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Chapter 6 

Fréchet Derivatives in Resistivity Anisotropic Inversion 

 

6.1 Sensitivity Functions   
 

The inversion of electrical resistivity data to reconstruct the conductivity distribution of the 

subsurface requires knowledge of the Fréchet derivatives, which form the elements of 

Jacobian matrix of the objective function (Menke, 1989; Lesur et al., 1999).  These 

derivatives give the perturbation in the field quantity (i.e., electric potential or apparent 

resistivity) for a given perturbation in the medium properties (i.e., conductivity).  They vary 

spatially throughout the medium and need to be computed at each subsurface point for each 

electrode configuration.  The Fréchet derivatives depend not only upon the conductivity but 

also on the survey geometry (i.e., electrode positions).  The derivatives may be viewed as 

sensitivity functions of the data, and used to indicate the sensitivity variations with various 

surveying configurations.  Thus they are extremely important in optimising experimental 

design and understanding resolution (Stummer et al., 2004; Maurer and Friedel, 2006). 

 

There are various ways to compute the Fréchet derivatives in resistivity imaging. McGillivray 

and Oldenburg (1990) made a comparative theoretical study of several methods.  Park and 

Van (1991) derived an implicit expression for the Fréchet derivative in the 3-D problem.  

Smith and Vozoff (1984) and Sasaki (1994) calculated the Fréchet derivative by solving the 

differential equations of the finite difference or finite element system.  Loke and Barker 

(1995, 1996) computed the Fréchet derivatives with a homogeneous half space starting model 

and Broyden’s (1965) updating procedure.  Spitzer (1998) describes four different methods 

and presented plots of the sensitivity patterns for homogeneous and simple inhomogeneous 

models, using common surface and crosshole electrode configurations (pole-pole, pole-dipole 

etc.).  Zhou and Greenhalgh (1999) showed that the most direct and effective way to compute 

the Fréchet derivatives is in terms of the Green’s functions.  They developed explicit 

expressions and a numerical calculation scheme for the Fréchet and second derivatives for a 

heterogeneous, isotropic earth using a finite element approach.  Their 2.5-D and 3-D 

formulations were given for the electric potential as well as for the apparent resistivity, using 

any electrode array.  It is only recently that accurate and efficient computational schemes have 

been developed for calculating the Green’s functions in an anisotropic and inhomogeneous 

earth (Li and Spitzer, 2005; Zhou et al., 2008)  
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In this chapter, the earlier analysis is extended to the case of a general anisotropic, 

inhomogeneous medium.  To the best of my knowledge such expressions have not been given 

before.  

 

6.2 Perturbation Analysis 
 

From chapter 2, the Helmholtz equation representing the DC resistivity problem in both 2.5-D 

and 3-D can be expressed as: 

 

( ) (1 )s sD G r r
c
δ= − −σ ,                                                      (6.1) 

 

where ( )s sG G r=  or  for the 2.5-D or 3-D case respectively, for which c = 2 or c 

= 1 respectively.  The tilde above G denotes spatial Fourier transform with respect to the 

strike or y direction.  The differential operator is defined by 

( )s sG G r=

 

( )
( ) ( )

( ) ( )

2 ,

, ,

s y yy s

s

s

G k G r x z
D G

G r x y

σ⎧∇ ⋅ ∇ − ∈Ω⎪= ⎨
∇ ⋅ ∇ ∈Ω⎪⎩

σ
σ

σ

r r

r r
z

                       (6.2) 

 

From this definition one can easily show the operator ( )D σ  is linear, 

 

( ) ( ) ( ) ,A B A BD D Dλ λ+ = + ∀ ∈σ σ σ σ Rλ                        (6.3) 

 

and self-adjoint for the integration: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) (1,s sW r D G r d G r D W r d W r C
Ω Ω

Ω = Ω ∀ ∈ Ω∫ ∫σ σ )  (6.4) 

 

For any small perturbation δσ in the medium properties, we have 

 

( )( ) (1 )s sD G G r
c

δ δ δ+ + = − −σ σ sr .                                    (6.5) 

 

Applying the linear property and equation (6.1), one obtains 
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( ) ( ) ( )s sD G D G D sGδ δ δ= − −σ σ δσ .                                    (6.6) 

 

To solve the above equation, we employ the conjugate Green’s function by placing an adjoint 

source at the receiver (potential electrode) position and defined by 

 

( ) ( )1 , ,p pD G r r r r
c
δ p= − − ∈σ Ω .                             (6.7) 

 

Multiplying sGδ  to the above and calculating the integration over the domain in terms of 

equation (6.4), we have 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

s p p s

p s

G r c G r D G r d

c G r D G r d o

δ δ

δ δ

Ω

Ω

= − Ω

= Ω

∫

∫

σ

σ σ+
                                    (6.8) 

 

Substituting equation (6.2) for (6.8), integrating by parts and ignoring the higher order terms, 

we obtain the linear relationship between the change (perturbation) of the Green’s function 

and the perturbation in the medium propertiesδσ , 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

