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Abstract

We consider various generalisations of the string class of a loop group bundle. The string
class is the obstruction to lifting a bundle whose structure group is the loop group LG to
one whose structure group is the Kac-Moody central extension of the loop group.

We develop a notion of higher string classes for bundles whose structure group is
the group of based loops, ΩG. In particular, we give a formula for characteristic classes
in odd dimensions for such bundles which are associated to characteristic classes for G-
bundles in the same way that the string class is related to the first Pontrjagyn class of a
certain G-bundle associated to the loop group bundle in question. This provides us with
a theory of characteristic classes for ΩG-bundles analogous to Chern-Weil theory in finite
dimensions. This also gives us a geometric interpretation of the well-known transgression
map H2k(BG) → H2k−1(G).

We also consider the obstruction to lifting a bundle whose structure group is not the
loop group but the semi-direct product of the loop group with the circle, LG � S1. We
review the theory of bundle gerbes and their application to central extensions and lifting
problems and use these methods to obtain an explicit expression for the de Rham repre-
sentative of the obstruction to lifting such a bundle. We also relate this to a generalisation
of the so-called ‘caloron correspondence’ (which relates LG-bundles over M to G-bundles
over M × S1) to a correspondence which relates LG � S1-bundles over M to G-bundles
over S1-bundles over M .
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Chapter 1

Introduction

String structures first appeared in Killingback’s paper [22] as a string theory version of the
well-known spin structures that are important in quantum field theory. The results came
out of a study of global anomalies in the worldsheet of a string and the idea was motivated
by an observation of Witten [45] that the Dirac-Ramond operator in string theory can be
considered as Dirac-type operator on the loop space.

Recall that if one is given a principal SO(n)-bundle (for example the frame bundle of
a manifold), a spin structure is given by a lifting of the structure group of this bundle
to its simply connected double cover Spin(n). Killingback’s idea then, is to replace the
bundles which appear in the definition of a spin structure with an infinite-dimensional
bundle whose structure group is the loop group of Spin(n) and consider a lifting of this
bundle. More generally, if G is a compact Lie group and LG is its loop group, we could
consider lifting any LG-bundle P → M to a bundle whose structure group is the central
extension of LG. It turns out that the obstruction s(P ) to the existence of such a lift is an
element of the degree three cohomology of the base, H3(M, Z). Killingback proved that,
in the case where the LG-bundle P is in fact given by taking loops in a principal G-bundle
Q → X, this obstruction class is the transgression of the first Pontrjagyn class of Q. That
is,

s(P ) =
∫

S1

ev∗ p1(Q),

where ev : S1 × LX → X is the evaluation map. The class s(P ) ∈ H3(LX, Z) is called
the string class of P. The link with spin structures and Witten’s observation regarding
the Dirac-Ramond operator is given by noticing that in quantum field theory the Dirac
operator can only be defined if spacetime is spin and correspondingly in string theory
the Dirac-Ramond operator can only be defined if spacetime is string (i.e. has a string
structure).

The present work grew out of an attempt to answer some questions naturally arising
from some papers concerning string structures and loop group bundles. In [35] Murray
and Stevenson use techniques from the theory of bundle gerbes to give an explicit formula
for a representative in de Rham cohomology of the string class of a general LG-bundle
and provide a link with previous work on monopoles. The theory of gerbes was first
introduced by Giraud [17] and studied extensively in Brylinski’s book [4]. Gerbes provide a
geometric realisation for degree three cohomology in an analogous way to the way in which
line bundles (or U(1)-bundles) provide a geometric realisation of degree two cohomology.
Gerbes are essentially sheaves of groupoids satisfying certain descent conditions but can
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be tricky to work with in practice. A much more appealing (at least from a differential
geometric point of view) approach to the theory of gerbes, called bundle gerbes, was
introduced by Murray [32]. These have been studied further (see for example [10, 18, 28,
30, 33]) and have found applications in physics as well as differential geometry (see for
example [3, 7, 8, 15, 40]). Insofar as a gerbe can be considered a sheaf of groupoids, bundle
gerbes can be viewed as bundles of groupoids. They have a degree three characteristic
class associated with them, called the Dixmier-Douady class, which can be described in
terms of cocycles. However, one can also define a notion of connection and curvature (more
precisely, 3-curvature) for a bundle gerbe and, using differential geometric methods, obtain
a differential form representative for the image in real cohomology of the Dixmier-Douady
class in analogy with the way the Chern class of a U(1)-bundle is represented in real
cohomology by the curvature of the bundle. Bundle gerbes arise very naturally in lifting
problems such as the string structure example. This is the approach taken in [35] where
a de Rham representative of the string class for a loop group bundle P is given in terms
of data on the bundle. Namely, the authors find that the string class is given by

s(P ) = − 1
4π2

∫
S1

〈F,∇Φ〉 dθ

where F is the curvature of P, ∇Φ is the covariant derivative of a Higgs field for P
and the bracket is the Killing form suitably normalised. They also extend Killingback’s
result – that is, giving the string class in terms of the Pontrjagyn class for some G-
bundle – by using the so-called ‘caloron correspondence’ (which first appeared in [16])
which relates LG-bundles over M to G-bundles over M × S1. In particular, there is a
bijective correspondence between isomorphism classes of principal LG-bundles over M
and isomorphism classes of principal G-bundles over M × S1 and if P → M is an LG-
bundle and P̃ → M × S1 is its corresponding G-bundle, then the authors find that the
string class of P is given by integrating the first Pontrjagyn class of P̃ :

s(P ) =
∫

S1

p1(P̃ ).

The first formula above can be used to recover the result from [11] in which the authors
calculate the string class for the universal ΩG-bundle1 (where ΩG is the based loop group)
and show that the string class is a characteristic class for loop bundles (that is, ΩG-bundles
of the form ΩQ → ΩX for some G-bundle Q → X). A model for the classifying space of
ΩG is given by the group G itself and H3(G, Z) = Z so it is not unreasonable to expect
the string class in this case to be the generator of this group. This is in fact true and it is
shown that the string class for any loop bundle is given by the pull-back of this class by
a classifying map for the bundle.

This thesis deals with two natural questions which arise when one considers these
results. The first concerns the relationship between the string class and the Pontrjagyn
class and the fact that the string class is a characteristic class for loop bundles. It is natural,
firstly, to look for a way to generalise this to ΩG-bundles which are not necessarily loop
bundles but, also, it seems possible that there is a more general theory of characteristic
classes for loop group bundles which is related to characteristic class theory for G-bundles
(i.e. Chern-Weil theory). In the first part of this thesis we provide answers to these

1Actually, in [11] the authors work with the group of smooth maps from the interval into G whose
endpoints agree. In this thesis we extend their work to the group of smooth maps from the circle into G.
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problems. We give a generalisation of the result from [11] to ΩG-bundles which are not
loop bundles, that is, we show that the string class is a characteristic class. We then
develop a notion of higher string classes for ΩG-bundles which are also characteristic
classes and are related to characteristic classes for G-bundles. In particular, we develop a
kind of Chern-Weil theory for ΩG-bundles which gives characteristic classes from invariant
polynomials on the Lie algebra g of G and data on the ΩG-bundle. This theory side-
steps the complications which arise when trying to define the Chern-Weil map directly for
bundles with infinite-dimensional structure group (for example, see [38]). It also provides
a geometric interpretation of the well-known transgression map τ : H2k(BG) → H2k−1(G).

The next question which it is natural to ask concerns the caloron correspondence
described above (i.e. the correspondence between LG-bundles over M and G-bundles over
M × S1). In trying to find a formula for the string class in terms of the Pontrjagyn
class of a G-bundle (as in [35]) one finds that it is necessary to make use of the caloron
correspondence. So it is natural then to ask what kind of correspondence exists in the case
where the G-bundle is not over M ×S1 but over a non-trivial principal S1-bundle over M
and, further, whether the methods of bundle gerbes can be applied to the lifting problem in
this case. In fact, the first part of this question has been answered in [1] in connection with
the Kaluza-Klein reduction of M-theory to type IIA supergravity. It turns out that there
is a bijective correspondence between isomorphism classes of G-bundles over S1-bundles
and classes of bundles whose structure group is not the loop group, but the semi-direct
product LG � S1. In the latter part of this thesis we prove that this correspondence also
holds on the level of connections (as in the case of a trivial circle bundle) and consider
the lifting problem for an LG � S1-bundle. We use the methods of [35] to find a de Rham
representative for the image in real cohomology of the class which is the obstruction to the
existence of this lift. We also provide a calculation of this class using a different method
introduced by Gomi [18], that of reduced splittings.

The outline of this thesis is as follows: In chapter 2 we describe the necessary back-
ground. We recall some important facts about spin structures and give an overview of
Killingback’s results on string structures. We also review the theory of bundle gerbes and
their application to lifting problems. We then present, in some detail, the theory and
results from Murray and Stevenson’s paper [35], including the calculation of the string
class for a general LG-bundle and the correspondence between LG-bundles over M and
G-bundles over M × S1. We also include the extension of Killingback’s result from this
paper.

In chapter 3 we show that the string class is a characteristic class for ΩG-bundles
(Theorem 3.1.3) and generalise some of the results from chapter 2 (albeit, only in the case
of the based loop group) to higher dimensions. That is, we define cohomology classes in
any odd dimension which are related to characteristic classes for G-bundles (in the same
way that the string class is related to the Pontrjagyn class) and we prove that these are
themselves characteristic classes. This gives a method of finding characteristic classes for
an ΩG-bundle given a universal characteristic class for G-bundles (that is, an element of
H∗(BG)). This is detailed in Theorem 3.2.8. We also provide a partial generalisation to
the case of the free loop group (although here we work with the group of smooth maps
from the interval into G whose endpoints agree). We give a model for the universal bundle
and calculate its string class.

In chapter 4 we present the calculation of the string class of an LG � S1-bundle (that
is, the obstruction to lifting the structure group of an LG � S1-bundle to its central
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extension). This is given in Theorem 4.1.3. We also give the generalisation of the caloron
correspondence from [1] which relates G-bundles over S1-bundles to LG�S1-bundles. We
show that this correspondence holds on the level of connections as well (Proposition 4.2.2).
This allows us to prove a generalisation of the result from [35] relating the string class to
the Pontrjagyn class of the corresponding G-bundle (Theorem 4.2.3). Finally, we briefly
outline how these results can be used to gain information about the more general case of
lifting a bundle whose structure group is LG � Diff(S1), that is, where the loops in LG
are acted upon by general (orientation preserving) diffeomorphisms of the circle.

We make a final comment on terminology and conventions. Throughout this thesis we
will work with many variations of the loop group. We give these here for convenience.
The group of smooth maps Map(S1, G) is denoted by LG and the subgroup of based
loops which start at the identity by ΩG. In chapter 3 we consider slightly more general
variants of these groups which consist of smooth maps from the interval [0, 2π] into G
whose endpoints agree. These are denoted by L∨G in the free case and Ω∨G in the based
case. Finally, the terms principal G-bundle and G-bundle are used interchangeably and
all bundles are assumed to be principal bundles unless specifically stated otherwise. Also,
the circle group is denoted by either U(1) or S1 – we make no distinction between the two.
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Chapter 2

String structures, bundle gerbes
and Higgs fields

In this chapter we shall present the relevant background required for the rest of the thesis.
Namely, we describe the existing results on string structures and develop the theory of
bundle gerbes, which will feature quite heavily in the sequel.

2.1 String structures

The existence of spinors and the Dirac operator is an essential aspect of quantum field
theory. It is well known that in order to define these objects the underlying spacetime M
must be a spin manifold. In [45], in a study of global anomalies, Witten shows that there
occurs a global anomaly in the worldline of a supersymmetric point particle in quantum
mechanics unless M admits a spin structure. The analogue of this in string theory, that is,
a global anomaly in the worldsheet of a string, was also studied in some detail. Killingback,
in [22], uses these results to determine topological conditions on the spacetime M. These
conditions led to the definition of a so-called string structure on M. Let us first recall,
then, what we mean by a spin structure and show how to find the analogue of this in
string theory.

2.1.1 Spin structures

Let M be an orientable manifold and F → M its frame bundle. Then F is a principal
SO(n)-bundle. There is a simply connected double cover of SO(n), called Spin(n) that
fits into the exact sequence

0 → Z2 → Spin(n) → SO(n) → 0.

Thus we can consider lifting the frame bundle of M to a principal Spin(n)-bundle where
by a lift of F → M we mean a principal Spin(n)-bundle F̂ → M such that there is a
bundle map F̂ → F that commutes with the homomorphism Spin(n) → SO(n). If such a
lift exists, we say M has a spin structure, or simply that M is spin. More generally, we
can consider any principal SO(n)-bundle P → M and ask for a lift of P to a principal
Spin(n)-bundle. If a lift exists in this case we say that P has a spin structure. It can be
shown (see for example [25]) that a spin structure exists for P if and only if the second
Stiefel-Whitney class, w2(P ), vanishes.

5



2.1.2 String structures

As mentioned above, the Dirac operator, an integral element of quantum field theory,
cannot be defined unless M is a spin manifold. The analogue of this operator in string
theory is the Dirac-Ramond operator. In [45] Witten argued that the Dirac-Ramond
operator can be considered as a Dirac-like operator on LM, the loop space of M. Thus, in
searching for an analogous result for string theory, one is led to study principal bundles
over LM. This is the subject of [22]. We shall briefly outline Killingback’s argument
here. Denote by LX the loop space of X, that is, the set of smooth maps from the circle
into X, Map(S1, X). Consider a principal G-bundle Q → M (for G a compact, simple,
simply-connected Lie group). Then by considering the associated loop spaces, we obtain
a principal LG-bundle1 LQ → LM, We shall call such a bundle a loop bundle. In the case
that X = G, we have the loop group of G which has been extensively studied (see for
example [39]). There is an extension of this group by the circle S1,

0 → S1 → L̂G → LG → 0.

This extension is central in the sense that the image of S1 in L̂G is in the centre of L̂G.
We shall look more closely at this central extension later. For now, let us just outline
Killingback’s result. Killingback considers, as the analogue of a spin structure for string
theory, a lifting of the LG-bundle LQ to a principal L̂G-bundle L̂Q. The exact sequence
above leads to an exact sequence of sheaves of groups over LM. That is,

S1 → L̂G → LG,

where G is the sheaf of G-valued functions over LM. In general, if we have a short exact
sequence of sheaves of abelian groups over X

A → B → C,

then this leads to a long exact sequence of sheaf cohomology groups (see [4])

· · · → Hn(X, A) → Hn(X, B) → Hn(X, C) → Hn+1(X, A) → · · ·
The same is not true, however, in the nonabelian case since we cannot define the coho-
mology groups Hj(X, A) for j > 1. Indeed, if A,B and C are nonabelian, then H1(X, A),
H1(X, B) and H1(X, C) are not groups but pointed sets. In this case, we can write down
an exact sequence of pointed sets

0 → H0(X, A) → H0(X, B) → H0(X, C) → H1(X, A) → H1(X, B) → H1(X, C),

where by exactness here we mean the image of any map is exactly the pre-image of
the basepoint in the next set in the sequence. There is no connecting homomorphism
H1(X, C) → H2(X, A) and so the sequence terminates. If we assume that A is central in
B, however, then Hj(X, A) is an abelian group for all j and it is possible to extend the
sequence above one more step to the right ([4], Theorem 4.1.4)

0 → H0(X, A) → H0(X, B) → H0(X, C)

→ H1(X, A) → H1(X, B) → H1(X, C) → H2(X, A).

1For the proof that this in in fact a Fréchet principal bundle, see [11]
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The short exact sequence above therefore leads to an exact sequence in sheaf cohomology

. . . → H1(LM, S1) → H1(LM, L̂G) → H1(LM, LG) → H2(LM, S1),

where, since L̂G and LG are in general nonabelian, H1(LM, L̂G) and H1(LM, LG) are just
pointed sets, whereas H1(LM, S1) and H2(LM, S1) are abelian groups. Now, since the
set of isomorphism classes of principal G-bundles over LM is in bijective correspondence
with the set H1(LM,G) we see that the LG-bundle LQ ∈ H1(LM, LG) has a lift to an
L̂G-bundle exactly when LQ is the image of an element in H1(LM, L̂G). That is, when
the image of LQ in H2(LM, S1) is zero. Therefore, the obstruction to lifting a loop bundle
LQ → LM is a class in H2(LM, S1). Now recall that the short exact sequence of groups

0 → Z → R → S1 → 0,

leads to an exact sequence of sheaves (as above)

Z → R → S1,

which in turn leads to a long exact sequence of sheaf cohomology groups

. . . → H2(LM, Z) → H2(LM, R) → H2(LM, S1) → H3(LM, Z) → . . .

(since Z, R and S1 are all abelian). However, because R is a soft sheaf, H∗(LM, R) = 0
and we have the following well known result (see for example [4])

H2(LM, S1) � H3(LM, Z).

So we see that the obstruction to lifting the LG-bundle LQ to an L̂G-bundle is a class in
H3(LM, Z). Since this lifting is the analogue in string theory of a spin structure for M,
we call it a string structure for M and we call the obstruction class s(LQ) ∈ H3(LM, Z)
the string class. Killingback’s main result, then, is a characterisation of this class in terms
of the first Pontrjagyn class of the G-bundle Q → M. In particular, if p1(Q) ∈ H4(M, Z)
is the first Pontrjagyn class of Q, then Killingback shows that the transgression of this
is the string class of LQ. That is, the string class is given by pulling-back p1(Q) by the
evaluation map ev : LM × S1 → M to give a class on LM × S1 and integrating over S1 :

s(LQ) =
∫

S1

ev∗ p1(Q).

We shall give a proof of this formula later (in section 2.5) following the methods in [35].

2.2 Bundle gerbes

In order to perform calculations involving the string class and to extend Killingback’s
result, we shall use the theory of bundle gerbes [32], in particular, the lifting bundle gerbe
(see section 2.3). In this section we briefly outline the theory (developed largely in [32]
and [33]) behind these objects. Bundle gerbes can be considered, in some sense, as ‘higher’
versions of U(1)-bundles. Therefore, we start with some basic results on these bundles
before describing the theory of bundle gerbes.

7



2.2.1 U(1)-bundles

As mentioned, we shall begin by recalling some facts about U(1)-bundles and some con-
structions involving these bundles. Firstly, note that if P → M is a U(1)-bundle with right
action given by (p, z) �→ pz (for p ∈ P and z ∈ U(1)) then there is a dual bundle, denoted
P ∗, which is the same as P but with the action given by (p, z) �→ pz−1. Of course this is
only a right action because U(1) is abelian. Further, if Q is another U(1)-bundle over M,
we can form the fibre product over M, P ×M Q, which is a principal U(1) × U(1)-bundle
over M whose fibres are the product of the fibres of P and Q (i.e. (P ×M Q)m = Pm×Qm).
By factoring out by the ‘anti-diagonal’ inside U(1) × U(1), that is, the set {(z, z−1)}, we
obtain a principal U(1)-bundle called the contracted product of P and Q and denoted
P ⊗Q. It is easy to see that P ⊗P ∗ is canonically trivialised by the section s : m �→ [p, p∗],
where p is any point in the fibre of P above m and p∗ is the same point considered as an
element of P ∗. For if sα and sβ are two such local sections then suppose sα(m) = [p, p∗]
and sβ(m) = [q, q∗], then we have that [q, q∗] = [pz, p∗z−1] for some z ∈ U(1) and so
sα = sβ.

Note that if instead of considering U(1)-bundles we equivalently considered complex
hermitian line bundles then the dual would correspond to the linear dual of a line bundle
(i.e. the bundle whose fibres are the dual of those of the original bundle) and the contracted
product would correspond to the tensor product of line bundles (the bundle whose fibres
are the tensor product of the fibres of the original two bundles). Note also that if P and
Q have transition functions gαβ and hαβ respectively relative to some open cover of M
then P ∗ has transition functions g−1

αβ and P ⊗ Q has transition functions gαβhαβ .
Another important property of U(1)-bundles on M is the way in which they relate to

H2(M, Z). If a U(1)-bundle P has transition functions gαβ then on triple overlaps these
satisfy the cocycle condition gβγ g−1

αγ gαβ = 1 and thus form a class in H1(M,U(1)). Thus,
from the argument in the previous section we have that a U(1)-bundle defines a class in
H2(M, Z). This class is called the Chern class of the bundle P. It is a standard result
(see for example [4]) that the Chern class classifies U(1)-bundles up to isomorphism and,
further, that given any class in H2(M, Z) one can construct a U(1)-bundle. So we see
that isomorphism classes of U(1)-bundles are in bijective correspondence with H2(M, Z).
The Chern class is additive in the sense that if c(P ) and c(Q) are the Chern classes of P
and Q respectively, then c(P ⊗Q) = c(P ) + c(Q) and c(P ∗) = −c(P ). It is natural in the
sense that if we pull-back the bundle P → M by a map f : N → M to give a U(1)-bundle
f∗P → N then c(f∗P ) = f∗c(P ).

We can actually represent the image of the Chern class in real cohomology using
differential forms quite easily. If A is a connection on P whose curvature is F, then F/2πi
is a closed integral form and its class in the de Rham cohomology group H2(M) is the
image in real cohomology of the Chern class of P.

2.2.2 Bundle gerbes

Definitions and basic constructions

Having reviewed some of the basic properties of U(1)-bundles in the previous section, we
would now like to present another object, first introduced in [32] and studied further in
[33], which is in some sense a higher dimensional version of a U(1)-bundle as we shall see
shortly.
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Consider a surjective submersion Y
π−→ M. We can form the fibre product of Y with

itself, which we denote Y [2], and we have (as before)

Y [2] = {(y1, y2) ∈ Y × Y | π(y1) = π(y2)}.
Note that since π is a submersion Y [2] is a submanifold of Y 2. In general we have the p-fold
fibre product Y [p] defined similarly. We define the maps πi : Y [p+1] → Y [p](i = 1, . . . , p+1)
to be omission of the ith factor,

πi(y1, . . . , yp+1) = (y1, . . . , yi−1, yi+1, . . . , yp+1).

We have, then, the following definition:

Definition 2.2.1 ([32]). A bundle gerbe over a manifold M is a pair (P, Y ) where Y → M
is a surjective submersion and P → Y [2] is a U(1)-bundle and such that there is a bundle
gerbe multiplication, which is a smooth isomorphism

m : π∗3P ⊗ π∗1P
∼−→ π∗2P

of U(1)-bundles over Y [3]. Further, this multiplication is required to be associative when-
ever triple products are defined. That is, if P(y1,y2) denotes the fibre of P over (y1, y2) ∈ Y [2]

then the following diagram commutes for all (y1, y2, y3, y4) ∈ Y [4]:

P(y1,y2) ⊗ P(y2,y3) ⊗ P(y3,y4)

id⊗m
��

m⊗id �� P(y1,y3) ⊗ P(y3,y4)

m

��
P(y1,y2) ⊗ P(y2,y4) m

�� P(y1,y4)

We sometimes denote a bundle gerbe simply by P.

We typically depict a bundle gerbe thusly:

P

��
Y [2] ���� Y

��
M

We can characterise the bundle gerbe multiplication and its associativity in a different
way using sections of bundles related to P as follows. If Q → Y [p−1] is a U(1)-bundle,
define the bundle δQ → Y [p] as

δQ = π∗1Q ⊗ (π∗2Q)∗ ⊗ π∗3Q ⊗ . . .

Then it is easy to show that δδQ is canonically trivial. One can show that the bundle
gerbe multiplication is equivalent to a section s of δP → Y [3] and that the associativity
condition is equivalent to the condition that δs = 1 as a section of δδP (where 1 denoted
the canonical section of δδP ). Indeed if p and q are elements of P(y1,y2) and P(y2,y3)

respectively, we can define a section s of δP by

s(y1, y2, y3) = p ⊗ m(p, q)∗ ⊗ q,
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then the associativity of m forces the condition δs = 1. Note that these conditions reflect
the definition of a simplicial line bundle from [5]. So we see that a bundle gerbe is the
same as a simplicial line bundle over the simplicial space defined by the fibre products
Y [p]. We shall discuss simplicial spaces and this relationship more in section 2.3.

In [32] Murray claimed that bundle gerbes were essentially bundles of groupoids. Al-
though it is not essential for our purposes let us briefly explain what is meant by this.
Recall (see [26]) that a groupoid is a small category with all arrows invertible. Consider
then a bundle gerbe (P, Y ) over M. If we consider the elements of the fibre over m, Ym, as
the objects of a category, then the elements of the fibre P(y1,y2) are the morphisms from
y1 to y2 and the bundle gerbe multiplication gives a way of composing these morphisms.
Since P(y1,y2) � P ∗(y2,y1) and P(y,y) � Y [2] × U(1) (which can be shown using the bundle
gerbe multiplication), this category is a groupoid. In [32] the theory of U(1)-groupoids is
presented in more detail as a prelude to the introduction of bundle gerbes.

Just as for U(1)-bundles, various constructions are possible with bundle gerbes [32].
Consider a map f : N → M. We can pull-back the submersion Y → M to a submersion
f∗Y → N. This gives a map f̂ : f∗Y → Y covering f which induces a map (also called f̂)
(f∗Y )[2] → Y [2]. Thus we can pull-back the U(1)-bundle P → Y [2] by f̂ to give a bundle
f̂∗P → (f∗Y )[2]. So we have a bundle gerbe over N called the pull-back and which we will
denote f∗P. We can also define the dual of (P, Y ) by taking the dual of the U(1)-bundle
P over Y [2]. We denote this by P ∗. We can form the product of two bundle gerbes (P, Y )
and (Q,X) over M, denoted P ⊗Q, by taking the fibre product Y ×M X over M and the
U(1)-bundle P ⊗ Q over (Y ×M X)[2].

We say two bundle gerbes (P, Y ) and (Q,X) over M are isomorphic if there is an iso-
morphism Y → X covering the identity on M and a bundle isomorphism P → Q covering
the induced map Y [2] → X [2] and which commutes with the bundle gerbe multiplication.

A particular example of a bundle gerbe is given by taking a U(1)-bundle P over Y
and defining δP over Y [2] as above. That is, δP = π∗1P ⊗ (π∗2P )∗. Since δδP is canonically
trivial over Y [3], it has a canonical section s which defines the bundle gerbe multiplication.
This is called the trivial bundle gerbe and in general we say a bundle gerbe is trivial if it
is isomorphic to one of this form.

As was pointed out in [33] there is another notion of equivalence, in addition to iso-
morphism, for bundle gerbes. This is the notion of stable isomorphism, first introduced
in [7] and studied in detail in [33]. Two bundle gerbes (P, Y ) and (Q,X) are called stably
isomorphic if there are trivial bundle gerbes T1 and T2 such that P ⊗ T1 � Q ⊗ T2 or,
equivalently, if P ⊗Q∗ is trivial. It turns out that stable isomorphism is in some sense the
correct notion of equivalence for bundle gerbes because, as we shall see next, all bundle
gerbes have a characteristic class associated to them and this class classifies them up to
stable isomorphism. That is, two bundle gerbes have the same associated class exactly
when they are stably isomorphic. This class is called the Dixmier-Douady class and it is
to this which we now turn our attention.

Bundle gerbes and degree three cohomology

As mentioned earlier, bundle gerbes can be considered as higher dimensional U(1)-bundles.
We now explain why this is the case and describe how to construct a characteristic class
for bundle gerbes which is analogous to the Chern class for U(1)-bundles.

