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A position-dependent stochastic diffusion model of gating in ion channels is developed by considering the
spatial variation of the diffusion coefficient between the closed and open states. It is assumed that a sensor
which regulates the opening of the ion channel experiences Brownian motion in a closed region R, and a
transition region R,,, where the dynamics is described by probability densities p (x,7) and p,,(x,7) which satisfy
interacting Fokker-Planck equations with diffusion coefficient D.(x)=D, exp(y.x) and D,,(x)=D,, exp(—y,.x).
The analytical solution of the coupled equations may be approximated by the lowest frequency relaxation, a
short time after the application of a depolarizing voltage clamp, when D,, <D, or the diffusion parameter 7,
is sufficiently large. Thus, an empirical rate equation that describes gating transitions may be derived from a
stochastic diffusion model if there is a large diffusion (or potential) barrier between open and closed states.

DOI: 10.1103/PhysRevE.78.061915

I. INTRODUCTION

Voltage and ligand gated channels play an important role
in initiating and modulating the subthreshold response and
the action potential in nerve and muscle membranes [1]. For
many years the dynamics of the transition between the closed
and open states of voltage-dependent channels have been de-
scribed by an empirical rate equation,

dP,(t)

s =a—(a+B)P,(1), (1)

where a and S are opening and closing transition rates and
P,(1) is the open state probability [2]. The dwell-time distri-
bution for the open state of a nicotinic acetylcholine (nACh)
ion channel is also an exponential function f,(¢) and is asso-
ciated with the decay of the muscle endplate current [3]. If
the ion channel sensor has multiple closed states and an open
state, it is assumed that the dynamics of the system is de-
scribed by a master equation. Although the discrete state
Markov model has been successful in describing ionic and
gating currents across the membrane, and closed and open
dwell-time distributions in ion channels [1,4,5], it does not
take account of the Brownian motion of large protein mol-
ecules in the energy landscape [6].

The open or closed state dwell-time distribution f(¢) ob-
tained from the patch clamp recording of stochastic current
pulses in ion channels may be represented by a finite sum of
exponential functions of time, and for several ion channels,
f(t) may be approximated by a power law ! for interme-
diate times [7,8]. In order to account for multiple relaxation
times and the emergence of a power-law approximation to
the dwell-time distribution, both discrete [9-12] and continu-
ous [13-16] diffusion models have been proposed, and if it is
further assumed that there is an increasing barrier height and
decreasing energy away from the open state, general power
laws and a rate-amplitude correlation may be derived
[17,18]. For a Ca-dependent K channel, the non-Markovian
character of the current fluctuations and the dwell-time dis-
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tribution power-law behavior [19,20] may be described by a
fractional diffusion model of ion channel gating [21].

A numerical solution to a Smoluchowski equation for a
voltage-dependent channel has shown that a large potential
barrier between states ensures that the closed state is Mar-
kovian with a well-defined escape rate. The gating current
has been computed for an energy landscape with potential
barriers and a spatially inhomogeneous diffusion coefficient
and is in qualitative agreement with experimental data [22].
The objective of the paper is to derive an analytical solution
of the interacting Fokker-Planck equations for a closed re-
gion R, and transition region R,, in response to a depolariz-
ing voltage clamp, and to show that the solution has a single
dominant relaxation time when D,, <D, or the diffusion pa-
rameter v, is sufficiently large.

m

II. STOCHASTIC DIFFUSION MODEL
OF ION CHANNEL GATING

The opening of ligand and voltage activated ion channels
is dependent on the conformation of a sensor which is com-
prised of, in general, several macromolecules which may un-
dergo rotation and translation between each surface of the
membrane [1,23]. It is assumed that the sensor experiences
Brownian motion in a closed state region R.(—d,<x=<0),
and a transition region R,,(0<x=<d,,), adjacent to the open
state, with the dynamics described by the probability densi-
ties p.(x,7) and p,(x,f) which satisfy Fokker-Planck (or
Smoluchowski) equations [24,25],

dprr) _ 9 [DC(x)(W+MPC(W))]’ )
X ox

bl m b Um
Ptet) ”;(f ) =a—i[0m(x><'9p ;j ), 9 ax()‘)pmu,r))], 3)

ot ox

where U, (x) and U,,(x) are potential functions. The diffusion
coefficient D (x)=D,exp(y~x), D, (x)=D,, exp(=y,Xx), V.
and v,, are constants, and either D.=D,, or there is a discon-
tinuity at the interface between R, and R,, (see Fig. 1). For
Markovian ion channels, the power-law approximation to the
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FIG. 1. The diffusion coefficient D(x) within R, and R,, may be
continuous (dotted line) or there may be a discontinuity at the in-
terface x=0 (solid line).

dwell-time distribution is dependent on the variation in bar-
rier height between closed states [ 18], and therefore we may
consider the effect of the diffusion parameters D,, and v, in
the transition region on the gating dynamics of an ion chan-
nel.

