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wavefronts coming from DOAs in a narrow sector around broadside
of the transformed geometry. This is the case of multibaseline inter-
ferometric SAR systems, and of phased array radar applications where
only the sources present in a single azimuth resolution cell are sensed.
The results obtained can be useful also when the sector of DOAs is
not narrow. In wireless communication scenarios, one could prelimi-
nary select a DOA subsector by means of a beamspace algorithm and
then recalculate the HCRB as outlined here. Another possible appli-
cation is when the sources are clustered around some directions each
well spaced apart from the others; since the estimation of the sources
in one cluster is not significantly affected by the others, the HCRB de-
rived here can be applied to each cluster separately. In the applications
different from InSAR, the proper spatial decorrelation model (see e.g.,
[9], [10]) can be promptly adopted in place of the linear model used
here for the numerical example.
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eter estimation in non-Gaussian clutter,” IEEE Trans. Signal Process.,
vol. 46, no. 7, pp. 1945–1953, Jul. 1998.

[5] H. Messer, “The hybrid Cramér–Rao lower bound-from practice to
theory,” in Proc. 4th IEEE Workshop Sensor Array Multichannel Pro-
cessing, Jul. 2006, pp. 304–307.

[6] B. Wahlberg, B. Ottersten, and M. Viberg, “Robust signal parameter
estimation in the presence of array perturbation,” in Proc. Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), May 1991, vol. 5, pp.
3277–3280.

[7] H. L. Van Trees, Optimum Array Processing. Part IV of Detection, Es-
timation, and Modulation Theory. New York: Wiley, 2002.

[8] F. Lombardini, M. Montanari, and F. Gini, “Reflectivity estimation
for multibaseline interferometric radar imaging of layover extended
sources,” IEEE Trans. Signal Process., vol. 51, no. 6, pp. 1508–1519,
Jun. 2003.

[9] O. Besson and P. Stoica, “Decoupled estimation of DOA and angular
spread for a spatially distributed source,” IEEE Trans. Signal Process.,
vol. 48, no. 7, pp. 1872–1882, Jul. 2000.

[10] A. B. Gershman, V. I. Turkin, and V. A. Zverev, “Experimental results
of localization of moving underwater signal by adaptive beamforming,”
IEEE Trans. Signal Process., vol. 43, no. 10, pp. 2249–2257, Oct. 1995.

[11] A. Jakobsson, F. Gini, and F. Lombardini, “Robust estimation of radar
reflectivities in multibaseline InSAR,” IEEE Trans. Aerosp. Electron.
Syst., vol. 41, pp. 751–758, Apr. 2005.

[12] S. M. Kay, Fundamentals of Statistical Signal Processing. Estimation
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[13] F. Gini, F. Lombardini, M. Pardini, and L. Verrazzani, Array inter-
polation methods for non-uniform multibaseline SAR interferometers
Univ. of Pisa, Pisa, Italy, Edizioni ETS, Tech. Rep., Aug. 2006.

[14] A. Reigber and A. Moreira, “First demonstration of airborne SAR to-
mography using multibaseline L-band data,” IEEE Trans. Geosci. Re-
mote Sens., vol. 38, no. 5, pp. 2142–2152, Sep. 2000.

[15] G. Fornaro, F. Lombardini, and F. Serafino, “Three-dimensional mul-
tipass SAR focusing: Experiments with long term spaceborne data,”
IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 702–714, Apr.
2005.

[16] G. Bamler and P. Hartl, “Synthetic aperture radar interferometry,” In-
verse Prob., vol. 14, pp. R1–R54, 1998.

[17] G. Krieger and A. Moreira, “Multistatic SAR satellite formations:
Potentials and challenges,” in Proc. Int. Geosci. Remote Sens. Symp.
(IGARSS), Jul. 2005, vol. 4, pp. 2680–2684.

[18] F. Lombardini, J. Ender, L. Roessing, M. Galletto, and L. Verrazzani,
“Experiments of interferometric layover solution with the three-an-
tenna airborne AER-II SAR system,” in Proc. IEEE Int. Geosci. Re-
mote Sens. Symp. (IGARSS), Sep. 2004, vol. 5, pp. 3341–3344.

[19] P. Stoica, Z. Wang, and J. Li, “Extended derivation of MUSIC in pres-
ence of steering vector errors,” IEEE Trans. Signal Process., vol. 53,
no. 3, pp. 1209–1211, Mar. 2005.