Let (P, Y ) be a bundle gerbe over M and choose a good cover {Uα} of M over which
Y → M admits local sections. This is always possible (see [2]). Suppose that sα : Uα → Y
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is a local section. We have a section of Y [2] over double overlaps given by

(sα, sβ) : Uαβ → Y [2],

where Uαβ = Uα ∩Uβ. As Uαβ is contractible, the pull-back Pαβ = (sα, sβ)∗P of P by this
section is trivial. The fibres of Pαβ are given by (Pαβ)m = P(sα(m),sβ(m)). Choose a section
σαβ of this bundle. That is, a map

σαβ : Uαβ → P

such that σαβ(m) ∈ P(sα(m),sβ(m)). On triple overlaps Uαβγ the bundle gerbe multiplication
gives

m(σαβ , σβγ) = gαβγσαγ

for some gαβγ : Uαβγ → U(1). On overlaps Uαβγδ the associativity of this multiplication
gives the cocycle condition

gβγδg
−1
αγδgαβδg

−1
αβγ = 1.

Thus the functions gαβγ define a class in H2(M,U(1)) � H3(M, Z). This class is inde-
pendent of any choices and is called the Dixmier-Douady class of P and denoted DD(P ).
In [32] it is proven that this class is precisely the obstruction to the bundle gerbe be-
ing trivial. We also have the following results regarding the Dixmier-Douady class for
the constructions presented earlier: If (P, Y ) and (Q,X) are bundle gerbes over M then
DD(P ⊗ Q) = DD(P ) + DD(Q) and DD(P ∗) = −DD(P ). The Dixmier-Douady class is
natural with respect to pull-backs, that is, DD(f∗P ) = f∗DD(P ).

As mentioned at the end of the previous section, the Dixmier-Douady class classi-
fies bundle gerbes up to stable isomorphism. This is clear because P and Q are stably
isomorphic exactly when P ⊗ Q∗ is trivial and so the result follows from the fact that
DD(P ⊗Q∗) = DD(P )−DD(Q) and that trivial bundle gerbes have zero Dixmier-Douady
class.

In [32] it is also shown that every class in H3(M, Z) is the Dixmier-Douady class of
some bundle gerbe. This means that there is a bijection between H3(M, Z) and stable
isomorphism classes of bundle gerbes. Thus bundle gerbes provide a geometric realisation
of elements in H3(M, Z) in an analogous way to that of U(1)-bundles and H2(M, Z).

Connective structures on bundle gerbes

We have seen now the way in which bundle gerbes play a role for degree three cohomology
analogous to that of U(1)-bundles and degree two cohomology. As we saw in section 2.2.1
U(1)-bundles have the nice property that the image of their Chern class in real cohomology
is represented by the form F/2πi, where F is the curvature of the bundle. We would now
like to study connective structures on bundle gerbes and, as we shall see, a similar result
is true in this case.

Consider first the p-fold fibre product Y [p] as before. Let Ωq(Y [p]) denote the space of
differential q-forms on Y [p]. Then we can define a map δ : Ωq(Y [p]) → Ωq(Y [p+1]) as the
alternating sum of pull-backs by the projections πi :

δ =
p+1∑
i=1

(−1)i−1π∗i .

11



Then δ2 = 0 and so we have a complex

0 → Ωq(M) π∗−→ Ωq(Y ) δ−→ Ωq(Y [2]) δ−→ Ωq(Y [3]) δ−→ . . .

In [32] it is proven that this complex has no cohomology. That is, the above sequence is
exact for all q ≥ 0. We shall use this result shortly.

A bundle gerbe connection is a connection A for the U(1)-bundle P that respects the
bundle gerbe product in the sense that the induced connection on π∗2P is the same as the
image of the induced connection on π∗3P ⊗ π∗1P under the bundle gerbe multiplication.
Note that if s : Y [3] → δP is the section defining this multiplication, then this means that
a bundle gerbe connection satisfies s∗(δA) = 0. That is, δA is flat with respect to s. Using
this observation, it is easy to see that bundle gerbe connections always exist. For consider
a connection A on P that does not necessarily commute with the product. We cannot
say that s∗(δA) = 0 but note that δ(s∗(δA)) = (δs)∗(δδA), which is zero since δs = 1
as a section of δδP and δδA is flat with respect to the canonical trivialisation of δδP.
Therefore, by the exact sequence above there is some a ∈ Ω1(Y [2]) such that δa = s∗(δA)
and so s∗(δ(A− π∗a)) = 0 (where π : P → Y [2] is the projection). Therefore, A− π∗a is a
bundle gerbe connection.

If F is the curvature of a bundle gerbe connection A viewed as a 2-form on Y [2], then
δF = s∗(δdA) = d(s∗(δA)) = 0. This means that there is some B ∈ Ω2(Y ) satisfying
F = δB. A choice of such a B is called a curving for P. Note that if B′ is another choice
of curving then B and B′ differ by a δ-closed (and hence δ-exact) 2-form on Y . As δ and
d commute, we have that δ(dB) = d(δB) = dF = 0. Therefore there is a 3-form H on M
such that dB = π∗H (for π the projection Y → M). H is called the 3-curvature of P. It
is closed and a different choice of B or H would result in a difference of an exact form. So
H defines a cohomology class in H3(M). It turns out that the 3-form H/2πi is integral
and that H/2πi is a representative of the Dixmier-Douady class of P in real cohomology.

2.3 Central extensions and the lifting bundle gerbe

In this thesis, we wish to apply the theory of bundle gerbes to the study of central ex-
tensions of Lie groups and, in particular, to lifting problems as in section 2.1. For this
purpose we use a particular bundle gerbe called the lifting bundle gerbe and in this section
we review the basic definitions and results required to develop the theory. We shall start
by outlining the theory of central extensions, following [5].

2.3.1 Simplicial line bundles and central extensions

We begin by recalling some simplicial techniques. Recall (see [14]) that a simplicial space
is a collection of spaces {Xp} (p = 0, 1, 2, . . .) together with maps di : Xp → Xp−1 and
sj : Xp → Xp+1 for i, j = 0, . . . , p, called face and degeneracy maps respectively, which
satisfy the simplicial identities

didj = dj−1di, i < j,

sisj = sj+1si, i ≤ j,

disj =

⎧⎪⎨⎪⎩
sj−1di, i < j

id, i = j, j + 1
sjdi−1, i > j + 1.
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If we are working in the category of manifolds and smooth maps we say that {Xp} is
a simplicial manifold. For example, consider the collection2 {Y [p+1]} of fibre products
as in the previous section. These form a simplicial manifold with the obvious face and
degeneracy maps. Note that for a general simplicial manifold {Xp} we can define a complex
similar to the one described in section 2.2 by using the pull-backs of the face maps di.
That is, we define δ : Ωq(Xp) → Ωq(Xp+1) by

δ =
p∑

i=0

(−1)id∗i .

Also, as before, if Q is a U(1)-bundle (or an hermitian line bundle) over Xp then we can
define a bundle over Xp+1 by

δQ = d∗0Q ⊗ (d∗1Q)∗ ⊗ d∗2Q ⊗ . . .

The particular example of interest to us is a certain simplicial manifold associated to a Lie
group which we describe presently. Let G be a Lie group. There is a simplicial manifold
called NG = {NGp} given by the manifolds {Gp} and face and degeneracy maps di and sj

where

di(g1, . . . , gp+1) =

⎧⎪⎨⎪⎩
(g2, . . . , gp+1), i = 0
(g1, . . . , gi−1gi, gi+1, . . . , gp+1), 1 ≤ i ≤ p − 1
(g1, . . . , gp), i = p

and
sj(g1, . . . , gp+1) = (g1, . . . , gj−1, 1, gj , . . . , gp+1).

We would like to consider central extensions of G by the circle and show how they are
related to NG. For this, we follow Brylinski and McLaughlin [5] where the result is phrased
in terms of simplicial line bundles. We have the following definition

Definition 2.3.1 ([5]). Let {Xp} be a simplicial manifold. A simplicial line bundle over
{Xp} is a line bundle L on X1 together with a section s of the bundle δL → X2 such that
δs = 1 as a section of δδL.

Notice the similarity with the definition of a bundle gerbe. In fact, instead of using
U(1)-bundles, we can rephrase everything about bundle gerbes in terms of line bundles
and we see that a bundle gerbe is the same thing as a simplicial line bundle over the
simplicial space {Y [p]}.

Now consider a central extension of G by the circle

U(1) → Ĝ p−→ G.

If we think of this as a U(1)-bundle Ĝ → G then we must have a multiplication M : Ĝ×Ĝ →
Ĝ which covers the multiplication on G, that is, m = d1 : G×G → G. Because Ĝ is a central
extension we must have M(ĝz, ĥw) = M(ĝ, ĥ)(zw) for any ĝ, ĥ ∈ Ĝ and z, w ∈ U(1). In
a similar way to that in which the bundle gerbe multiplication on a bundle gerbe P gave
rise to a section of δP, this gives a section of δĜ,

s(g, h) = ĝ ⊗ M(ĝ, ĥ)∗ ⊗ ĥ,

2Note that here X0 = Y, X1 = Y [2], X2 = Y [3], . . . and so on
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where ĝ and ĥ are points in the fibres over g and h respectively. The associativity of this
multiplication is equivalent to the condition δs = 1 as before and hence a central extension
gives rise to a simplicial line bundle. In fact it can be shown that they are equivalent and
we have the result from [5]:

Theorem 2.3.2 ([5]). A simplicial line bundle over the simplicial manifold NG is a central
extension of G by the circle.

We wish to perform explicit calculations using differential forms so, following [34] and
[35], we shall rephrase this result in terms of differential forms on Gp and give a method
of constructing central extensions using these forms. Consider then, a connection ν for Ĝ
thought of as a U(1)-bundle over G. As in the treatment of bundle gerbe connections in
section 2.2 we can consider the induced connection δν on the bundle δĜ → G×G and then,
as this bundle is trivial, we can pull-back δν by the section s. Let α = s∗(δν). In general α
is non-zero. However, we have that δα = δ(s∗(δν)) = (δs)∗(δδν) = 0. Furthermore, we also
have dα = s∗(dδν) = δR, where R is the curvature of ν viewed as a form on G. Therefore
we have constructed from the central extension a pair of forms (R,α), where R ∈ Ω2(G)
is closed and integral and α ∈ Ω1(G × G) is such that δR = dα and δα = 0. In fact, as we
shall now show, this pair is sufficient to reconstruct the central extension. Recall (see for
example [4]) that given an integral 2-form R ∈ Ω2(G) there exists a principal U(1)-bundle
P → G with a connection a whose curvature is R. Also, it is a standard result (see [23])
that if Q is a bundle over a simply connected base which admits a flat connection A, then
Q is trivial and there is a section s of Q such that s∗A = 0. In terms of the construction
here, this means that we can find a bundle P → G with curvature R and because dα = δR,
we have that δa − π∗α is a flat connection on δP → G × G. Therefore, there is a section
s of δP satisfying s∗(δa) = α. As before, this section defines a multiplication and we can
calculate δs which we want to be equal to 1. Now, (δs)∗(δδa) = δ(s∗(δa)) = δα = 0 and
for the canonical section 1 we also have 1∗(δδa) = 0. This means that they differ by an
element of U(1) and so rather than associativity of the multiplication M defined by s we
have

M(M(ĝ, ĥ), k̂) = zM(ĝ,M(ĥ, k̂))

for some z ∈ U(1). However, if we choose some ĝ in the fibre above the identity e in G
then M(ĝ, ĝ) is also in the fibre above e and so ĝ and M(ĝ, ĝ) differ by some w ∈ U(1).
That is, M(ĝ, ĝ) = ĝw. Let ĥ and k̂ both be equal to ĝ ∈ π−1(e). Then the formula above
reads

M(M(ĝ, ĝ), ĝ) = zM(ĝ,M(ĝ, ĝ))

and so ĝw2 = ĝw2z and we see that in fact z = 1.
Thus we have constructed a central extension from the pair (R,α) and this construction

recovers the original extension (which follows from the fact that P has curvature R and
the definition of α above). Note that isomorphic central extensions (where by isomorphic,
we mean isomorphic as U(1)-bundles and as groups) give rise to the same R and α and
that in constructing the pair (R,α) if we had chosen a different connection, by adding on
the pull-back of a 1-form η on G, then we would have the pair (R + dη, α + δη). Also, note
that the section constructed above from the flat connection is not unique but changing
this by multiplying by a constant z in U(1) would change M to Mz and, as the extension
is central, this would give an isomorphic central extension. So, as in [35], we have a
bijection between isomorphism classes of central extensions with connection and pairs of
forms satisfying the conditions above.
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2.3.2 The lifting bundle gerbe

Having reviewed a method for constructing central extensions, we would like now to link
the theory of central extensions with that presented earlier on bundle gerbes. We present a
particular example of a bundle gerbe related to central extensions, first introduced in [32],
called the lifting bundle gerbe whose Dixmier-Douady class is precisely the obstruction to
lifting a G-bundle P to a Ĝ-bundle P̂ .

Consider then a principal G-bundle P → M. Choose a good cover of M and consider
the transition functions gαβ of P relative to this cover. We can choose lifts of these
functions ĝαβ which take values in Ĝ and these are candidates for the transition functions
of the lift P̂ . However, transition functions are required to satisfy the cocycle condition
gαβgβγ = gαγ on triple overlaps but the lifts ĝαβ only satisfy

ĝαβ ĝβγ = εαβγ ĝαγ

for some U(1)-valued function εαβγ . This means that the ĝαβ ’s are not necessarily transition
functions. However, due to the fact that Ĝ is a central extension, it can be shown that the
functions εαβγ satisfy the cocycle condition

εβγδε
−1
αγδεαβδε

−1
αβγ = 1.

Therefore, εαβγ defines a class in H2(M,U(1)) � H3(M, Z). As per the discussion in
section 2.1, this class is the obstruction to lifting the transition functions gαβ to transition
functions ĝαβ and hence the obstruction to lifting P to P̂ .

If we take the principal G-bundle P → M and consider the fibre product P [2] ⇒ P then
there is a natural map τ : P [2] → G, called the difference map, given by p1τ(p1, p2) = p2.
If we view Ĝ as a U(1)-bundle over G then we can pull-back Ĝ by this map to obtain a
U(1)-bundle over P [2] :

τ∗Ĝ ��

��

Ĝ

��
P [2]

τ �� G
where

τ∗Ĝ = {(p1, p2, ĝ) | p(ĝ) = τ(p1, p2)} .

Note that τ(p1, p2)τ(p2, p3) = τ(p1, p3) and so, because the multiplication in Ĝ covers that
in G, we have an induced map

τ∗Ĝ(p1,p2) ⊗ τ∗Ĝ(p2,p3) → τ∗Ĝ(p1,p3)

which serves as a bundle gerbe multiplication for the bundle gerbe (τ∗Ĝ, P ) over M. This
bundle gerbe is called the lifting bundle gerbe. We would now like to examine its Dixmier-
Douady class. Recall from section 2.2 the construction of the Dixmier-Douady class of a
bundle gerbe. This involves taking sections sα and sβ of P to give a section (sα, sβ) of P [2]

over Uαβ . We then pull-back the bundle τ∗Ĝ by (sα, sβ) to give a bundle (sα, sβ)∗(τ∗Ĝ) →
Uαβ . The Dixmier-Douady class of τ∗Ĝ is related to sections of this bundle, that is, maps
σαβ : Uαβ → τ∗Ĝ such that σ(m) ∈ τ∗Ĝ(sα(m),sβ(m)). The bundle gerbe multiplication
(which in this case is given by the multiplication in Ĝ) gives σαβσβγ = gαβγσαγ for some
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U(1)-valued function gαβγ and the image of this in H3(M, Z) is a representative for the
Dimier-Douady class of τ∗Ĝ. Note at this point, however, that as P is a principal G-bundle,
the sections sα and sβ are related by the transition functions gαβ . That is, sβ = sαgαβ .

This means that (sα, sβ)∗(τ∗Ĝ) is given by triples (sα, sβ, ĝ) where p(ĝ) = gαβ . So in fact
a section σαβ is given by the candidate transition functions ĝαβ . Therefore, the sections
σαβ satisfy

ĝαβ ĝβγ = εαβγ ĝαγ ,

or
ĝβγ ĝ−1

αγ ĝαβ = εαβγ ,

which is precisely the relation above for the obstruction to the existence of a lift. Thus
the Dixmier-Douady class of the lifting bundle gerbe (τ∗Ĝ, P ) measures the obstruction
to lifting the G-bundle P to a Ĝ-bundle P̂ . So the lifting bundle gerbe is trivial exactly
when P lifts to a Ĝ bundle.

In the next section we shall demonstrate how to find a representative for the obstruction
class of a particular lifting problem using the methods outlined already from the theory
of bundle gerbes.

2.4 The string class of an LG-bundle

Having outlined the theory of central extensions and bundle gerbes we are now in a position
to extend Killingback’s result to general LG-bundles. In this section we will review the
calculations from [35] which give an explicit expression for (the image in real cohomology
of) the string class of an LG-bundle P → M, where here we do not require P to be a loop
bundle as in section 2.1.

The central extension of the loop group

In the previous section we showed how to classify isomorphism classes of central extensions
of a Lie group G using a 2-form R on G and a 1-form α on G×G. Now suppose that G = LG,
the loop group of a compact, simple, simply connected Lie group. In this case we can give
these forms explicitly, thus making it possible to perform calculations involving the central
extension L̂G of LG.

In [39] Pressley and Segal give a well known expression for the curvature of a connection
on the central extension L̂G. Namely,

R =
i

4π

∫
S1

〈Θ, ∂Θ〉 dθ,

where Θ is the (left-invariant) Maurer-Cartan form on LG, which is defined pointwise, ∂
denotes the derivative in the loop direction, that is, the derivative with respect to θ and
〈 , 〉 is an invariant inner product3 on Lg (defined pointwise) normalised so the longest
root has length squared equal to 2. To construct the central extension we also need a
1-form α satisfying δR = dα and δα = 0. In this case it is easy to find such an α. First

3We shall refer to this as the Killing form since all invariant, bilinear, symmetric forms on g are
proportional and so this is just the Killing form with a suitable normalisation.
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note that δR = π∗1R − m∗R + π∗2R where m is the multiplication in LG and πi is the
projection LG × LG → LG which omits the ith factor. Then π∗i R is given by

i

4π

∫
S1

〈π∗i Θ, ∂π∗i Θ〉 dθ.

and using the identities
∂Θ = ad(γ−1)d(∂γγ−1),

at the point γ ∈ LG, and

∂
(
ad(γ−1)X

)
= ad(γ−1)[X, ∂γγ−1] + ad(γ−1)∂X,

for a vector X ∈ Lg, we can calculate m∗R to be

i

4π

∫
S1

〈Θ1, ∂Θ1〉 + 〈[Θ1, Θ1], ∂γ2γ
−1
2 〉 + 〈Θ1, d(∂γ2γ

−1
2 )〉

+ 〈Θ2, ∂(ad(γ−1
2 )Θ1)〉 + 〈Θ2, ∂Θ2〉 dθ,

where we have written Θ1 for π∗2Θ and so on. So

δR = − i

4π

∫
S1

〈[Θ1, Θ1], ∂γ2γ
−1
2 〉 + 〈Θ1, d(∂γ2γ

−1
2 )〉 + 〈Θ2, ∂(ad(γ−1

2 )Θ1)〉 dθ,

and using the identities above and integration by parts, we have

δR =
i

2π

∫
S1

〈dΘ1, ∂γ2γ
−1
2 〉 − 〈Θ1, d(∂γ2γ

−1
2 )〉 dθ.

Therefore, if we define

α =
i

2π

∫
S1

〈π∗2Θ, π∗1Z〉 dθ,

for Z : LG → Lg the function γ �→ ∂γγ−1, then we see that dα = δR. Also, one can check
that δα = 0.

A connection for the lifting bundle gerbe

Now that we have a construction of L̂G in terms of the differential forms R and α, we
can consider the problem of lifting the LG-bundle P → M to an L̂G-bundle P̂ → M.
We can write down the lifting bundle gerbe for this problem, that is, the bundle gerbe
(τ∗L̂G, P ) over M, and we would like a connection on this bundle gerbe so we can calculate
its Dixmier-Douady class.

Consider, then, the map τ : P [2] → LG above. We can extend this to a map τ : P [k+1] →
LGk by defining

τ(p1, . . . , pk+1) = (τ(p1, p2), . . . , τ(pk, pk+1)).

This is a simplicial map. That is, it commutes with the face and degeneracy maps for the
simplicial manifolds {P [k]} and {LGk}. This means that for differential forms on these
manifolds, δ commutes with pull-back by τ. Now consider the connection ν on L̂G (whose
curvature is the form R). The natural choice for a bundle gerbe connection would be
the pull-back, τ∗ν, of this form to τ∗L̂G. However, τ∗ν is not a bundle gerbe connection

17



because it does not respect the product. That is, s∗(δτ∗ν) is non-zero. We know from
the discussion on bundle gerbe connections in section 2.2 that δ(s∗(δτ∗ν)) = 0 and so
there is some form ε on P [2] such that δε = s∗(δτ∗ν). Then τ∗ν − ε will be a bundle
gerbe connection on τ∗L̂G. In fact, in this case, since α = s∗(δν) by definition, we have
s∗(δτ∗ν) = τ∗α. So δ(s∗(δτ∗ν)) = δτ∗α = τ∗δα = 0 as δα = 0 and so ε satisfies δε = τ∗α.
Thus it suffices to find a 1-form ε on P [2] satisfying δε = τ∗α.

The form τ∗α is given by
i

2π

∫
S1

〈τ∗12Θ, τ∗23Z〉 dθ

where we have written τij for τ(pi, pj). In order to solve for ε, we need to choose a con-
nection A on P. Then using the equation p1τ(p1, p2) = p2 and the Leibnitz rule (see [23]),
we find the identity

π∗1A = ad(τ−1
12 )π∗2A + τ∗12Θ.

Therefore we have

τ∗α =
i

2π

∫
S1

〈π∗13A − ad(τ−1
12 )π∗23A, ∂τ23τ

−1
23 〉 dθ,

where π23(p1, p2, p3) = p1, etc. Now define

ε =
i

2π

∫
S1

〈π∗2A, τ∗Z〉 dθ.

Then, using the simplicial identities and the fact that τijτjk = τik, we have

δε = π∗1ε − π∗2ε + π∗3ε

=
i

2π

∫
S1

〈π∗13A, τ∗23Z〉 − 〈π∗23A, τ∗13Z〉 + 〈π∗23A, τ∗12Z〉 dθ

=
i

2π

∫
S1

〈π∗13A, τ∗23Z〉 − 〈π∗23A, ad(τ12)τ
∗
23Z〉 dθ

=
i

2π

∫
S1

〈π∗13A − ad(τ−1
12 )π∗23A, ∂τ23τ

−1
23 〉 dθ.

It turns out [43] that in general, ε can be written in terms of α and A. We shall demonstrate
in section 4.1 how to find ε in general.

Since we want to calculate the 3-curvature of the lifting bundle gerbe, we are really
interested in the curvature of the connection τ∗ν − ε. This is given by τ∗R− dε. Using the
identities given above, we have

τ∗R =
i

4π

∫
S1

〈τ∗Θ, ∂τ∗Θ〉 dθ

=
i

4π

∫
S1

〈A2 − ad(τ−1)A1, ∂(A2 − ad(τ−1)A1)〉 dθ

=
i

4π

∫
S1

〈A2, ∂A2〉 + 〈A1, ∂A1〉 + 〈[A1, A1], τ∗Z〉 − 2〈ad(τ−1)A1, ∂A2〉 dθ,

and

dε =
i

2π

∫
S1

〈dA1, τ
∗Z〉 − 〈A1, d(τ∗Z)〉 dθ

=
i

2π

∫
S1

〈dA1, τ
∗Z〉 − 〈A1, ∂A1〉 + 〈[A1, A1], τ∗Z〉 − 〈ad(τ−1)A1, ∂A2〉 dθ.
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Therefore

τ∗R − dε =
i

4π

∫
S1

〈π∗1A, ∂π∗1A〉 − 〈π∗2A, ∂π∗2A〉 − 2〈π∗2F, τ∗Z〉 dθ,

where F = dA + 1
2 [A,A] is the curvature of A.

A curving for the lifting bundle gerbe

The next step is to find a curving for τ∗L̂G. That is, we wish to find some 2-form B on P
such that δB = τ∗R − dε. Note that δ : Ω2(P ) → Ω2(P [2]) is given by δ = π∗1 − π∗2, so we
can write τ∗R − dε as

δ

(
i

4π

∫
S1

〈A, ∂A〉 dθ

)
− i

2π

∫
S1

〈π∗2F, τ∗Z〉 dθ.

Thus we just need to find some B2 ∈ Ω2(P ) such that

δB2 =
i

2π

∫
S1

〈π∗2F, τ∗Z〉 dθ.

To solve this equation, we use a Higgs field for the bundle P. A Higgs field is a map
Φ: P → Lg satisfying

Φ(pγ) = ad(γ−1)Φ(p) + γ−1∂γ.

It is clear that Higgs fields exist. Since they exist when P is trivial and convex combinations
of Higgs fields are also Higgs fields, we can use a partition of unity to construct a Higgs
field in general. We shall explain the geometric significance of this map in the next section.
For now, note that if we pull back Φ to P [2] it satisfies

ad(τ)π∗1Φ = π∗2Φ + τ∗Z.

This just comes from the condition above and the definition of τ. Then we see that

〈π∗2F, τ∗Z〉 = 〈π∗2F, ad(τ)π∗1Φ〉 − 〈π∗2F, π∗2Φ〉
= 〈ad(τ−1)π∗2F, π∗1Φ〉 − 〈π∗2F, π∗2Φ〉.

But one can demonstrate (in a similar manner to the proof of the equation above relating
π∗1A and π∗2A) that the curvature F satisfies

π∗1F = ad(τ−1)π∗2F

and so we have
〈π∗2F, τ∗Z〉 = 〈π∗1F, π∗1Φ〉 − 〈π∗2F, π∗2Φ〉.

Therefore, a curving is given by

B =
i

2π

∫
S1

1
2〈A, ∂A〉 − 〈F,Φ〉 dθ.

19



The string class of an LG-bundle

Now that we have a curving for the lifting bundle gerbe we can find a representative for
the string class s(P ) by calculating the 3-curvature H = dB. We have

dB =
i

2π

∫
S1

1
2〈dA, ∂A〉 − 1

2〈A, ∂dA〉 − 〈dF, Φ〉 − 〈F, dΦ〉 dθ.

Integration by parts and the Bianchi identity dF = [F,A] yields

dB =
i

2π

∫
S1

〈dA, ∂A〉 − 〈F, [A,Φ]〉 − 〈F, dΦ〉 dθ

and since the integral over the circle of 〈[A,A], ∂A〉 vanishes, we find

dB =
i

2π

∫
S1

〈F, ∂A〉 − 〈F, [A,Φ]〉 − 〈F, dΦ〉 dθ.

This descends to a form on M and so

H = − i

2π

∫
S1

〈F,∇Φ〉 dθ,

where
∇Φ = dΦ + [A,Φ] − ∂A.

