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A stirring device consisting of a periodic motion of rods induces a mapping of the fluid domain to
itself, which can be regarded as a homeomorphism of a punctured surface. Having the rods undergo
a topologically complex motion guarantees at least a minimal amount of stretching of material
lines, which is important for chaotic mixing. We use topological considerations to describe the
nature of the injection of unmixed material into a central mixing region, which takes place at
injection cusps. A topological index formula allow us to predict the possible types of unstable
foliations that can arise for a fixed number of rods. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2973815]

By stirring a fluid, mixing is greatly enhanced. By this we
mean that if our goal is to homogenize the concentration
of a substance, such as milk in a teacup, then a spoon is
an effective way to mix. But in many industrial applica-
tions, such as food and polymer processing, the fluid is
very viscous, so that stirring is difficult and costly. Hence,
insight into the types of stirring that lead to good mixing
is valuable. We explain how the mixing pattern—the
characteristic shape traced out by a blob of dye after a
few stirring periods—is tightly connected with topologi-
cal properties of the stirring motion. In particular, we can
enumerate the allowable number of pathways where ma-
terial gets injected into the mixing region, as a function of
the number of stirring rods.

I. STIRRING WITH RODS

A rod stirring device, in which a number of rods are
moved around in a fluid, is the most natural and intuitive
method of stirring. The number of rods, their shape, and the
nature of their motion constitute a stirring protocol. For ex-
ample, Fig. 1 shows the result of stirring with the figure-eight
protocol, whereby a single rod in a closed vessel traces a
lemniscate shape. The Reynolds number is very small, so
that the fluid (sugar syrup) is in the Stokes regime, where
inertial forces are negligible and pressure and viscous forces
are in balance. Because of the shape of the rod and container,
three-dimensional effects are negligible. The fluid is the pale
background, and a blob of black ink has been stretched by a
few periods of the rod motion. The evident filamentation of
the blob is characteristic of chaotic advection,z’3 which
greatly enhances mixing effectiveness in viscous flows.

We aim to understand the features of rod stirring proto-
cols such as those depicted in Figs. 1-3 from topological
considerations. The new topological features that we discuss
can be divided in two broad categories: (i) The injection
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cusps and their role and (ii) the identification of higher-
pronged singularities directly in flow simulations. Though
both of these concepts are familiar from the topological
study of surface homeomorphismsf"5 we interpret them here
in light of practical stirring protocols. Our study is a natural
continuation of the original investigation by Boyland et al®
and the subsequent work of Gouillart et al." Our goal is to
refine the previous approaches by looking for more detailed
features of the Thurston—Nielsen classification in real fluid
flows.

As an illustration, we examine the topological features
visible in Fig. 1. The two unmixed regions in the center of
the loops of the figure-eight play the role of two extra rods,
called ghost rods,’ so that we can regard this protocol as
effectively involving three rods. Three rods are the minimum
needed to guarantee exponential stretching of material
lines,*® and for the figure-eight protocol the length of mate-
rial lines grows by at least a factor of (1+\/2) at each pe-
riod. This is the first feature that can be understood from the
topology of the rod motion: It places a lower bound on the
topological entropy, which is closely related to the rate of
stretching of material lines in two dimensions. This aspect
has been well studied.®™"’

Less well studied is another crucial feature obvious in
Fig. 1: The unmixed fluid (white) is injected into the mixing
region (kidney-shaped darker region) from the top part of the
region, where a cusp is clearly visible. We say that the
figure-eight protocol has one injection cusp. In fact, for three
rods, the situation in Fig. 1 is typical; for instance, a kidney-
shaped mixing region is also evident in the efficient stirring
protocol of Boyland et al.® The nature of the injection of
unmixed material into the central region has a profound im-
pact on mixing rates, as was shown in recent experiments.1
In these experiments the rate of injection of unmixed mate-
rial into the central region of a stirring device dramatically
limited the efficiency of mixing. This injection took place
along injection cusps as described here; hence, the number of
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FIG. 1. (Color online) The figure-eight stirring protocol. The inset shows
the sequence of rod motions. The central black circle is the stirring rod, and
the other two circles locate the position of regular islands, which serve as
ghost rods. [Experiments by Gouillart and Dauchot, CEA Saclay (Ref. 1).]

injection cusps and their positions are clearly important for
mixing.