2

2

2

2

s p s p y yy s p

p ps s s
xx xz

ps
zz y yy s p

G r G r G r k G r G r d

G GG G G
x x z x x z

GG k G r G r d
z z

δ δ δσ

δσ δσ

δσ δσ

Ω

Ω

⎡ ⎤= − ∇ ⋅∇ + Ω⎣ ⎦

⎡ ⎛ ⎞∂ ∂∂ ∂ ∂
= − + +⎢ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎝ ⎠⎣

⎤∂∂
+ + ⎥∂ ∂ ⎥⎦

∫

∫

σ

pG∂

Ω

r r

              (6.9) 

for the 2.5-D case , and 

 

( ) ( ) ( )s p s p

p ps s s
xx xy

p ps s s
xy yy

p p ps s s
yz zz

G r G r G r d

G GG G G
x x y x x y

G G GG G G
z x x z y y

G G GG G G d
z y y z z z

δ δ

δσ δσ

δσ δσ

δσ δσ

Ω

Ω

⎡ ⎤= − ∇ ⋅∇ Ω⎣ ⎦

⎡ ∂ ∂ ∂⎛ ⎞∂ ∂ ∂
= + +⎢ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣

∂ ∂ ∂⎛ ⎞∂ ∂ ∂
+ + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ ⎤⎛ ⎞∂ ∂ ∂
+ + + ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎦

∫

∫

σ

p

p

G

Ω

r r

   (6.10) 
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for the 3-D situation.  Here, we have made the assumption that at the boundary of Ω  no 

perturbation occurs in the conductivity ( )0δ =σ . 

 

6.3 Fréchet Derivatives 
 

According to equations (6.9) and (6.10) and by applying a model discretisation scheme: either 

constant-point: , or constant block: , 

where  are small sub-domains composing 

( ) ( ) ,k kr r r rδ δ δ= − ∈σ σ kΩ Ω( ) ,k kr rδ δ= ∈σ σ

kΩ Ω , we obtain the following results for the 

Fréchet derivatives: 

Constant Point Approximation 

2.5-D:         

  
( )

( )

( ) ( ) ( )

( )

1 2

1

2 ,

, ,
s

c y s k p k

s p

p ps s
ck

r

F k G r G r y
G r

G GG Gc F x zαβ αβ

α β

σ α β
α β α β

−

−

⎧ ⎡ ⎤ = =⎣ ⎦⎪∂ ⎪ ⎡ ⎤= −⎨ ⎛ ⎞∂ ∂∂ ∂∂ ⎢ ⎥+ =⎜ ⎟⎪ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩

  (6.11) 

 

3-D:          

( ) (, , , ,
s

p ps s s

rk

G GG G Gc xαβ
αβ

α β
α β α βσ

∂ ∂⎛ ⎞∂ ∂ ∂
= − + =⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠

)y z   (6.12) 

 

or the alternative  

Constant Block Approximation 

2.5-D: 

 
( )

( )

( ) ( )

( )

1 2

1

2 , ,

, , ,

l

s

l c y s p l kr
s p

p ps s
k c l k

r

w F k G G y r
G r

G GG Gc F x z rαβ
αβ

α β

σ α β
α β α β

−

−

⎧ ⎡ ⎤ = = ∈Ω⎢ ⎥⎪ ⎣ ⎦∂ ⎪= −⎨ ⎡ ⎤⎛ ⎞∂ ∂∂ ∂∂ ⎪ ⎢ ⎥+ = ∈⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎪ ⎢ ⎥⎝ ⎠⎣ ⎦⎩
Ω

         (6.13) 

 

3-D: 

 

( )
( ) ( ), , , ,

l

s p p ps s
l l k

rk

G r G GG Gc w x y z rαβ
αβ

α β
α β α βσ

∂ ∂ ∂⎛ ⎞∂ ∂
= − + = ∈Ω⎜ ⎟∂ ∂ ∂ ∂∂ ⎝ ⎠

                (6.14) 
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The notation is:  as α = β and 1=αβc 2=αβc  if α β≠ .  The symbol  denotes inverse 

Fourier cosine transformation with respect to wavenumber yk .  The quantity lw  is the product 

of the Gaussian weights in the various co-ordinate directions involved in a Gaussian 

quadrature approach to performing the volume integration.  The derivative formulae (6.11) – 

(6.14) may be directly employed for anisotropic resistivity inversion to update the parameter 

estimates, once the source and adjoint Green’s functions have been calculated for each 

subsurface point.  The actual process of computing the Fréchet derivatives is illustrated 

schematically in figure (6.1).  

1−
cF

 

 
Figure 6.1 Schematic illustration of Frechet derivatives (or sensitivities) at subsurface point k for a true current 
source at point S and an adjoint source at potential electrode position P. The Green’s functions from both 
sources, and/or their gradients, are required in the formulation 
 

For each subsurface point k we can calculate the sensitivities for a given electrode 

configuration (source S and receiver P) in terms of the two Green’s functions ( )s ksG rr  and 

.  For the common four-electrode systems the sensitivities can be computed from the 

pole-pole responses given above by simple superposition (algebraic addition).  Note that 

summation is implied in the above equations through repetition of the subscripts 

( )p kpG rr

α  and β . 