[20] C. Colesanti, A. Ferretti, C. Prati, and F. Rocca, “Multi-image satellite
SAR interferometry: State of the art and future trends,” in Proc. Int.
Radar Conf., Sep. 2003, pp. 239–244.

A Cholesky Factorization Based Approach for Blind FIR
Channel Identification

Jinho Choi and Cheng-Chew Lim

Abstract—For blind channel identification, various techniques, in-
cluding transmitter-induced cyclostationarity based approaches, have
been proposed in literature. To induce cyclostationarity at the transmitter,
zero padding to every symbol packet can be considered. Some subspace
methods are proposed for the channel estimation by exploiting the induced
cyclostationarity. Due to zero padding, the covariance matrix of received
signal vectors can have a special structure. Utilizing this structure, we
can estimate channel impulse responses through factorization. In this
correspondence, we propose a factorization based approach to estimate
channel impulse responses. In general, the proposed factorization based
approach can work with a small number of samples and becomes much
more computationally efficient than the subspace method when the length
of packets is long.

Index Terms—Blind channel identification, Cholesky factorization.

I. INTRODUCTION

It is impossible to blindly identify mixed-phase finite impulse re-
sponse (FIR) using second-order statistics. If some other properties
of input signals can be utilized, however, blind FIR systems identifi-
cation becomes possible. For example, using high-order statistics of
non-Gaussian input signals, blind identification has been studied in
[6], [29]. Since the input signals to communication channels are not
Gaussian signals and communication channels are usually modelled by
FIR systems [19], the high-order-statistics-based approaches are suc-
cessfully applied to blind FIR channel identification. In [30], [24], other
approaches based on discrete-alphabet inputs in digital communication
systems have been proposed. In general, the above approaches require
a high computational complexity or a large number of samples for a
satisfactory performance [18].

In [25] and [26], second-order-statistics-based approaches for blind
channel identification are proposed using oversampling or multi-
channel inputs (in [27], an overview can be found). By employing
the temporal oversampling techniques, phase information of FIR
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channels can be retained in second-order statistics of oversampled
signals. Since this approach uses second-order statistics, it can be
more computationally efficient than the approaches rely on high-order
statistics. In [1], [14], other approaches based on second-order sta-
tistics are considered to identify FIR channels. Those methods have
restrictions on zero locations of FIR subchannels from oversampling
or multiple antennas. In [5], it is shown that those methods can fail
for some practical channels which can have common zeros among
the subchannels obtained by oversampling. (In [20], it is shown that a
class of those channels can be identified using multiple antennas. In
this case, the subchannels do not share common zeros.)

In order to overcome the above difficulty, various approaches can
be considered. In [11], noncircularity of certain data symbols is ex-
ploited in conjunction with second-order statistics of signals. Trans-
mitter-induced cyclostationarity has been considered in [7] and [28].
The methods in [7] and [28] can blindly identify FIR channels without
constraints on zero locations of channels. In [28], the cyclostationarity
has been obtained by repeating input blocks and it reduces the informa-
tion rate by half. In order to minimize the decrease of the throughput,
a different technique has been used in [7] to induce cyclostationarity.
In transmitters, a precoding filterbank has been used and the asso-
ciated rate reduction can be arbitrarily small. Cyclostationary-based
approaches are applicable to various systems, including orthogonal-
frequency-division multiplexing (OFDM) [12] and code-division mul-
tiple access (CDMA) [21]. In [13], virtual carriers (unmodulated car-
riers) are utilized for blind channel estimation in OFDM systems as cy-
clostationary is induced using virtual carriers. Various approaches for
blind channel estimation and equalization, including the approaches
discussed above, are reviewed in [8].

In order to induce cyclostationarity at the transmitter, a simple ap-
proach is to append zeros or null signals at the end of each data packet.
This simple method provides a special structure of the covariance ma-
trix of received signal vectors. Using the special structure, various sub-
space methods are proposed in [4], [17], and [21]. A generalization of
the subspace method has been considered in [23]. In this correspon-
dence, we propose a blind channel estimation method that can provide
a reasonably good estimate of the channel impulse response with a rel-
atively small number of data blocks using the (modified) Cholesky fac-
torization of the covariance matrix. We can observe that the upper tri-
angular matrix (obtained by the Cholesky factorization) retains a full
information of the channel impulse response. A parameterization tech-
nique is devised to estimate the channel impulse response from the
upper triangular matrix. It is noteworthy that the computational com-
plexity of the proposed method depends on the length of channel im-
pulse response, while the computational complexity of the subspace
method depends on the length of packet. Thus, when the length of
packet is long, the proposed method becomes much more computa-
tionally efficient.