The importance of injection cusps is even more apparent
when dealing with open flows. Open flows, as opposed to
flows in closed vessels, involve fluid that enters and subse-
quently exits a mixing region. This situation is very common
in industrial settings, since it allows continuous operation
without the need to empty the vessel. Typical fluid particles
remain in the mixing region for only a short time. Figure 2
shows the figure-eight stirring protocols in an open channel.
The only difference between cases (a) and (b) is the direction
of rotation of the rods. In a closed vessel, reversing the di-
rection of rotation merely moves the injection cusp from top
to bottom, but in an open flow it moves the injection cusp
either facing the flow or against it. In Fig. 2(a), the injection
cusp is downstream, so the passive scalar enters the mixing
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FIG. 2. Numerical simulations of flow in a channel with a figure-eight rod
stirring protocol. (a) Injection cusp against flow. (b) Injection cusp facing
flow. The flow direction is from the bottom to the top of the figures.
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FIG. 3. (Color online) Numerical simulation of the four-rod periodic stirring
protocol U,Uzagl in a viscous flow, corresponding to three rod interchanges
for each period (inset). This sequence of interchanges forces the flow to be
isotopic to a pseudo-Anosov homeomorphism. A material line advected for
six periods reveals leaves of the unstable foliation . The foliation exhibits
four one-pronged singularities around the rods, one interior three-pronged
singularity (in the region indicated by a dot, between and just above the first
and second rods), and a separatrix attached to the disk’s outer boundary,
visible as an injection cusp along from the top into the mixing region. (The
position of the singularities and separatrix are approximate.) Compare with
Fig. 4, which shows typical leaves of the foliation in the neighborhood of
singularities.

region from behind. This is clear from the dye filament at the
bottom, which skirts the mixing region from the right. In
contrast, Fig. 2(b) shows the opposite case, where the injec-
tion cusp is upstream. In that case the dye is drawn directly
into the mixing region. Clearly these two cases have radi-
cally different mixing properties, as evidenced by the differ-
ent dye patterns downstream. Thus, being able to predict the
number and nature of injection cusps from the rod motion is
of crucial importance. The qualitative details of Fig. 2 are
independent of the manner in which dye is injected. The
extra injection cusps visible downstream in Fig. 2(a) are an
artifact of the open-flow configuration: They are images of
the single injection cusp being advected downstream by the
mean flow at each period. The results presented in the rest of
the paper apply rigorously only to closed flows, but it is
evident from Fig. 2 that many qualitative features carry over
from closed to open flows.

In this paper we will see that the number and position of
injection cusps depends on the topology of the rod motion.
The number of injection cusps will depend on the number of
rods (or ghost rods), but for a fixed number of rods only a
few configurations are possible. This is because the number
of injection cusps is constrained by a topological index for-
mula. Jana et al."® studied the impact of the topology of
streamlines on chaotic advection. They used the Euler—
Poincaré—Hopf formula (see Sec. III) to determine the allow-
able fixed-point structure of steady velocity fields. When the
flow is time dependent, instantaneous fixed points of the ve-
locity field mean little for chaotic advection (except when the
time dependence is weak). Our study addresses arbitrary
time-periodic flows by studying the mapping of fluid ele-
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ments (the Lagrangian map) directly, from a topological
perspective.

The paper is organized as follows. In Sec. II we present
some necessary mathematical background; in particular, the
idea of pseudo-Anosov (pA) stirring protocols. We identify
mathematical objects such as the unstable foliation in a spe-
cific fluid-dynamical example. The unstable foliation associ-
ated with a pseudo-Anosov protocol is the central object of
our study. In Sec. IIT we use a topological index formula to
enumerate the possible unstable foliations for a given num-
ber of stirring rods, and Sec. IV is devoted to a stirring de-
vice that exhibits a hyperbolic injection cusp; that is, a cusp
associated with the unstable manifold of a hyperbolic orbit.
Such a cusp is less obviously identifiable from flow visual-
ization, but can still be inferred by examining the topological
properties of the stirring protocol. Finally, we summarize and
discuss our work in Sec. V.

Il. PSEUDO-ANOSOV STIRRING PROTOCOLS

In this section we will translate the physical system—a
stirring protocol—into objects suitable for mathematical
study. As mentioned in Sec. I, our focus will be on very
viscous flows, where stirring and mixing are challenging,
and we consider the flow to be essentially two-dimensional,
as is typical of shallow or stratified flows. In these circum-
stances, a periodic motion of rods leads to a periodic velocity
field. (Note that the rods may end up permuted among them-
selves at the end of each period.) This velocity field will
induce a motion of fluid elements from their position at the
beginning of a period to a new position at the end. Crucially,
the fluid elements do not necessarily return to the same
position—if they did, this would be a very poor stirring pro-
tocol indeed!