 

6.4 Numerical Method 
 

Applying a numerical method, such as the finite element method (Li and Spitzer, 2005) or the 

Gaussian Quadrature Grid method of chapter 4 to the governing equation, one has the 

following linear equation system: 

 

( ) s sM G b=σ
rr

                                                               (6.15) 
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where { }, 1, 2, ,s siG G i N= =
r

K

{

 is the vector whose components are the values of the Green’s 

function at all nodes, }, 1, 2, ,s= = Ks ib iδ
r

)1ssδ =

N  is the source vector whose components are zero 

except for the one (  at the node coinciding with the source location, and ( )M σ  is a 

 symmetric matrix, which is calculated by N ×N

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

22 ,

, ,
k

k

i j y yy i j k

ij

i j k

l r l r k l r l r d r x z

M
l r l r d r x y z

σ
Ω

Ω

⎧ ⎡ ⎤∇ ⋅∇ + Ω ∈Ω⎣ ⎦⎪⎪= ⎨
⎡ ⎤∇ ⋅∇ Ω ∈Ω⎪ ⎣ ⎦

⎪⎩

∫

∫

σ

σ
σ

r r

r r   (6.16) 

 

in terms of the Variational Principle and sub-domain or element integration.  Here,  are 

the Lagrange interpolants or shape functions. Differentiating equation (6.15) with respect to 

)(rli

k)( αβσ , we have 

 

( ) ( )
( )

( )
s

s

k k

MGM G
αβ αβσ σ

∂∂
= −

∂ ∂

σ
σ .                                               (6.17) 

 

In order to solve the above equation, we applied equation (6.15) to multiple source vectors 

( 1 2, , ,n s s sN )I b b b=
r r rr

K  and corresponding Green’s function matrix . 

We have the identity 

( )1 2, , ,N N s s sNG G G G× =
r r r r

K

 

( ) N NM G ×= =σ I
r r

        (6.18) 

 

Multiplying the vector  to equation (6.16) and applying the symmetry property 

of  and equation (6.18), one obtains the derivatives 

T T T
p N N pb G G× =
r r r

( )M σ

 

( )
( )

( )
( )

s p T
p

k k

G r M
G

αβ αβσ σ

∂ ∂
= −

∂ ∂

σ
r r

r r
r r sG        (6.19) 
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Substituting equation (6.16) for (6.19) and noting that most components of the matrix 

( ) ( )
k

M αβσ∂ ∂σ
r r

 are zero except for the kth sub-domain kΩ  that has conductivity tensor kσ , 

equation (6.19) becomes, for the 2.5-D and 3-D cases respectively, 

 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 2

2

2

k

k

s p k
c i pi j

i j
k k

yy
i pi j sj

i j
k

yyk
c p s y s

k k

G r
F l r G l

l r G l r G d

F G r G r k G

αβ αβ

αβ

αβ αβ

σ
σ σ

σ
σ

σσ
σ σ

−

Ω

−

Ω

⎧ ⎡∂ ⎡ ⎤∂ ⎡ ⎤⎪ ⎢= − ⋅∇ ⋅∇⎨ ⎢ ⎥⎢ ⎥∂ ∂⎢ ⎣ ⎦ ⎣ ⎦⎪ ⎣⎩
⎫⎤∂ ⎡ ⎤⎡ ⎤ ⎪⎥+ Ω⎬⎢ ⎥⎢ ⎥∂ ⎥⎣ ⎦ ⎣ ⎦ ⎪⎦ ⎭

⎧ ⎫⎡ ⎤∂∂⎪ ⎪⎢ ⎥= − ∇ ⋅∇ + Ω⎨ ⎬
∂ ∂⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫

∑ ∑

∫

sj

p

r G

G d

r
r r

r

r r

 (6.20) 

 

( )
( ) ( ) ( ) ( )

( ) ( )

k

k

s p k
i pi j sj

i j
k k

k
p s

k

G r
l r G l r G d

G r G d

αβ αβ

αβ

σ
σ σ

σ
σ

Ω

Ω

∂ ⎡ ⎤∂ ⎡ ⎤
= − ⋅∇ ⋅∇ Ω⎢ ⎥⎢ ⎥∂ ∂ ⎣ ⎦ ⎣ ⎦

∂
= − ⋅∇ ⋅∇ Ω

∂

∑ ∑∫

∫

r
r r

r

r
r r

r

  (6.21) 

 

Applying the constant point: ( ) ( ) ,k kr r r rδ δ δ k= − ∈σ σ Ω

kΩ

, or constant block: 

, model parameterisation schemes to the above equations, one finds 

that they give the same results as shown by equations (6.11) - (6.14).  It means that the 

perturbation method and the numerical method are equivalent, although the former is derived 

by application of the self-adjoint differential operator to the perturbation analysis and the 

latter is based on the linear equation of the model discretization.  Both are applicable for DC 

resistivity anisotropic inversion. 