Thus we have the result from [35]

Theorem 2.4.1 ([35]). Let P → M be a principal LG-bundle. Let A be a connection
on P with curvature F and let Φ be a Higgs field for P. Then the string class of P is
represented in de Rham cohomology by the form

− 1
4π2

∫
S1

〈F,∇Φ〉 dθ,

where ∇Φ is the covariant derivative above.

2.5 Higgs fields, LG-bundles and the string class

Recall Killingback’s result from section 2.1 regarding string structures of a loop bundle.
That is, if Q → M is a principal G-bundle and LQ → LM is the LG-bundle obtained by
taking loops, then the string class of LQ is the transgression of the first Pontrjagyn class
of Q, i.e.

s(LQ) =
∫

S1

ev∗ p1(Q).

In the last section we obtained, following the methods of [35], a general expression for
the string class of a principal LG-bundle P → M which is not necessarily a loop bundle.
In this case we can prove a result analogous to Killingback’s by using a correspondence
between LG-bundles and certain G-bundles. This will also enable us to provide an easy
proof of Killingback’s result.
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2.5.1 Higgs fields and LG-bundles

The following correspondence first appeared in [16] in a study of calorons (monopoles for
the loop group) and, in the context in which we are interested, in [35]. We shall present
the construction here in some detail since we will generalise this result in section 4.2 to
LG � S1-bundles and it will be instructive to see the introductory case in depth.

We wish to set up a bijective correspondence between LG-bundles over M and G-
bundles over M × S1. Consider the LG-bundle P × S1 → M × S1 where the LG action
is trivial on the S1 factor. Then use the evaluation map ev : LG × S1 → G to form the
associated G-bundle P̃ → M × S1. That is, define P̃ by

P̃ = (P × G × S1)/LG

where LG acts on P ×G×S1 by (p, g, θ)γ = (pγ, γ(θ)−1g, θ). Then there is a right G action
on P̃ given by [p, g, θ]h = [p, gh, θ] (where square brackets denote equivalence classes) and
a projection π̃ : P̃ → M × S1 given by π̃([p, g, θ]) = (π(p), θ). This action is free and
transitive on the fibres (which are the orbits of the G action) and hence P̃ → M × S1 is
a principal G-bundle.

Conversely, given a G-bundle P̃ → M × S1 we can define fibrewise an LG-bundle
P → M by taking sections of P̃ restricted to a point in M. That is, the fibre of P over m
is

Pm = Γ(P̃|{m}×S1)

or
Pm = {f : S1 → P̃ | π̃(f(θ)) = (m, θ)}.

The LG action here is the obvious one derived from the G action on P̃ . The transition
functions of this bundle are simply the transition functions of P̃ considered as functions
from an open set of M to LG, for if {Uα × S1} is an open cover of M × S1 and s̃α

is a section of P̃ then since elements of P are loops in P̃ , a section of P is given by
sα(m)(θ) = s̃α(m, θ). If sβ is another such section, then the transition functions of P,
gαβ : Uα ∩ Uβ → LG, are given by

sβ(m) = sα(m)gαβ(m).

Evaluating at θ gives
sβ(m)(θ) = sα(m)(θ)gαβ(m)(θ).

But sβ(m)(θ) = s̃β(m, θ) (and similarly for α), so we have

gαβ(m)(θ) = g̃αβ(m, θ)

where g̃αβ are the transition functions for P̃ . We can actually give a global description of
this bundle quite easily by considering the map

η : M → L(M × S1); m �→ (θ �→ (m, θ)).

That is, η(m)(θ) = (m, θ). Then the bundle P is the pullback of the LG-bundle LP̃ →
L(M × S1) :

η∗LP̃ = P ��

��

LP̃

��
M

η �� L(M × S1).
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Thus we have a way of constructing a G-bundle given an LG-bundle and vice versa. It
remains to be shown that this is a bijection on the set of isomorphism classes of these
bundles. That is, if we start with a G-bundle P̃ and construct P and then form the
G-bundle corresponding to that bundle, say P̃ ′, we have that P̃ ′ is isomorphic to P̃ .
And similarly, if we start with P and construct P̃ and then construct the LG-bundle
corresponding to that, say P ′, then these are isomorphic. To see this, first consider a
G-bundle P̃ and construct P as above. Then P̃ ′ is given by

P̃ ′ = (P × G × S1)/LG

where for [p, g, θ] ∈ (P ×G× S1)/LG, p is a map S1 → P̃ as above. Define a bundle map
by

f : P̃ ′ → P̃ ; [p, g, θ] �→ p(θ)g.

This is well-defined, since [pγ, γ(θ)−1g, θ]
f�→ (pγ)(θ)γ(θ)−1g = p(θ)g and commutes with

the G action, since [p, g, θ]h = [p, gh, θ]
f�→ p(θ)gh = (p(θ)g)h. Hence f is a bundle

isomorphism. On the other hand, if we consider an LG-bundle P and construct P̃ =
(P × G × S1)/LG then P ′ is given by the pull-back above. Notice that if we define the
map η̂ : P → LP̃ by

η̂(p)(θ) = [p, 1, θ]

then η̂ covers η : M → L(M × S1), that is,

P
η̂ ��

��

LP̃

��
M

η �� L(M × S1)

commutes, and so P is isomorphic to the pull-back P ′. Thus we have proven

Proposition 2.5.1 ([16, 35]). There is a bijective correspondence between isomorphism
classes of principal G-bundles over M × S1 and isomorphism classes of principal LG-
bundles over M.

Importantly for our purposes, this correspondence holds on the level of connections
as well. More specifically, if we have a G-bundle with connection we can construct an
LG-bundle with connection and Higgs field and, conversely, given an LG-bundle with
connection and Higgs field we can construct a G-bundle with connection. We shall see
that the Higgs field is essentially the S1 component of the connection on P̃ .

Suppose we have a connection Ã on P̃ . We can define a connection on P (which is an
Lg-valued 1-form) by Ap(X)(θ) = Ãp(θ)(Xθ), where X is a vector in TpP (i.e. a vector
field along p in P̃ ), and so Xθ ∈ Tp(θ)P̃ . This is a connection by virtue of the fact that Ã

is. If we view Ã as a splitting of the tangent space at each point in P̃ , then we can easily
see that A is given by essentially the same splitting since for each θ ∈ S1, TpP splits as

Tp(θ)P̃ � Vp(θ)P̃ ⊕ Hp(θ)P̃

where Vp(θ)P̃ is the vertical subspace at p(θ) and Hp(θ)P̃ is the horizontal subspace.
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Suppose instead we are given an LG-bundle P with connection A and Higgs field Φ.
Then we can define a form on P × G × S1 by

Ã = ad(g−1)A(θ) + Θ + ad(g−1)Φ dθ.

This form descends to a form on P̃ and the connection (also called Ã) is given by this
equation considered as a form on (P × G × S1)/LG. To show that this is well defined,
we need to check that it is independent of the lift of a vector in P̃ . That is, if X̂ and X̂ ′

are two lifts of the vector X ∈ T[p,g,θ]P̃ to the fibre in P × G × S1 above [p, g, θ], then
Ã(X̂) = Ã(X̂ ′). Suppose then, that X̂ ∈ T(p,g,θ)(P×G×S1) and X̂ ′ ∈ T(p,g,θ)γ(P×G×S1).
Then X̂γ ∈ T(p,g,θ)γ(P×G×S1), and X̂ ′ and X̂γ differ by a vertical vector (with respect to
the LG action) at (p, g, θ)γ = (pγ, γ(θ)−1g, θ) and so it is sufficient to show that Ã is zero on
vertical vectors and invariant under the LG action (since then Ã(X̂ ′) = Ã(X̂γ+vertical) =
Ã(X̂)). Because any compact Lie group has a faithful representation as matrix group [39],
we can expand the exponential map as exp(tξ) = 1 + tξ + . . . . Therefore, the vertical
vector at (p, g, θ) generated by ξ ∈ Lg is

V =
d

dt

∣∣∣∣
0

(p, g, θ) exp(tξ)

=
d

dt

∣∣∣∣
0

(p exp(tξ), exp(−tξ(θ))g, θ)

= (ιp(ξ),−ξ(θ)g, 0),

(where we have written d
dt

∣∣
0

for the derivative evaluated at t = 0), and so

Ã(V ) = ad(g−1)A(ιp(ξ))(θ) − g−1ξ(θ)g

= g−1ξ(θ)g − g−1ξ(θ)g
= 0.

So Ã is zero on vertical vectors. Now, suppose X̂ = (X, gζ, xθ) is given by

d

dt

∣∣∣∣
0

(γX(t), g exp(tζ), θ + tx),

where γX(t) is a path in P whose tangent vector at 0 is X and where ζ and x are elements
of the Lie algebras of G and S1 respectively. Then

X̂γ =
d

dt

∣∣∣∣
0

(γX(t)γ, γ(θ + tx)g exp(tζ), θ + tx)

=
d

dt

∣∣∣∣
0

(γX(t)γ, γ(θ)gtζ + tx∂γ(θ)g, θ + tx)

= (Xγ, γ(θ)g(ζ + xad(g−1)γ(θ)−1∂γ(θ)), x).
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So

Ã(pγ,γ(θ)−1g,θ)(X̂γ) = Ã(pγ,γ(θ)−1g,θ)(Xγ, γ(θ)g(ζ + xad(g−1)γ(θ)−1∂γ(θ)), x)

= ad((γ(θ)−1g)−1)A(Xγ) + ζ + xad(g−1)γ(θ)−1∂γ(θ)

+ ad((γ(θ)−1g)−1)xΦ(pγ)

= ad(g−1)ad(γ)ad(γ−1)A(X)(θ) + ζ + xad(g−1)γ(θ)−1∂γ(θ)

+ ad(g−1)xad(γ)(ad(γ−1)Φ(p) + γ−1∂γ)

= ad(g−1)A(X)(θ) + ζ + ad(g−1)xΦ(p).

Therefore Ã is invariant under the LG action and so defines a form on P̃ . This form is a con-
nection form since if [X, gζ, xθ] is a vector at [p, g, θ], then [X, gζ, xθ]h = [X, gh ad(h−1)ζ, xθ]
and so

Ã([X, gζ, xθ]h) = ad(h−1g−1)A(X)(θ) + ad(h−1)ζ + ad(h−1g−1)xΦ(p)

= ad(h−1)Ã([X, gζ, xθ])

and further, the vertical vector at [p, g, θ] generated by ζ ∈ g is given by

Vζ =
d

dt |0
[p, g exp(tζ), θ]

= [0, gζ, 0]

and so Ã(Vζ) = ζ.
We have shown already that the correspondence outlined above is a bijection between

isomorphism classes of bundles. Now we will show that in fact it is a bijection between
isomorphism classes of bundles with connection. So given a G-bundle P̃ with connection
Ã, we construct the LG-bundle P with the connection A as above. Then construct the
G-bundle P̃ ′ (which is isomorphic to P̃ ) and give it the connection Ã′ which we just
outlined. Of course, to do this we’ll need a Higgs field for P. Recalling that elements of P
are essentially loops in P̃ , we can define a Higgs field by

Φ(p) = Ã(∂p).

This is a Higgs field since if we calculate Φ(pγ) we get

Ã(∂(pγ)) = Ã((pγ)∗
∂

∂θ
)

= Ã((∂p)γ + ιpγ(γ−1∂γ))

= ad(γ−1)Ã(∂p) + γ−1∂γ.

(Note that this is essentially the S1 part of Ã. That is, if we take a section s̃ of P̃ → M×S1

we can get a section s of P → M by s(m)(θ) := s̃(m, θ). Then if we pull-back Φ by s we
get

(s∗Φ)(m)(θ) = (s̃∗Ã)(m, θ)
(

∂

∂θ

)
= (s̃∗Ã)θ(m, θ)
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where (s̃∗Ã)θ is the S1 part of (s̃∗Ã) – i.e. the coefficient of dθ – and since the ∂
∂θ kills all

but the dθ part.)
Therefore, the connection Ã′ is given in terms of Ã as

Ã′[p,g,θ] = ad(g−1)Ãp(θ) + Θ + ad(g−1)Ã(∂p)dθ.

Recall that P̃ ′ is isomorphic to P̃ via the map

f : P̃ ′ → P̃ ; [p, g, θ] �→ p(θ)g,

so we would like to have f∗Ã = Ã′. Now, f∗Ã([X, gζ, xθ]) = Ã(f∗[X, gζ, xθ]) and, as
before, if γX(t) is a path in P whose tangent vector at 0 is X and if ζ and x are elements
of the Lie algebras of G and S1 respectively, then

f∗[X, gζ, xθ] =
d

dt

∣∣∣∣
0

(γX(t)(θ + tx)g exp(tζ))

=
(

d

dt
(γX(t))(θ + tx)g exp(tζ) + γX(t)(θ + tx)g

d

dt
exp(tζ)

+ ∂γX(t)(θ + tx)xg exp(tζ)
) ∣∣∣∣

0

= X(θ)g + ιp(θ)g(ζ) + ∂p(θ)xg

and so

f∗Ã([X, gζ, xθ]) = ad(g−1)A(X) + ζ + ad(g−1)A(∂p(θ))x

= Ã′([X, gζ, xθ]).

If, on the other hand, we had started with the LG-bundle P with connection A (and Higgs
field Φ), then A′ would be given by

A′p(X)(θ) = Ãp(θ)(Xθ)

and recalling that the isomorphism between P and P ′ is essentially given by f(p) = (θ �→
[p, 1, θ]), we have

f∗A′p(X)(θ) = Ap(X)(θ).

Hence, we have

Proposition 2.5.2 ([35]). The correspondence from Proposition 2.5.1 extends to a bijec-
tion between G-bundles on M ×S1 with connection and LG-bundles on M with connection
and Higgs field.

2.5.2 The string class and the first Pontrjagyn class

As mentioned previously, the correspondence above provides us with a result analogous
to Killingback’s. We have
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Theorem 2.5.3 ([35]). Let P → M be an LG-bundle and P̃ → M ×S1 the corresponding
G-bundle. Then the string class of P is given by integrating over the circle the first
Pontrjagyn class of P̃ . That is,

s(P ) =
∫

S1

p1(P̃ ).

Proof. If F̃ is the curvature of a connection on P̃ then the Pontrjagyn form is given by

p1(P̃ ) = − 1
8π2

〈F̃ , F̃ 〉.

In this case we know that Ã is given as in the previous section. That is,

Ã = ad(g−1)A + Θ + ad(g−1)Φ dθ,

so we can calculate its curvature using F̃ = dÃ + 1
2 [Ã, Ã]. Now,

1
2 [Ã, Ã] = 1

2 [ad(g−1)A + Θ + ad(g−1)Φ dθ, ad(g−1)A + Θ + ad(g−1)Φ dθ]

= 1
2ad(g−1)[A,A] + 1

2 [Θ, Θ] + [Θ, ad(g−1)A]

+ ad(g−1)[A,Φ]dθ + [Θ, ad(g−1)Φ]dθ.

So we just need to calculate dÃ = d(ad(g−1)A) + dΘ + d(ad(g−1)Φ)dθ. Now, if ω is a
1-form then for tangent vectors X and Y we have

dω(X, Y ) = 1
2 {X(ω(Y )) − Y (ω(X)) − ω([X, Y ])} ,

so let (X, gξ, xθ) and (Y, gζ, yθ) be two tangent vectors to P̃ at the point [p, g, θ]. Then for
d(ad(g−1)A), first calculate

(X, gξ, xθ)(ad(g−1)Ap(Y )θ)

=
d

dt

∣∣∣∣
0

(1 − tξ)g−1AγX(t)(Y )(θ+tx)g(1 + tξ)

=
d

dt

∣∣∣∣
0

(
ad(g−1)AγX(t)(Y )θ

)
+ ad(g−1)∂Ap(Y )x − [ξ, ad(g−1)Ap(Y )θ].

This yields

d(ad(g−1)A) = ad(g−1)dA − ad(g−1)∂A ∧ dθ − [Θ, ad(g−1)A].

Similarly, for d(ad(g−1)Φ)dθ we have

(X, gξ, xθ)(ad(g−1)Φ(p)θ)

=
d

dt

∣∣∣∣
0

(1 − tξ)g−1Φ(γX(t))(θ+tx)g(1 + tξ)

=
d

dt

∣∣∣∣
0

(
ad(g−1)Φ(γX(t))

)
+ ad(g−1)∂Φx − [ξ, ad(g−1)Φ(p)θ],

and so
d(ad(g−1)Φ)dθ = ad(g−1)dΦ ∧ dθ − [Θ, ad(g−1)Φ]dθ.
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Putting these together gives

F̃ = ad(g−1)dA − ad(g−1)∂A ∧ dθ − [Θ, ad(g−1)A] + dΘ

+ ad(g−1)dΦ ∧ dθ − [Θ, ad(g−1)Φ]dθ + 1
2ad(g−1)[A,A]

+ 1
2 [Θ, Θ] + [Θ, ad(g−1)A] + ad(g−1)[A,Φ]dθ + [Θ, ad(g−1)Φ]dθ

= ad(g−1)
(
dA + 1

2 [A,A] + dΦ ∧ dθ + [A,Φ]dθ − ∂A ∧ dθ
)

That is,
F̃ = ad(g−1) (F + ∇Φ dθ) .

Then the Pontrjagyn form is given by

p1(P̃ ) = − 1
8π2

(〈F, F 〉 + 2〈F,∇Φ〉 dθ) ,

and integrating over the circle gives the required result.

A proof of Killingback’s result

We now have a result which is more general than Killingback’s result since it can be applied
to a general LG-bundle, not just a loop bundle. We now show how Theorem 2.5.3 gives a
method for proving Killingback’s result.

Corollary 2.5.4. Let LQ → LM be a loop bundle, that is, a principal LG-bundle obtained
by taking loops in a G-bundle Q → M. Then

s(LQ) =
∫

S1

ev∗ p1(Q).

Proof. We know that the string class of LQ is given by the integral over the circle of
the first Pontrjagyn class of the corresponding G-bundle over LM × S1. We show that
this bundle is isomorphic to the pull-back of Q by the evaluation map, then the result
follows. The G-bundle L̃Q is given by (LQ × G × S1)/LG. Define the map L̃Q → Q by
[q, g, θ] �→ q(θ)g. As in section 2.5.1 above, this map is well-defined and commutes with
the G-action. Furthermore, it covers the evaluation map LM × S1 → M and so L̃Q is
isomorphic to ev∗Q and hence p1(L̃Q) = ev∗ p1(Q).
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Chapter 3

Higgs fields and characteristic
classes for ΩG-bundles

In our discussion of string structures in chapter 2 we were concerned mainly with the loop
group LG and its central extension L̂G. In this chapter we shall, for the most part, be
considering the subgroup of LG given by those loops which begin at the identity in G,
that is, the based loop group, which we shall denote ΩG. We will return to the discussion
of free loops in section 3.3.

3.1 String structures and the path fibration

In this section we will outline the result from [11] concerning string structures for certain
ΩG-bundles.1 In particular, we shall see that if Q → M is a principal G-bundle, then the
string class for the ΩG-bundle ΩQ → ΩM is a characteristic class for such bundles. To be
precise, what we mean here is that we have chosen a base point m0 in M and a base point
q0 in the fibre above m0 and then ΩQ → ΩM is an ΩG-bundle. By ‘string class’ we mean
the obstruction to lifting ΩQ to an Ω̂G-bundle, where Ω̂G is the central extension of ΩG.
(Actually, since we are working with differential forms, we are really concerned with the
image in real cohomology of the string class – however, we make no distinction between
the terms here.) We will also generalise this to the case of a general ΩG-bundle, that is,
one which is not necessarily a loop bundle.

3.1.1 Classifying maps and characteristic classes

In the interests of being self-contained we shall begin by giving a short overview of the
theory of classifying maps and characteristic classes before moving on to the specific case
we are interested in. Recall that G-bundles over M are classified by (homotopy classes of)
maps to the classifying space BG. A G-bundle is then (isomorphic to) the pull-back by
this map of the universal bundle EG → BG. This bundle is characterised by the fact that
it is a principal G-bundle and that EG is a contractible space. If P → M is a G-bundle, a
map f : M → BG such that P is isomorphic to the pull-back f∗EG is called a classifying
map for P.

1Actually, in [11] Carey and Murray work with the group of smooth maps from the interval [0, 2π] into
the group G whose endpoints agree. We shall look more closely at this group in section 3.3. Here we will
be extending their results to the subgroup of based smooth maps S1 → G.
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A characteristic class associates to a G-bundle P → M a class c(P ) in H∗(M). It must
be natural with respect to pull-backs in the sense that if g : N → M is a smooth map
then c must associate to the pull-back bundle g∗P → N the class given by the pull-back
of c(P ). That is,

c(g∗P ) = g∗c(P ).

Note that since all G-bundles are pulled-back from the universal bundle, then if P → M
is a G-bundle with classifying map f, all its characteristic classes are of the form f∗c(EG)
for some characteristic class c. That is, the set of characteristic classes for G-bundles is in
bijective correspondence with the cohomology group H∗(BG).

3.1.2 String structures and the path fibration

In general, both the classifying space and the universal bundle for a group can be difficult
to describe. For the based loop group ΩG, however, we have the following construction
[6]: Let PG be the space of paths in G, p : R → G such that p(0) is the identity and p−1∂p
is periodic. Then this is acted on by ΩG and

ΩG �� PG

��
G

is an ΩG-bundle called the path fibration, where the projection π sends a path p to its
value at 2π. PG is contractible and so the path fibration is a model for the universal
ΩG-bundle and we have BΩG = G. (See Appendix A for details.)

Since we are assuming that G is compact, simple and simply connected, we know that
H3(G, Z) = Z and there is an expression for the generator of this group. Namely, the
3-form on G given by

ω =
1

48π2
〈Θ, [Θ, Θ]〉.

In [11] Carey and Murray show the string class of the path fibration (for the case of loops
which are smooth on (0, 2π)) is given by the 3-form ω by giving an explicit construction
of the lift of PG which exists precisely when this class vanishes. We will use Theorem
2.4.1 to calculate the string class of the path fibration. Firstly we need a connection on
PG. This is given in [9]: Let α be a smooth real-valued function on [0, 2π] such that
α(0) = 0, α(2π) = 1 and all the derivatives of α vanish at the endpoints. Then α can be
extended to a function on R and a connection in PG is given by

A = Θ − α ad(p−1)π∗Θ̂,

where Θ̂ is the right invariant Maurer-Cartan form. The horizontal projection of a tangent
vector X using this connection is

hX = α X(2π)p(2π)−1p.

We can calculate the curvature of A using the covariant derivative F = DA. For tangent
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vectors X and Y, we have

F (X, Y ) =
1
2
A([hX, hY ])

=
1
2
A

(
α2

[
X(2π)p(2π)−1, Y (2π)p(2π)−1

]
p
)

=
1
2

(
Θ − α ad(p−1)π∗Θ̂

) (
α2

[
X(2π)p(2π)−1, Y (2π)p(2π)−1

]
p
)

=
1
2
(
α2 − α

)
ad(p−1)

[
X(2π)p(2π)−1, Y (2π)p(2π)−1

]
.

So
F =

1
2
(
α2 − α

)
ad(p−1)[π∗Θ̂, π∗Θ̂].

In order to use Theorem 2.4.1 we also need a Higgs field for PG. Define the map Φ: PG →
Lg by

Φ(p) = p−1∂p.

Then Φ is a Higgs field, since for γ ∈ ΩG we have

Φ(pγ) = (pγ)−1∂(pγ)

= ad(γ−1)p−1∂p + γ−1∂γ.

The formula for the string class uses ∇Φ = dΦ + [A,Φ] − ∂A. We can calculate

dΦ = ∂Θ + [Φ,Θ],

[A,Φ] = [Θ, Φ] − α [ad(p−1)π∗Θ̂,Φ]

and
∂A = ∂Θ − ∂α ad(p−1)π∗Θ̂ − α [ad(p−1)π∗Θ̂,Φ].

So we have
∇Φ = ∂α ad(p−1)π∗Θ̂.

Therefore, by Theorem 2.4.1 we have

s(PG) = − 1
8π2

∫
S1

〈(
α2 − α

)
ad(p−1)[π∗Θ̂, π∗Θ̂], ∂α ad(p−1)π∗Θ̂

〉
dθ

= − 1
8π2

〈[Θ̂, Θ̂], Θ̂〉
∫

S1

(
α2 − α

)
∂α dθ

=
1

48π2
〈Θ, [Θ,Θ]〉,

where the last line follows from the ad-invariance of the Killing form. Thus we see that
the string class of the path fibration is the generator of the degree three cohomology of G.

Now, consider again a based loop bundle ΩQ
ΩG−−→ ΩM. In [11] Carey and Murray

write down the classifying map for such bundles and then show, by explicitly calculating
the integral of the (pull-back by the evaluation map of the) first Pontrjagyn class of Q,
that the string class is the pull-back by this map of the 3-form ω. To write down the
classifying map of the bundle ΩQ → ΩM choose a connection for it. Then take a loop
γ ∈ ΩQ and project it down to π ◦ γ ∈ ΩM. Lift this back up horizontally to γh ∈ ΩQ,
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so that π ◦ γ = π ◦ γh. Then the holonomy, hol(γ) ∈ PG is given by γ = γh hol(γ). This
covers the usual holonomy2 hol : ΩM → G, so we have:

ΩQ
hol ��

��

PG

��
ΩM

hol �� G

Thus hol is a classifying map for the bundle ΩQ → ΩM. Now, using Corollary 2.5.4 and
by calculating explicitly

∫
S1 ev∗ p1(Q), we can show that

s(ΩQ) = hol∗ ω + exact .

We shall show this in more detail in the next section when we generalise this result to
the case of higher classes for general ΩG-bundles (that is, an ΩG-bundle which is not
necessarily a loop bundle). For now let us assume this result and show how it leads us to
a more general statement.

To generalise the result above to a general ΩG-bundle P
ΩG−−→ M, we need a classifying

map for such bundles. Consider the ΩG-bundle P → M. Choose a Higgs field Φ: P → Lg

for P. It is possible to solve the equation Φ(p) = g−1∂g for g ∈ PG. We define the Higgs
field holonomy, holΦ, to be the solution to this equation satisfying the initial condition
g(0) = 1. Note that if holΦ(p) = g then since

Φ(ph) = ad(h−1)Φ(p) + h−1∂h

and
(gh)−1∂(gh) = ad(h−1)g−1∂g + h−1∂h,

we see that holΦ(p·h) = holΦ(p)h and hence holΦ descends to a map (also called holΦ) M →
G and is a classifying map for P → M.

A natural question arises at this point: If Q → M is a G-bundle with connection A then
we can define the holonomy of a loop γ ∈ ΩQ. However, since the loop bundle ΩQ → ΩM
is an ΩG-bundle, we can also choose a Higgs field for it and define the Higgs field holonomy
of a loop γ in this bundle. Can we find the Higgs field Φ such that holΦ = hol? Define Φ
in terms of A as in section 2.5, that is,

Φ(γ) = A(∂γ).

Then using γ = γh hol(γ), we find

∂γ = ∂γh · hol(γ) + ιγh
(hol(γ)−1∂ hol(γ)).

Since γh is horizontal (in the sense that all its tangent vectors are horizontal), applying
the connection form A gives

A(∂γ) = hol(γ)−1∂ hol(γ).