A periodic stirring protocol in a two-dimensional flow
thus induces a homeomorphism ¢ from a surface S to itself.
A homeomorphism is an invertible continuous map whose
inverse is also continuous. In our case, ¢ describes the map-
ping of fluid elements after one full period of stirring, ob-
tained from solving the Stokes equation, and S is the disk
with holes (or punctures) in it, corresponding to rods. We
treat rods as infinitesimal punctures [see Fig. 4(c)], since
topologically this makes no difference. As a special case,
rods that remain fixed are often called baffles. Topologically
speaking, moving rods and fixed baffles are the same: They
are holes in the surface S. However, the homeomorphism ¢
acts on them differently: The moving rods can be permuted,
while the fixed baffles remain in place. Here, we shall not
make a distinction between stirring rods and fixed baffles,
and refer to both as stirring rods. Hence, a few stirring rods
may be fixed by some stirring protocols, such as the figure-
eight protocol in Fig. 1 which fixes two rods (the islands, or
ghost rods). The outer boundary of the disk is invariant under
¢, corresponding to the no-slip boundary condition.

Our task is to categorize all possible ¢ that lead to good
mixing. This requires defining both what we mean by “cat-
egorize” and “good mixing.” The categorization will be done
up to isotopy, which is a way of defining the topological
equivalence of homeomorphisms. Two homeomorphisms ¢
and ¢ are isotopic if ¢ can be continuously “reached” from ¢

Chaos 18, 033123 (2008)

FIG. 4. (Color online) For the unstable foliation F* and stable foliation F*.
(a) The neighborhood of a three-pronged singularity; typical leaves of F*
are shown as solid lines, dashed lines for those of . (b) The neighborhood
of a boundary singularity. A separatrix of /" emanates from the singularity,
and separatrices for 7" and F* alternate around the boundary. (c) We regard
arod as an infinitesimal point (or puncture), corresponding to a one-pronged
singularity. The leaves of the foliations fold and meet at separatrices at-
tached to the rod.

without moving the rods. If we imagine the two-dimensional
fluid as a rubber sheet, this means that the two configurations
attained by the sheet after application of either ¢ or ¢ are the
same, up to deformation of the sheet. In that case, we write
¢==1. Obviously, topology is unconcerned by hydrodynamic
details and only deals with coarse properties of the homeo-
morphisms.

To pursue the categorization, we invoke the Thurston—
Nielsen (TN) classification theorem,*> which describes the
range of possible behavior of a homeomorphism ¢. Specifi-
cally, the theorem says that ¢ is isotopic to a homeomor-
phism ¢', where ¢’ is either finite-order, reducible, or
pseudo-Anosov. These three cases give the isotopy class of
¢, and ¢’ is called the TN representative of the isotopy class.
Finite-order means that ¢’ is periodic (that is, ¢'”=identity
for some integer m>>0), and this cannot give good mixing
since it implies nearby fluid elements will periodically come
back near each other. The reducible case implies there are
regions of fluid that remain invariant under ¢’, which again
is terrible for mixing since there are then regions that do not
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TABLE 1. The pseudo-Anosov stirring protocols used in this paper, defined in terms of braid group generators.

~1

The generator o; denotes the clockwise interchange of rod i with rod (i+1), and o} its anticlockwise counter-
part, where 7 indicates the physical position of a rod in the sequence from left to right. The generators are read

from left to right in time.

Punctures Protocol Injection cusps Figure
3 0'52021 1 Fig. 1, the figure-eight protocol
4 Ty 0'20'_;] 1 Fig. 3
4 7,05 0305 2 Fig. 5(a)
5 7,05 0307 0305 3 Fig. 5(a)
5 Ulaza3ogo€04azo3032 1 Fig. 7

mix with each other. For both finite-order and reducible ¢’,
the actual homeomorphism ¢ could in practice exhibit much
more complicated properties than ¢’, but this cannot be in-
ferred by the rod motion itself. In the viscous flows that we
have studied, ¢ and ¢’ appear to have similar properties.