( ) ,kr rδ δ= ∈σ σ

 

6.5  Sensitivities in Terms of Principal Conductivities and Directions 
 

Instead of working with the components of the conductivity tensor in the geographic frame, 

we will now consider the derivatives with respect to the principal values (and orientation 

angles of the symmetry axis) in the natural rock frame, which are the physically meaningful 

quantities.  Let the model parameters be represented by ( )1 2 3 0 0, , , ,vm σ σ σ θ ϕ=  
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Accordingly, the perturbation of the conductivity tensor may be expressed by 

( )v vm mδ δ= ∂ ∂σ σ  and equations (6.9) and (6.10) become 

 

( ) ( ) ( ) ( ) ( )22 yy
s p s p y s p v

v v

G r G r G r k G r G r m d
m m

σ
δ δ

Ω

⎡ ⎤∂⎡ ⎤∂
= − ∇ ⋅∇ +⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦

∫
σ r r

Ω  (6.22)  

and 

( ) ( ) ( )2s p s p v
v

G r G r G r m d
m

δ
Ω

⎡ ⎤⎡ ⎤∂ δ= − ∇ ⋅∇⎢⎢ ⎥∂⎣ ⎦⎣ ⎦
∫

σ r r
Ω⎥      (6.23) 

 

Applying a discretisation scheme: constant-point: ( ) ( )v v km r m r r rδ δ δ k= − ∈Ω

kΩ

, or 

constant block: , where ( )v vm r m rδ δ= ∈ kΩ  are small sub-domains composing Ω , 

we have for the Fréchet derivatives: 

 

Constant Point Approximation 

 

2.5-D Case: 

( ) ( ) ( ) ( ) ( )

( )

1 2

0, , ,

s p yy
c s p y s p

v v v

v x x y y z z

G r
F G r G r k G r G

m m m

m

σ

σ σ σ θ

−

′ ′ ′ ′ ′ ′

∂ ⎧ ⎫∂⎡ ⎤∂⎪ ⎪= − ∇ ⋅∇ +⎨ ⎬⎢ ⎥∂ ∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

∈

σ r
r

   (6.24) 

 

3-D Case: 

( ) ( ) ( )

( )0, , ,

s p
s p

v v

v x x y y z z

G r
G r G r

m m

m σ σ σ θ′ ′ ′ ′ ′ ′

∂ ⎡ ⎤∂
= − ∇ ⋅∇⎢ ⎥∂ ∂⎣ ⎦

∈

σ r

               (6.25) 

 

Constant Block Approximation 

 

2.5-D Case: 

( ) ( ) ( ) ( ) ( )

( )

1 2

0, , ,

s p yy
c s p y s p

v v v

v x x y y z z

G r
w F G r G r k G r G r

m m m

m

α

α

σ

σ σ σ θ

−

′ ′ ′ ′ ′ ′

∂ ⎧ ⎫∂⎡ ⎤∂⎪ ⎪= − ∇ ⋅∇ +⎨ ⎬⎢ ⎥∂ ∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

∈

σ r

      (6.26) 

 



Chapter 6:  Fréchet Derivatives in Anisotropic Resistivity Inversion 97

3-D Case:        

( ) ( ) ( )

( )0, , ,v x x y y z zm

s p
s p

v v

G r
w G r G r

m mα

α

σ σ σ θ′ ′ ′ ′ ′ ′∈

∂ ⎡ ⎤∂
= − ∇ ⋅∇⎢ ⎥∂ ∂⎣ ⎦

σ r

     (6.27) 

 

Here vmσ∂ ∂  can be calculated by equation (3.13) or (3.14) and wα are the Gaussian weights. 

The Cartesian tensor form of equation (6.25), for example, is: 

 

( )
( )
s p ij ps

v v j

G r GG
m m x

σ⎧∂ ⎛ ⎞∂ ∂∂⎪= − ⎜⎨⎜∂ ∂ ∂⎪⎝ ⎠⎩ ix
⎟⎟∂

=

      (6.28) 

 

where summation is implied in the above equation through the repetition of subscripts 

.  Expanding out in terms of the various components, the 

Fréchet derivatives in terms of the principal values may be written as follows for the 3-D 

case: 

, , , , , ,i ji j x y z and x x x y z=

 

p yy ps xx s s szz

v v v v

xy p ps s

v

p pxz s s

v

yz p ps s

v

G GG G G
m m x x m y y m z

G GG G
m x y y x

G GG G
m x z z x

G GG G
m y z z y

σσ σ

σ

σ

σ

∂ ∂ ∂ ∂⎧∂ ∂ ∂ ∂ ∂∂
= − + +⎨∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩

∂ ∂ ∂⎛ ⎞∂ ∂
+ +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∂ ∂⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ⎫⎛ ⎞∂ ∂ ⎪+ + ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂ ⎪⎝ ⎠⎭

pGG
z∂

      (6.29) 

 

where  assumes any of the  values νm 0 0, , , ,x x y y z zσ σ σ θ ϕ′ ′ ′ ′ ′ ′

pG

.  The sensitivity functions can 

therefore be computed from knowledge of the Green’s functions for the true source 

(current electrode S) and the adjoint source  (potential electrode P), which are 

obtained as part of the forward modelling (chapter 4) and the partial derivatives of the 

conductivity tensor with respect to each of the model parameters.  The latter can be obtained 

by differentiating each of the elements of equation (3.13).  They are simple trigonometric 

functions. 

sG
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In the 2.5-D case 0== yzxy σσ  and all derivatives of these quantities go to zero. Also 

2σσ =yy and so 1
2

=
∂

∂

σ
σ yy  and all other derivatives of yyσ  are zero.  The remaining non-zero 

derivatives to consider are: 

 

( )

