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General bounds on the Wilson-Dirac operator
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Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden, The Netherlands
(Received 9 May 2003; published 11 September 2003

Lower bounds on the magnitude of the spectrum of the Hermitian Wilson-Dirac opéfdtaj have
previously been derived fordm<2 when the lattice gauge field satisfies a certain smoothness condition. In
this paper lower bounds are derived fop22<m<2p for generalp=1,2,...d whered is the spacetime
dimension. The bounds can alternatively be viewed as localization bounds on the real spectrum of the usual
Wilson-Dirac operator. They are needed for the rigorous evaluation of the classical continuum limit of the axial
anomaly and the index of the overlap Dirac operator at general values afid provide information on the
topological phase structure of overlap fermions. They are also useful for understanding the instanton size
dependence of the real spectrum of the Wilson-Dirac operator in an instanton background.

DOI: 10.1103/PhysRevD.68.065009 PACS nuntderll.15.Ha

[. INTRODUCTION Localization of the real eigenvalues Bf, around 0,2,...,a@
(in units of 14A) is therefore equivalent to the absence of zero
It is well known from numerical studie&see, €.9.[1,2])  modes forH(m), i.e., to the existence of nonzero lower
that in smooth gauge backgroundsdrdimensions the real bounds orfH(m)|, whenmis away from these values. This
eigenvalues of the Wilson-Dirac operator are localizedmplies a topological phase structure for the overlap Dirac
around the values 0,2,4,..d2in units of the inverse lattice operator{6] D= (1/a)[ 1+ ysH(m)/|H(m)|], since the in-
spacing, and with Wilson parameter1). In this paper we  gex of D, (a well-defined integeris locally independent of
give an analytic derivation of this numerical observation., yut can jump at the values for whicH(m) has zero
Our smoothness condition is the “admissibility condition” of modds). The topological phase structure Bf,, has previ-
(3,41 ously been studied in Reffz,8]. The bounds derived in this
paper lead to analytic information on the topological phases
[1-U(p)|<e V plaquettep. (1.1)  which complements the numerical results of those papers.
Furthermore, a nonzero lower bound f#(m)| allows
Since the plaquette variable has the expansib(p)=1 the locality of the overlap Dirac operator and its smooth
dependence gauge field to be analytically establifBetee

—a’F ,,(x)+0(a® in powers of the lattice spacing Eq. A
(1.2 c/érf b)e reéarc)ied gs an approximate smopothrrlgss ?equi%s o[9]). The general bounds derived in this paper allow the

ment on the curvature of the lattice gauge fieldUlfs the unnatural restriction &m<2 on the res_ults of3] to pe
ice ensrt of 2 Smoohcominum guge 1 e EGTTEL, T8 P 3 ol e o e e
i(;.élzjflﬁc?;rtlg;ngggélly satisfied for any>0 when the lattice anomaly and index of the overlap Dirac operdttd,11].1 As
In fermionic definitions of the topological charge of lat- & final application we will disc_uss gualitative implications of
tice gauge fields the low-lying real eigenmodes of thethe bounds for the instanton size dependence of the real spec-
Wilson-Dirac operatoD,, are interpreted as would-be zero trum of the Wilson-Dirac operator in an instanton back-
modes, while the other real eigenmodes are interpreted agound.
would-be doubler modes. This interpretation relies on the The paper is organized as follows. In Sec. Il the previ-
real eigenvalues being localized as described above, which @usly derived lower bounds diti(m)| are summarized and
not the case in general for arbitrary rough gauge fields. Théhe new general bounds are formulated. The new bounds are
localization result for the real spectrumf, derived in this  derived in Sec. lll. The derivation is rather technical and not
paper provides a specific analytic criterion under which thevery illuminating, so in Sec. IV we supplement it with a
localization is guaranteed. It is also of interest in connectiorheuristic argument which provides a clearer intuitive under-
with the overlap fermion formulation on the latti¢®,6]. standing of why the bounds exist. The heuristic consider-
This is because a real eigenmode for the Wilson-Dirac opations are further developed to give an analytic explanation
erator is equivalent to a zero mode for the Hermitian Wilson-of properties of the spectral flow dfi(m) previously ob-
Dirac operator with negative mass parameter: served in numerical studies. In Sec. V the above-mentioned
applications of the bounds are discussed, and the results of
the paper are summarized in Sec. VI. A generalization of the

m
Duth= 5 e H(M) = y5(aD,,~m)y=0. (1.2

10ther evaluations of the classical continuum limit of the axial
anomaly[less rigorous, and not using a lower bound |er{m)|]
*Email address: adams@lorentz.leidenuniv.nl have been given ih12-15.
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FIG. 1. lllustration of the intervalg2.3 (with 6,=+1—cye) in the dimensiond=4 case. The bound&.2) imply that the real
eigenvalues oD, lie in these intervals.