II. SYSTEM MODEL

Consider a block of data symbols

x[k] = [x[kM ] x[kM � 1] . . . x[kM �M + 1]]T

where fx[t]g denotes the data symbol sequence and M denotes the
block of (encoded) data symbols. For zero padding, (N �M) zeros
(N > M) are appended and the resulting packet to be transmitted is
given as follows:

y[k] = [y[kN ] y[kN � 1] . . . y[kN �N + 1]]T

= [x[kM ] x[kM � 1] . . . x[kM �M + 1] 0 . . . 0

N�M xzeros

]T (1)

where y[k] denotes the kth extended data packet and N denotes its
length. Note that by inserting zeros or null signals, cyclostationarity
can be induced [7]. The information rate can be defined by the ratio
M=N . For convenience, denote by (N �M)=N the redundancy ratio.
The information rate decreases with the redundancy ratio. The received
signal (in the discrete-time domain) is written as

z[t] =

L�1

`=0

h[`]y[t � `] + n[t]

where fh[`]g denotes the FIR of the channel, L denotes the length of
the channel impulse response, and n[t] denotes the background noise.
Stacking z[t], we have the following vector: z[k] = [z[kN ] z[kN �
1] . . . z[kN �N + 1]]T . For channel identification, we now consider
a truncated version of z[k] which is defined as �z[k] = [z[kN ] z[kN �
1] . . . z[kN � N + L]]T . Another representation of the vector �z[k]
can be found as follows:

�z[k] = Hy[k] + n[k] = H
x[k]

0(N�M)�1
+ n[k] (2)

where H is the channel filtering matrix of size N � (L� 1)�N

H =

h[0] . . . h[L� 1] 0

. . .
. . .

0 h[0] . . . h[L� 1]

(3)

andn[k] = [n[kN ] n[kN�1] . . .n[kN�N+L]]T . For convenience,
let Q = N � (L � 1). Using the vector �z[n], we can derive various
factorization methods for the blind channel identification.

In OFDM, cyclic prefixing or zero padding can be used to avoid the
intersymbol interference (ISI) [16]. The received signal in (2) is valid
for OFDM symbols with zero padding. In this case, x[k] is the inverse
discrete Fourier transform (IDFT) of signal vector (of size M � 1).
Let v[k] denote the kth data symbol vector whose elements are data
symbols. Then, x[k] is given as follows:

x[k] = Fv[k] (4)

where F is the IDFT matrix with [F]p;q = 1p
M
ej2�(p�1)(q�1)=M .

III. CHANNEL IDENTIFICATION VIA CHOLESKY FACTORIZATION

In this section, we show that how FIR channels can be identified via
factorization. The following conditions are necessary for the channel
identifiability.

C1) M � L: Although the exact length of channel impulse re-
sponse is not required to identify channel vectors, its upper
bound shall be known to decide M .

C2) Q > M : Since Q = N � (L� 1), this condition implies that
N �M+L. If the variance of the background noise is known,
this condition can be relaxed as Q � M .

A. Second-Order Statistics

Second-order statistics are utilized for blind channel identification.
The following assumptions on second-order statistics are necessary.

A) Rx = E[x[k]xH [k]] = �2I and E[x[k]] = 0;Rn =
E[n[k]nH [k]] = �2nI and E[n[k]] = 0;h[0] 6= 0. Consider the
covariance matrix of �z[k];R�z = E[�z[k]�zH [k]]. From A), we
have

R�z = �2HBHH + �2nI (5)
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where B =
IM�M 0M�(N�M)

0(N�M)�M 0(N�M)�(N�M)
. Consider

a submatrix of R�z as follows: R = [R�z]1:M;1:M , where
[A]1:M;1:M stands for the submatrix of A which has the same
elements of A; ai;k , for i; k = 1; 2; . . . ;M . It follows that

R = �2HHH + �2nI (6)

where

H =

h[0] h[1] . . .

0 h[0] h[1]
...

. . .

0 . . . h[0]

: (7)

Under C1), the matrix H contains a full information of the
channel vector h = [h[0] h[1] . . . h[L � 1]]T . Clearly, if H
is available from R, the channel vector can be found from its
elements.

B. Modified Cholesky Factorization

The matrix R in (6) has an interesting structure. Consider

�R = R� �2nI = �2HHH : (8)

Obviously, we can see that the matrixH can be obtained via factoriza-
tion. Using a modification of the Cholesky factorization, we can find
the matrix H uniquely from �R [9].