( )

( )

2 2
0 0 3

1 3 0

2 2
0 0 1

1 3 0

0 0 0 0 3 1
1 3 0

cos , sin , sin 2

sin , cos , sin 2

sin cos , sin cos , 2 cos 2

xx xx xx

xx xx xx

xx xx xx

1 0

3 0

0

σ σ σθ θ σ σ
σ σ θ
σ σ σ

θ

θ θ σ σ
σ σ θ

σ σ σ

θ

θ θ θ θ σ σ
σ σ θ

∂ ∂ ∂
= = = −

∂ ∂ ∂

∂ ∂ ∂
= = = −

∂ ∂ ∂
∂ ∂ ∂

= − = = −
∂ ∂ ∂

θ

  (6.30)  

 

6.5.1  Isotropic Case 

 

In the case of an isotropic medium we have: 

 

 xx yy zzσ σ σ= = =σ  and 0xy xz yzσ σ σ= = =      (6.31) 

 

every cross term disappears in equation (6.8) and  the derivatives ii

vm
σ∂
∂

 are all equal to 1 and 

equation (6.12) reduces to the dot product of the gradients of the two Green’s functions: 

 

  s p
G G G∂
= −∇ ⋅∇

∂σ
r r

       (6.32) 

 

This is the same result as that obtained by Zhou and Greenhalgh (1999, page 449), using an 

isotropic formulation 

 

6.5.2  Uniform Anisotropic Earth 

 

The Green’s functions in the case of a uniform anisotropic medium can be calculated 

analytically.  In section 3.4, I derived expressions for the potential at some arbitrary position 

in a uniform TI  medium, due to a current source on the surface.  In this case, the Green’s 

functions are simply evaluated as the potential divided by the current strength.  In the case of 

the adjoint source (receiver position) we place a current source of strength I at this position 
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and calculate the potential at the subsurface point in question.  Obviously the co-ordinates 

specified for the true source to point P in the medium will be different to those for the adjoint 

source, but the functional form is identical.  

 

Using the expression    2/122 )cos)1(1( ψλ −+
=

R
KG   with 

π
λρ
2

lK =   (6.33) 

 

we can calculate the derivatives needed using the chain rule as follows : 
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The various terms appearing in equation (6.34) can be evaluated thus: 
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The other derivatives of cosψ  with respect to x, y and z must also be obtained implicitly 

because of the x, y, and z dependence in the andφ θ  terms which make up cosψ , viz. 

equation (3.25). 
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They are: 
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The other derivatives for zyxzyx ∂∂∂∂∂∂∂∂∂∂∂∂ /,/,/,/,/,/ φφφθθθ  appearing in equation 

(6.38) are derived in appendix B, and shown to be: 
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In the case of an isotropic medium λ = 1 and equation (6.35) is equal to zero.  This yields all 

of the first set of terms on the right hand side of equation (6.34) equal to zero, and therefore 

no dependence of the Fréchet derivatives on the polar angles 00 ,θφ .  Equation (6.36) takes on 

the much simpler form , independent of cosψ. 2/ RK−

 

Returning to the anisotropic case, we have shown above that all of the required spatial 

derivatives of the Green’s functions can be computed in terms of the elementary functions 

involving the position co-ordinates x,y,z for the subsurface point in question, be it measured 

from either the real current source or the adjoint current source.  

 

It remains to calculate the various derivatives of the conductivity tensor with respect to the 

chosen parameters.  In the TTI case this involves the following terms:   
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These derivatives can be easily calculated from equations (3.16) and (3.17).   

 

6.5.3 The 2.5-D Case – Profile Perpendicular to Strike 

 

We will now look at the special 2.5-D case in which the profile is assumed to be 

perpendicular to strike.  Therefore the effect of azimuth can be ignored.  In this situation we 

have  0== yzxy σσ  and all derivatives involving these components go to zero.  
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Referring to equation (6.30) and putting lσσσ == 21 , and tσσ =3 , the only tensor derivative 

components to consider are:  
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 (6.31) 

 

Substituting into equation (6.29), replacing the source subscript s by the superscript A (for 

current electrode) and the adjoint source subscript p by the superscript M (for potential 

electrode) we obtain the following expressions for the sensitivities: 
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In the isotropic case )( σσσ == tl  we find that 0/ 0 =∂∂ θU  and the Fréchet derivative 

)(
2
1

tl

UUU
σσσ ∂
∂

+
∂
∂

=
∂
∂  leads to a cancellation of all cross terms involving the Green’s 

functions and elimination of all 0θ  dependence, yielding the same result as equation (6.32). 

Note that σ
ρ

ρ ∂∂−=∂∂ /1/ 2 UU , yielding a change of sign between the conductivity and 

resistivity sensitivities. 