Therefore, holΦ = hol .
We can extend the result from [11] by finding a relationship between holΦ and hol in

general:
2Note that we can define the holonomy since we have chosen basepoints in M and Q.
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We can modify the correspondence in section 2.5, which relates LG-bundles over M
and G-bundles over M ×S1, to one which applies to ΩG-bundles. We say a G-bundle over
M × S1 is framed over M × {0} if it is trivial over M × {0}. A particular trivialisation
is called a framing. Given this, then, ΩG-bundles correspond to G-bundles over M × S1

which are framed over M × {0}. This means we take a G-bundle P̃ → M × S1 and a
section (i.e. a framing) s : M × {0} → P̃ and the fibre of P over m has a base point given
by s(m, 0). Using this correspondence, define a bundle map

P
η ��

��

ΩP̃

��
M

η �� Ω(M × S1)

by η(m) = θ �→ (m, θ), or, on the total space, η(p) = θ �→ [p, 1, θ]. Then we have:

Lemma 3.1.1. Let P → M be an ΩG-bundle with connection and Higgs field Φ, P̃ →
M × S1 its corresponding G-bundle and η as above. Then holΦ = hol ◦η.

Proof. If Ã is the connection form on P̃ then Φ̃ : ΩP̃ → Lg defined by

Φ̃(γ) = Ã(∂γ)

gives us that
holΦ̃ = hol

as above. Therefore we need only show that holΦ = holΦ̃ ◦η.
Let p ∈ P. Consider the unique horizontal path η(p)h such that

π̃(η(p)) = π̃(η(p)h)

given by projecting η(p) to Ω(M × S1) and lifting horizontally back to ΩP̃ . The tangent
vector to the loop η(p) at the point θ is given by the derivative ∂η(p)θ and since η(p)h is
horizontal we have that

Ã(η(p)h,θ) = 0.

Now, η(p)θ = [p, 1, θ], so we can explicitly calculate ∂η(p)θ :

∂

∂θ
η(p)θ = [0, 0, 1].

Recall that the connection Ã is given in terms of the connection A and Higgs field Φ for
P as

Ã = ad(g−1)A + Θ + ad(g−1)Φ dθ.

Therefore, we have Ã(∂η(p)) = Φ(p). Or, in terms of the Higgs field for ΩP̃ ,

Φ = Φ̃ ◦ η.

As above, we have
Φ̃(η(p)) = hol(η(p))−1∂ hol(η(p)),

and therefore holΦ = holΦ̃ ◦η.
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We see that holΦ factors through hol . In order to use this we need the following result:

Lemma 3.1.2. In the situation of Lemma 3.1.1, for degree 4 differential forms on M×S1

we have
η∗

∫
S1

ev∗ =
∫

S1

.

Proof. Note first that we have

M × S1 η×1−−−→ Ω(M × S1) × S1 ev−−→ M × S1

(m,φ) �−→ (θ �→ (m, θ), φ) �−→ (m,φ)

so, ev ◦(η × 1) is the identity. Therefore, we have∫
S1

=
∫

S1

(η × 1)∗ ev∗,

so it suffices to show that ∫
S1

(η × 1)∗ = η∗
∫

S1

.

That is, that the following diagram commutes

Ω4(Ω(M × S1) × S1)
(η×1)∗ ��

R
S1

��

Ω4(M × S1)
R

S1

��
Ω3(Ω(M × S1))

η∗
�� Ω3(M)

Consider ω ∈ Ω4(Ω(M × S1) × S1). Then if X1, X2 and X3 are tangent vectors to M we
have (∫

S1

(η × 1)∗ω
)

(X1, X2, X3) =
∫

S1

(η × 1)∗ω(X̂1, X̂2, X̂3)

=
∫

S1

ω((η × 1)∗X̂1, (η × 1)∗X̂2, (η × 1)∗X̂3),

where X̂i (i = 1, 2, 3) is a lift of Xi to M ×S1. On the other hand, if η̂∗Xi is a lift of η∗Xi

to Ω(M × S1) × S1, then

η∗
(∫

S1

ω

)
(X1, X2, X3) =

(∫
S1

ω

)
(η∗X1, η∗X2, η∗X3)

=
∫

S1

ω(η̂∗X1, η̂∗X2, η̂∗X3).

Since the expressions above are independent of the lift chosen, we can use the natural
splitting of the tangent bundles to M × S1 and Ω(M × S1) × S1 to define X̂i = (Xi, 0)
and η̂∗Xi = (η∗Xi, 0) and so we have(∫

S1

(η × 1)∗ω
)

(X1, X2, X3) =
∫

S1

ω((η∗X̂1, 0), (η∗X̂2, 0), (η∗X̂3, 0))

= η∗
(∫

S1

ω

)
(X1, X2, X3).
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Combining Lemmas 3.1.1 and 3.1.2, we have:

Theorem 3.1.3. The string class of an ΩG-bundle P → M is the characteristic class
corresponding to ω ∈ H3(G).

Proof. On the level of cohomology we have

s(P ) =
∫

S1

p1(P̃ )

= η∗
∫

S1

ev∗ p1(P̃ )

= η∗s(ΩP̃ )
= η∗ hol∗ ω

= hol∗Φ ω.

3.2 Higher string classes for ΩG-bundles

We have seen in the last section that the string class is a characteristic class for ΩG-bundles
and we know from section 2.5 (Theorem 2.5.3) that it is naturally associated to the first
Pontrjagyn class of the corresponding G-bundle. Indeed, the fact that the string class is
given by integrating the first Pontrjagyn class was used to show that it is natural. In
this section we will generalise these ideas to higher degree classes for ΩG-bundles. These
classes will be naturally associated to a characteristic class for G-bundles in the same way
the string class is related to the Pontrjagyn class.

We can summarise the results from the previous section with the following diagram

H4(BG)
C-W

eP ��

τ

��

H4(M × S1)
R

S1

��
H3(G)

hol∗Φ �� H3(M)

The top arrow here is the usual Chern-Weil map (see below). The map τ is the trans-
gression (see for example [13] or [21]) which we shall describe presently. As long as G
is compact and connected, H2k(BG) is isomorphic to the set of multilinear, symmetric,
ad-invariant functions on g × . . . × g (k times). Let f be such a function and let Q → M
be a G-bundle with connection. Then the Chern-Weil map, C-WQ, takes f to the class
on M given by f(F, . . . , F ), where F is the curvature of the connection on Q. This is
well-defined and independent of choice of connection. (For details we refer the reader to
[24].) In this case the transgression map τ is given by

τ(f) =
(
−1

2

)k−1 k!(k − 1)!
(2k − 1)!

f(Θ, [Θ,Θ], . . . , [Θ, Θ]),

where, as usual, Θ is the Maurer-Cartan form on G. In terms of the result above, we
have seen that in the case where the polynomial f is given by f(X, Y ) = − 1

8π2 〈X, Y 〉 and
the G-bundle is P̃ → M × S1, then the Chern-Weil map gives the Pontrjagyn class of P̃
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and the diagram commutes. Furthermore, the element that fits in the bottom right hand
corner is the string class of the corresponding ΩG-bundle P → M. That is,∫

S1

p1(P̃ ) = s(P )

= − 1
4π2

∫
S1

〈F,∇Φ〉dθ

=
1

48π2
hol∗Φ〈Θ, [Θ,Θ]〉.

It is natural to ask now whether there is a similar theory for general and higher degree
characteristic classes. That is, whether we can set up the following diagram

H2k(BG)
C-W

eP ��

τ

��

H2k(M × S1)
R

S1

��
H2k−1(G)

holΦ �� H2k−1(M)

and give a formula for the element that ends up in the bottom right-hand corner given a
general polynomial in the top left.

As above, the usual Chern-Weil theory tells us that if we start with an invariant
polynomial f ∈ H2k(BG) then the element in H2k(M × S1) that we end up with is
f(F̃ , . . . , F̃ ) where F̃ is the curvature of the G-bundle P̃ on M ×S1. Note that if we write
out f(F̃ , . . . , F̃ ) in terms of the curvature and Higgs field on the corresponding ΩG-bundle
P → M, we get

f(F̃ , . . . , F̃ ) = f(F + ∇Φ dθ, . . . , F + ∇Φ dθ)
= f(F, . . . , F ) + kf(∇Φ dθ, F, . . . , F )

since f is multilinear and symmetric and all terms with more than one dθ will vanish.
From now on we will adopt the convention that whenever f has repeated entries they will
be ordered at the end and we will write them only once. That is, whatever appears as the
last entry in f is repeated however many times required to fill the remaining slots. (For
example, f(F ) = f(F, . . . , F ) and f(∇Φ, F )dθ = f(∇Φ, F, . . . , F )dθ.) So integrating this
over the circle gives ∫

S1

f(F̃ ) = k

∫
S1

f(∇Φ, F ) dθ.

So k
∫
S1 f(∇Φ, F )dθ is our candidate for the element in H2k−1(M) which corresponds to

f ∈ H2k(BG) and makes the diagram commute.
Note that if we evaluate this expression for the path fibration we have

k

∫
S1

f(∇Φ, F ) dθ = f(Θ, [Θ, Θ])
(

1
2

)k−1

k

∫
S1

(
α2 − α

)k−1
∂α dθ

= f(Θ, [Θ, Θ])
(

1
2

)k−1

k

∫
S1

k−1∑
i=0

(
k − 1

i

)
(−1)k−1−iα2iαk−1−i∂α dθ

= f(Θ, [Θ, Θ])
(
−1

2

)k−1

k

k−1∑
i=0

(
k − 1

i

)
(−1)i 1

k + i
.
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It turns out [44] that the coefficient above is equal to the coefficient in the definition of
the transgression map τ . That is,

k
k−1∑
i=0

(
k − 1

i

)
(−1)i

k + i
=

k!(k − 1)!
(2k − 1)!

.

Therefore, we have for the path fibration

k

∫
S1

f(∇Φ, F ) dθ = τ(f).

So what we are really asking for is a theory which associates to any characteristic class
for G-bundles (that is, any polynomial in H2k(BG)) a characteristic class for an ΩG-
bundle over M. That is a map H2k(BG) → H2k−1(M) which gives characteristic classes
for ΩG-bundles over M. Thus we need to show firstly that k

∫
S1 f(∇Φ, F )dθ is closed

and independent of choice of connection and Higgs field. Also, we need to show that it
is cohomologous to the pull-back by the classifying map holΦ of the (2k − 1)-form τ(f)
defined above. We shall call k

∫
S1 f(∇Φ, F )dθ the string (2k−1)-class associated to f and

write sP
2k−1(f). To be more precise

Definition 3.2.1. Let P̃ be a framed G-bundle over M × S1 and P its corresponding
ΩG-bundle over M. Suppose that f ∈ H2k(BG) is an invariant polynomial representing
the characteristic class f(F̃ ) ∈ H2k(M × S1). Then its associated string (2k − 1)-class is
the class in H2k−1(M) given by

sP
2k−1(f) = k

∫
S1

f(∇Φ, F ) dθ,

where Φ is a Higgs field for P and F is the curvature of a connection on P.

Note that we still have to show that sP
2k−1(f) is closed and well-defined. We have

Proposition 3.2.2. The string (2k − 1)-class is closed.

Proof. To show that sP
2k−1(f) is closed we use the following result which follows from

Lemmas 1 and 2 on pages 294–295 of [24]:

Lemma 3.2.3. Let ψ be an ad-invariant, vertical form on the total space of a principal
bundle. Then ψ projects to a form on the base space. For such a form, the exterior
derivative is equal to the covariant exterior derivative. That is, dψ = Dψ.

Thus we only need to show that DsP
2k−1(f) = 0. Now,

Dk

∫
S1

f(∇Φ, F ) dθ = k

∫
S1

f(D(∇Φ), F ) dθ + k(k − 1)
∫

S1

f(∇Φ, DF, F ) dθ

= k

∫
S1

f(D(∇Φ), F ) dθ

using the Bianchi identity. We can calculate D(∇Φ). For tangent vectors X and Y,

D(∇Φ)(X, Y ) = d(∇Φ)(hX, hY )

= (d2Φ + [dA, Φ] − [A, dΦ] − ∂(dA))(hX, hY )
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where (hX, hY ) is the projection of (X, Y ) onto the horizontal subspace at that point.
Using the fact that dA(hX, hY ) = F (X, Y ) and A(hX) = A(hY ) = 0, we have:

D(∇Φ)(X, Y ) = [F (X, Y ),Φ] − ∂F (X, Y )

That is,
D(∇Φ) = [F, Φ] − ∂F.

So we have,

Dk

∫
S1

f(∇Φ, F ) dθ = k

∫
S1

f([F,Φ], F ) dθ − k

∫
S1

f(∂F, F ) dθ

and ad-invariance of f (which we will discuss in more detail later) implies the first term on
the right hand side vanishes while integration by parts implies the second term vanishes.
Therefore, sP

2k−1(f) is closed.

We also have

Proposition 3.2.4. The string (2k − 1)-class is independent of choice of connection and
Higgs field.

Proof. In order to see that sP
2k−1(f) is independent of choice of connection and Higgs field

consider 2 different connection forms, A0 and A1, on P and 2 different Higgs fields, Φ0 and
Φ1. Since the space of connections is an affine space and the same is true for Higgs fields,
we can consider lines joining the 2 connections and Higgs fields respectively. Define:

α := A1 − A0, ϕ := Φ1 − Φ0

and
At := A0 + tα, Φt := Φ0 + tϕ

for t ∈ [0, 1]. Now consider the corresponding connection form on P̃

Ãt = Ã0 + t(Ã1 − Ã0)

= ad(g−1)A0 + Θ + ad(g−1)Φ0dθ + t(ad(g−1)A1 + ad(g−1)Φ1dθ

− ad(g−1)A0 − ad(g−1)Φ0dθ)

= ad(g−1)A0 + Θ + ad(g−1)Φ0dθ + tα̃

where
α̃ = ad(g−1)α + ad(g−1)ϕdθ.

Note that
Ãt = ad(g−1)At + Θ + ad(g−1)Φtdθ.

Recall that f(F̃ ) = f(F ) + kf(∇Φ, F )dθ. We shall show f(F̃0) and f(F̃1) differ by an
exact form, (where F̃0 and F̃1 are the curvature forms of Ã0 and Ã1 respectively) so that
the class defined by k

∫
S1 f(∇Φ1, F1)dθ =

∫
S1 f(F̃ ) is independent of A and Φ. For this

we will need the following lemma:
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Lemma 3.2.5. Dtα̃ =
d

dt
F̃t.

Proof. Firstly, we calculate F̃t:

F̃t = dÃt + 1
2 [Ãt, Ãt]

= ad(g−1) (Ft + ∇Φt ∧ dθ)

= ad(g−1)
(
dAt + 1

2 [At, At] + (dΦt + [At, Φt] − ∂At) ∧ dθ
)

= ad(g−1)
(
dA0 + tdα + 1

2 [At, At] + (dΦ0 + tdϕ + [At, Φt] − ∂A0 − t∂α) ∧ dθ
)
.

Therefore d
dt F̃t is given by

d

dt
F̃t = ad(g−1)

(
dα +

1
2

d

dt
[At, At] + (dϕ +

d

dt
[At, Φt] − ∂α) ∧ dθ

)
= ad(g−1)

(
dα +

1
2
[α, At] +

1
2
[At, α] + (dϕ + [α, Φt] + [At, ϕ] − ∂α) ∧ dθ

)
= ad(g−1) (dα + [α, At] + (dϕ + [α, Φt] + [At, ϕ] − ∂α) ∧ dθ) ,

since
d

dt
At = α and

d

dt
Φt = ϕ. Next we calculate Dtα̃ by calculating dα̃ and evaluating

it on horizontal (with respect to Ãt) vectors. At a point (p, g, θ) in P̃ and for vectors
(X, gξ, xθ) and (Y, gζ, yθ) at (p, g, θ) we have:

dα̃(p,g,θ)(X, gξ, xθ, Y, gζ, yθ)

= 1
2

{
(X, gξ, xθ)(α̃(p,g,θ)(Y, gζ, yθ)) − (Y, gζ, y)(α̃(p,g,θ)(X, gξ, xθ))

−α̃(p,g,θ)([(X, gξ, xθ), (Y, gζ, yθ)])
}

.

So we need to calculate

1. (X, gξ, xθ)(α̃(p,g,θ)(Y, gζ, yθ)), and

2. α̃(p,g,θ)([(X, gξ, xθ), (Y, gζ, yθ)]).

If γX(t) is a curve whose tangent vector is X, we have:

(X, gξ, xθ)(α̃(p,g,θ)(Y, gζ, yθ))

=
d

dt

∣∣∣∣
0

{
(1 − tξ)g−1αγX(t)(Y )(θ+tx)g(1 + tξ) + (1 − tξ)g−1ϕγX(t),(θ+tx)g(1 + tξ)y

}
=

d

dt

∣∣∣∣
0

{−tξg−1αγX(t)(Y )(θ+tx)g + g−1αγp(t)(Y )(θ+tx)gtξ + g−1αγX(t)(Y )θg

+ g−1∂αγX(0)(Y )θxtg + −tξg−1ϕγX(t),(θ+tx)gy + g−1ϕγX(t),(θ+tx)gtξy

+g−1ϕγX(t),θgy + g−1∂ϕγX(0),θgtxy
}

= −ξg−1αp(Y )θg + g−1αp(Y )θgξ + g−1 d

dt

∣∣∣∣
0

αγX(t)(Y )θg + g−1∂αp(Y )θgx

− ξg−1ϕp,θgy + g−1ϕp,θgξy + g−1 d

dt

∣∣∣∣
0

ϕγX(t),θgy + g−1∂ϕp,θgxy.
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Also,

α̃(p,g,θ)([(X, gξ, xθ),(Y, gζ, yθ)]

= ad(g−1)αp([X, Y ]) + ad(g−1)ϕpdθ([x, y])

= ad(g−1)αp([X, Y ])

Therefore,

dα̃(p,g,θ)(X, gξ, xθ, Y, gζ, yθ)

=
1
2

{
[ad(g−1)αp(Y ), ξ] + ad(g−1)

(
d

dt

∣∣∣∣
0

αγX(t)(Y )θ

)
+ ad(g−1)∂αp(Y )x

+ [ad(g−1)ϕp,θ, ξ]y + ad(g−1)
(

d

dt

∣∣∣∣
0

ϕγp(t),θ

)
y

− [ad(g−1)αp(X), ζ] − ad(g−1)
(

d

dt

∣∣∣∣
0

αγX(t)(X)θ

)
− ad(g−1)∂αp(X)y

− [ad(g−1)ϕp,θ, ζ]x − ad(g−1)
(

d

dt

∣∣∣∣
0

ϕγX(t),θ

)
x

−ad(g−1)αp([X, Y ])
}

That is,

dα̃ = −[ad(g−1)α, Θ] + ad(g−1)dα − ad(g−1)∂α ∧ dθ

+ [ad(g−1)ϕ,Θ] ∧ dθ + ad(g−1)dϕ ∧ dθ

= ad(g−1) (dα + dϕ ∧ dθ − ∂α ∧ dθ) − [ad(g−1)α + ad(g−1)ϕdθ, Θ]

To calculate Dtα̃ we need to know what the horizontal projection (with respect to
Ãt) of a vector looks like. If X is a tangent vector at p we can calculate its horizontal
projection as hX = X − ιp(A(X)), where ιp(A(X)) is the vector at p generated by the Lie
algebra element A(X). So for the vector (X, gξ, xθ) we have

h(X, gξ, xθ) = (X, gξ, xθ) − ι(p,g,θ)(Ãt(X, gξ, xθ)).

Now,

ι(p,g,θ)(Ãt(X, gξ, xθ)) =
d

ds

∣∣∣∣
0

(p, g(1 + sÃt(X, gξ, θ + x)), θ)

=
d

ds

∣∣∣∣
0

(p, gsÃt(X, gξ, θ + x), θ)

= (0, gÃt(X, gξ, xθ), 0),

and therefore,
h(X, gξ, xθ) = (X, g(ξ − Ãt(X, gξ, xθ)), xθ).

Putting this into the formula above for dα̃, we obtain

Dtα̃ = ad(g−1) (dα + dϕ ∧ dθ − ∂α ∧ dθ) − [ad(g−1)α + ad(g−1)ϕdθ, Θ − Ãt]
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and inserting the formula for Ãt in terms of At and Φt in the second term we obtain

−[ad(g−1)α+ad(g−1)ϕdθ, Θ − Ãt]

= −[ad(g−1)α + ad(g−1)ϕdθ, Θ − ad(g−1)At − Θ − ad(g−1)Φtdθ]

= −[ad(g−1)α + ad(g−1)ϕdθ,−ad(g−1)At − ad(g−1)Φtdθ]

= ad(g−1)[α + ϕdθ,At + Φtdθ]

and therefore

Dtα̃ = ad(g−1) (dα + dϕ ∧ dθ − ∂α ∧ dθ + [α, At] + [α, Φt]dθ + [At, ϕ]dθ)

which is equal to
d

dt
F̃t. This completes the proof of Lemma 3.2.5.

Now, if we set

ψ = k

∫ 1

0
f(α̃, F̃t)dt

then

dψ = Dψ (by Lemma 3.2.3)

= k

∫ 1

0
f(Dtα̃, F̃t)dt

= k

∫ 1

0
f(

d

dt
F̃t, F̃t)dt

=
∫ 1

0

d

dt
f(F̃t)dt

= f(F̃1) − f(F̃0).

So sP
2k−1(f) is independent of choice of connection and Higgs field.

It remains only to prove that sP
2k−1(f) is the pull-back of τ(f) by holΦ . For this

we follow the argument in [11] that will give us a formula for f(F̃ ) that we can use to
calculate sΩ eP

2k−1(f) for a loop bundle ΩP̃
ΩG−−→ Ω(M × S1) and then we can use Lemma

3.1.1 to generalise to a general ΩG-bundle.
If we start with the G-bundle P̃ → M × S1 we can pull-back by the evaluation map

ev : [0, 1] × Ω(M × S1) → (M × S1) to get a trivial bundle ev∗ P̃ over [0, 1] × Ω(M × S1).
A section is given by

h : [0, 1] × Ω(M × S1) → ev∗ P̃ ; (t, γ) �→ γ̂(t),

where γ̂ is the horizontal lift of γ. If Ã is the connection in P̃ we can pull it back to ev∗ P̃
and then back to [0, 1] × Ω(M × S1) to obtain

Ã′ := h∗ ev∗ Ã.

We can calculate the curvature F̃ of Ã and pull it back by ev to [0, 1] × Ω(M × S1) and
because this is a product manifold we can decompose it into parts with a dt and parts
without a dt. Under this decomposition, we have

ev∗ F̃ = − ∂

∂t
Ã′ ∧ dt + F̃ ′,
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where we call the component without a dt F̃ ′ since if we view the form Ã′ for fixed t0 as
a connection form on Ω(M × S1) then its curvature is F̃ ′ evaluated at t0.

Now, we want to calculate
∫
S1 f(F̃ ) and using Lemma 3.1.2 we have for a general

ΩG-bundle P → M, ∫
S1

f(F̃ ) = η∗
∫

S1

ev∗ f(F̃ )

= η∗
∫

S1

f(ev∗ F̃ ).

So we wish to calculate explicitly
∫
S1 f(ev∗ F̃ ). If we view the circle as the interval [0, 1]

with endpoints identified, then we can write∫
S1

f(ev∗ F̃ ) =
∫

[0,1]
f(ev∗ F̃ )

and so we have

k

∫
S1

f(∇Φ, F )dθ = η∗
∫

S1

f(ev∗ F̃ )

= η∗
∫

[0,1]
f(− ∂

∂t
Ã′ ∧ dt + F̃ ′)

= η∗
∫

[0,1]
f(F̃ ′) − kη∗

∫
[0,1]

f(− ∂

∂t
Ã′, F̃ ′)dt

= −kη∗
∫

[0,1]
f(− ∂

∂t
Ã′, F̃ ′)dt.

Using the formula F̃ ′ = dÃ′ + 1
2 [Ã′, Ã′], we can write this as:

− kη∗
{∫

[0,1]
f(∂Ã′, dÃ′)dt

+(k − 1)
1
2

∫
[0,1]

f(∂Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt + . . .

... +
(

k − 1
k − 2

)(
1
2

)k−2 ∫
[0,1]

f(∂Ã′, dÃ′, [Ã′, Ã′])dt

+
(

1
2

)k−1 ∫
[0,1]

f(∂Ã′, [Ã′, Ã′])dt

}

where we have written ∂Ã′ for ∂Ã′/∂t. Thus we need to work with the general term(
k − 1

i

)(
1
2

)i ∫
[0,1]

f(∂Ã′, dÃ′, . . . , dÃ′︸ ︷︷ ︸
k−i−1

, [Ã′, Ã′], . . . , [Ã′, Ã′]︸ ︷︷ ︸
i

)dt.

To deal with these terms we shall use integration by parts and the ad-invariance of f.
Thus we need to know in detail how ad-invariance works.
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Lemma 3.2.6. Let ϕ1, . . . , ϕk be g-valued forms of degree q1, . . . , qk respectively. Then if
A is a g-valued p-form, we have

f([ϕ1, A], ϕ2, . . . , ϕk)
= f(ϕ1, [A,ϕ2], . . . , ϕk) + (−1)pq2f(ϕ1, ϕ2, [A,ϕ3], . . . , ϕk) + . . .

. . . + (−1)p(q2+...qk−1)f(ϕ1, . . . , ϕk−1, [A,ϕk]).

Proof. We can expand ϕi as ϕi = ϕi,jω
j
i for ϕi,j ∈ g and ωj

i a qi-form. Then we have

f(ϕ1, . . . , ϕk) = f(ϕ1,j1 , . . . , ϕk,jk
)ωj1

1 ∧ . . . ∧ ωjk
k .

Now if A is a g valued p-form and we write A = Aiα
i as above, then

f([A,ϕ1], ϕ2, . . . , ϕk)

= f([Ai, ϕ1,j1 ], ϕ2,j2 , . . . , ϕk,jk
)αi ∧ ωj1

1 ∧ . . . ∧ ωjk
k

= f(ϕ1,j1 , [ϕ2,j2 , Ai], . . . , ϕk,jk
)(−1)p(q1+q2)ωj1

1 ∧ ωj2
2 αi ∧ . . . ∧ ωjk

k

+ f(ϕ1,j1 , ϕ2,j2 , [ϕ3,j3 , Ai], . . . , ϕk,jk
)(−1)p(q1+q2+q3)ωj1

1 ∧ ωj2
2 ∧ ωj3

3 ∧ αi ∧ . . . ∧ ωjk
k

. . . + f(ϕ1,j1 , ϕ2,j2 , . . . , [ϕk,jk
, Ai])(−1)p(q1+q2+...+qk)ωj1

1 ∧ ωj2
2 ∧ . . . ∧ ωjk

k ∧ αi

That is,

f([A,ϕ1], ϕ2, . . . , ϕk)

= (−1)pq1f(ϕ1, [ϕ2, A], . . . , ϕk) + (−1)p(q1+q2)f(ϕ1, ϕ2, [ϕ3, A], . . . , ϕk) + . . .

. . . + (−1)p(q1+...+qk)f(ϕ1, . . . , ϕk−1, [ϕk, A]),

which we can write as:

f([ϕ1, A], ϕ2, . . . , ϕk)
= f(ϕ1, [A,ϕ2], . . . , ϕk) + (−1)pq2f(ϕ1, ϕ2, [A,ϕ3], . . . , ϕk) + . . .