Property 1: Let

�R = GG
H (9)

where G is the modified Cholesky triangular matrix. Under A), the
matrixH is uniquely identified (up to complex scalar ambiguity) from
the following relation:

G = �H (10)

where � is a complex scalar.
In above, we show that the channel vector can be blindly estimated

using the modified Cholesky factorization. A similar approach that
uses the Cholesky factorization was considered in [15] to estimate the
channel impulse response in OFDM systems with cyclic prefix. For the
factorization, we need to know �R. To obtain �R, we need to find R�z

and �2n. Those are all second-order statistics. Thus, the factorization
method to blindly identify single-channel vectors can be considered as
one of the second-order-statistics-based approaches.

C. Parameterization Technique From Sample Covariance Matrix

From finite samples, say K , we need to have the estimate of the
covariance matrix R�z as R̂�z = 1=K K

k=1 �z[k]�z
H [k]. To estimate

�R from R̂�z, we shall estimate the variance of the background noise,
�2n. Since the rank of HBHH is M , we can estimate �2n using the
eigendecomposition under Condition C2). [Since Q > M (to esti-
mate �2n), the minimum redunancy ratio can be given by L=N (with
Q = M+1). The redundancy ratio can approach zero asN increases.]
Once �2n is estimated, an estimate of �R is available using (8). From
C2), we can consider the average of the Q �M > 0 smallest eigen-
values of R̂�z as an estimate of �2n, �̂2n = 1=Q�M Q

`=M+1 �̂`,
where �̂1 � �̂2 � . . . � �̂Q are the eigenvalues of R̂�z and ê` de-
notes the eigenvector corresponding to �̂`. For the uniqueness of the
factorization, the estimate of �R should be positive definite according

to Theorem 1. From the eigendecomposition of R̂�z, we can find an es-
timate of �R which is nonnegative definite:

�̂R = Ŝ1 �̂S � �̂2nI Ŝ
H
1 (11)

where Ŝ1 = [Ŝ]1:M;1:M ; Ŝ = [ê1 ê2 . . . êM ], and �̂S =
diag(�̂1; �̂2; . . . ; �̂M ). Using the estimate in (11), we can obtain
the estimate of the channel vector uniquely through the factorization.
Note that if ê` and �̂` approach e` and �`, respectively, �̂R also
approaches �R. Here, �1 � �2 � � � � � �Q are the eigenvalues of
R�z and e` are the corresponding eigenvectors. This shows that the
estimated channel impulse response approaches the true one as K
increases.

Note that C2) can be modified as C20) Q � M if �2n is known
(because the estimate of �2n is not necessary). With a sufficiently high
SNR, the noise variance can be negligible in (11) and �̂R ' R̂�z. In this
case, the eigendecomposition in (11) is not required.

The channel vector can be estimated from the estimate �̂R. Let Ĥ
denote the estimate of H from �̂R using the modified Cholesky factor-
ization. Although H is Toeplitz, its estimate, Ĥ, may not be Toeplitz
from estimation errors. This leads to a M(M + 1)=2 to M mapping
problem. Using Toeplitz structure ofH, we can have a parameterization
technique to estimate the channel vector h from Ĥ. Using the relation
in (10) with assuming that h[0] is real, we can consider the following
optimization problem:

min
h

kĜ�G(h)kF (12)

where h = [h[0] h[1] . . .h[M � 1]]T and

G(h) =

h[0] h[1] . . . h[M � 1]

0 h[0] . . . h[M � 2]

. . .

0 0 . . . h[0]

:

In (12), we assume that the length of the channel vector is M(� L).
If the length of the channel vector is known, we can have a smaller
number of the parameters to be estimated (because we assume thatL �
M ).

Property 2: The solution vector H in (12) can be found using the
vectorization operation and least squares (LS) solution. The solution of
(12) is given as follows:

ĥ = (QH
Q)�1

Q
H
ĝ (13)

where Ĝ = vec(Ĝ) and the matrix Q of size M2 �M is a selection
matrix which will be given below. In addition, the rank of Q is M (it
means that the inverse of QHQ exists).

Proof: Through the vectorization of the upper triangular matrix
G, it follows that

g = vec(G(h)) = Qh (14)

where Q is the selection matrix of size M2 � L. For conve-
nience, assume that M = L. If L < M , the vector h can be
modified as [hT 0 . . . 0

(M�L)�

]T . Then, the selection matrix Q becomes

Q = JT1 J
T
2 . . .JTM

T
, where M �M matrices Jk are defined as

[Jk]s;t =
1; if s+ t = k � 1

0; otherwise.