 

6.6 Illustrative Examples 

 

To illustrate the nature of the Fréchet derivatives, we first consider the simple case of a 3-D 

homogeneous, isotropic earth.  The current electrode is located at (5,0,0) and the potential 

electrode at (10,0,0).  The ground conductivity is 0.1 S/m (resistivity 10 Ω-m).  Figure 6.2 

shows the Fréchet derivatives at two depth slices Z = 0 and Z = 0.5 units, as well as in cross 

section form for a profile through both electrodes.  Note the symmetry of the patterns and the 

decrease of sensitivity with depth.  
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Figure 6.2. Fréchet derivative dG/dσ for an isotropic model having conductivity 0.1 S/m.  The current source is 
at (5,0,0) and the potential electrode at (10,0,0).  Both cross-sectional view at Y = 0 (diagram a) and two 
horizontal depth slices at Z = 0 and Z = 0.5 (diagrams b and c) depicting sensitivity variations in plan view are 
shown.  For the Z = 0.5 depth slice, the electrode positions, shown by white diamonds, have been projected onto 
this plane. 
 

The sensitivities are largest in magnitude in the vicinity of the electrodes.  The derivatives 

actually change sign around the electrodes, being positive between the electrodes and negative 

either side.  An increase in conductivity in a region of positive sensitivity results in a greater 

potential being measured, whereas a decrease in conductivity in a positive sensitivity region 

decreases the measured potential value.  The opposite applies for the negative sensitivity 

regions. 

 

Next we consider a homogeneous, anisotropic model having a tilted axis of symmetry.  The 

longitudinal conductivity (0.1 S/m) is four times larger than the transverse conductivity (0.025 

S/m), yielding a coefficient of anisotropy λ of 2.  Again the current electrode is located at 

(5,0,0) and the potential electrode at (10,0,0).  In the first set of plots the strike of the plane of 

stratification is held fixed at 90° ( 0 0 )ϕ = ° .  The dip angle 0θ  (measured from the horizontal, 
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left of source in constrast to chapter 5 images) is allowed to vary from 0 (horizontal beds) to 

90° (vertical plane of stratification). 

 

Figure 6.3 shows a series of cross sections in the X-Z plane (Y = 0) for the longitudinal 

conductivity Fréchet derivative lddG σ/ .  Each plot corresponds to a different dip – 0, 15, 45, 

75 and 90°.  The sensitivity pattern for 0 0= °θ  is very similar to the isotropic equivalent; the 

contours are concentrated towards the surface and elongated along it.  This is confirmed in the 

plan view display (figure 6.4) which shows the sensitivity values at the surface as a function 

of position.  The positive contours are stretched along the line intersecting the electrodes (x 

axis).  Also it can be seen in Figure 6.4 that the negative sensitivity contour sections are 

extended greatly along the strike direction (y axis) and show some curvature towards the 

opposite electrode, as a departure from the isotropic pattern. 

 

The sensitivity patterns in the X-Z plane (figure 6.3) for all dips other than 0° are distinctly 

asymmetrical, with the contours elongated in the plane of stratification.  Sensitivity is thus 

smallest in magnitude along lines orthogonal to the stratification.  All plots exhibit shifts of 

both the negative and positive contours of sensitivity such that they follow the direction of 

highest conductivity (orthogonal to 'ẑ ).  The surface display (figure 6.4) shows that the 

sensitivity decreases markedly with increasing 0θ .  For all angles the surface sensitivity 

pattern is symmetrical about the line intersecting the electrodes.  For the vertically dipping 

beds the sensitivity values are very low in magnitude and entirely negative. 

 



Chapter 6:  Fréchet Derivatives in Anisotropic Resistivity Inversion 106

 
 
Figure 6.3.  Longitudinal conductivity Fréchet derivative lddG σ/  variations in the subsurface for an 
anisotropic model, having longitudinal conductivity 0.1 S/m, transverse conductivity 0.025 S/m, and strike of the 
symmetry axis of 0º.  The various sensitivity plots shown are for different dips of the symmetry axis, 

90,75,45,15,00 =θ  degrees. The profiles are perpendicular to strike of the plane of stratification.  The 
electrodes are again at (5,0,0) and (10,0,0). 
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Figure 6.4. Fréchet derivative lddG σ/  plots at the surface (Z=0) for the same model and electrode 
configuration as figure 6.3.  Note the symmetry of the plots and the decrease in sensitivity with increasing dip. 
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The corresponding plots for the transverse resistivity Fréchet derivatives tddG σ/  are given 

in figure 6.5 and figure 6.6.  For a vertical axis of symmetry ( 0 0θ = ° ) the sensitivities are 

entirely negative, with two regions of large negative sensitivity beneath the electrodes.  The 

two regions are elongated towards each other.  The Z = 0 depth slice (figure 6.6) shows no 

sensitivity at the surface.  For dips of 15, 45 and 75 degrees, the sensitivity patterns in the X-Z 

plane are all asymmetrical (figure 6.5), the contours being elongated in a direction parallel to 

the dip of stratification.  The steepness of the pattern increases with increasing 0θ .  In 

comparison with the corresponding lddG σ/  patterns (figure 6.3) there is greater sensitivity 

at depth.  Although the contours are elongated in a direction parallel to the stratification, 

sensitivity is smallest in magnitude along the lines drawn through separate electrodes and 

parallel to the stratification.  This is in marked contrast to lddG σ/ , which exhibits greatest 

sensitivity in this direction.  For the surface (Z=0) slices (figure 6.6), the patterns are all 

symmetric about the X axis, and elongated in the strike direction.  The transverse conductivity 

sensitivity for a dip of 90° shows a symmetric pattern that resembles the isotropic plot 

elongated in the vertical direction (along the plane of stratification). 