The third case, when ¢’ is pseudo-Anosov (pA), is both
the most interesting mathematically and most relevant for
mixing. In fact, we will define “good mixing” as ¢’ having
the pA property. Mathematically, a pA homeomorphism ¢’
leaves invariant a transverse pair of measured singular folia-
tions, (F',u") and (F,u), such that ¢ (F*,u")
=(F \ub) and ¢ (P, uf)=(F, N wd), for dilatation N> 1.
(The logarithm of the dilatation is the topological entropy.)
Here, u" and u® are the transverse measures for their respec-
tive foliations. There are several terms that need explaining
in this definition, and we will illustrate what they mean by an
example.

Figure 3 shows the result of a numerical simulation of a
two-dimensional viscous (Stokes) flow. The container is cir-
cular, and the fluid is stirred with four rods, shown aligned
horizontally in the center. (The velocity field for these simu-
lations was determined using a fast spectrally accurate com-
plex variable method,'" and the particle advection computed
with a high-order Runge—Kutta scheme.) The inset illustrates
the motion of the stirring rods: They are successively inter-
changed with their neighbor, in the direction shown. This
protocol is written 010'20'_;1, where o; denotes the clockwise
interchange of rod i with rod (i+1), and 0'171 its anticlockwise
counterpart.é’lz’19 Thus, 0'1'_1 is the inverse operation to o;.
The subscript i in o-ii ! refers to the physical position of a rod
from left to right, and does not label a specific rod. The
collection a'iil, i=1,...,n—1, generates the braid group on n
strands. We apply the o-it1 operations, called braid group
generators, in temporal order from left to right. Repeated
generators are written as powers, as in o-ia'i:of. This se-
quence of generators, called a braid word, defines our stir-
ring protocol, which gives us the homeomorphism ¢ after we
solve the Stokes equations for a viscous fluid. Table I defines
the protocols used in this paper in terms of braid group
generators.

The homeomorphism ¢, by the Thurston—Nielsen theo-
rem, is isotopic to the TN representative ¢’, which is pseudo-
Anosov in this case. Remarkably, in viscous flows there is
often very little visual difference between the action of ¢ and
¢', and we find many features of ¢’ reflected directly in Fig.
3. This need not be the case in general: The dynamics of ¢ is

. . . 620,21
at least as complicated as that of ¢’, in a precise sense,

but can in practice be considerably more so.

The folded lines in the background of Fig. 3 are a small
material closed loop that was evolved for six full periods of
the stirring protocol. As the material line is evolved for more
and more periods, it converges to the unstable foliation, trac-
ing out F* and allowing us to visualize it as a striated pat-
tern. (The stable foliation F* is invisible in such experiments,
so we shall not have much use for it here.) That the foliation
J' remains invariant under ¢’ means that at each application
of ¢’ the bundle of lines in Fig. 3 is unchanged, except for
the lines getting denser: Each application multiplies the num-
ber of lines in a given region by A, the dilatation. (A local
count of the line density is what the invariant measure u"
gives us.) The unstable foliation F" is thus the object that
captures the essence of stretching and folding in a chaotic
flow.

Finally, the “pseudo” in “pseudo-Anosov” is tied to the
“singular” in singular foliation. An Anosov homeomorphism,
such as Arnold’s cat map,22 can only exist on surfaces of zero
Euler characteristic such as the torus. This is because the
torus is a surface on which a nonvanishing vector field (in
this case the foliation) can be smoothly combed. For other
surfaces, such as our punctured disk, the best one can do is to
comb the foliation and leave some singularities. Three such
singularities are shown in Fig. 4. The singularities are char-
acterized by the number of prongs associated with them. The
prongs are separatrices, emanating from the singular point,
around which the foliation branches. For instance, Fig. 4(a)
shows a three-pronged singularity: The leaves of the unstable
foliation F" (solid lines) branch around the singularity in a
triangular pattern around three separatrices. The dashed lines
show leaves of the stable foliation 7. Figure 4(b) shows a
separatrix of F" attached to the outer boundary of the disk at
a singularity. Unstable and stable separatrices alternate
around the boundary. Figure 4(c) shows a one-pronged sin-
gularity, which occurs around rods, as we will see below.