Using (14), we have kĜ�G(H)kF = kĝ�QHk. Thus, the solution
vector in (12) is the LS solution and given in (13).
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Fig. 1. Results of the channel estimation when = 10 = 8( =
50 = 400 and SNR = 20 dB).

D. Complexity and Other Issues

The proposed approach for the blind channel identification can be
seen as a two-step approach. In the first step, the Cholesky factorization
is performed with the truncated covariance matrix in (8). In the second
step, the channel impulse response is extracted from the upper trian-
gular matrix through the minimization in (12). The second step requires
a matrix inversion in (13). SinceQ is known and fixed, (QHQ)�1QH

can be computed a priori. In addition, the parameterization technique
in Section III-C can be avoided if the diagonal elements of G can be
averaged to estimate h, as follows:

ĥ[p] =
1

M � p

M�p

q=1

[Ĝ]q;q+p; p = 0; 1; 2; . . . ; L� 1:

Consequently, the second step does not incur a high computational
complexity, and the compuational complexity would be dominated by
the first step, in particular, the Cholesky factorization. The complexity
of the Cholesky factorization is O(M2). However, if the length of the
channel impulse response, L, or its upper bound is known a priori, the
complexity can be reduced. Suppose that M � L (this is the case for
a high information rate,M=N ). From (8), we can see that �R is banded
(i.e., [ �R]p;q = 0 for q > p+L and p > q+L). Then, the complexity
of the Cholesky factorization becomesO(ML2) [9]. Alternatively, the
following �L � �L submatrix of �R for the Cholesky factorization can
be considered, where �L is an upper bound of the length of the channel
impulse response and M � �L � L:

[�]p;q = [ �R]p+Q��L;q+Q��L; p; q = 1; 2; . . . ; �L: (15)

We can see that Phi = �2H�LH
H
�L , where

H�L =

h[0] h[1] . . . h[ �L� 1]

0 h[0] . . . h[ �L� 2]

. . .

0 0 � � � h[0]

:

From this, we can see that the complexity is not significantly high
even though M is large as long as �L(� L) is small.

The proposed approach is applicable to OFDM systems with
zero padding. If the data symbols in v[k] in (4) are inde-
pendent and identically distributed (i.i.d.), we can show that
Rx = FE[v[k]vH [k]]FH = �2vI, where E[v[k]vH [k]] = �2vI
and �2v denotes the variance of the data symbols in v[k]. Thus, A) is

valid to OFDM systems with zero padding, and the proposed approach
can be used to estimate the channel impulse response in OFDM
systems.

Generally, in the subspace methods in [4], [21], the number of data
blocks, K , should be sufficiently large so that a reasonably good es-
timate of G is available. For fast fading channels, however, it is diffi-
cult to have a sufficiently large number of data blocks as the coherence
time can be short. As shown above, the proposed method does not use
the noise subspace. Thus, the number of data blocks, K , can be small.
There are other subspace methods that can provide good performance
even though K is small [17], [23] . In particular, a generalized sub-
space method is proposed and its performance is excellent (performs
better than the proposed factorization based approach as will be shown
in Section IV). However, the computational complexity becomes pro-
hibitively high when the length of packet N is long as a singular value
decomposition (SVD) of a matrix of size (approximately) N � N is
required. On the other hand, the complexity of the proposed factor-
ization-based approach depends on the length of the channel impulse
response L (provided that L is known). Thus, when N � L, the pro-
posed factorization-based approach becomes much more computation-
ally efficient than the subspace method in [23].

IV. NUMERICAL RESULTS

In this section, we show some numerical results for the proposed
approach with statistical performance.

We consider an FIR channel that has common zeros. The real part of
the channel has the zeros at 0.2, �1:5;�j0:5; 0:2783� j0:3488. The
length of the channel impulse response, L, is 8. The signal-to-noise
ratio (SNR) is defined as SNR = khk2=�2n. If the length of the channel
impulse response,M , is not known, an overestimate ofM can be used.
Fig. 1 shows simulation results of the proposed approach when M =
10 > L = 8 (we assume that N = 20;K = 400, and SNR = 20 dB).
We can observe that the estimates of the last two coefficients are close
to zero.