Finally, we show the effect of azimuth of the symmetry axis on the sensitivity patterns. 

Figures 6.7, 6.8 and 6.9 are plots of tddG σ/  for the same anisotropic structure and electrode 

configuration, but this time for a strike of the symmetry axis of 45° (plane of stratification 

strike = 45 + 90 = 135°).  From the surface slices (Z = 0) shown in figure 6.8, it can be seen 

that the x axis symmetry is broken as a result of the bedding plane strike no longer being 90°. 

If two imaginary lines are drawn through the electrodes in the strike direction ( 0 90ϕ + ° ), the 

regions of positive and negative sensitivities do not cross boundaries defined by these lines 

and are largest in value orthogonal to the strike and close to the electrodes.  The cross-section 

displays for the X-Z plane (figure 6.7) show a progressive tilting of the sensitivity patterns as 

dip increases.  The 0 0θ = °  plot is entirely negative and symmetrical.  All other dip angles 

yield both positive and negative sensitivities, and are asymmetrical because the cross-section 

is not perpendicular to strike.  Only at a dip of 0 90θ = °  is the symmetry restored. 

Interestingly, the sensitivity is actually zero at all points on the surface for a dip of 0° (figure 

6.8), but for other dips the magnitude of the sensitivity is appreciable and the contours extend 

to modest depths.  Figure 6.9 shows the sensitivity variations in plan view at a depth of Z = 

0.5 units.  There is considerable change in the pattern for dips over the range 0 to 45°, after 

which the pattern looks very similar.  The contours are elongated in the direction of the strike 

of the stratification plane (maximum conductivity direction). 
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Figure 6.5. Transverse conductivity Fréchet derivative tddG σ/  variations for the same anisotropic model and 
electrode configuration as in figure 6.3.  The various sensitivity plots are for differing dips of the symmetry axis, 
as indicated.  The profiles are perpendicular to the strike of the plane of stratification.  
 



Chapter 6:  Fréchet Derivatives in Anisotropic Resistivity Inversion 110

 
 
Figure 6.6. Fréchet derivative tddG σ/ plots at the surface (Z=0) for the same model and electrode 
configuration as in figure.6.5.  All patterns are symmetrical about the x axis. In the case of zero dip the 
sensitivity is zero. 
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Figure 6.7. Sensitivity variations tddG σ/  for the same model as figure 6.3, but the strike of the symmetry 
axis is now 45° and not 0°.  The dip is again reflected in the asymmetry and steepening of the patterns.  The 
contours are elongated in the direction of plane of stratification. 



Chapter 6:  Fréchet Derivatives in Anisotropic Resistivity Inversion 112

 
 
Figure 6.8. Companion surface sensitivity plots for figure 6.7.  The 45° strike is now reflected in the asymmetry 
about the x axis and an alignment of the patterns parallel to the strike of the plane of stratification.  
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Figure 6.9. Depth slices at Z = 0.5 units, showing transverse conductivity sensitivity variations in plan view for 
the same TTI model having 45° strike, and various dips.  Note the sudden changes in the pattern for between 
dips of 0° and 45°.  The projected electrode positions onto the Z = 0.5 plane are shown as white diamonds.
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Chapter 7 
 

Conclusions and Future Research 

 

I have presented a new Gaussian quadrature grid scheme for 2.5-D/3-D DC resistivity 

modelling. The method is particularly suitable for numerical simulation of a complex 

geological model having the most general anisotropy and an arbitrary topographic surface. 

The formulation shows that it is close to the spectral element method, but it does not require 

the constant-element mesh matching a topographic earth surface due to invoking a Gaussian 

quadrature grid for the sub-domains covering the whole model.  Local cardinal functions are 

used to determine the partial derivatives of the Green’s functions at each Gaussian abscissae 

which appear in the functional to be minimised.  Sub-domain integration and summation leads 

to a system of linear equations to be solved, using standard iterative or matrix inversion 

techniques.  The new method is compared against analytic solutions and finite element 

solutions for both simple and complex models.  The models include homogeneous and 

inhomogeneous structures with embedded resistive and conductive anomalies.  Both isotropic 

and anisotropic backgrounds are considered, with the surface topography being flat or 

variable.  The new method was found to be highly accurate except in the vicinity of the source 

(errors still less than 1%) and much easier to deal with anisotropic models having a surface 

topography than any other traditional numerical method. 

 

Having established a new modelling procedure the next step was to investigate the Fréchet 

derivatives or sensitivity functions in anisotropic media.  The sensitivity functions are 

required in both experimental design as well as in inversion of resistivity data for updating the 

model parameters.  Previous treatments are based almost exclusively on an isotropic 

assumption, which is questionable when the ground is anisotropic.  In this thesis I present a 

general perturbation formulation for computing the Fréchet derivatives in 3-D and 2.5-D 

resistivity inversion, for a model which is  both heterogeneous and anisotropic.  The 

formulation involves the Green’s functions for the true current source and the adjoint source. 