The diffusion in the region R. is confined by the inner
surface of the membrane, and therefore a reflecting boundary
is imposed at x=-d,,

Ip.(x,1)

+U.p(x,1)=0, (4)
ox

where JU.(x)dx is assumed to be a constant U... Only unidi-
rectional transitions from the closed to the open state are
considered and therefore p,,(d,,,t)=0. It may be assumed
that the probability current and the probability density are
continuous at the interface between R,, and R,

Je(0,0) = j,,(0,1), (5)
pc0,1) =p,(0,1). (6)
The dwell time for each region is T.=[{P.(t)dt and T,
=[oP,(t)dt where the survival probabilities P.(t)

=[7 dcpc(x, t)dx and P,,(1)=] g'"pm(x, )dx [5]. The ion channel
is initially in a hyperpolarized state [ P.(0)=1] and hence the
initial condition may be specified as p.(x,0)=48(x) and
Pm(x,0)=0, and we may assume that the ion channel is de-
polarized to a membrane clamp potential of V=V, for which
U (x) and U,,(x) are independent of x.

The relative amplitude of the multiple relaxation times
may be determined by solving Egs. (2) and (3) with the
initial and boundary conditions using the method of Laplace
transforms. Defining z=z, exp(—7yx/2), ZO=2/(7’Me)» 24
=70 exp(Yd./2),  y=yoexp(v,x/2), yo=2/(Y,\Dy)s ¥a
=0 exp(Yudw!2), p(x.)=zuc(z,1), and p,(x,0)=yu,(y,1),
Egs. (2) and (3) may be expressed as Bessel differential
equations, and it may be shown that the probability that the
sensor is in the region R, and R,, is

4 .

m

plx,0)dx= 2, a;exp(- wit), (7)
-d, i=1

Pcm(t) =

where w;= ,u,iz,,u,l-(< Mi+1) i a solution of the eigenvalue equa-
tion

PHYSICAL REVIEW E 78, 061915 (2008)

So(#is 20524)S1 (i Y05V a) _ +|Pn (8)
Co::20,20) Co( i Y4 Vo) D’

c

Co(pirz0,24) and S,(w;,20,24) for v=0 or 1 are defined in
terms of Bessel functions of the first and second kinds,

Co(min21,20) =1 (izy) Yo(miza) = Yy (mizi)Jo(miza) »
Sulin21:20) = Tz ) Yol i2) = Yo (pizi) T (iz2) »
with similar definitions for the parameters y, and y,,

0= 2Co(irY Y a)
l Co(miyayo)lhy () + ho(py) + ha(y) + hy(pe;) ] ’

1 d[,U«So(,U«,Zo’Zd)]

h (/,L) = .
1 SO(/-'LsZ()de) d/»L
1 d[/‘l’Sl(Msy(),yd)]
hy(u) = ’
S1(1,0:Ya) du
() = - —— ARColr 20, 2)]
’ Co:20:24) du ’
1 d[ 1Co . y.4:¥0)]
hy(p) =— 0 Y0 . )

CO(/*L9yd>yO) dIu’

Adopting a small argument approximation for the Bessel
functions [26], from the solution (7)

T = dc[exp( Ymdm) - 1]
‘ Dm Ym .

(10)

From Egs. (7) and (8), if vy, and v, are sufficiently small it
may be shown that w,=D,,/d.d,,~1/T, and

. | 2 /
1 1sin V7,/T. { T, T,C0s" \T,/ TC( i TC>
—_—— —_— + — s
a2 \1,/T, T. T,sin*\7,/T. T.

(11)

where 7,,=d>/D,, and 7,=d>/D,. Therefore P,,(f) may be
approximated by the lowest frequency component with open-
ing rate a«=~1/T, when 7.<T,. and 7,,<T, or equivalently

- <1, (12)

and is in good agreement with the survival probability of the
slow closed state for a delayed rectifier K channel, after
eliminating the fast closed component with a low frequency
filter [27] (see Fig. 2). The relation d,,<<d, may be obtained
from the voltage dependence of the mean closed time for an
interacting diffusion regime [15] or from the requirement
that the probability current in the transition region is quasis-
tationary [18], and 7.<<T, is also satisfied when there is a
large potential barrier in the region R,,. A short time after the
application of the voltage clamp, the spatial variation of the
probability density p(x,7) is approximately linear in the re-
gion R, (see Fig. 3) and therefore the probability current is
constant within the transition region.