. . . + (−1)p(q2+...qk−1)f(ϕ1, . . . , ϕk−1, [A,ϕk]).

We are now in a position to prove

Proposition 3.2.7.
sP
2k−1(f) = hol∗Φ τ(f).

Proof. To calculate the general term given above, we integrate by parts in the Ω(M × S1)
and t directions giving∫

[0,1]
fidt =

∫
[0,1]

f(d∂Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

+ i

∫
[0,1]

f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

− d

∫
[0,1]

f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt
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and∫
[0,1]

fidt = f(Ã′1, dÃ′1, . . . , dÃ′1, [Ã
′
1, Ã

′
1]) − f(Ã′0, dÃ′0, . . . , dÃ′0, [Ã

′
0, Ã

′
0])

− (k − 1 − i)
∫

[0,1]
f(Ã′, ∂dÃ′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

− i

∫
[0,1]

f(Ã′, dÃ′, . . . , dÃ′, ∂[Ã′, Ã′], [Ã′, Ã′])dt

where we have written fi for the integrand of the general term given earlier. Combining
these gives

(k − i)
∫

[0,1]
fidt = fi,1 − fi,0 − i

∫
[0,1]

f(Ã′, dÃ′, . . . , dÃ′, ∂[Ã′, Ã′], [Ã′, Ã′])dt

+ i(k − 1 − i)
∫

[0,1]
f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

− (k − 1 − i)d
∫

[0,1]
f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

where we have written fi,1 and fi,0 for fi evaluated at t = 1 and 0 respectively. Using
ad-invariance, the term on the middle line simplifies as follows:∫

[0,1]
f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

= 2
∫

[0,1]
f([dÃ′, Ã′], ∂Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

= 2
∫

[0,1]
f(dÃ′, [Ã′, ∂Ã′], Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

− 2
∫

[0,1]
f(dÃ′, ∂Ã′, [Ã′, Ã′], dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

+ 2(k − 2 − i)
∫

[0,1]
f(dÃ′, ∂Ã′, Ã′, [Ã′, dÃ′], dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

=
∫

[0,1]
f(dÃ′, ∂[Ã′, Ã′], Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

− 2
∫

[0,1]
f(∂Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

− (k − 2 − i)
∫

[0,1]
f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

and so

(k − 1 − i)
∫

[0,1]
f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

=
∫

[0,1]
f(Ã′, dÃ′, . . . , dÃ′, ∂[Ã′, Ã′], [Ã′, Ã′])dt

− 2
∫

[0,1]
f(∂Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt.
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Inserting this into the formula for
∫

fidt gives

(k − i)
∫

[0,1]
fidt = fi,1 − fi,0 − 2i

∫
[0,1]

fidt

− (k − 1 − i)d
∫

[0,1]
f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

and hence

(k + i)
∫

[0,1]
fidt

= fi,1 − fi,0 − (k − 1 − i)d
∫

[0,1]
f(∂Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt.

So we have the following expression for sP
2k−1(f) :

k

∫
S1

f(∇Φ, F )dθ

= −kη∗
{

k−1∑
i=0

(
k − 1

i

)(
1
2

)i 1
k + i

(
fi,1 − fi,0 − (k − i − 1)dci

)}

where ci is the last integral in the equation above (with i [Ã′, Ã′]’s).
Now since Ã′0 = 0 and h(0, γ) = h(1, γ) hol(γ) (where h is the section from earlier), we

have that
Ã′0 = ad(hol−1)Ã′1 + hol−1 d hol

and so
Ã′1 = −d hol hol−1 .

Therefore we have that fi,0 = 0 and we can calculate fi,1 in terms of f0,1 as follows:

f0,1 = f(Ã′1, dÃ′1)

= f(−d hol hol−1, d(−d hol hol−1))

= (−1)k

(
1
2

)k−1

hol∗ f(Θ, [Θ, Θ])

and in general,

fi,1 = f(Ã′1, dÃ′1, . . . , dÃ′1, [Ã
′
1, Ã

′
1])

= (−1)k−i

(
1
2

)k−1−i

hol∗ f(Θ, [Θ, Θ])

= (−1)i2if0,1

using the fact that d(−d hol hol−1) = −1
2 [d hol hol−1, d hol hol−1].
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Therefore we have

k

∫
S1

f(∇Φ, F )dθ

=
(
−1

2

)k−1

k

k−1∑
i=0

(
k − 1

i

)
(−1)i

k + i
hol∗Φ f(Θ, [Θ, Θ])

+ k
k−i∑
i=0

(
k − 1

i

)(
1
2

)i 1
k + i

(k − i − 1)dci.

We have seen already that the coefficient above is equal to the coefficient in the defi-
nition of the transgression map:

k

k−1∑
i=0

(
k − 1

i

)
(−1)i

k + i
=

k!(k − 1)!
(2k − 1)!

.

So we see that the pull-back of the transgression of f is cohomologous to the string (2k−1)-
class.

Combining Propositions 3.2.2, 3.2.4 and 3.2.7, we have the following Theorem

Theorem 3.2.8. The diagram

H2k(BG)
C-W

eP ��

τ

��

H2k(M × S1)
R

S1

��
H2k−1(G)

hol∗Φ �� H2k−1(M)

commutes. Furthermore, the composition map

H2k(BG) → H2k−1(M)

associates to any invariant polynomial its string (2k − 1)-class, which is a characteristic
class.

3.3 The universal string class for L∨G-bundles

We would now like to return to the study of the free loop group. In this section, we
shall give a partial generalisation of the results in the previous section. However, we
shall be working with a slightly different group than in the rest of this thesis. For the
remainder of this chapter we shall be considering the group of smooth maps from the
interval [0, 2π] into G whose endpoints are coincident. This group shall be denoted L∨G.
Note that LG ⊆ L∨G. We also have the based version Ω∨G of this group consisting of
maps [0, 2π] → G such that the endpoints are mapped to the identity in G.

We will give a classifying theory for L∨G bundles and present a calculation for the
string class of the universal L∨G-bundle.
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3.3.1 Classification of L∨G-bundles

In order to extend the ideas from the previous section (namely, calculating the string class
of the universal L∨G-bundle) we need a model for EL∨G. To construct this we view L∨G
as the semi-direct product Ω∨G � G. The group multiplication is given by

(γ1, g1)(γ2, g2) = (g−1
2 γ1g2γ2, g1g2)

and the isomorphism between Ω∨G � G and L∨G is

Ω∨G � G
∼−→ L∨G; (γ, g) �→ gγ.

On the level of Lie algebras, the isomorphism is

Ω∨g � g
∼−→ L∨g; (ξ,X) �→ X + ξ.

We therefore need a model for the universal Ω∨G � G-bundle. For this, we shall take
the product of the universal Ω∨G-bundle and the universal G-bundle. A model for the
universal Ω∨G-bundle is given by the space of maps from the interval [0, 2π] into G, denoted
P ∨G. The based loop group Ω∨G acts on this space by right multiplication and evaluation
at the endpoint of a path gives a locally trivial Ω∨G-bundle P ∨G → G. As our study of
Ω∨G will be confined to this section, we shall refer to P ∨G as the path fibration without
any risk of confusion. P ∨G is contractible since any path p can be homotopied to the
identity path by the map

h : I × P ∨G → P ∨G; (t, p) �→ (θ �→ p(tθ)).

Therefore the path fibration is a model for the universal Ω∨G-bundle. So, for our model
for EL∨G we shall take the space P ∨G×EG which is contractible since P ∨G and EG are
both contractible. This is acted on by Ω∨G � G :

(p, x)(γ, g) = (g−1pgγ, xg)

where xg is the right action of G on EG. This action is free (since G acts on EG freely) and
transitive on fibres (since the action on EG is transitive and the equation g−1p1gγ = p2

can always be solved) and so P ∨G × EG is a model for EL∨G and BL∨G is equal to
(P ∨G × EG)/(Ω∨G � G). In fact, if we consider the map

(P ∨G × EG)/(Ω∨G � G) → (G × EG)/G; [p, x] �→ [p(2π), x],

where [h, x] = [g−1hg, xg], we can see this is well-defined, since

[p, x] = [g−1pgγ, xg] �→ [g−1p(2π)gγ(2π), xg] = [p(2π), x].

Furthermore, this is onto, as the projection P ∨G → G is onto, and 1–1, for if we consider
two elements [p, x], [q, y] ∈ (P ∨G×EG)/(Ω∨G�G) such that [p(2π), x] = [q(2π), y] we have
y = xg and q(2π) = g−1p(2π)g. That is, the paths q and g−1pg have the same endpoint.
Therefore, the path g−1p−1gq is actually a (based) loop. And since q = g−1pg(g−1p−1gq),
we have

[q, y] = [g−1pgγ, xg]
= [p, x],
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where γ = g−1p−1gq ∈ Ω∨G. Thus we have a diffeomorphism between BL∨G and (G ×
EG)/G (or simply G ×G EG). Note that this allows us to calculate the cohomology of
BL∨G as the equivariant cohomology of G (with its adjoint action). That is,

H(BL∨G) = HG(G).

Given an L∨G-bundle P → M we can write down the classifying map of this bundle
as follows. Choose a Higgs field, Φ, for P. Then define the map f : P → P ∨G × EG by

f(q) = (holΦ(q), fG(q)),

where holΦ is the Higgs field holonomy and fG is the classifying map for the G-bundle
associated to P by the projection L∨G → G given by mapping a loop to its start/endpoint
(or equivalently, the projection Ω∨G�G → G). That is, f(q) = (p, x) where p−1∂p = Φ(q)
and x is fG applied to the image of q in P ×L∨G G. It is easy to see that this is equivariant
with respect to the L∨G action and hence descends to a map M → BL∨G since if (γ, g) ∈
Ω∨G � G then

f(q(gγ)) = (holΦ(q(gγ)), fG(q)g)

and so f is equivariant in the EG slot (by virtue of the fact that fG is a classifying map)
and also in the P ∨G slot since if holΦ(q) = p then

Φ(q(gγ)) = ad((gγ)−1)Φ(q) + (gγ)−1∂(gγ)

= ad((gγ)−1)Φ(q) + γ−1∂γ

and

(p(γ, g))−1∂(p(γ, g)) = (g−1pgγ)−1∂(g−1pgγ)

= γ−1g−1p−1g(g−1∂pgγ + g−1pg∂γ)

= ad((gγ)−1)p−1∂p + γ−1∂γ

and so holΦ(q(gγ)) = p(γ, g) = holΦ(q)(gγ).

3.3.2 The universal string class

Now that we have a model for the universal L∨G-bundle we would like to calculate its
string class according to Theorem 2.4.1. So far everything we have said works on the
topological level. In order to use Theorem 2.4.1 however, the first thing we need is a
connection on P ∨G × EG. Now, P ∨G is already a smooth manifold. In order to define a
smooth structure and find a connection on EG we use the results in [36, 37]. As long as
the dimension of the base of the G-bundle P → M is less than or equal to n this gives a
construction of a smooth bundle EGn → BGn with connection which is a model for the
universal G-bundle. From now on we assume therefore that the dimension of the base of
our L∨G-bundle is fixed (and less than or equal to n for some n).

To define a connection we need to know what a vertical vector looks like. Consider
the vector in T(p,x)(P ∨G×EGn) = TpP

∨G×TxEGn generated by the Lie algebra element
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(ξ,X) ∈ Ω∨g � g :

ι(p,x)(ξ,X) =
d

dt

∣∣∣∣
0

((1 − tX)p(1 + tX)(1 + tξ), xetX)

=
d

dt

∣∣∣∣
0

(t(−Xp + pX + pξ), xetX)

= (p(X − ad(p−1)X + ξ), ιx(X)).

Note that the P ∨G part of a vertical vector is a vector field along p that ends at p(2π)(X−
ad(p(2π)−1)X) (since ξ is a based loop). We will assume that we have a connection in
EGn since this is always possible by the discussion above. Call this connection a. So to
find the horizontal part of a vector (V,W ) ∈ TpP

∨G×TxEGn we need a vector field along
p that ends at V (2π) − p(2π)(X − ad(p(2π)−1)X) (since then V − {this vector} will end
at the right point to be vertical). Consider the vector field(

θ

2π

)
p
{
ad(p−1)

(
V (2π)p(2π)−1 − ad(p(2π))a(W ) + a(W )

)}
.

If we define the horizontal projection of (V,W ), h(V,W ), to be the vector field above
together with the horizontal component of W (that is, hW = W − ιx(a(W ))), then we
have an invariant splitting of the tangent space at each point in P ∨G × EGn. This is
easily verified: Since the EGn part has a connection, we need only check the P ∨G part.
First calculate the right action on the vector above (which we will call hV even though
technically the part of the connection on P ∨G is not actually a connection itself):

(hV (γ, g))(g−1pgγ,xg)

=
(

θ

2π

)
g−1p

{
ad(p−1)

(
V (2π)p(2π)−1 − ad(p(2π))a(W ) + a(W )

)}
gγ.

Compare this with the horizontal projection of a vector V ′ at (p, x)(γ, g) = (g−1pgγ, xg) :

hV ′(g−1pgγ,xg)

=
(

θ

2π

)
g−1pgγ

{
ad(g−1p−1gγ)−1

(
V ′(2π)g−1p(2π)−1g

−ad(g−1p(2π)g)a(W ′) + a(W ′)
)}

=
(

θ

2π

)
g−1p

{
ad(p−1)g

(
V ′(2π)g−1p(2π)−1g

−ad(g−1)ad(p(2π))ad(g)a(W ′) + a(W ′)
)
g−1

}
gγ

=
(

θ

2π

)
g−1p

{
ad(p−1)g

(
V ′(2π)g−1p(2π)−1g

−ad(g−1)ad(p(2π))ad(g)ad(g−1)a(W ) + ad(g−1)a(W )
)
g−1

}
gγ

(for W = W ′g−1)

=
(

θ

2π

)
g−1p

{
ad(p−1)

(
gV ′(2π)g−1p(2π)−1 − ad(p(2π))a(W ) + a(W )

)}
gγ

=
(

θ

2π

)
g−1p

{
ad(p−1)

(
V (2π)p(2π)−1 − ad(p(2π))a(W ) + a(W )

)}
gγ
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(for V = V ′(γ, g)−1, so that V ′(2π) = g−1V (2π)g)).
So we see that the push forward of the vector hV is horizontal (at (g−1pgγ, xg)) and

conversely the vector hV ′ is the push forward of a horizontal vector at (p, x). Thus we have
defined a horizontal splitting of T(p,x)(P ∨G×EGn) for each (p, x). To find the connection
form for this connection we need to recover the Lie algebra element (ξ, X) from the vector
(V,W ). We know that the vector

v(V,W )

=
(

V −
(

θ

2π

)
p
{
ad(p−1)

(
V (2π)p(2π)−1 − ad(p(2π))a(W ) + a(W )

)}
, a(W )

)
is the vertical component of (V,W ) and that the vertical vector generated by (ξ, X) ∈
Ω∨g � g looks like

(p(X − ad(p−1)X + ξ), ιx(X)).

Thus to recover ξ from v(V,W ) we just subtract p(a(W ) − ad(p−1)a(W )) and, writing A
for the part of the connection on P ∨G, we have

A(V,W ) =

p−1V −
(

θ

2π

)
ad(p−1)

{
V (2π)p(2π)−1 − ad(p(2π))a(W ) + a(W )

}
− (a(W ) − ad(p−1)a(W )).

Therefore, the connection form (A, a) is given by

(A, a) =
(

Θ −
(

θ

2π

)
ad(p−1)

{
ev∗2π Θ̂ − ad(p(2π))a + a

}
− (

a − ad(p−1)a
)
, a

)
where Θ is the Maurer-Cartan form, Θ̂ is the right Maurer-Cartan form and ev2π : P ∨G →
G is evaluation at the endpoint of a path. It can be easily checked that this form satisfies
the conditions for a connection. It will be useful later on to write this as a form valued
in L∨g. To do this we use the isomorphism of Lie algebras given in section 3.3.1. The
connection form becomes

AL∨g = Θ −
(

θ

2π

)
ad(p−1)

{
ev∗2π Θ̂ − ad(p(2π))a + a

}
+ ad(p−1)a.

To calculate the string class we will need the curvature of this connection and a Higgs
field. As usual, the curvature (as an L∨g-valued form) is given by the formula

FL∨g = DAL∨g

where D is the covariant exterior derivative. So we have

FL∨g((V,W ), (V ′,W ′)) = 1
2AL∨g([h(V,W ), h(V ′,W ′)]).
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Now,

[h(V,W ), h(V ′,W ′)] = ([hV, hV ′], [hW, hW ′])

=
([(

θ

2π

)
p
{
ad(p−1)

(
V (2π)p(2π)−1 − ad(p(2π))a(W ) + a(W )

)}
,(

θ

2π

)
p
{
ad(p−1)

(
V ′(2π)p(2π)−1 − ad(p(2π))a(W ′) + a(W ′)

)}]
,

[hW, hW ′]
)

and calculating just the first slot gives

p

(
θ

2π

)2

ad(p−1)
{
[V (2π)p(2π)−1, V ′(2π)p(2π)−1]

− [V (2π)p(2π)−1, ad(p(2π))a(W ′)] + [V (2π)p(2π)−1, a(W ′)]

− [ad(p(2π))a(W ), V ′(2π)p(2π)−1] + ad(p(2π))[a(W ), a(W ′)]

− [ad(p(2π))a(W ), a(W ′)] + [a(W ), V ′(2π)p(2π)−1]
−[a(W ), ad(p(2π))a(W ′)] + [a(W ), a(W ′)]

}
.

This yields

FL∨g =((
θ

2π

)2

−
(

θ

2π

))
ad(p−1)

{
1
2 [ev∗2π Θ̂, ev∗2π Θ̂] − [ev∗2π Θ̂, ad(p(2π)−1)a] + 1

2 [a, a]

+[ev∗2π Θ̂, a] − [ad(p(2π))a, a] + [a, a]
}
−

(
θ

2π

)
ad(p−1)(f − ad(p(2π))f) + ad(p−1)f

where f is the curvature of a.
The other piece of data we need to calculate the string class is a Higgs field for EL∨G.

Define the map Φ: P ∨G × EGn → Ω∨g � g by

Φ(p, x) = (p−1∂p, 0).

Or, as a map to L∨g,
ΦL∨g(p, x) = p−1∂p.

Then by the calculation at the end of section 3.3.1 we see that ΦL∨g is a Higgs field for
P ∨G × EGn. Next we need to calculate

∇ΦL∨g = dΦL∨g + [AL∨g,ΦL∨g] − ∂AL∨g.

We have

dΦL∨g(V,W ) =
d

dt

∣∣∣∣
0

ΦL∨g(petξ)

=
d

dt

∣∣∣∣
0

(e−tξp−1∂(petξ))

=
d

dt

∣∣∣∣
0

(e−tξp−1∂petξ + e−tξ∂etξ)

= p−1∂pξ − ξp−1∂p + ∂ξ,
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for V = d
dt

∣∣
0
p exp(tξ). That is,

dΦL∨g = [ΦL∨g, Θ] + ∂Θ.

So

∇ΦL∨g = [ΦL∨g, Θ] + ∂Θ

+
[
Θ −

(
θ

2π

)
ad(p−1)

{
ev∗2π Θ̂ − ad(p(2π))a + a

}
+ ad(p−1)a,ΦL∨g

]
− ∂

(
Θ −

(
θ

2π

)
ad(p−1)

{
ev∗2π Θ̂ − ad(p(2π))a + a

}
+ ad(p−1)a

)

=
1
2π

ad(p−1)
{

ev∗2π Θ̂ − ad(p(2π))a + a
}

.

So the string class for P ∨G × EGn is

− 1
4π2

∫
S1

〈(
θ2

4π2
− θ

2π

)(
1
2 [ev∗2π Θ̂, ev∗2π Θ̂] − [ev∗2π Θ̂, ad(p(2π)−1)a]

+ 1
2 [a, a] +[ev∗2π Θ̂, a] − [ad(p(2π))a, a] + [a, a]

)
−

(
θ

2π

)
(f − ad(p(2π))f) + f,

1
2π

(
ev∗2π Θ̂ − ad(p(2π))a + a

)〉

= − 1
8π2

〈
−1

3

(
1
2 [Θ̂, Θ̂] − [Θ̂, ad(p(2π)−1)a]

+ 3
2 [a, a] +[Θ̂, a] − [ad(p(2π))a, a]

)
+ ad(p(2π))f + f,

(
Θ̂ − ad(p(2π))a + a

)〉
.
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Chapter 4

String structures for
LG � S1-bundles

Thus far we have discussed central extensions of both the loop group (in chapter 2) and
the based loop group (in chapter 3). The loop group LG has a natural action of the
circle given by rotating loops. In this chapter, we shall consider the more general case
where we allow rotations of the loops in LG. That is, we shall be working with the semi-
direct product LG � S1. This group arises when we consider a natural generalisation of
the caloron correspondence from section 2.5. There we showed that a G-bundle over
M ×S1 corresponds to an LG-bundle over M . If we allow the base space of the G-bundle
to be a non-trivial S1-bundle (rather than M × S1) we obtain not an LG-bundle but
an LG � S1-bundle. If, further, we consider a non-trivial S1 fibre bundle (instead of a
principal bundle), we obtain an LG � Diff(S1)-bundle.

In this chapter then, we will calculate the obstruction to lifting a principal LG � S1-
bundle P to a principal ̂LG � S1-bundle P̂ . In section 4.2 we will construct a correspon-
dence for LG � S1-bundles in analogy with the caloron correspondence from chapter 2.
This will be used to prove a theorem which extends Theorem 2.5.3 relating the string class
and the first Pontrjagyn class. In section 4.3 we shall consider the lifting problem for the
more general case where we allow general (orientation preserving) diffeomorphisms of the
loops in LG, that is, principal bundles with structure group LG � Diff(S1).

4.1 The string class of an LG � S1-bundle

In this section we present a formula for the obstruction to lifting a principal LG � S1-
bundle P to a principal ̂LG � S1-bundle P̂ , which we call the string class of P. We shall
follow the methods of [35], outlined in section 2.4. In section 4.1.2 we will give another
method for calculating the 3-curvature of a lifting bundle gerbe, first presented in [18],
and apply this to the problem of the string class of an LG � S1-bundle.

4.1.1 The string class via lifting bundle gerbes

Let LG � S1 be the semi-direct product, whose multiplication is given by

(γ1, φ1)(γ2, φ2) = (γ1ρφ1(γ2), φ1 + φ2),
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where ρφ(γ)(θ) = γ(θ−φ). For convenience, let us record some facts about the Lie algebra
of LG � S1 here. The bracket on the Lie algebra Lg � iR is given by

[(ξ, x), (ζ, y)] = ([ξ, ζ] − x∂ζ + y∂ξ, 0)

and the adjoint action of LG � S1 on Lg � iR is

ad(γ, φ)(ξ, x) =
(
ad(γ)ρφ(ξ) + x ∂γγ−1, x

)
.

The central extension of LG � S1

Recall from section 2.4 that in order to perform calculations involving the lifting bundle
gerbe, we needed an explicit construction of the central extension of LG. This was given
following the construction in section 2.3 in terms of a pair of differential forms satisfying a
certain compatibility condition. Namely, a pair (R,α), where R is a closed, integral 2-form
on LG and α is a 1-form on LG × LG, satisfying the conditions δR = dα and δα = 0. In
a similar manner, for what follows we will require an explicit construction of the central
extension of LG � S1. Note, however, that the construction in section 2.3 only works
for G a simply connected Lie group. This is because in order to construct the extension
given the pair (R, α) we used the fact that a flat bundle over a simply connected base
has a section satisfying certain conditions. This allowed us to find a U(1)-bundle P over
G such that δP → G × G was trivial and had a section which defined the multiplication
on the central extension.1 However, even though the semi-direct product LG � S1 is not
simply connected we can modify the construction from section 2.3 slightly to cover this
case [35]. This involves replacing the 2-form R with a differential character [12] for the
bundle Ĝ → G. That is, we add to our pair (R,α) a homomorphism h : Z1(G) → U(1)
satisfying

h(∂σ) = exp
(∫

σ
R

)
for every two-cycle σ in G. We also require the compatibility condition

(δh)(γ) = exp
(∫

γ
α

)
for every closed one-cycle γ in G × G.

Therefore, we need to find a triple of objects (R,α, h) as above. Note first that

H2(LG � S1) � H2(LG).

To see this, we observe that as LG � S1 = LG× S1 as a space, the Künneth formula (see
[2]) gives

H2(LG � S1) � H2(LG) ⊗ H0(S1) ⊕ H1(LG) ⊗ H1(S1),

since H2(S1) = 0. Now, H0(S1) � H1(S1) � R, so we have

H2(LG � S1) � H2(LG) ⊕ H1(LG).

Recall, however, that LG � ΩG×G as a space, and so π1(LG) = π2(G)×π1(G). Therefore,
as G is simply connected, so is LG, and thus H1(LG, R) = 0 by the Hurewicz Theorem

1See the discussion in section 2.3.1.
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(see for example [20]). Therefore, by the Universal Coefficient Theorem (see for example
[27]) H1(LG) = 0, and so H2(LG � S1) � H2(LG). Thus, we take as the 2-form R, the
pull-back of the form from section 2.4 to LG � S1. That is,

R =
i

4π

∫
S1

〈Θ, ∂Θ〉 dθ.

Note that since we are integrating over the circle, this expression is unchanged when each
term is rotated by a fixed angle. That is,

i

4π

∫
S1

〈ρφ(Θ), ∂ρφ(Θ)〉 dθ =
i

4π

∫
S1

〈Θ, ∂Θ〉 dθ

Now, to find α we need to calculate δR = π∗1R − m∗R + π∗2R, where as before, πi is
the projection LG � S1 × LG � S1 → LG � S1 which omits the ith factor and m is the
multiplication defined above. As in chapter 2, π∗i R is given by

i

4π

∫
S1

〈π∗i Θ, ∂π∗i Θ〉 dθ

and so it remains to calculate m∗R. For this, note that a tangent vector to LG � S1 at
the point (γ, φ) can be written as (γ, φ)(ξ, x) = (γρφ(ξ), xφ) for some (ξ, x) ∈ Lg � iR by
using the left multiplication to transport elements of the Lie algebra to the point (γ, φ).
Therefore, we can calculate m∗R by noting that

m∗R((γ1ρφ1(ξ1), x1φ1), (γ2ρφ2(ξ2), x2φ2)) = R(m∗((γ1ρφ1(ξ1), x1φ1), (γ2ρφ2(ξ2), x2φ2)))

and calculating the push-forward of m. We have

m∗((γ1ρφ1(ξ1), x1φ1), (γ2ρφ2(ξ2), x2φ2))

=
d

dt

∣∣∣∣
0

(
γ1(1 + tξρ1

1 )ρ(φ1+tx1)(γ2)ρ(φ1+tx1)(1 + tξρ2
2 )), φ1 + φ2 + t(x1 + x2)

)
,

where we have written (for example) ξρ1
1 for ρφ1(ξ1). As the multiplication on the S1

factor is not twisted, the second slot above will give x1 + x2. Thus it suffices to calculate
the first slot only. Using the fact that

d

dt

∣∣∣∣
0

ρ(φ1+tx1)(γ2) = −x1ρφ1(∂γ2),

we have

d

dt

∣∣∣∣
0

(
γ1(1 + tξρ1

1 )ρ(φ1+tx1)(γ2)ρ(φ1+tx1)(1 + tξρ2
2 )

)
= γ1ξ

ρ1
1 γρ1

2 + γ1γ
ρ1
2 ξρ2

2 − x1γ1∂γρ1
2

= γ1γ
ρ1
2 ρ(φ1+φ2)

(
(γ−1

2 ξ1γ2)
ρ−1
2 + ξ2 − x1(γ−1

2 ∂γ2)
ρ−1
2

)
.