These must be computed using a numerical method such as the finite element method or the 

new Gaussian quadrature grid approach.  The equations also involve the derivatives of the 

conductivity tensor with respect to the principal conductivity values and orientation angles of 

the symmetry axis.  I have derived analytic formulae for computing these derivatives for a 

very general class of anisotropy, as well as for the special case of a tilted transversely 

isotropic (TTI) medium. 
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The thesis also reviews the basic properties of the electric conductivity tensor and the tensor 

ellipsoid.  Equations are developed for computing the six individual components of the tensor 

in terms of the principal conductivities and the angles defining the major symmetry axis.  

 

The special case of a 3-D homogeneous TTI medium has been studied in considerable detail. I 

develop analytic solutions for the electric potential, current density and Fréchet derivatives at 

any interior point within such a medium.  The current electrode is assumed to be on the 

surface of the Earth and the plane of stratification given arbitrary strike and dip.  Profiles can 

be computed for any azimuth.  The equipotentials exhibit an elliptical pattern and are not 

orthogonal to the current density vectors, which are strongly angle dependent.  Current 

density reaches its maximum value in a direction parallel to the longitudinal conductivity 

direction.  Illustrative examples of the Fréchet derivatives are given for the 2.5-D problem, in 

which the profile is taken perpendicular to strike.  All three derivatives of the Green’s 

function with respect to longitudinal conductivity, transverse resistivity and dip angle of the 

symmetry axis ( 0/,/,/ θσσ ddGddGddG tl ) show a strongly asymmetric pattern compared to 

the isotropic case.  The patterns are aligned in the direction of the tilt angle.  

 

Examples are presented showing the sensitivity patterns in both plan and cross–sectional view 

for the homogeneous TTI medium in which the dip and strike of the symmetry axis are 

varied.  These anisotropic sensitivity plots show some general trends previously unreported. 

The patterns are compared against that for an isotropic medium.  For the longitudinal 

conductivity Fréchet derivative, regions of sensitivity are located along the lines intersecting 

the electrodes in the direction of the stratification plane.  Sensitivity decreases with distance 

away from this axis (and distance from the electrode).  Perpendicular to this axis there is little 

to no sensitivity. This trend holds for sensitivities both on the surface and at depth, where it is 

apparent that the contours are elongated along lines perpendicular to the dip.  For the 

transverse resistivity Fréchet derivative there is zero sensitivity along the lines intersecting the 

respective electrodes that run parallel to the stratification plane.  However, the largest 

sensitivity regions are centred on a line intersecting the respective electrode that runs 

orthogonal to the stratification.  The regions are elongated along the stratification plane, but 

do not intersect the lines that run parallel from the electrodes.  The examples presented also 

show significant differences in the sensitivities compared to the isotropic pattern.  Therefore, 

failure to account for anisotropy (where it exists) in an inversion could result in false 

deductions about the subsurface structure. 

 



Chapter 7:  Conclusions and Further Research 116

This thesis has concentrated on theoretical development and testing of new code for 

numerical resistivity modelling in heterogeneous, anisotropic media, and computation of the 

Fréchet derivatives.  The next step, would be to extensively use the software for a variety of 

purposes.  This can be grouped into four main areas: 

 

1. Simulations 

  

• Develop a better understanding of the electrical response of various (simulated) 

geological structures 

• Answer basic questions on detectability and resolution of various targets 

• Understand effects of anisotropy on resistivity measurements, and to separate from 

effects of heterogeneity 

• Perform simulations to study resolution of subtle features such as bed thickness, 

multiple layers, faulting, dyke thickness etc 

  

2. Sensitivity Analysis 

 

• Carry out a systematic analysis of the influence of the key anisotropy parameters 

(longitudinal conductivity, transverse conductivity, coefficient of anisotropy, mean  

resistivity, dip and azimuth of the axis of symmetry) on the sensitivity functions 

• Compare sensitivity functions for different electrode arrays (e.g., Pole-Pole, Wenner, 

Dipole-Dipole, Square) 

• Examine sensitivity for embedded anomalies in an anisotropic background medium 

and compare with the isotropic case. 

• Identify key features which limit performance of ERT (Electrical Resistivity 

Tomography) e.g., spatial variations in electrical properties of structures, out-of-plane 

effects, sparse line spacing, inadequate array length 

 

3. Experimental Design 

 

• Study the characteristics of the Hessian matrix and the resolution matrix in anisotropic 

media and compare eigenvalue spectra for different electrode combinations 

• Examine the use of grid (areal) electrode arrays as a precursor to full 3-D surveying, in 

order to improve cross-line correlation and resolution in the 3rd dimension between 2-

D lines 
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• Numerically investigate tensor measurements in 3-D surface arrays, with current and 

voltage bipoles in various parallel and perpendicular orientations, as  a means of 

detecting anisotropy and  better imaging the subsurface 

• Assess ability of crosshole 3-D surveying to map complex and steeply dipping 

structures 

 

4. Inversion 

 

• Incorporate the new anisotropic modelling and sensitivity functions into 2.5-D and 3-

D resistivity inversion code 

• Improve imaging, especially at depth, through combination surface, crosshole, and 

surface to borehole data inversion, and by incorporation of electrical property data 

(especially anisotropy) as constraints 

• Build mixed precision solver(s) (LU / CG) on the Cell BE architecture for significant 

speed-up of GQG forward modelling on a field PC. 
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