The stirring device in Fig. 3 shows a total of six singu-
larities in F". Most obviously, there is a one-pronged singu-
larity around each of the four rods, because the leaves are
folded around each rod and meet at a separatrix, as in Fig.
4(c). Next, there is a three-pronged singularity, in the region
marked with a dot in the picture (this dot is not a rod). That
the singularity has three separatrices is evident if one tries to
extend the foliation near the singularity: Three bundles of
leaves will meet at a point, which must then be a singularity.
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Finally, there is a separatrix connected to the disk’s outer
boundary at a singularity, as in Fig. 4(b), though this is not as
easy to see. From Fig. 4(b) we expect that a boundary sin-
gularity will be manifested as a cusp in F", a consequence of
the separatrix emanating from the boundary, and leading to
injection of material into the mixing region (Fig. 3).

In the pA case, almost every aspect of the Thurston—
Nielsen classification theorem can thus be identified directly
in Fig. 3. Rods and the outer boundary possess singularities,
and often other (interior) singularities arise in the flow itself,
such as the three-pronged singularity indicated by a dot in
Fig. 3. We will refer to singularities not associated with rods
or the outer boundary as interior singularities. Our reference
protocol of Fig. 3 demonstrates that the unstable foliation F*
and its singularities embody many important features of the
underlying flow. We shall thus take the unstable foliation as
the central focus of our study.

lll. SINGULARITIES OF THE FOLIATION

An unstable foliation must satisfy three rules if it is to
support a stirring protocol corresponding to a pseudo-
Anosov homeomorphism:

(1) Every stirring rod (or ghost rod, such as the islands in
the figure-eight protocol) must be enclosed in a one-
pronged singularity [Fig. 4(c)]. This is a physical re-
quirement: One-pronged singularities are the mathemati-
cal consequence of physical stirring, since the unstable
foliation wraps around the rod. A rod enclosed in a
higher-pronged singularity makes the rod irrelevant to
stirring, since the singularity would exist regardless of
the rod. Hence, we disregard this possibility.

(2) The outer boundary of the disk contains at least one
separatrix of F", as in Fig. 4(b). The number of separa-
trices on the outer boundary corresponds to the number
of injection cusps into the mixing region.

(3) The smallest number of prongs an interior singularity
can have is 3. This is because two-pronged singularities
are just regular points (they are not “true” singularities
of the foliation), and pseudo-Anosovs do not have one-
pronged singularities away from punctures and bound-
ary components.

We will use these three rules to limit the number of
allowable singularity data of the unstable foliation F". The
singularity data of a foliation JF 1is the sequence
(NgepsN3,Ny, ...), where N, is the number of separatrices
on the outer boundary, and N, is the number of interior
p-pronged singularities for each p =3. To enumerate the pos-
sible distinct singularity data of the unstable foliation for n
rods, we use a standard index formula, which relates the
nature of the singularities to a topological invariant, the Eu-
ler characteristic of the disk; i.e., xgix= 1.%* This index for-
mula says that

n_Nsep_E(p_z)szz)(disk:Z' (1)

p23

Formula (1) is a well-known extension to foliations of the
classical Euler—Poincaré—Hopf formula for vector fields™2¢

Chaos 18, 033123 (2008)

FIG. 5. (Color online) Numerical simulations of (a) the stirring protocol
a,05'0305" for four rods, with two injection cusps, and (b) the stirring
protocol a,05' 0307 0305 for five rods, with three injection cusps.

(see, for example, p. 1352 of Ref. 27). It is important to note
that the only positive contribution to the left hand side of Eq.
(1) is the term n, the number of rods. Hence if there is a large
number of rods, there must either be a large number of sin-
gularities and boundary separatrices, or a small number of
singularities some of which have many prongs.

In order for Eq. (1) to be satisfied, the boundary separa-
trices and interior singularities must contribute (2—n) to the
left hand side. For n=3, the only possibility is to have a
single separatrix on the boundary. There are, therefore,
unique singularity data for three stirring rods in a disk, cor-
responding to the kidney-shaped region in Fig. 1: The sepa-
ratrix on the boundary corresponds to a single injection cusp
into the mixing region.

For n=4, the boundary separatrices and interior singu-
larities must contribute =2 to the left hand side of Eq. (1),
which means that there must either be two separatrices on the
boundary, or one separatrix on the boundary and an interior
three-pronged singularity. These two cases correspond to the
unstable foliations of the second and third protocols in Table
I, as depicted in Figs. 5(a) and 3.

As we add more rods, there are more possibilities for the
singularity data. For example, Fig. 5(b) shows a protocol for
five rods (n=5) with three boundary separatrices (Ns,=3),
corresponding to three injection cusps, and no interior singu-
larities.