Therefore, m∗R evaluated on the pairs of tangent vectors ((γ1, φ1)(ξ1, x1), (γ2, φ2)(ξ2, x2))
and ((γ1, φ1)(ζ1, y1), (γ2, φ2)(ζ2, y2)) is given by

i

4π

∫
S1

〈
(ad(γ−1

2 )ξ1)ρ−1
2 + ξ2 − x1(γ−1

2 ∂γ2)
ρ−1
2 , ∂

(
(ad(γ−1

2 )ζ1)ρ−1
2 + ζ2 − y1(γ−1

2 ∂γ2)
ρ−1
2

)〉
dθ,
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where we have used the fact that the integral is unchanged by rotating everything by
ρ−1
(φ1+φ2). Expanding this, we have

i

4π

∫
S1

〈
(ad(γ−1

2 )ξ1), ∂(ad(γ−1
2 )ζ1)

〉
+ 〈ξ2, ∂ζ2〉

+ x1y1

〈
(ad(γ−1

2 )Z2), ∂(ad(γ−1
2 )Z2)

〉
+

〈
(ad(γ−1

2 )ξ1), ∂ζρ2
2

〉
+

〈
ξρ2
2 , ∂(ad(γ−1

2 )ζ1)
〉

− y1

〈
ξρ2
2 , ∂(ad(γ−1

2 )Z2)
〉− x1

〈
(ad(γ−1

2 )Z2), ∂ζρ2
2

〉
− y1

〈
(ad(γ−1

2 )ξ1), ∂(ad(γ−1
2 )Z2)

〉
− x1

〈
(ad(γ−1

2 )Z2), ∂(ad(γ−1
2 )ζ2)

〉
dθ,

where as before Z is the function γ �→ ∂γγ−1 and, again, we have used the rotation
invariance of the integral. Using the ad-invariance of the Killing form and integration by
parts, along with the identity from section 2.4,

∂
(
ad(γ−1)X

)
= ad(γ−1)[X, Z] + ad(γ−1)∂X

for a vector X ∈ Lg, this simplifies to

i

4π

∫
S1

〈[ξ1, ζ1], Z2〉 + 〈ξ1, ∂ζ1〉 + 〈ξ2, ∂ζ2〉
+

〈
ad(γ−1

2 )ξ1, ∂ζρ2
2

〉− 〈
∂ξρ2

2 , ad(γ−1
2 )ζ1

〉− x1 〈Z2, ∂ζ1〉 + y1 〈∂ξ1, Z2〉
− x1

〈
ad(γ−1

2 )Z2, ∂ζρ2
2

〉
+ y1

〈
∂ξρ2

2 , ad(γ−1
2 )Z2

〉
dθ,

or simply

m∗R =
i

4π

∫
S1

〈[Θ1, Θ1], Z2〉 + 〈Θ1, ∂Θ1〉 + 〈Θ2, ∂Θ2〉
+ 2

〈
ad(γ−1

2 )Θ1, ∂Θρ2
2

〉− 2
〈
μ1ad(γ−1

2 )Z2, ∂Θρ2
2

〉− 2 〈μ1Z2, ∂Θ1〉 dθ,

where μ represents the Maurer-Cartan form on S1. Therefore, we have

δR =
i

2π

∫
S1

−1
2 〈[Θ1, Θ1], Z2〉 −

〈
ad(γ−1

2 )Θ1, ∂Θρ2
2

〉
+

〈
μ1ad(γ−1

2 )Z2, ∂Θρ2
2

〉
+ 〈μ1Z2, ∂Θ1〉 dθ.

Recall from section 2.4 that for the loop group case, the form α such that dα = δR is
given by

α =
i

2π

∫
S1

〈Θ1, Z2〉 dθ.

When evaluated on the vector (γ1ξ1, γ2ξ2) tangent to the point (γ1, γ2) ∈ LG × LG, α is
given by

i

2π

∫
S1

〈
ξ1, ∂γ2γ

−1
2

〉
dθ.

Consider the generalisation of this form to LG � S1 × LG � S1. That is, define α1 as

α1(γ1ξ
ρ1 , x1φ1 , γ2ξ

ρ2 , x2φ2) =
i

2π

∫
S1

〈
ξ1, ∂γ2γ

−1
2

〉
,
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or
α1 =

i

2π

∫
S1

〈
Θρ−1

1
1 , Z2

〉
dθ.

We can calculate the derivative of this form via

dα1(X, Y ) = 1
2 {X(α1(Y )) − Y (α1(X)) − α1([X, Y ])} ,

for tangent vectors X and Y. Thus we need to calculate

(γ1ξ
ρ1
1 ,x1φ1 , γ2ξ

ρ2
2 , x2φ2) (α1(γ1ζ

ρ1
1 , y1φ1 , γ2ζ

ρ2
2 , y2φ2))

=
d

dt

∣∣∣∣
0

i

2π

∫
S1

〈
ζ1, ∂(γ2(1 + tξρ2

2 ))(1 − tξρ2
2 )γ−1

2

〉
dθ

=
i

2π

∫
S1

〈ζ1, ad(γ2)∂ξρ2
2 〉 dθ,

and

α1([(γ1ξ
ρ1
1 , x1φ1),(γ1ζ

ρ1
1 , y1φ1)], [(γ2ξ

ρ2
2 , x2φ2), (γ2ζ

ρ2
2 , y2φ2)])

=
i

2π

∫
S1

〈
[(ξ1, x1), (ζ1, y1)], ∂γ2γ

−1
2

〉
dθ

=
i

2π

∫
S1

〈
[ξ1, ζ1], ∂γ2γ

−1
2

〉− 〈
x1∂ζ1 − y1∂ξ1, ∂γ2γ

−1
2

〉
dθ.

Therefore, we have

dα1 =
1
2π

∫
S1

−1
2

〈
[Θ, Θ], Z2

〉− 〈
ad(γ−1

2 )Θ1, ∂Θρ2
2

〉
+

〈
μ1Z2, ∂Θ1

〉
dθ.

Note that δR does not equal dα1. However,

δR − dα1 =
i

2π

∫
S1

〈
μ1ad(γ−1

2 )Z2, ∂Θρ2
2

〉
dθ.

Using the identity
ad(γ)∂Θρ = dZ,

we see that
δR − dα1 =

i

2π

∫
S1

〈μ1Z2, dZ2〉 dθ.

Now, if we define

α2 = − i

4π

∫
S1

〈μ1Z2, Z2〉 dθ,

then

dα2 =
i

4π

∫
S1

〈μ1dZ2, Z2〉 + 〈μ1Z2, dZ2〉 dθ

=
i

2π

∫
S1

〈μ1Z2, dZ2〉 dθ

= δR − dα1.
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Thus α is given by

α =
i

2π

∫
S1

〈
π∗2Θ

ρ−1− 1
2π∗2μπ∗1Z, π∗1Z

〉
dθ,

and δR = dα. One can also easily check that δα = 0. Notice that the 2-form R is left
invariant and the 1-form α is left invariant in the first slot. To find the homomorphism
h : Z1(LG � S1) → U(1) we note that since π1(LG � S1) = Z any cycle a ∈ Z1(LG � S1)
can be written as nγ +∂σ, for some two-cycle σ, where γ is the generator of H1(LG�S1),
a loop around the S1 factor. It is easy to see that the integral of α over the generators of
H1(LG � S1 × LG � S1) vanishes, that is,∫

γ1

α = 0 =
∫

γ2

α

for γ1, γ2 loops around the first and second S1 factors respectively. This suggests that we
define

h(a) = h(∂σ) = exp
(∫

σ
R

)
.

This is well defined since if a = nγ+∂σ = nγ+∂σ′ then ∂(σ−σ′) = 0 and so
∫

σ−σ′
R ∈ 2πiZ

(since R is integral). Because the integral of α over the generators of H1(LG�S1×LG�S1)
vanishes, it is easy to check that for any one-cycle γ we have

(δh)(γ) = exp
(∫

γ
α

)
.

Thus we have proven

Proposition 4.1.1. The triple (R,α, h) as above determines a central extension of the
semi-direct product LG � S1.

A connection for the lifting bundle gerbe

Now that we have a construction of the central extension of LG � S1, the next step is to
write down a bundle gerbe connection for the lifting bundle gerbe. Recall from section 2.4
that if P is an LG � S1-bundle and ν is a connection on the central extension ̂LG � S1

thought of as a bundle over LG � S1 then a bundle gerbe connection is given by τ∗ν − ε,
where ε is some 1-form on P [2] satisfying δε = τ∗α. In the LG case, this form was given
by

ε =
i

2π

∫
S1

〈π∗2A, τ∗Z〉 dθ,

where A is a connection on P. As mentioned in section 2.4, it is possible to write ε in
general in terms of α [43]. We shall now demonstrate how to do this. Let P be a G-bundle
with connection A. Recall that A satisfies

π∗1A = ad(τ−1
12 )π∗2A + τ∗12Θ.
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For tangent vectors (X1, X2, X3) at (p1, p2, p3) ∈ P [3], we can calculate

(δα)(1,τ12,τ23)(A(X1), τ12(X1, X2), τ23(X2, X3)) =

α(τ12,τ23)(τ12(X1, X2), τ23(X2, X3))

− α(τ12,τ23)(m∗(A(X1), τ12(X1, X2)), τ23(X2, X3))

+ α(1,τ12τ23)(A(X1),m∗(τ12(X1, X2), τ23(X2, X3)))

− α(1,τ12)(A(X1), τ12(X1, X2)).

Notice that the first term above is actually τ∗α. Since δα = 0, we have

(τ∗α)(p1,p2,p3)(X1, X2, X3) =

α(τ12,τ23)(m∗(A(X1), τ12(X1, X2)), τ23(X2, X3))

− α(1,τ12τ23)(A(X1),m∗(τ12(X1, X2), τ23(X2, X3)))

+ α(1,τ12)(A(X1), τ12(X1, X2)).

Now, if we define ε in terms of α and A as

ε(p1,p2)(X1, X2) = α(1,τ12)(A(X1), τ12(X1, X2))

then we have

(δε)(p1,p2,p3)(X1, X2, X3) =

α(1,τ23)(A(X2), τ23(X2, X3)) − α(1,τ13)(A(X1), τ13(X1, X3))

+ α(1,τ12)(A(X1), τ12(X1, X2)).

Using the fact that τ13 = τ12τ23, we see

α(1,τ13)(A(X1), τ13(X1, X2)) = α(1,τ12τ23)(A(X1),m∗(τ12(X1, X2), τ23(X2, X3)))

and since α is left invariant in the first slot, and using the equation above relating A(X1)
and A(X2), we have

α(1,τ23)(A(X2), τ23(X2, X3))

= α(τ12,τ23)(τ12A(X2), τ23(X2, X3))

= α(τ12,τ23)(τ12(ad(τ−1
12 )A(X1) + τ−1

12 (τ12(X1, X2))), τ23(X2, X3))

= α(τ12,τ23)(τ12ad(τ−1
12 )A(X1) + τ12(X1, X2), τ23(X2, X3)),

which equals
α(τ12,τ23)(m∗(A(X1), τ12(X1, X2)), τ23(X2, X3)).

Thus we have δε = τ∗α.
Consider now the LG � S1-bundle P. Choose a connection (A, a) for P, where A and

a are 1-forms on P with values in Lg and iR respectively. Note that a is a connection
for the associated S1-bundle P/LG whereas A is not a connection form. In fact, if X is a
tangent vector to P, we have

(A, a)(X(γ, φ)) = ad(γ, φ)−1(A(X), a(X))

=
(
ρφ−1

(
ad(γ−1)A(X) − a(X)γ−1∂γ

)
, a(X)

)
,
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and so A does not have the correct transformation properties to be a connection.2 Given
(A, a) then, we can write down the 1-form ε ∈ Ω1(P [2]) as above:

ε =
i

2π

∫
S1

〈
π∗2A − 1

2π∗2a τ∗Z, τ∗Z
〉
dθ.

It is easy to check that δε = τ∗α and so we have that τ∗ν − ε is a connection for the
lifting bundle gerbe. Of course, as in section 2.4 we are concerned with finding a curving
for this bundle gerbe and so we are really interested in calculating the curvature of this
connection, given by τ∗R− dε. Recall that for a connection A on a G-bundle, we have the
formula

π∗1A = ad(τ−1)π∗2A + τ∗Θ.

In the case where G = LG � S1, the formula relating π∗1(A, a) = (A2, a2) and π∗2(A, a) =
(A1, a1) is

(A2, a2) =
(
ρ−1

τS1

(
ad(τ−1

LG)A1 − a1τ
−1
LG∂τLG

)
+ τ∗LG(ρ−1

τS1
(Θ)), a1 + τ∗S1μ

)
where we have written the difference map τ as (τLG, τS1). That is, τLG is the LG part of
τ and τS1 is the circle part. From now on, we will simply write τ and assume that it is
clear from the context which part we mean. In particular, then, we have

τ∗ρ−1
τ (Θ) = A2 − ρ−1

τ

(
ad(τ−1)A1 + a1τ

−1∂τ
)
.

Note that here we have used the fact that the Maurer-Cartan form on LG � S1 is not
the pair (Θ, μ) but in fact includes a rotation of Θ. So at the point (γ, φ), it is given by
(ρφ−1(Θ), μ).

We can use this to calculate τ∗R − dε. Writing Aρ for ρ(A) and so on, as before, we
have

τ∗R =
i

4π

∫
S1

〈τ∗Θ, ∂τ∗Θ〉dθ

=
i

4π

∫
S1

〈Aρ
2 − ad(τ−1)A1 + a1τ

−1∂τ, ∂(Aρ
2 − ad(τ−1)A1 + a1τ

−1∂τ)〉dθ

=
i

4π

∫
S1

〈A2, ∂A2〉 − 2〈Aρ
2, ∂(ad(τ−1)A1)〉 + 2〈Aρ

2, a1∂(τ−1∂τ)〉
+ 〈ad(τ−1)A1, ∂(ad(τ−1)A1)〉 − 2〈ad(τ−1)A1, a1∂(τ−1∂τ)〉

+ 〈a1τ
−1∂τ, a1∂(τ−1∂τ)〉dθ

=
i

4π

∫
S1

〈A2, ∂A2〉 − 2〈Aρ
2, ∂(ad(τ−1)A1)〉 + 2〈Aρ

2, a1∂(τ−1∂τ)〉
+ 〈ad(τ−1)A1, ∂(ad(τ−1)A1)〉 − 2〈ad(τ−1)A1, a1∂(τ−1∂τ)〉dθ.

The last term vanishes since a1 ∧ a1 = 0. For dε we have:

dε =
i

2π
d

∫
S1

〈A1 − 1
2a1τ

∗Z, τ∗Z〉dθ

=
i

2π

∫
S1

〈dA1, τ
∗Z〉 − 〈A1, d(τ∗Z)〉 − 1

2〈da1τ
∗Z, τ∗Z〉 + 〈a1τ

∗Z, d(τ∗Z)〉dθ

2Notice the similarity with the treatment of connections for the universal ΩG�G-bundle in section 3.3.
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and using the fact that d(τ∗Z) = ad(τ)∂(τ∗Θρ),

=
i

2π

∫
S1

〈dA1, τ
∗Z〉 − 〈A1, ad(τ)∂(τ∗Θρ)〉

− 1
2〈da1τ

∗Z, τ∗Z〉 + 〈a1τ
∗Z, ad(τ)∂(τ∗Θρ)〉dθ

=
i

2π

∫
S1

〈dA1, τ
∗Z〉

− 〈A1, ad(τ)∂(Aρ
2 − ad(τ−1)A1 + a1τ

−1∂τ)〉 − 1
2〈da1τ

∗Z, τ∗Z〉
+ 〈a1τ

∗Z, ad(τ)∂(Aρ
2 − ad(τ−1)A1 + a1τ

−1∂τ)〉dθ

=
i

2π

∫
S1

〈dA1, τ
∗Z〉 − 〈A1, ad(τ)∂Aρ

2〉 + 〈A1, ad(τ)∂(ad(τ−1)A1)〉
− 〈A1, a1ad(τ)∂(τ−1∂τ)〉 − 1

2〈da1τ
∗Z, τ∗Z〉

+ 〈a1τ
∗Z, ad(τ)∂Aρ

2〉 − 〈a1τ
∗Z, ad(τ)∂(ad(τ−1)A1)〉dθ.

Therefore,

τ∗R − dε =
i

4π

∫
S1

〈A2, ∂A2〉 − 2〈dA1, τ
∗Z〉 − 〈A1, ad(τ)∂(ad(τ−1)A1)〉

+ 2〈a1τ
−1∂τ, ∂(ad(τ−1)A1)〉 + 〈da1τ

∗Z, τ∗Z〉dθ,

using the ad invariance of the Killing form and integration by parts. Then, using the
identity from before,

∂(ad(τ−1)A) = ad(τ−1)[A, τ∗Z] + ad(τ−1)∂A,

yields

τ∗R − dε =
i

4π

∫
S1

〈A2, ∂A2〉 − 2〈dA1, τ
∗Z〉 − 〈A1, [A1, τ

∗Z]〉 − 〈A1, ∂A1〉
+ 2〈τ∗Za1, [A1, τ

∗Z]〉 + 2〈a1τ
∗Z, ∂A1〉 + 〈da1τ

∗Z, τ∗Z〉dθ

=
i

4π

∫
S1

〈A2, ∂A2〉 − 〈A1, ∂A1〉 − 2〈dA1, τ
∗Z〉 − 〈[A1, A1], τ∗Z〉

+ 2〈τ∗Za1, ∂A1〉 + 〈da1τ
∗Z, τ∗Z〉dθ.

Note now that if (F, f) is the curvature of the connection (A, a) then we have

(F, f)(X, Y ) = (dA(X, Y ) + 1
2 [(A, a)(X), (A, a)(Y )], da(X, Y ))

= (dA(X, Y ) + 1
2([A(X), A(Y )] − a(X)∂A(Y ) + a(Y )∂A(X)), da(X, Y )).

That is,
(F, f) = (dA + 1

2 [A,A] − a ∧ ∂A, da).

Therefore, the formula above for τ∗R − dε reads

τ∗R − dε =
i

4π

∫
S1

〈π∗1A, ∂π∗1A〉 − 〈π∗2A, ∂π∗2A〉 − 2
〈
π∗2F − 1

2π∗2f τ∗Z, τ∗Z
〉
dθ.
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A curving for the lifting bundle gerbe

Recall that in order to find the 3-curvature of the lifting bundle gerbe, and hence a
representative for the image in real cohomology of the Dixmier-Douady class, we need a
curving for τ∗ ̂LG � S1. That is, some 2-form B on P such that δB = τ∗R− dε. Note that
δ = π∗1 − π∗2 and

τ∗R − dε = δ

(
i

4π

∫
S1

〈A, ∂A〉 dθ

)
− i

2π

∫
S1

〈
π∗2F − 1

2π∗2f τ∗Z, τ∗Z
〉
dθ.

To deal with the second term above, we use a similar method to the one in section 2.4.
Namely, we will need a Higgs field for the LG � S1-bundle P.

Definition 4.1.2. A Higgs field for P is a map Φ: P → Lg satisfying

Φ(p(γ, φ)) = ρ−1
φ

(
ad(γ−1)Φ(p) + γ−1∂γ

)
.

We shall explain the geometric significance of this map in section 4.2. As in the LG
case, Higgs fields exist for LG � S1-bundles. Note that the condition above implies that
a Higgs field Φ satisfies

π∗1Φ = ρ−1
τ

(
ad(τ−1)π∗2Φ + τ−1∂τ

)
or simply,

ad(τ)Φρ
2 = Φ1 + τ∗Z.

Using this, the second term in τ∗R − dε becomes

i

2π

∫
S1

〈
F1 − 1

2f1 τ∗Z, ad(τ)Φρ
2 − Φ1

〉
dθ.

Since (F, f) is a curvature, it satisfies

π∗1(F, f) = ad(τ−1)π∗2(F, f).

That is, f2 = f1 and
F2 = ρ−1

τ

(
ad(τ−1)F1 − f1τ

−1∂τ
)
,

or
ad(τ)F ρ

2 = F1 − f1τ
∗Z.

Using this, we have

i

2π

∫
S1

〈
F1 − 1

2f1 τ∗Z, ad(τ)Φρ
2 − Φ1

〉
dθ

=
i

4π

∫
S1

〈F1 + ad(τ)F ρ
2 , ad(τ)Φρ

2 − Φ1〉 dθ

=
i

4π

∫
S1

〈F1, ad(τ)Φρ
2〉 − 〈F1, Φ1〉 + 〈F2, Φ2〉 − 〈ad(τ)F ρ

2 , Φ1〉 dθ

= δ

(
i

4π

∫
S1

〈F,Φ〉 dθ

)
+

i

4π

∫
S1

〈F1, ad(τ)Φρ
2〉 − 〈ad(τ)F ρ

2 , Φ1〉 dθ.
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Note, however, that the second integral above simplifies further

i

4π

∫
S1

〈F1, ad(τ)Φρ
2〉 − 〈ad(τ)F ρ

2 ,Φ1〉 dθ

=
i

4π

∫
S1

〈ad(τ)F2 + f1τ
∗Z, ad(τ)Φρ

2〉 − 〈F1 − f1τ
∗Z,Φ1〉 dθ

=
i

4π

∫
S1

〈F2,Φ2〉 − 〈F1,Φ1〉 + 〈f1τ
∗Z, ad(τ)Φρ

2 + Φ1〉dθ

= δ

(
i

4π

∫
S1

〈F,Φ〉 dθ

)
+

i

4π

∫
S1

〈f1τ
∗Z, 2Φ1 + τ∗Z〉 dθ

= δ

(
i

4π

∫
S1

〈F,Φ〉 dθ

)
+

i

4π

∫
S1

2 〈f1τ
∗Z,Φ1〉 + 〈f1τ

∗Z, τ∗Z〉 dθ.

Therefore, τ∗R − dε is equal to

δ

(
i

4π

∫
S1

〈A, ∂A〉 − 2 〈F,Φ〉 dθ

)
− i

4π

∫
S1

2 〈f1τ
∗Z,Φ1〉 + 〈f1τ

∗Z, τ∗Z〉 dθ.

So it is enough to find a B2 ∈ Ω2(P ) such that

δB2 =
i

4π

∫
S1

2 〈f1τ
∗Z,Φ1〉 + 〈f1τ

∗Z, τ∗Z〉 dθ.

Consider, then, the form
i

4π

∫
S1

〈Φ, fΦ〉 dθ.

We have

δ

(
i

4π

∫
S1

〈Φ, fΦ〉 dθ

)
=

i

4π

∫
S1

〈Φ2, f2Φ2〉 − 〈Φ1, f1Φ1〉 dθ

=
i

4π

∫
S1

〈
ad(τ−1)(Φ1 + τ∗Z), f1ad(τ−1)(Φ1 + τ∗Z)

〉− 〈Φ1, f1Φ1〉 dθ

=
i

4π

∫
S1

〈Φ1, f1Φ1〉 + 〈τ∗Z, f1Φ1〉 + 〈Φ1, f1τ
∗Z〉
+ 〈τ∗Z, f1τ

∗Z〉 − 〈Φ1, f1Φ1〉 dθ

=
i

4π

∫
S1

2 〈f1τ
∗Z,Φ1〉 + 〈f1τ

∗Z, τ∗Z〉 dθ.

Therefore, a curving for the lifting bundle gerbe is given by

B =
i

4π

∫
S1

〈A, ∂A〉 − 2〈F + 1
2fΦ, Φ〉 dθ.
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The string class of an LG � S1-bundle

The last step now that we have found a curving for the lifting bundle gerbe is to calculate
the 3-curvature H = dB. Then H/2πi is integral and represents the real image of the
Dixmier-Douady class of τ∗ ̂LG � S1 (and hence the obstruction to lifting P ). We have

dB =
i

4π

∫
S1

〈dA, ∂A〉 − 〈A, d(∂A)〉 − 2 〈dF, Φ〉 − 2 〈F, dΦ〉 − 〈dΦ, fΦ〉 − 〈Φ, fdΦ〉 dθ

=
i

4π

∫
S1

〈dA, ∂A〉 + 〈∂A, dA〉 − 2 〈dF, Φ〉 − 2 〈F, dΦ〉 − 2 〈dΦ, fΦ〉 dθ

=
i

2π

∫
S1

〈dA, ∂A〉 − 〈dF, Φ〉 − 〈F, dΦ〉 − 〈dΦ, fΦ〉 dθ.

To proceed further, we require the Bianchi identity for (F, f). Note that

d(F, f) = ([dA,A] − f ∧ ∂A + a ∧ ∂(dA), d2a).

In particular, this means that

dF = [F,A] − f ∧ ∂A + a ∧ ∂F,

since

[F,A] = [dA, A] + 1
2 [[A,A], A] − [a ∧ ∂A, A]

= [dA, A] − [a ∧ ∂A,A],

and

a ∧ ∂F = a ∧ ∂(dA) + 1
2a ∧ ∂[A,A] − a ∧ ∂(a ∧ ∂A)

= a ∧ ∂(dA) + [a ∧ ∂A,A].

Using this, and the fact that
∫
S1〈[A,A], ∂A〉dθ and 〈a ∧ ∂A, ∂A〉 both vanish (so that∫

S1〈dA, ∂A〉dθ =
∫
S1〈F, ∂A〉dθ), the expression for dB becomes

dB =
i

2π

∫
S1

〈F, ∂A〉 − 〈[F,A] − f ∧ ∂A + a ∧ ∂F, Φ〉 − 〈F, dΦ〉 − 〈dΦ, fΦ〉 dθ

=
i

2π

∫
S1

〈F, ∂A〉 − 〈[F,A],Φ〉 + 〈f ∧ ∂A, Φ〉 − 〈a ∧ ∂F, Φ〉 − 〈F, dΦ〉 − 〈dΦ, fΦ〉 dθ

=
i

2π

∫
S1

〈F + fΦ, ∂A〉 − 〈F, [A,Φ]〉 − 〈a ∧ ∂F, Φ〉 − 〈F + fΦ, dΦ〉 dθ

=
i

2π

∫
S1

〈F + fΦ, ∂A〉 − 〈F, [A,Φ]〉 + 〈F, a∂Φ〉 − 〈F + fΦ, dΦ〉 dθ

=
i

2π

∫
S1

〈F + fΦ, ∂A − [A,Φ] + a∂Φ − dΦ〉 dθ.

Where the last line follows from the fact that
∫
S1〈fΦ, a∂Φ〉dθ and 〈fΦ, [A,Φ]〉 both vanish.