For performance comparison, the mean squared error (MSE) of the
channel estimate (after correcting scalar ambiguity) is defined as

MSE(ĥ) =
E[min� kh� �ĥk2]

khk2 : (16)

For OFDM signals (of size N = 64), simulations are carried out with
the proposed approach and the subspace approach in [21]. We assume
that h[l] is independent zero-mean complex Gaussian random variable
(i.e., Rayleigh fading is assumed) and E[jh[l]j2] = 1=L for the nor-
malization purpose. The SNR is defined as SNR = 1=�2n with QPSK
signaling of signal alphabet f(�1� j)=

p
2g. Once the channel is es-

timated, the minimum mean square error (MMSE) equalizer is used to
detect the data symbols.

Fig. 2 shows the results for various values of SNR when
L = 5;M = Q � 1, and K = 10. We consider the two sub-
space methods in [21] and [23]. Note that for the subspace method in
[23], a smoothing factor (for convenience, we denote by Qs) has to be
decided. According to [23], Qs � N � 1=K � 1, and we set Qs = 7
for simulations. For the subspace method in [21], since K < N ,
a good sample covariance matrix for the noise subspace estimation
cannot be obtained. This results in a poor performance of the subspace
method in [21]. This problem was solved in [23] and a much better
performance can be achieved as shown in Fig. 2. The proposed method
can also provide a reasonably good performance when K < N , but
its performance is worse than that of the subspace method in [23].
However, as mentioned in Section III, the proposed method can be
more computationally efficient than the subspace method in [23] as N
increases.
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Fig. 2. MSE and BER for various SNRs ( = 64 = 10).

Fig. 3 shows the results for various values of K with SNR = 14

dB. For the subspace method in [23], we set Qs = dN � 1=K � 1e.
In general, the subspace method in [23] outperforms. Note that it is
shown that the MSE of the proposed method decreases slowly with
K in Fig. 3. Generally, the MSE of the sample covariance matrix is
proportional to 1=K and the MSE of the subspace method is also pro-
portional to 1=K [22]. Unfortunately, this is not valid in the proposed
method. As shown in [3], the error matrix of the Cholesky factorG is
proportional to the condition number of the covariance matrix �R. In
general, the condition number of �R depends on the spectrum of the
channel impulse response [10]. If there are spectral nulls, the condi-
tional number becomes infinity. This implies that the performance of
the proposed method depends on not only the number of data blocks,
K , but also the spectrum of the channel impulse response. Although
K is large, if the spectrum of the channel has nulls, the performance
cannot be satisfactory. This is the reason why the MSE performance is
slowly improved as K increases as shown in Fig. 3.

Fig. 3. MSE and BER for various values of ( = 64 and SNR = 14 dB).

V. CONCLUDING REMARKS

A Cholesky factorization based approach for blind channel iden-
tification was proposed with a parametric technique to estimate the
channel impulse response from the upper triangular matrix which re-
tains a full information of the channel impulse response. Through sim-
ulations, it was shown that the proposed method can be effective even
if the number of data blocks is small. This becomes attractive for time-
varying channels. In addition, the proposed method becomes much
more computationally efficient than the subspace method as the length
of packet increases.
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MMSE WL Equalizer in Presence of Receiver
IQ Imbalance

Davide Mattera, Luigi Paura, and Fabio Sterle

Abstract—In this correspondence, with reference to the transmission
over a linear time-dispersive channel, we address the problem of the
in-phase and quadrature-phase (IQ) imbalance compensation when a
single-carrier modulation scheme is used. Low-cost fabrication technolo-
gies and high data-rate transmissions render the conventional receivers
very sensitive to the imperfections of their analog stage and, hence, proper
countermeasures need to be adopted. Since the IQ imbalance renders the
received signal rotationally variant, we propose to resort to the widely
linear (WL) filtering in the synthesis of the receiver. More specifically, the
synthesis of the WL receiver is performed by assuming perfect knowledge
of the IQ imbalance parameters, but a new blind algorithm for IQ im-
balance compensation, which outperforms the existing blind technique, is
also proposed.

Index Terms—Blind equalization, IQ imbalance, widely linear.

I. INTRODUCTION

Most of the communication receivers include an analog stage where
frequency conversion (or sometimes the low-pass signal extraction)
takes place. An ideal model for such an analog stage is often employed
for receiver synthesis and for its analysis. The conversion stage, as
well as any other stage, is subject to the unpredictable imperfections
of its analog components. In particular, the conversion stage suffers
from the imbalance between the two periodic signals in the in-phase
and quadrature (IQ) branches of the converter: jcI1j 6= jcQ

1
j and/or
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