The maximum number of interior singularities occurs
when there is a single boundary separatrix. The rods and this
separatrix then contribute n—1 to the left hand side of Eq.
(1), and so Eq. (1) can be satisfied if there are n—3 interior
three-pronged singularities. That is, the maximum possible
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TABLE II. The allowable singularity data (N, N3,Ny, ...) for n rods. Each
rod has a one-pronged singularity, and formula (1) must be satisfied. Nyep
gives the number of separatrices on the outer boundary, and N, gives the
number of p-pronged interior singularities.

=
=2
3

N; Ny Ns

NN R W
_m = NN W R = = D W= N =
O = W O NN = OO N = O =0
S = O = O O O = O O O

—_ O O O o o o

number of interior singularities occurs for Ny=n-3. On the
other hand, in order to have no interior singularities, it is
necessary to have n—2 boundary separatrices. This corre-
sponds to the maximum possible number of injection cusps
into the stirring region.

Table II provides a complete summary of the allowable
singularity data for the first few values of n. The number of
possible distinct singularity data for a foliation increases
sharply with the number of rods n, as is evident in Fig. 6
(solid line). A convenient expression for the number of sin-
gularity data is

n-3

# of singularity data= >, p(k), (2)
k=0

where p(k) is a partition function.28 The partition function
counts how many distinct ways positive integers can sum to
k, with p(0) defined as 1,

# of singularity data

0 10 20 30 40 50

# of punctures, n
FIG. 6. (Color online) The number of distinct singularity data increases
rapidly with the number of punctures (or rods). The solid line is exact and is
obtained by summing partition functions as in Eq. (2); the dashed line is the
asymptotic form (4).

Chaos 18, 033123 (2008)

p(k) =# of elements in the set {S CZ: Y i= k}. (3)
ieS

The partition function has no simple exact closed form. To
find the asymptotic form of Eq. (2) for large n, we can use
the Hardy-Ramanujan asymptotic form for p(k), and replace
the sum by an integral, to get

1 —_—
# of singularity data ~ ——=—=== exp(m\2(n - 3)/3),
2m\V2(n - 3)
n>1. (4)

The dashed line in Fig. 6 shows that the aysmptotic form
captures the correct order of magnitude for large n.

IV. HYPERBOLIC INJECTION CUSPS

Injection cusps are not always as plainly visible as in the
cases presented thus far. However, as we will see in this
section, their presence can still be inferred by examining the
topological properties of the rod motion, including if neces-
sary the motion of ghost rods. This section also helps to
clarify the type of topological information that can be
gleaned from the motion of rods: ">

e If the motion of the rods themselves forms a pseudo-
Anosov braid, then the rod motion yields interesting topo-
logical information even with no knowledge of ghost rods.
This is the case with all the protocols in the paper thus far
(except the figure-eight, which involves two obvious ghost
rods). The topological information is then “robust,” in the
sense that it does not depend on the specific hydrodynam-
ics of the fluid.

e If the motion of the rods does not imply a pseudo-Anosov,
such as when there is only one or two rods,® and chaotic
behavior is observed regardless, then ghost rods must be
included. This means either looking for regular islands (as
in the example in this section) or for unstable periodic
orbits. However, the presence and location of such periodic
structures depend on the specific hydrodynamic model
(here, Stokes flow for a viscous fluid).

The protocol discussed in the present section is of the
latter type. Figure 7(a) shows a material line advected by a
one-rod stirring device, where the rod follows an epitro-
choidal path. The path of the rod is shown as a solid line in
Fig. 7(b), superimposed on a Poincaré section. We make two
observations about Fig. 7: (i) The Poincaré section reveals a
mixed phase space, consisting of a large chaotic region and
several smaller regular regions, including a regular region
that completely encloses the wall. (ii) The injection cusps
into the mixing region are not readily apparent, though small
cusps are visible.

The presence of the chaotic region can be understood by
examining the motion of the physical rod and of the regular
islands visible in Fig. 7(b). These regular islands are the
ghost rods that we use to explain the topological properties
of the homeomorphism ¢ induced by the rod motion, as ana-
lyzed in Ref. 7. The braid formed by the rod and the ghost
rods is 0'102030*2(7%040'2030';, which can be shown (with
software such as Ref. 30) to correspond to a pseudo-Anosov
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(b)

FIG. 7. (Color online) (a) Numerical simulation of a single rod tracing out
an epitrochoidal path [solid line in (b)] stretching a material line for seven
periods. The period-3 orbit discussed in the text is shown superimposed,
with iterates iy, i, and i,. (b) A Poincaré section (stroboscopic map) of some
representative trajectories shows that the phase space consists of a large
chaotic region and several regions of regular behavior.

isotopy class with a single separatrix on the boundary, as
well as two interior three-pronged singularities. The
singularity data is thus (Ny,=1,N3=2) for n=5 rods—see
Table II.