If we define the covariant derivative of Φ by

∇Φ = dΦ + [A,Φ] − ∂A − a∂Φ,
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then one can easily check that it is (twisted) equivariant for the adjoint action. That is,

∇Φ(X(γ, φ)) = ρ−1
φ

(
ad(γ−1)∇Φ(X)

)
,

for any tangent vector X. The same is true for the quantity F + fΦ, and so using the
ad-invariance of the Killing form and the rotation invariance of the integral, Lemma 3.2.3
implies that H = dB descends to a form on M. Thus we have proven

Theorem 4.1.3. Let P → M be a principal LG � S1-bundle and let Φ be a Higgs field
for P and (A, a) be a connection for P with curvature (F, f). Then the string class of
P, that is, the obstruction to lifting P to an ̂LG � S1-bundle, is represented in de Rham
cohomology by

− 1
4π2

∫
S1

〈F + fΦ,∇Φ〉dθ,

where
∇Φ = dΦ + [A,Φ] − ∂A − a∂Φ.

4.1.2 Reduced splittings for lifting bundle gerbes

In this section we shall present an alternative method for finding the curving of a lifting
bundle gerbe and show how to apply this to the problem above. This method uses reduced
splittings and was first introduced by Gomi [18].

In [4] Brylinski considers the problem of lifting a principal G-bundle P to a Ĝ-bundle
P̂ , for which he uses a bundle splitting. He relates the obstruction class to the scalar
curvature of a certain connection on P̂ . In [18] Gomi phrases this in such a way that he
can use the theory of lifting bundle gerbes in order to calculate the obstruction class. We
shall begin by briefly outlining Brylinski’s results before describing the reduced splittings
of Gomi.

Let G be a Lie group with central extension Ĝ. If G and Ĝ are the Lie algebras of G
and Ĝ respectively then we have an extension of Lie algebras

0 → iR → Ĝ → G → 0.

We can define an action of G on Ĝ by lifting the adjoint action of G on its Lie algebra.
That is, we define ad : G × Ĝ → Ĝ by

ad(g)ξ̂ = ad(ĝ)ξ̂,

where ξ̂ ∈ Ĝ and ĝ ∈ Ĝ projects to g ∈ G. This is well-defined since U(1) acts trivially on
Ĝ and any two lifts of g differ by an element of U(1). Consider now a principal G-bundle
P. We can write down an exact sequence of vector bundles associated to P as follows. Let
Adg(P ) denote the adjoint bundle of P where G acts on the Lie algebra g. For example,
AdG(P ) is the usual adjoint bundle of P and AdiR(P ) = P ×ad iR � M × iR. Since G acts
via the adjoint action on the exact sequence above, we have an exact sequence of vector
bundles

0 → AdiR(P ) → AdG(P ) → AdbG(P ) → 0.

This means that AdG(P ) is isomorphic to the direct sum of M × iR and AdbG(P ). A choice
of isomorphism is called a bundle splitting. That is,
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Definition 4.1.4 ([4]). A bundle splitting of P is a vector bundle map

L : AdbG(P ) → AdiR(P )

which is the identity on the (trivial) subbundle AdiR(P ).

As mentioned above, Brylinski uses the notion of scalar curvature to calculate the
obstruction to the existence of a lift of P. This is essentially the iR part of the curvature
of a connection on P̂ . More precisely,

Definition 4.1.5 ([4]). Let Â be a connection on P̂ with curvature F̂ , viewed as a 2-form
on M with values in AdbG(P̂ ) � AdbG(P ). Let L be a bundle splitting of P. The scalar
curvature of Â is the iR-valued 2-form

K = L ◦ F̂ .

To see how this is related to the obstruction class, let {Uα} be a good cover of M over
which P is trivial. Then there exists a lift P̂α of P |Uα → Uα. Choose a connection Aα on
P |Uα and let Kα be the scalar curvature of a connection Âα on P̂α which is compatible
with Aα in the sense that the pull-back of Aα to P̂α coincides with the image of Âα in G.
That is,

f∗Aα = p(Âα),

where f is the bundle map P̂α → P |Uα and p is the projection Ĝ → G. Brylinski’s result,
then, is that the (real image of the) obstruction class restricted to Uα coincides with the
derivative of the scalar curvature, dKα.

As mentioned, Gomi’s results interpolate between the method described above and
the theory of lifting bundle gerbes which we have used extensively. He utilises so-called
reduced splittings to write down a formula for the curving of the lifting bundle gerbe
associated to a lifting problem and relates the curving to the scalar curvature. In the
case where a splitting of the Lie algebra of Ĝ has been specified, reduced splittings are
equivalent to bundle splittings. To describe Gomi’s results, let us assume we have chosen
a splitting of the Lie algebra Ĝ as G ⊕ iR.

Definition 4.1.6 ([18]). The group cocycle for the central extension Ĝ is the map σ : G ×
G → iR defined by

σ(g, ξ) = ad(g)(ξ, 0) − (ad(g)ξ, 0),

where ad(g) acts on Ĝ as described above.

The group cocycle gives information about the multiplication in Ĝ in the same way as
the 1-form α which we used. In fact, as we shall see, to apply Gomi’s results to the case
where G is either the loop group LG or the semi-direct product LG � S1, we shall give σ
in terms of α.

Definition 4.1.7 ([18]). A reduced splitting for a principal G-bundle P is a map � : P×G →
iR which is linear in the second factor and satisfies

�(p, ξ) = �(pg, ad(g−1)ξ) + σ(g−1, ξ).

The relation between reduced splittings and bundle gerbe curvings is given by the
following theorem.
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Theorem 4.1.8 ([18]). Let F be the curvature of a connection A on P and � be a reduced
splitting for P. Define a 2-form κ on P by κp = �(p, F ). Then a curving for the lifting
bundle gerbe associated to the lifting problem for P is given by

B =
1
2
ω(A,A) + κ,

where ω(ξ, ζ) = [(ξ, 0), (ζ, 0)]bG− ([ξ, ζ]G, 0) is the cocycle classifying the central extension.

To connect this with Brylinski’s work, Gomi proves the following theorem relating the
curving and the scalar curvature.

Theorem 4.1.9 ([18]). Let P be a principal G-bundle and P̂ be a lift of P. Let A be a
connection on P and Â be a compatible connection on P̂ . Then the curving can be written
as

B = π∗K − F̃ ,

where F̃ is the curvature of the connection Â− f∗A on P̂ (for f : P̂ → P the bundle map
defining the lift) and K is the scalar curvature of Â.

We would now like to consider the case where G = LG � S1. We shall define a reduced
splitting for P so we can use Theorem 4.1.8 to calculate a curving and show that it is in
agreement with the results from section 4.1.1. The group cocycle in this case is given by

σ((γ, φ)−1, (ξ, x)) = α((1,1),(γ,φ))((ξ, x), (0, 0))

=
i

2π

∫
S1

〈
ξ − 1

2x∂γγ−1, ∂γγ−1
〉
dθ,

and we have

Proposition 4.1.10. A reduced splitting for the LG � S1-bundle P is given by

�(p, (ξ, x)) = − i

2π

∫
S1

〈
ξ + 1

2xΦ(p),Φ(p)
〉
dθ,

where Φ is a Higgs field for P.

Proof. We need only show that it satisfies the transformation property above. We can
calculate

�(p(γ, φ), ad(γ, φ)−1(ξ, x))

= − i

2π

∫
S1

〈
ad(γ−1)(ξ − xZ) + 1

2x ad(γ−1)(Φ(p) + Z), ad(γ−1)(Φ(p) + Z)
〉
dθ

= − i

2π

∫
S1

〈
ξ,Φ(p)

〉− 〈
xZ,Φ(p)

〉
+

〈
1
2xΦ(p), Φ(p)

〉
+

〈
1
2xZ,Φ(p)

〉
+

〈
ξ, Z

〉− 〈
xZ, Z

〉
+

〈
1
2xΦ(p), Z

〉
+

〈
1
2xZ,Z

〉
dθ

= − i

2π

∫
S1

〈
ξ + 1

2xΦ(p), Φ(p)
〉

+
〈
X − 1

2xZ, Z
〉
dθ

= �(p, (ξ, x)) − σ((γ, φ)−1, (ξ, x))

as required.
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Note that in order to use Theorem 4.1.8, we need the cocycle ω. This is simply given
by the form R which defines the central extension. In particular,

ω((ξ, x), (ζ, y)) =
i

2π

∫
S1

〈ξ, ∂ζ〉 dθ.

Therefore, for the curving of the lifting bundle gerbe, Theorem 4.1.8 gives

B =
1
2
R((A, a), (A, a)) − i

2π

∫
S1

〈
F + 1

2f Φ, Φ
〉
dθ

=
i

4π

∫
S1

〈A, ∂A〉 − 2〈F + 1
2f Φ, Φ〉 dθ,

where as before, (A, a) is a connection on P and (F, f) is its curvature.

4.2 Higgs fields, LG � S1-bundles and the string class

Now that we have an explicit formula for the string class of an LG � S1-bundle P, it is
natural to ask whether there is some relation with the Pontrjagyn class of a G-bundle
related to P in some way, as was the case with the string class of an LG-bundle presented
in chapter 2. In particular, in section 2.5, following [35], we saw that there was a corre-
spondence between LG-bundles over M (with connection and Higgs field) and G-bundles
over M × S1 (with connection) (Propositions 2.5.1 and 2.5.2) and we used this to prove
that the string class of P is given by integrating over the circle the first Pontrjagyn class
of the corresponding G-bundle (Theorem 2.5.3). In this section, we shall show there is
a correspondence between LG � S1-bundles over M and G-bundles over S1-bundles over
M, which holds on the level of connections as well. As in section 2.5 we shall use this
correspondence to prove that the string class of P is given in terms of the Pontrjagyn class
of some G-bundle.

4.2.1 Higgs fields and LG � S1-bundles

The following correspondence first appeared in [1]. We will present it here in detail and
also extend it to the level of connections.

Suppose that we have a principal G-bundle over a principal S1-bundle:

P̃

G

��
Y

S1

��
M

We would like to mimic the construction of the LG-bundle in section 2.5 where we essen-
tially took loops in P̃ such that their image in M × S1 commuted with the obvious S1

action on this space. That is, for a loop f ∈ LP̃m in the fibre above {m} × S1 we re-
quired that π̃(f(θ)) = (m, θ). The difference here is that we cannot choose a global section
M → Y and thus there is no way of choosing a ‘starting point’ for the loop π̃(f) : S1 → Y.
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We can, however, still require that the map π̃(f) commutes with the S1 action on Y (which
we will write as addition). That is, we can define

P = {f : S1 → P̃ | π̃(f(θ + φ)) = π̃(f(θ)) + φ}

and there is a canonical map P → M. P is acted on by LG � S1 :

(f(γ, φ))(θ) = f(θ + φ)γ(θ + φ),

i.e.
f(γ, φ) = ρ−1

φ (fγ).

It is a right action since

f(γ1, φ1)(γ2, φ2) = ρ−1
(φ1+φ2)fρ−1

(φ1+φ2)γ1ρ
−1
φ2

(γ2)

= ρ−1
(φ1+φ2)(fγ1ρφ1(γ2))

= f(γ1ρφ1(γ2), φ1 + φ2).

It preserves the fibres of P since the G action on P̃ preserves fibres and the S1 action
on Y preserves fibres. It is also free and transitive on fibres and therefore P → M is a
principal LG � S1-bundle. Note that local triviality of this bundle follows from the local
triviality of Y as follows: Choose a good cover of M and let U be an open set such that
we can find a local section s : U → Y|U . There is a map P → Y given by f �→ π̃(f(0)). If
we pull-back P by s then s∗P → U is trivial (since U is contractible).

Conversely, suppose we are given a principal LG � S1-bundle P → M. Following the
construction in section 2.5, define

P̃ = (P × G × S1)/LG � S1,

where [p, g, θ] = [p(γ, φ), γ(θ)−1g, θ − φ]. A G action on P̃ is given by [p, g, θ]h = [p, gh, θ].
There is a natural projection from P̃ to the S1-bundle associated to P via the homomor-
phism LG�S1 → S1, that is, P̃ → (P×S1)/LG�S1 � P/LG, given by π̃([p, g, θ]) = [p, θ].
This makes P̃ into a principal G-bundle. Thus, given the LG�S1-bundle P → M we can
construct a G-bundle over an S1-bundle:

P × G × S1

LG � S1

G
��

P × S1

LG � S1

S1

��
M

We would like to show that both constructions above are invertible (as we did for the
constructions in the LG case). Assume, then, that we are given an LG � S1-bundle
P → M and have constructed the G-bundle P̃ over the S1-bundle P/LG → M as above.
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Then use the first correspondence above to form the LG � S1-bundle P ′ → M (by taking
certain loops in P̃ ). So we have

P ′ = {f : S1 → (P × G × S1)/LG � S1 | π̃(f(θ + φ)) = π̃(f(θ)) + φ}

and a bundle isomorphism is given by

P → P ′; p �→ fp = (θ �→ [p, 1, θ]).

It is easily checked that this map commutes with the LG � S1 action, for

p(γ, φ) �→ fp(γ,φ)

= [p(γ, φ), 1, θ]

and on the other hand,

fp(γ, φ) = fp(θ + φ)γ(θ + φ)
= [p, 1, θ + φ]γ(θ + φ)
= [p, γ(θ + φ), θ + φ]
= [p(γ, φ), 1, θ].

So we have that P � P ′. If, on the other hand, we are given the G-bundle over the S1-
bundle P̃ → Y → M and have constructed P → M, then we can construct P̃ ′ → P/LG →
M and we would like for these bundles to be isomorphic. That is, P̃ ′ � P̃ and P/LG � Y.
Firstly, consider the map P/LG � P ×LG�S1 S1 → Y defined by [f, θ] �→ π̃(f(θ)). This is
well-defined on equivalence classes:

[f, θ] = [ρ−1
φ (fγ), θ − φ] �→ π̃(f(θ − φ + φ)γ(θ − φ + φ)) = π̃(f(θ)).

It commutes with the S1 action on P ×LG�S1 S1 :

[f, θ + α] �→ π̃(f(θ + α)) = π̃(f(θ)) + α

by the definition of P in terms of P̃ . Thus P ×LG�S1 S1 � Y. For P̃ ′ and P̃ consider the
bundle map

P̃ ′ → P̃ ; [f, g, θ] �→ f(θ)g.

This is well-defined:

[f, g, θ] = [f(γ, φ), γ(θ)−1g, θ − φ] �→ f(θ − φ − φ)γ(θ − φ + φ)γ(θ)−1g = f(θ)g,

and commutes with the G action:

[f, g, θ]h = [f, gh, θ] �→ f(θ)gh = (f(θ)g)h.

Therefore, it is a bundle isomorphism and P̃ ′ � P̃ . Thus we have proven

Proposition 4.2.1 ([1]). There is a bijective correspondence between isomorphism classes
of principal LG�S1-bundles over M and isomorphism classes of principal G-bundles over
principal S1-bundles over M.
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As in section 2.5 the correspondences here hold on the level of connections as well. We
shall now describe how to derive the connections corresponding to one another.

Suppose we are given a connection Ã on P̃ → Y and a connection ã on Y → M. This
amounts to a splitting of the tangent spaces Tp̃P̃ � Vp̃P̃ ⊕ Hp̃P̃ at each point p̃ ∈ P̃ and
also TyY � VyY ⊕ HyY at each point y ∈ Y. Since P is given by certain loops in P̃ , a
vector X ∈ TfP is really a vector field along f in P̃ . So, Xθ ∈ Tf(θ)P̃ . Thus we can use
the splittings of the tangent spaces of P̃ and Y to define a splitting for the tangent space
to P at f for each θ. So we have

Tf(θ)P̃ � Vf(θ)P̃ ⊕ Hf(θ)P̃

� Vf(θ)P̃ ⊕ Vπ̃(f(θ))Y ⊕ Hπ̃(f(θ))Y

� Vf(θ)P̃ ⊕ Vπ̃(f(θ))Y ⊕ T(πY ◦π̃)(f(θ))M,

using the isomorphisms Hf(θ)P̃ � Tπ̃(f(θ))Y and Hπ̃(f(θ))Y � T(πY ◦π̃)(f(θ))M. We can find
the 1-form for this connection by calculating

Xθ − ̂̂
π∗Xθ

which equals ιf(θ)(Af (X)θ), where π = πY ◦ π̃ and ̂̂
V is the horizontal lift of a vector on

M first to Y, then to P̃ . Note that using the connection on Y we have

ιπ̃(f(θ))(ã(π̃∗Xθ)) = π̃∗Xθ − π̂∗Xθ,

and so
π̂∗Xθ = π̃∗Xθ − ιπ̃(f(θ))(ã(π̃∗Xθ)).

Lifting everything, we have

̂̂
π∗Xθ = ̂̃π∗Xθ − ̂ιπ̃(f(θ))(ã(π̃∗Xθ)),

and thus
ιf(θ)(Af (X)θ) = Xθ − ̂̃π∗Xθ + ̂ιπ̃(f(θ))(ã(π̃∗Xθ)).

But Xθ − ̂̃π∗Xθ = ιf(θ)(Ã(Xθ)) and so we have

ιf(θ)(Af (X)θ) = ιf(θ)(Ã(Xθ)) + ̂ιπ̃(f(θ))(ã(π̃∗Xθ)).

To make use of this we need to be able to write A as an Lg-valued 1-form and an iR-
valued 1-form. That is, A(X)θ = (ξ(θ), x) for ξ ∈ Lg and x ∈ iR. To that end, consider
the vertical vector V in TfP generated by the Lie algebra element (ξ, x) :

Vθ =
d

dt |0
f(exp(tξ), tx)(θ)

=
d

dt |0
f(θ + tx) exp(tξ(θ + tx))

=
d

dt |0

(
f(θ) + f ′(θ)tx

) (
1 + tξ(θ) + O(t2)

)
= ιf(θ)(ξ(θ)) + xf ′(θ).
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Since A is a connection, it returns the Lie algebra element corresponding to the vertical
part of a vector X. Therefore, we must solve the following equation for ξ and x :

ιf(θ)(Ã(Xθ)) + ̂ιπ̃(f(θ))(ã(π̃∗Xθ)) = ιf(θ)(ξ(θ)) + xf ′(θ).

Applying Ã to both sides gives

Ã(Xθ) = ξ(θ) + xÃ(f ′(θ)),

since ̂ιπ̃(f(θ))(ã(π̃∗Xθ)) is horizontal with respect to Ã. Thus, we have

ξ(θ) = Ã(Xθ − xf ′(θ)).

Taking instead, π̃∗ of both sides gives

ιπ̃(f(θ))(ã(π̃∗Xθ)) = x π̃∗f ′(θ),

since the vectors ιf(θ)(Ã(Xθ)) and ιf(θ)(ξ(θ)) are vertical in P̃ . Then applying ã to both
sides yields

ã(π̃∗Xθ) = x ã(π̃∗f ′(θ)).

So (with a slight abuse of notation) we can write the connection form on P as

(A, a)f (X)θ = (Ã(Xθ − a(X)f ′(θ)), a(X)),

where Ã and ã are connection forms on P̃ and Y respectively and a(X) is given by
the formula for x above. Now that we have the connection on P in this form we can
check explicitly that it satisfies the conditions for a connection. By construction, it
satisfies (A, a)(ιf (ξ, x)) = (ξ, x) and so we just need to check that (A, a)(X(γ, φ)) =
ad(γ, φ)−1(A, a)(X). Recall that the adjoint action of LG � S1 on its Lie algebra is given
by

ad(γ, φ)−1(ξ, x) =
(
ρ−1

φ

(
ad(γ−1)ξ − γ−1∂γ x

)
, x

)
and so

ad(γ, φ)−1(A, a)(X)θ =
(
ρ−1

φ (ad(γ−1)Ã(Xθ − a(X)f ′(θ)) − γ−1∂γ a(X)), a(X)
)

.

On the other hand, the action of LG � S1 on the tangent vector X is

X(γ, φ) = ρ−1
φ (Xγ).

Therefore,

(A, a)(X(γ, φ))θ =
(
Ã(X(γ, φ)θ − a(X(γ, φ))∂(f(θ + φ)γ(θ + φ))), a(X(γ, φ))

)
=

(
Ã(ρ−1

φ (Xγ)θ − a(ρ−1
φ (Xγ)θ)∂(f(θ + φ)γ(θ + φ))), a(ρ−1

φ (Xγ)θ)
)

=
(
Ã(ρφ(Xγ)θ − a(ρ−1

φ (Xγ)θ){∂f(θ + φ)γ(θ + φ)

+ f(θ + φ)∂γ(θ + φ)}), a(ρ−1
φ (Xγ)θ)

)
.
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Since Ã is a connection, we have Ã(ρ−1
φ (Xγ))θ = ρ−1

φ (ad(γ−1)Ã(X))θ and Ã(∂f(θ+φ)γ(θ+
φ)) = ρ−1

φ (ad(γ−1)Ã(∂f(θ))). Also, since a is iR-valued, we have a(ρ−1
φ (Xγ)θ) = a(X).

Therefore,

(A, a)(X(γ, φ))θ =
(
ρ−1

φ (ad(γ−1)Ã(Xθ − a(X)∂f(θ)))

−a(X)Ã(f(θ + φ)∂γ(θ + φ))), a(X)
)

.

But, f(θ + φ)∂γ(θ + φ) is really shorthand for ιf(θ+φ)(ρ
−1
φ (γ−1∂γ)) and so

Ã(f(θ + φ)∂γ(θ + φ)) = Ã(ιf(θ+φ)(ρ
−1
φ (γ−1∂γ))) = ρ−1

φ (γ−1∂γ).

Thus, we have

(A, a)(X(γ, φ))θ =
(
ρ−1

φ (ad(γ−1)Ã(Xθ − a(X)∂f(θ)) − a(X)γ−1∂γ), a(X)
)

,

as required.
As for the LG-bundle case in section 2.5, to define a connection3 on P̃ given the bundle

P we need a connection and Higgs field for P . Unlike the case in the previous section,
however, in order to define a connection we require a Higgs field to satisfy a slightly
different condition. Recall that a Higgs field for an LG � S1-bundle P satisfies

Φ(p(γ, φ)) = ρ−1
φ

(
ad(γ−1)Φ(p) + γ−1∂γ

)
.

It will be instructive to define a Higgs field for P given the bundles P̃ → Y → M now
since we will need this later to show that the construction is invertible. Define then, the
map Φ: P → Lg by

Φ(f) = Ã(∂f).

This is a Higgs field since

Φ(f(γ, φ)) = Ã(ρ−1
φ (∂fγ) + ρ−1

φ (γ−1∂γ)

= Ã(ρ−1
φ (∂fγ)) + ιρφ(f)(ρ

−1
φ (γ−1∂γ)

= ad(ρ−1
φ (γ−1))Ã(ρ−1

φ (∂f)) + ρ−1
φ (γ−1∂γ)

= ρ−1
φ

(
ad(γ−1)Ã(∂f) + γ−1∂γ

)
= ρ−1

φ

(
ad(γ−1)Φ(f) + γ−1∂γ

)
.

To define a connection on P̃ = (P × G × S1)/LG � S1 we need to be able to write a
form on P ×G×S1 which is zero on vertical vectors (with respect to the LG � S1 action)
and invariant under the LG � S1 action (so as to ensure that it is well-defined). Thus we
need to calculate the action of LG � S1 on: the connection, (A, a), on P, the Higgs field,
Φ, on P and the Maurer-Cartan forms Θ and dθ on G and S1 respectively. Then we can
combine these in an invariant way. We can calculate the action of (γ, φ) on the connection
on P :

(γ, φ)∗(A, a)(X) = (A, a)(X(γ, φ))

= ad(γ, φ)−1(A, a)(X)

=
(
ρ−1

φ

(
ad(γ−1)A(X) − γ−1∂γ a(X)

)
, a(X)

)
,

3Of course, here we need to define a connection on Y as well as on eP .
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and we know that the Higgs field satisfies

Φ(p(γ, φ)) = ρ−1
φ

(
ad(γ−1)Φ(p) + γ−1∂γ

)
,

and the Maurer-Cartan form on S1 is unchanged. To calculate the action on the Maurer-
Cartan form on G, consider a vector (X, gζ, xθ) ∈ T(p,g,θ)(P × G × S1). We have:

(X, gζ, xθ)(γ, φ) =
d

dt

∣∣∣∣
0

(γX(t)(γ, φ), γ(θ + tx)−1g exp(tζ), θ + tx − φ)

=
d

dt

∣∣∣∣
0

(γX(t)(γ, φ), (γ(θ)−1 − γ(θ)−1∂γ(θ)γ(θ)−1tx)g(1 + tζ), θ + tx − φ)

= (X(γ, φ), γ(θ)−1gζ − γ(θ)−1∂γ(θ)γ(θ)−1gx, x)

= (X(γ, φ), γ(θ)−1g{ζ − x ad(g−1)∂γ(θ)γ(θ)−1}, x),

and so

(γ, φ)∗Θ(gζ) = Θγ(θ)−1g(γ(θ)−1g{ζ − x ad(g−1)∂γ(θ)γ(θ)−1})
= ζ − x ad(g−1)∂γ(θ)γ(θ)−1.

Now consider the form on P × G × S1 given by

Ã = ad(g−1)A + Θ + ad(g−1)Φ(a + dθ).

This is invariant under the LG � S1 action, for

(γ, φ)∗Ã(p,g,θ)(X, gζ, xθ)

= Ã(p(γ,φ),γ(θ)−1g,θ+φ)(X(γ, φ), γ(θ)−1g{ζ − x ad(g−1)∂γ(θ)γ(θ)−1}, x)

= ad(g−1γ(θ))ρ−1
φ

(
ad(γ−1)A(X)θ−φ − γ−1∂γθ−φ a(X)

)
+ ζ − x ad(g−1)∂γ(θ)γ(θ)−1

+ ad(g−1γ(θ))ρ−1
φ

(
ad(γ−1)Φ(p)θ−φ + γ−1∂γθ−φ

)
(a(X) + x)

= ad(g−1γ(θ))
(
ad(γ−1)A(X)θ − γ−1∂γθ a(X)

)
+ ζ − x ad(g−1)∂γ(θ)γ(θ)−1

+ ad(g−1γ(θ))
(
ad(γ−1)Φ(p)θ + γ−1∂γθ

)
(a(X) + x)

= ad(g−1)A(X)θ + ζ + ad(g−1)Φ(p)θ (a(X) + x)

= Ã(p,g,θ)(X, gζ, xθ),

by the calculations above. So for it to be well-defined on the quotient space we just need
to check that it vanishes on vertical vectors. The vertical vector at the point (p, g, θ)
generated by the vector (ξ, x) is

V =
d

dt

∣∣∣∣
0

(p, g, θ)(exp(tξ), tx)

=
d

dt

∣∣∣∣
0

(p(exp(tξ), tx), (1 − tξ(θ))g, φ − tx)

= (ιp(ξ, x),−g ad(g−1)ξ(θ),−x),
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and so

Ã(V ) = ad(g−1)A(ιp(ξ, x))θ − ad(g−1)ξ(θ) + ad(g−1)Φ(p)(a(ιp(ξ.x)) − x)

= ad(g−1)ξ(θ) − ad(g−1)ξ(θ) + ad(g−1)Φ(p)(x − x)
= 0.

Thus we have defined a G-valued 1-form on P̃ . Ã is in fact a connection form, since if we
evaluate it on the vertical vector generated by ζ ∈ g, that is, ι[p,g,θ](ζ) = (0, gζ, 0), we get
Ã(gζ) = ζ and further,

Ã((X, gζ, xθ)h) = Ã(X, ghh−1ζh, xθ)

=
(
ad(gh)−1A + ad(h−1)Θ + ad(gh)−1Φ(a + dθ)

)
(X, gζ, xθ)

= ad(h−1)Ã(X, gζ, xθ).