bounds from the standard case of Wilson parametet to  —(1—6)?J/c, for all k=1,3,...,a— 1. This is the advertised
general values>0 is given in the Appendix. localization result for the real spectrum Bf, . Explicit val-
ues for thec,’s will be determined in the next section.
II. SUMMARY OF PREVIOUS BOUNDS AND
FORMULATION OF THE NEW BOUNDS Ill. DERIVATION OF THE BOUNDS

Form=0 andm=2d (d= spacetime dimensigrit is well The Wilson-Dirac operatoD,, with general Wilson pa-
known that{H(m)|=|m| and|H(m)|=m—2d, respectively; rameterr is given by
see, e.g.[5,17,7. (We review these bounds and generalize L L
them to arbitrary values of the Wilson parametein the
Appendix) By Eq. (1.2 this implies that the real eigenvalues aDW(r)=§M: Yo (T T+ 1= (Tt Ty
of D, (in units of 1A) must lie in the interva] 0,2d]. (3.2
In [3,4] lower bounds of the form
where T., are the forward/backward parallel transporters
|H(m)|2 Vl_cle_|1_m| (21) [(T+,u.)xy:U,u(x)5X,y*,&!(Tip,)*:(Tiu)il:TI,u]' DW is
. ) ) o an operator on the lattice spinor fields living on a hypercubic
were derived when the lattice gauge field satisfies th§agice on an everd-dimensional Euclidean spacetime and
smoothness condltlom._l). The (_:urrenﬂy sharpest bound taking values in some unitary representation of (inespeci-
hasc;=6(2+v2)~20.5 in four dimension$4] and gener-  fiaq) gauge group. The spacetime may be either the infinite
alizes toc,=(2+v2)d(d—1)/2 in d dimensions. Clearly, \olumeR9 or a finite volumed-torus T¢. In the former case
Eq.(2.1) can be a nontrivial lower bound onlyé<1/c; and  the (completion of the space of spinor fields is an infinite-
|1-m|<yJl-cie. The latter implies &m<2. Lower dimensional Hilbert space, while in the latter case it is sim-
bounds on|H(m)| in the “doubler regions” 2<m<4, 4  ply a finite-dimensional complex vector space with inner
<m<§,...,.d—-2<m<2d have so far been missing. product. In the following,||-| denotes the operator norm.
Note that by Eq(12), the existence of a nontrivial lower C|ear|y’”TiM”: 1, SODW is bounded. A well-known, impor-

bound on|H(m)| for [1—m|<1—c;e is equivalent to the tant consequence of E(L.1) is
Wilson-Dirac operatoD,,, having no real eigenvalues in the

open interval 1+ J1—cqe,1+ V1—c,€[. To extend this to (T T llse, [[Te, T ll<e (3.2
a general localization result for the real eigenvalue®gf i i .
existence of lower bounds diti(m)| for k—1<m<k+1, It is useful to define the Hermitian operators
k=1,3,...,2—1, needs to be established. 1 1
Our aim in this paper is to generalize EQ.1) to bounds SM:E(T‘*'P«_T_M)’ C#=§(T+M+T_M),

of the following form:

|[H(m)|=V1-ce—|k—m|, k=1,35,..,2-1. R,=1-C,. (3.3

(2.2

These have bounds-1<S,<1, —1<C,<1, O0sR,<2
For givenme]k—1k+1[, this lower bound is nontrivial and satisfy(in any gauge backgrouhdhe following identi-
whene in the smoothness conditidi.1) is chosen such that ties:
e<[1—(k—m)?]/c,. On the other hand, if we require only
e<1llc, for all k then the bound is nontrivial for all values of [S.,Cul=0, [S.,R.]=0, 3.4
m except those lying in one of the following intervals:

P+C2=1, =R, (2—-R)). (3.5
(3 1 ! " 13 13
[0,1-V1—cq€],
The Wilson-Dirac operator can then be written as
[k+V1—cye,k+2—+1-cy,0€], k=13,...2a-1, 1
D =—2,iy*S,+IrR,. 3.6
[2d— 1+ V1—cCpy_s€,2d] 2.3 w(r) a% YISuT R 3.6

illustrated in Fig. 1. In this case the real eigenvalue®@f For later use we also note the relations

(in units of 1A) must lie in these intervals. Clearly, wheris

small these intervals are localized around the values 1_, 1 N

0,2,4,...,4. More specifically, we see that the real eigenval- RMZEVMVM* 2- RM:§(2+VM) (2+V)), 3.7
ues ofD,, are guaranteed to lie in the intervdld, &], [2p