061915-2
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FIG. 2. The survival probability of the slow closed state for
a delayed rectifier K channel [27] (dotted line) and the analytical
solution P, (t) (solid line) where d,,/d.=0.15, D,,/D.=0.0225,
7.=34ms, Y., Yn.—0, a=(0.977,0.130,-0.103,...), and
®;=(0.040,2.26,3.62, ...).

By assuming that D (x)=D,,(x)=D and d,,<d,, it follows
that T.=7.d,,/d.< 7. and the dwell-time distribution for in-
termediate times may be described by a power law (see Fig.
4) [9,11,15], as observed in several types of ion channels for
the closed states accessible from the open state during a de-
polarizing patch clamp. However, it should be noted that the
closed states associated with a power-law approximation to
the dwell-time distribution are, generally, not the same as
those in the activation sequence [28].

ItD,=D. y.d.<1, and v,d,> 1, adopting a small argu-
ment approximation in R,, and large argument approximation
in R, [26], it may be shown from Egs. (7) and (8) that

L ~ dc[exp(F)/mdm) - 1] ~

~T,., 13
W) Dm7m ( )
1 ndle
— =1+ ‘y—’ (14)
a 2[exp(7mdm) - 1]
and thus a;=~1 and a;=~0 for i>1 when
exp('ymdm) -1 dc
dct
|
5
Y
o
0
~de 0 dn
X
FIG. 3. The probablility density p(x,7) in the region

R.(-d.<x<0) and R,(0<x<d,,) for ;=2 ms (solid line) and
=20 ms (dotted line) where d,/d.=0.15, D,,/D.=0.0225,
7.=3.4 ms, y. v,—0.
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FIG. 4. The survival probability P.,(f) (solid line) and
the lowest frequency component a;exp(-w;z) (dotted line)
where d,,/d.=0.15, D.=D,, T.=24ms, v, v,—0,
a;=(0.259,0.245,0.218, ...), and »;=(0.012,0.105,0.292,...).

or from Eq. (10), 7.<T.. Therefore, when ¥, is sufficiently
large, P, (f)=~exp(—w;f), and in agreement with the data
from a delayed rectifier channel [27] (see Fig. 5).

II1. DISCUSSION

Gating in voltage or ligand activated ion channels is regu-
lated, in general, by several macromolecules which experi-
ence Brownian motion in the closed and open regions, where
the dynamics may be described by probability densities
which satisfy interacting Fokker-Planck equations. We have
shown that a single dominant relaxation time may be derived
from a position-dependent stochastic diffusion model when
there is a discontinuity in the diffusion coefficient at the in-
terface between the regions R, and R. with D,, <D, and the
width of the transition region (d,,) is much less than the
width of the closed region (d,). These conditions ensure that
7.<T, and 7,<T,, and therefore the Brownian motion in
the closed and transition regions may be described as quasis-
tationary. The small relative value of d,, is consistent with
recent experimental data that indicate that each S4 sensor has
a translation of the order of 6 A across a focused electric
field [29]. If D,,(x)=D,, exp(—7v,,x), the response of the sys-
tem to a depolarizing voltage clamp may also be approxi-
mated by the lowest frequency relaxation when the diffusion
parameter v, is sufficiently large.

1

cm
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FIG. 5. The survival probability of the slow closed state
for a delayed rectifier K channel [27] (dotted line) and the
analytical solution P, (f) (solid line) where d,/d.=0.15,
Ye—0, ¥,d,=6, 7.=2.2 ms, a;=(0.984,0.055,-0.030,...), and
®;=(0.04,3.5,7.48,...).
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If the opening of the ion channel is determined by m
identical and independent subunits and the conductance of
the channel is expressed as goc P, ()™ [2], a rate equation
may be derived for each subunit when there is a large diffu-
sion or potential barrier between the closed and open con-
figurations of each sensor molecule. When the closed state

PHYSICAL REVIEW E 78, 061915 (2008)

dwell-time distribution obtained from a patch clamp record-
ing has a finite number of relaxation times, the closed states
may be represented as energy wells between potential or dif-
fusion barriers within an energy landscape, and the resulting
system of interacting Fokker-Planck equations may be ap-
proximated by a Markovian master equation.
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