This brings us to our second observation: Where is the
injection cusp associated with the boundary separatrix, as
predicted by the braid? The injection cusp is there, though it
is much less evident than those in Figs. 1, 3, and 5. This is
because here the separatrix is associated with a hyperbolic
fixed point, as opposed to parabolic in the previous cases. An
injection cusp near a parabolic point on the boundary has
very “slow” dynamics near the separatrix, meaning that fluid
approaches the separatrix very slowly.1 This makes the sepa-
ratrices clearly visible as unmixed “tongues” in Figs. 1, 3,
and 5.

In contrast, the injection into the mixing region is gov-
erned here by a period-3 hyperbolic orbit near the boundary
of the central mixing region. The orbit—consisting of the
iterates i, i;, and i,—is shown in Fig. 7(a). Notice that the
orbit itself does not enter the central mixing region, just as in
the cases previously considered the parabolic fixed points at
the wall remain there. However, a portion of the unstable
manifold of each iterate is shown in Fig. 8: Notice how the
unstable manifold of iterate i, enters the heart of the mixing
region, following the rod. This unstable manifold is the
boundary separatrix predicted by the braid. Thus, the way in
which fluid enters the mixing region is by coming near i, and
then being dragged along its unstable manifold. The iterates
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FIG. 8. (Color online) Portions of the unstable manifold of each iterate of
the period-3 hyperbolic orbit near the boundary of the mixing region. The
unstable manifold of iterate i, enters the mixing region and corresponds to
the location of the injection cusp.

ip and i; play no role as far as injection into the mixing
region is concerned. With hindsight, we can see the unstable
manifold of i, in the wake of the rod in Fig. 7(a). Because
the dynamics in their vicinity is exponential rather than al-
gebraic, hyperbolic injection cusps can dramatically speed
.37, . .
up the rate of mixing” in the central region. The price to pay
is an unmixed region around the wall of the device.

V. DISCUSSION

A stirring device consisting of moving rods undergoing
periodic motion induces a mapping of the fluid domain to
itself. This mapping can be regarded as a homeomorphism of
a punctured surface to itself, where the punctures mimic the
moving rods. Having the rods undergo a complex braiding
motion guarantees a minimal amount of topological entropy,
where by “complex” we mean that the isotopy class associ-
ated with the braid is pseudo-Anosov. The topological en-
tropy is itself a lower bound on the rate of stretching of
material lines, a quantity which is important for chaotic
mixing.

Topological considerations also predict the nature of the
injection of unmixed material into the central mixing region.
The number of boundary separatrices in the pseudo-Anosov
homeomorphism’s unstable foliation determines the number
of such injection cusps. The number and position of injection
cusps is particularly important for open flows, such as flows
in channels, since there the nature of injection has a profound
impact on the shape of the downstream mixing pattern
(Fig. 2).

Topological index formulas allow us to predict the pos-
sible types of unstable foliations that can occur for a fixed
number of rods. We did not provide a way of deriving the
topological type of the unstable foliation for a given rod
stirring protocol. This can be done, for instance, by using an
implementa‘tion30 of the Bestvina—Handel algorithm?’2 Using
the enumeration presented here, a mixing device can be de-
signed with a specific number of injection cusps into the
mixing region, by allowing for enough rods and choosing the
appropriate stirring protocol.

More generally, instead of physical rods we can consider
periodic orbits associated with a stirring protocol. We call
such periodic orbits “ghost rods” when they play a similar
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role to physical rods (that is, material lines fold around them
as if they were rods).” #1533 The topological description
presented here applies to the unstable foliation associated
with periodic orbits.

In future work, we will consider not just the number of
injection cusps, but their relative position as well. Indeed,
observe that in Fig. 5(b) the position of the injection cusps
alternates sides relative to the line of rods. This is thought to
be a general feature of pseudo-Anosov stirring protocols, but
the proof of this requires careful consideration of whether or
not given foliations are dynamically allowable, in the sense
that they can be realized as the unstable foliation of a
pseudo-Anosov homeomorphism.
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