To define a connection on the S1-bundle P/LG we just take the projection of the iR-valued
1-form a which is a connection form.

What remains to be shown now is that the constructions presented here for connections
on P, P̃ and Y are invertible. In particular, suppose we have the LG � S1-bundle P →
M with connection (A, a) and Higgs field Φ and have constructed P̃ → Y → M with
connections Ã and ã. Then if we construct the corresponding LG � S1-bundle P ′ (which
is isomorphic to P via the map f : P → P ′; p �→ fp = (θ �→ [p, 1, θ])) and the connection
(A′, a′) for P ′, we would like to show that f∗(A′, a′) = (A, a). Note that for the vector
X ∈ TpP we have

f∗X = (X, 0, 0) ∈ TfpP
′.

Therefore,

f∗(A′, a′)(X) = (A′, a′)(X, 0, 0)

= (Ã(X), a′(X))
= (A(X), a′(X))

by the definition of A′ in terms of Ã and Ã in terms of A and also a′(X) = ã(π̃∗X) = a(X).
On the other hand, suppose we had the bundles P̃ → Y → M with connections Ã and ã
and constructed P → M with connection (A, a) and Higgs field Φ(f) = Ã(∂f). Then we
would like to show that if we construct the bundles P̃ → Y → M with connections Ã′ and
ã′, we have Ã′ = f∗Ã where f : P̃ ′ ∼−→ P̃ is the isomorphism given by [f, g, θ] �→ f(θ)g.
Note that at the point [p, g, θ] we have

f∗(X, gζ, xθ) =
d

dt

∣∣∣∣
0

γX(θ+tx)(t)g exp(tζ)

=
d

dt

∣∣∣∣
0

γX(θ)(t)g + ∂γX(θ)(0)xg + γX(θ)(0)gζ

= X(θ)g + ∂p(θ)xg + p(θ)gζ

and therefore,

f∗Ã(X, gζ, xθ) = Ã(X(θ)g + ∂p(θ)xg + p(θ)gζ)

= Ã(X(θ)g) + xÃ(∂p(θ)g) + ζ

= ad(g−1)Ã(X(θ)) + x ad(g−1)Ã(∂p(θ)) + ζ
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while for Ã′ we have

Ã′(X, gζ, xθ) = ad(g−1)A(X) + ζ + ad(g−1)Φ(p)(a(X) + x)

= ad(g−1)
(
Ã(X) − a(X)Ã(∂p)

)
+ ζ + ad(g−1)Ã(∂p)(a(X) + x)

= f∗Ã(X, gζ, xθ).

Thus we have proven the analogue of Proposition 2.5.2

Proposition 4.2.2. The correspondence from Proposition 4.2.1 extends to a bijection
between G-bundles with connection over S1-bundles with connection and LG � S1-bundles
with connection and Higgs field.

4.2.2 The string class and the first Pontrjagyn class

Now that we have extended the correspondence from section 2.5, we are in a position to
extend the result concerning the string class and the Pontrjagyn class (Theorem 2.5.3).
Recall that Theorem 2.5.3 extended Killingback’s result to a general LG-bundle P → M
by relating the string class of P to the first Pontrjagyn class of the corresponding G-bundle
P̃ → M × S1. In particular, the string class of P is given by integrating p1(P̃ ) over the
circle. We would like now to extend this further to the case where P → M is an LG � S1-
bundle and P̃ is the corresponding G-bundle over a circle bundle Y over M. In this case
we find that the string class is given by integrating the first Pontrjagyn class of P̃ over
the fibre of the circle bundle Y . In particular, we have the following theorem

Theorem 4.2.3. Let P → M be a principal LG � S1-bundle and P̃ → Y → M be the
corresponding G-bundle over an S1-bundle. Then the string class of P is given by the
integration over the fibre of the first Pontrjagyn class of P̃ . That is,

s(P ) =
∫

S1

p1(P̃ ).

Proof. We prove this in analogy with the proof of Theorem 2.5.3, that is, by calculating
the integral of the first Pontrjagyn class of P̃ .

Recall that the first Pontrjagyn class is given by

p1 = − 1
8π2

〈F̃ , F̃ 〉,

where F̃ = dÃ + 1
2 [Ã, Ã] is the curvature of the connection Ã corresponding to the pair

(A,Φ) on P. We have

F̃ = d(ad(g−1)A + Θ + ad(g−1)Φ(a + dθ))

+ 1
2 [ad(g−1)A + Θ + ad(g−1)Φ(a + dθ), ad(g−1)A + Θ + ad(g−1)Φ(a + dθ)]

= d(ad(g−1)A + Θ + ad(g−1)Φ(a + dθ))

+ 1
2 [ad(g−1)A, ad(g−1)A] + [ad(g−1)A,Θ] + [ad(g−1)A, ad(g−1)Φ(a + dθ)]

+ 1
2 [Θ,Θ] + [Θ, ad(g−1)Φ(a + dθ)] + 1

2 [ad(g−1)Φ(a + dθ), ad(g−1)Φ(a + dθ)].
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To calculate d(ad(g−1)A + Θ + ad(g−1)Φ(a + dθ)) we use

d(ad(g−1)A + Θ + ad(g−1)Φ(a + dθ))((X, gξ, xθ), (Y, gζ, yθ))

= 1
2

{
(X, gξ, xθ)(ad(g−1)A(Y )θ) − (Y, gζ, yθ)(ad(g−1)A(Y )θ)

−ad(g−1)A([X, Y ])θ

}
+ dΘ

+ 1
2

{
(X, gξ, xθ)(ad(g−1)(a(Y ) + y)Φ(p)θ)

−(Y, gζ, yθ)(ad(g−1)(a(X) + x)Φ(p)θ) − ad(g−1)[x, y]Φ(p)θ

}
,

for tangent vectors (X, gξ, xθ) and (Y, gζ, yθ) at the point [p, g, θ] ∈ P̃ . For the first term,
calculate

(X, gξ, xθ)(ad(g−1)A(Y )θ)

=
d

dt

∣∣∣∣
0

(1 − tξ)g−1Aγp(t)(Y )(θ+tx)g(1 + tξ)

=
d

dt

∣∣∣∣
0

g−1Aγp(t)(Y )(θ+tx)g − tξg−1Aγp(t)(Y )(θ+tx)g + g−1Aγp(t)(Y )(θ+tx)gtξ

=
d

dt

∣∣∣∣
0

g−1Aγp(t)(Y )θg + g−1∂A(Y )θxg − ξg−1A(Y )θg + g−1A(Y )θgξ.

Combining this with the other terms for the first derivative above, we have

d(ad(g−1)A) = ad(g−1)dA − ad(g−1)∂A ∧ dθ − [Θ, ad(g−1)A].

For the last term, calculate

(X, gξ, x1θ)(ad(g−1)(a(Y ) + y)Φ(p)θ)

=
d

dt

∣∣∣∣
0

(1 − tξ)g−1(aγp(t)(Y ) + y)Φ(γp(t))(θ+tx)g(1 + tξ)

=
d

dt

∣∣∣∣
0

g−1(aγp(t)(Y ) + y)Φ(γp(t))(θ+tx)g

− tξg−1(aγp(t)(Y ) + y)Φ(γp(t))(θ+tx)g

+ g−1(aγp(t)(Y ) + y)Φ(γp(t))(θ+tx)gtξ

=
d

dt

∣∣∣∣
0

g−1(aγp(t)(Y ) + y)Φ(p)θg +
d

dt |0
g−1(a(Y ) + y)Φ(γp(t))θg

+ g−1(a(Y ) + y)∂Φ(p)θxg − ξg−1(a(Y ) + y)Φ(p)θg

+ g−1(a(Y ) + y)Φ(p)θgξ.

Subtracting (Y, gζ, yθ)(ad(g−1)(a(X) + x)Φ(p)θ) from this gives

d(ad(g−1)Φ(a + dθ)) = ad(g−1)fΦ + ad(g−1)dΦ ∧ (a + dθ)

− [Θ, ad(g−1)(a + dθ)Φ] − ad(g−1)a∂Φ ∧ dθ.
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We also have dΘ = −1
2 [Θ,Θ]. Therefore, the curvature of P̃ is given by

F̃ = d(ad(g−1)A + Θ + ad(g−1)Φ(a + dθ))

+ 1
2 [ad(g−1)A, ad(g−1)A] + [ad(g−1)A,Θ] + [ad(g−1)A, ad(g−1)Φ(a + dθ)]

+ 1
2 [Θ, Θ] + [Θ, ad(g−1)Φ(a + dθ)] + 1

2 [ad(g−1)Φ(a + dθ), ad(g−1)Φ(a + dθ)]

= ad(g−1)dA − ad(g−1)∂A ∧ dθ + ad(g−1)fΦ

+ ad(g−1)dΦ ∧ (a + dθ) − ad(g−1)a∂Φ ∧ dθ

+ 1
2 [ad(g−1)A, ad(g−1)A] + [ad(g−1)A, ad(g−1)Φ(a + dθ)].

That is,
F̃ = ad(g−1) (F + fΦ + ∇Φ ∧ (a + dθ)) .

So the first Pontrjagyn class is

p1 = − 1
8π2

〈F̃ , F̃ 〉

= − 1
8π2

〈F + fΦ + ∇Φ ∧ (a + dθ), F + fΦ + ∇Φ ∧ (a + dθ)〉

= − 1
8π2

(
〈F + fΦ, F + fΦ〉 − 2 〈F + fΦ,∇Φ ∧ (a + dθ)〉

− 〈∇Φ ∧ (a + dθ),∇Φ ∧ (a + dθ)〉
)

= − 1
8π2

(
〈F + fΦ, F + fΦ〉 − 2 〈F + fΦ,∇Φ ∧ a〉 − 2 〈F + fΦ,∇Φ〉 dθ

)
.

Thus, integrating p1 over the fibre, we get

− 1
4π2

∫
S1

〈F + fΦ,∇Φ〉dθ,

which is the expression from Theorem 4.1.3.

4.3 String structures for LG � Diff(S1)-bundles

So far in this chapter we have generalised the results from [35] to include the possibility
of rotating loops. That is, we have worked with the semi-direct product LG � S1. We
would like to conclude now with a brief outline of one way in which the results we have
seen regarding LG � S1 lead us to information about a more general situation. Namely,
we shall consider the problem of lifting a bundle whose structure group is the semi-direct
product LG � Diff(S1). That is, we shall allow an action of the orientation preserving
diffeomorphisms of the circle on the loops in LG.

The group Diff(S1) has a well known central extension. In particular, the Lie algebra
of this extension is the Virasoro algebra (see for example [29]). In this section, we would
like to consider the central extension of the semi-direct product above

U(1) → ̂LG � Diff(S1) → LG � Diff(S1).
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Thus far, we have seen that principal LG-bundles over M correspond to principal
G-bundles over M × S1 (via the caloron correspondence) and in the previous section
we showed that isomorphism classes of principal LG � S1-bundles are in bijective corre-
spondence with isomorphism classes of principal G-bundles over principal S1-bundles. If
instead we considered a principal G-bundle over a general S1 fibre bundle4 we would find
that these bundles correspond to principal LG � Diff(S1)-bundles.

Now let R → M be a principal LG�Diff(S1)-bundle. We are interested in finding the
obstruction to lifting this bundle to an ̂LG � Diff(S1)-bundle R̂. The following result, due
to Smale, gives us a way of using our previous results to solve this problem. Namely, we
have

Theorem 4.3.1 ([42]). Diff(S1) is homotopy equivalent to S1.

This means that if Y → M is a Diff(S1)-bundle then its transition functions can be
chosen to be valued in S1 and so Y actually admits an action of the circle (by identifying
Y locally with S1 × U (for some open subset U ⊆ M) and rotating the S1 factor). This
makes Y into a principal S1-bundle. In particular, then, if we have a G-bundle P̃ over
an S1 fibre bundle Y → M we can replace the LG � Diff(S1)-bundle in question with
an LG � S1-bundle. That is, R has a reduction to a principal LG � S1-bundle P, so
R = P ×LG�S1 LG � Diff(S1). We can thus give the lift of R in terms of the central
extension of LG � Diff(S1) and the lift P̂ of P. In particular, we have a bundle map

P̂ ×
L̂G�S1

̂LG � Diff(S1) → P ×LG�S1 LG � Diff(S1)

given by
[p̂, (̂γ, ϕ)] �→ [p, (γ, ϕ)],

where p̂ is a lift of p to P̂ and (̂γ, ϕ) is a lift of (γ, ϕ) to the central extension of LG �

Diff(S1). This map commutes with the homomorphism ̂LG � Diff(S1) → LG � Diff(S1)
and so P̂ ×

L̂G�S1
̂LG � Diff(S1) is a lift of R.

4Such bundles have structure group Diff(S1) and give rise to principal Diff(S1)-bundles in a natural
way.
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Appendix A

Infinite-dimensional manifolds and
Lie groups

In this thesis we have largely been concerned with the loop group of a compact group.
This is an example of an infinite-dimensional Lie group – specifically, it is a Fréchet Lie
group. In this Appendix we collect some of the basic results on Fréchet manifolds and Lie
groups. We follow closely the expositions presented in [19], [31] and [39]

A.1 Fréchet spaces

We will begin with some basic definitions and examples of the sorts of spaces we shall be
dealing with. An infinite-dimensional manifold, like any manifold, is a topological space
modelled on some sort of Euclidean space. In the case we are considering, this is a locally
convex topological vector space called a Fréchet space.

Definition A.1.1. A Fréchet space is a complete metrisable Hausdorff locally convex
topological vector space, where by locally convex we mean a space whose topology is
generated from some family of seminorms.1

Perhaps the most immediate example of a Fréchet space is given by any Banach space.
In general, however, there are examples of Fréchet spaces which are not Banach spaces.
The particular example we will consider is the space of all smooth maps2 from a compact
manifold X into a vector space V, that is, the space Map(X, V ). We define the topology
on this space in terms of a collection of neighbourhoods of the zero map. (Since this is
a topological vector space this will give the topology completely.) To do this, choose a
small neighbourhood E of 0 ∈ V. Then consider an open coordinate chart U ⊆ X with
local coordinates x1, . . . , xm and a compact set K ⊆ U. We define a family of sub-basic
neighbourhoods (for each choice of coordinate chart, compact set, neighbourhood of 0 ∈ V
and non-negative integer n)

N = {f : X → V | ∂kf/∂xi1 . . . xik ∈ E ∀x ∈ K, 0 ≤ k ≤ n, ij ∈ {1, . . . ,m}}.
1An equivalent definition of local convexity for a topological vector space is that every neighbourhood

of 0 contains a neighbourhood which is convex. This is the definition used in [31].
2More generally, the space of smooth sections of a vector bundle over a compact manifold is also a

Fréchet space. We shall restrict our interest however, to the case of a trivial bundle (that is, the space of
all maps as above) since this covers the case we are really interested in – the Lie algebra of the loop group,
Map(S1, g).
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Finite intersections of sets of this form give the basic neighbourhoods for the topology on
Map(X, V ).

The above example is important for our purposes since the special case of maps from
the circle into the Lie algebra of a compact group G will be the Fréchet space on which
the loop group LG is modelled.

A.2 Groups of maps

Now that we have seen an example of a Fréchet space, we can give an example of an
infinite-dimensional manifold modelled on this space. This is the space Map(X, G) of
smooth maps from a compact manifold X into a compact Lie group G and it is in fact an
example of an infinite-dimensional Lie group.

To define the coordinate charts for this manifold consider an open neighbourhood
U of the identity in G. Using the exponential map, this is homeomorphic to an open
neighbourhood of the identity in g, say Ũ . The set Ũ := Map(X, Ũ) is then an open
neighbourhood of the identity in Map(X, g) and an atlas for Map(X, G) is given by the
open sets Uf (where U := Map(X, U)), which are also homeomorphic to Ũ . The case
where X is the circle is the loop group LG.

Note that there is a slightly more general example given by taking sections of a fibre
bundle over X. Recall from the previous section that sections of a vector bundle form a
Fréchet space. Given a fibre bundle Y

π−→ X we can associate to any section f : X → Y
a vector bundle over X, called the vertical tangent bundle to f and denoted TvertYf ,
whose fibre at x ∈ X is given by all vertical tangent vectors to Y at f(x). That is,
TvertYf = {V ∈ Tf(x)Y | π∗V = 0}. Then the sections of TvertYf → X form a Fréchet space
and there is a diffeomorphism from a neighbourhood of the zero section to a neighbourhood
of the image of f in Y which serves as a coordinate chart.

A.3 The path fibration

In chapter 3 we made extensive use of a particular ΩG-bundle called the path fibration.
This is a model for the universal ΩG-bundle. In this section we shall explain why this
is in fact a locally trivial ΩG-bundle. Recall that the total space of the path fibration is
defined as

PG = {p : R → G | p(0) = 1 and p−1dp is periodic}.
We can equivalently view this as the space of connections on the trivial G-bundle over
the circle, since if p is a path in G as above then p−1dp is a g-valued 1-form on S1 and
conversely, each connection form A on the trivial G-bundle over S1 uniquely determines a
periodic path by solving the ordinary differential equation A = p−1dp subject to the initial
condition p(0) = 1. This means that PG is contractible. Note that when viewed as the
space of connections ΩG acts freely on the right of this space by gauge transformations.
Notice also that if p and q are two paths in the same fibre of the projection PG

π−→ G (so
p(2π) = q(2π)) then p−1q is a smooth based loop, since if f(t) = (p−1q)(t + 2π) then f
satisfies the same differential equation as p−1q and f(0) = 1 so f = p−1q and thus p−1q is
periodic. This means that q = pγ for some γ ∈ ΩG and so PG/ΩG = G.

For the local triviality of this bundle, consider an open neighbourhood U of the identity
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in G. We can define a map

U × ΩG
∼−→ π−1(U); (g, γ) �→ p,

where p(t) = exp(tξ)γ(t) and exp(2πξ) = g. The inverse of this map is given by

p �→ (π(p), exp(tπ(p))−1p).

This gives us a trivialisation near the identity. To extend this to a local trivialisation for
the entire bundle we consider the open cover {Uh} for h ∈ G. Let h̃ be a path ending at
h (that is, π(h̃) = h). Then the maps

Uh × ΩG
∼−→ π−1(Uh); (g, γ) �→ ph,

for ph(t) = h̃(t) exp(tξ)γ(t), give a local trivialisation for the path fibration. So we have
that the path fibration is a model for the universal ΩG-bundle.
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Appendix B

Classification of semi-direct
product bundles

B.1 Classification of semi-direct product bundles

In section 3.3 we gave a model for the universal L∨G-bundle (where L∨G is the group
of smooth maps [0, 2π] → G with coincident endpoints) by utilising its description as the
semi-direct product Ω∨G � G. Following those ideas we can actually give a classification
theory for general K � H-bundles.

Suppose K and H are Lie groups and we have an action ϕ : H → Aut(K). Then we
can form the semi-direct product K � H, where the multiplication is defined by

(k1, h1)(k2, h2) = (k1ϕh1(k2), h1h2).

We can give a model for the classifying space E(K � H) as follows. Consider the space
EK × EH. This is contractible, since both EK and EH are. Suppose we can find a left
action of H on EK. That is, some ϕ̃ : H → Diff(EK) such that ϕ̃h1ϕ̃h2 = ϕ̃h1h2 . Suppose
also that this action satisfies

ϕ̃h(xk) = ϕ̃h(x)ϕh(k)

for all x ∈ EK. Then we can define a right action of K � H on EK × EH by

(x, y)(k, h) = (ϕ̃h−1(xk), yh),

where (x, y) ∈ EK × EH. This is clearly a right action since

(ϕ̃h−1
1

(xk1), yh1)(k2, h2) = (ϕ̃h−1
2

(ϕ̃h−1
1

(xk1)k2), yh1h2)

= (ϕ̃(h1h2)−1(xk1ϕh1(k2)), yh1h2)

= (x, y)(k1ϕh1(k2), h1h2).

It is also free and transitive on fibres and so

EK × EH

��
(EK × EH)/(K � H)
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is a model for the universal bundle. To see that ϕ̃ exists, consider the following construction
of EK [41] (see also [14]). Let Δn be the standard n-simplex in Rn+1. That is,

Δn = {(t0, . . . , tn) | ti ≥ 0,
∑

ti = 1}.
Then

EK =
⊔
n≥0

Δn × Kn+1/ ∼,

where we make the identifications

((t0, . . . , ti−1, 0, ti+1, . . . , tn), (k0, . . . , kn)) ∼ ((t0, . . . , tn), (k0, . . . , ki−1, 1, ki+1, . . . , kn)) .

Equivalently, we can think of EK as the set of formal linear combinations of elements of
K :

EK = {∑ tiki | ti ≥ 0,
∑

ti = 1, ki ∈ K}
where in any given sum, only finitely many of the ti’s are non-zero. Then ϕ̃ is given by

ϕ̃h (
∑

tiki) =
∑

tiϕh(ki).

Using this construction, we can also write down a classifying map for any K�H-bundle
P

π−→ M. For this we will need a correspondence between these bundles and certain pairs
of K-bundles and H-bundles. Let us briefly outline this correspondence now. First note
that there is a homomorphism K � H → H and so we can form the associated H-bundle
P ×K�H H

πH−−→ M, where [p, h] = [p(k′, h′), h′−1h], [p, h]h′ = [phh′] and πH([p, h]) = π(p).
Further, there’s a free action of K on P that identifies P ×K�H H with P/K. Namely,
pk = p(k, 1). Then we have that P

πK−−→ P ×K�H H is a principal K-bundle.1 Thus,
we have constructed a K-bundle over an H-bundle out of the K � H-bundle P that we
started with. In addition, we have an action of H on P that covers the H action on P/K.
That is, define ph = p(1, h) and then πK(ph) = [p(1, h), 1] = [p, h] = [p, 1]h = πK(p)h.
This H action also has the property that (ph)k = p(1, h)(k, 1) = p(ϕh(k), h) = (pϕh(k))h.
Therefore, we have constructed a K-bundle with a twisted H-equivariant action as above
over an H-bundle:

P

K,H
��

P/K

H

��
M

In fact, this construction is invertible. That is, given a K-bundle over an H-bundle
that satisfies the properties above, we can construct a K �H-bundle. Suppose, then, that
we have two Lie groups K and H with an action ϕ : H → Aut(K) as above. Suppose also
that we have a principal K-bundle P

πK−−→ P/K and a principal H-bundle P/K
πH−−→ M and

that there’s an H action on P covering that on P/K and such that (ph)k = (pϕh(k))h.
We can define an action of K � H on P by p(k, h) = (pk)h. This is a right action since

p(k1, h1)(k2, h2) = (((pk1)h1)k2)h2

= (((pk1)ϕh1(k2))h1)h2

= p(k1ϕh1(k2), h1h2).
1For the proof of the local triviality of this bundle, see [23], Proposition 5.5, p 57.
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It is a free action, for suppose that p(k, h) = p. Then (pk)h = p and so πK((pk)h) = πK(p).
But πK((pk)h) = πK(pk)h and πK(pk) = πK(p), so we have πK(p)h = πK(p) and therefore
h = 1 since the H action is free. But if h = 1 we have that pk = p and so k = 1. We also
have that P/(K � H) = (P/K)/H = M. To see that P → M is locally trivial, consider
an open set U ⊂ M over which P/K is trivial. Then there exists a section s : U → P/K.
Since U is contractible, the pull-back s∗P over U is trivial and so there exists a section
s′ : U → s∗P. But a choice of section s′ : U → s∗P is equivalent to a map σ : U → P such
that πK(σ(x)) = s(x). That is, such that π(σ(x)) = x. So σ is a local section of P → M.
Therefore, we have that P → M is a principal K � H-bundle.

Using this correspondence, we can write down a classifying map for P. That is, a map
f : P → EK × EH such that f(p(k, h)) = f(p)(k, h). Firstly, note that if P

π−→ M is a G-
bundle then we can write the classifying map as follows: Let {Uα} be an open cover of M
over which P is trivial. Then π−1(Uα) is isomorphic to Uα ×G. Now choose local sections
sα : Uα → π−1(Uα) and define the functions gα : π−1(Uα) → G by sα(m) = (m, gα(sα(m))),
where we have used the isomorphism to identify π−1(Uα) with Uα × G. Now, let {ψα} be
a partition of unity subordinate to {Uα}. Then define the map fG : P → EG by

fG(p) =
∑

ψα(π(p))gα(p).

This is clearly G-equivariant and so defines the classifying map for P.
Now consider again the case where G = K � H. Write the classifying map f as a pair

of functions (fK , fH). Then we require that

(fK(p(k, h)), fH(p(k, h))) = (ϕ̃h−1(fK(p)k), fH(p)h).

Using the correspondence above, we can construct a pair of bundles P
πK−−→ P/K

πH−−→ M.
Define fH to be the classifying map of the H-bundle P/K. To define fK , consider an open
cover {Uα} of M as above. Consider the cover {Vα} of P/K where Vα = π−1

H (Uα). P is
trivial over Vα since we can construct a local section as follows. Identify Vα with Uα ×H.
Then over the subset Uα × {1}, P has a section, say σα. We can define a section of P
over Uα × H by forcing H-equivariance. That is, by defining χα(sα(m)h) : = σα(m)h,
where sα is a local section of P/K. So π−1

K (Vα) � Uα × H × K. Then we can define the
functions kα as above and we see that kα(ph) = ϕh−1(kα(p)) (which follows from the fact
that (pk)h = (ph)ϕh−1(k)). Therefore, if we choose partitions of unity {ψa} subordinate
to {Uα} and {χα} subordinate to {Vα}, we can define

f(p) =
(∑

χα(π(p))kα(p),
∑

ψα(π(p))hα(πK(p))
)

,

which is K � H-equivariant because

f(p(k, h)) =
(∑

χα(π(p))kα((pk)h),
∑

ψα(π(p))hα(πK(ph))
)

=
(∑

χα(π(p))ϕh−1(kα(p)k),
∑

ψα(π(p))hα(πK(p))h
)

= f(p)(k, h).

Thus f is a classifying map for P.

87



B.2 LG � S1-bundles

We have shown in the previous section that principal K �H-bundles are equivalent to K-
bundles with a twisted equivariant H action over H-bundles. Consider now the case where
K = LG and H = S1, as in chapter 4. We have already seen (see section 4.2) that there
is a bijective correspondence between isomorphism classes of principal LG � S1-bundles
and isomorphism classes of principal G-bundles over S1-bundles. The result from section
B.1, however, implies that we could construct a principal LG-bundle over a circle bundle.
Namely, the bundle P → P/LG = (P ×S1)/LG � S1 is a principal LG bundle. We would
like to understand the relationship between the LG-bundle we have constructed and the
G-bundle we have constructed in section 4.2. Consider the map

P
f ��

��

P̃

��
P/LG �� P̃ /G

given by f(p) = [p, 1, 1] (and where the induced map LG → G is the homomorphism
γ �→ γ(1)). This is a bundle map since

f(pγ) = [p(γ, 1), 1, 1]
= [p, γ(1), 1]
= [p, 1, 1]γ(1)
= f(p)γ(1).

Therefore, we see that P̃ � P ×LG G (via the isomorphism [p, g] �→ [p, g, 1]). So P̃ is given
by extending the structure group of P from LG to G.
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