the body (Ch.8) 

r ′  Source distance [see equation (5.1)] 

R  Distance between a point source and observation point [see equation (5.2)]; also, 

oblique resultant distance between a point source and an observation point [defined 

by equation (7.3)] 

iR  Distances between a point source and thi number of observation points [see 

equations (5.3) and (7.4)] 

R′  Distance between a point source and an projected observation point [see Figure 

(7.1); also, defined by equation (7.2)] 

S  Boundary surface (Ch.8) 

t  Time 

u  Directional particle velocity 

)(),( pn rupu  Outward normal particle velocity at a point p  (Ch.8) 

eU  Fully expanded exit velocity 

bW  Acoustic power of a source at a frequency band  b of interest [defined by equation 

(9.6)] 

bsegW ,  Acoustic power of a source corresponding to a segment of exhaust flow at a 

frequency band  b of interest  [defined by equation (9.12)] 

x  Distance travelled by sound waves along the x -axis; also, node position along the 

x  coordinate (Ch.8) 
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tx  Core length 

y  node position along the y  coordinate (Ch.8) 

z  Cylinder axis 

ω  Angular frequency 

β  Elevation angle 

γ  Specific heat ratio 

mγ  Phase angles for mth order 

iφ  Azimuthal or circumferential angle 

ψ , sψ  Velocity potential  

),,( i
s
m ka φψ  Velocity potential as a function of cylinder radius a , wavelength k  and azimuthal 

angle iφ [defined by equation (4.2)] 

λ  Wavelength 

ρ  Density of air in the exhaust flow 

ορ  Equilibrium density in the fluid 

),( ra ′−δ  )( qp rr −δ  Dirac delta function [see equations (5.1) and (8.1)] 

Γ  Gamma function [defined by equation (A.3)] 

mε  Constant terms used in the equations 

∇  Laplacian operator or differential operator 

x∆  Length of exhaust flow slices 

bf∆  Bandwidth of the frequency band, b  
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