—6,2p+6] (p=12,.d-1), [2d—4,2d] when e<[1  whereV,=T, —1
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The Hermitian Wilson-Dirac operatofnormalized by
1/a) is given by
H(m,r)=ys[aDy(r)—rm]. (3.9
[H(m,r)|=VH(m,r)? is defined via spectral theory. In the
following we setr=1 and considetH(m)=H(m,1); the
case of general is dealt with in the Appendix.
To derive the desired bound2.2) it suffices to show the
following:
H(k)>=1—c.e, k=1,3,..,d-1. (3.9
Indeed, the eigenvalueg'm) of H(m) satisfy|d\/dm|<1
[16,4], implying |[H(m')|=|H(m)|—|m—m’] (an alterna-
tive derivation of this was also given in the first papef3¥j,
and this together with Eq3.9) implies the bound$2.2).
To derive bounds of the forni3.9) we use Eqgs(3.5-
(3.7) to expresH(m)? as follows:

H(m)?=(aD}—m)(aD,,—m)

=1+ x(m)+E’, (3.10
where
2
x(M=2> S+ -m+> RM) -1 (3.1
" M
=> R,R,~2(m-1)>X R,+m?—1
nFEV Iz
(3.12
and
1 .
E'=2> y*y'5[S,.S,]+iyS,.C,]. (313
nFEV 2

Using Eq.(3.2) and triangle inequalities a bound &1 of
the form
|E'|<c’e (3.19

can be obtained. The value far obtained in[4] in the
four-dimensional case is’=6(1+v2)~14.5 and general-
izes toc' =(1+v2)d(d—1)/2 ind dimensions.

To complete the derivation of E¢3.9) we need to show
that x(k) can be written in the form

x(k)=P(k)+E(k), P(k)=0, |E(k)|<cle for k
=1,3,.,2d-1. (3.15
It then follows from Eq(3.10 that Eq.(3.9) is satisfied with
cx=cy+c’.

It is easy to derive a decomposition and bouBdLH in
thek=1 cas€3,4]. In this case Eq(3.12) reduces to

x(1)=2 R,R,. (3.16

nFV
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Using Eq.(3.7) one findsR,R,=1/2V}V,R,=1/2V;R,V,
+12vy[V,,R,]=P,,+E,, where P,,=1/2V}R,V,=0
and |[E,,[<e, leading to x(1)=P(1)+E(1) with P(1)
=0 and|E(1)|<d(d—1)e in d dimensions[3]. A more
subtle decompositiog(1)=P(1)+E(1) was derived if4]
for which |E(1)|<1/2d(d—1)e. In this way thek=1
bound (2.1) was obtained withc,=c]+c’'=6+6(1+v2)
~20.5 in four dimension§4].

Our goal now is to derive a decomposition and bound
(3.19 for x(k) in the case of generd=1,3,...,a—1. Set-
ting

RP=2-R, andR"=R,, (3.17)
we begin by noting the identity
x(M)=X(m)+X(mM) ey, (3.18
where
~ 1 2
X(M=zgr 2 A{Im=2(q+ e+ a9 P 1)
Apseeen 0,1

x RIWR(®...R (3.19
Y(M),e, is defined by replacingR(lql)Réqz)---qud) by
RY...RIPRW jn Eq. (3.19. The key feature of this ex-
pression is that, unlike the original expressi@l2), it is a
sum of monomials in the positive operatd®g and 2-R,
(recall that =R, =<2) with positive coefficientsvthenm is
an odd integefin particular wherm=k=1,3,...,2—1). As
we will see shortly, this provides for a decompositip(k)
=P(k)+E(k) of the form required in Eq(3.15.

To derive Eq.(3.18), consider the expansion &f(m) in
powers of theR,,’s:

X=aota > Ry+otay X R, R, 4o
M M1 <pp
+0[deR2"'Rd. (32@

The expansion of(m),e, is identical except that the order-
ing of theR,,’s is reversed. In light of Eq(3.12, to derive
Eq. (3.18 it suffices to show that

1
ap=5(m’=1),

> a;=—(m—1),

02:1,

and a,=0 for p=3. (3.2)
Let us focus on the term of order in Eq. (3.20. It gets
contributions from the terms in E¢3.19 with q;+---+qq

<p. The terms withg;+---+q4=s are

>

v<r-<vwg

1
srrzl(m=2s)7-1] (2-Ry)-+(2-R, 1R,

X(2=R, 1) (2R, _ 1R, (2= R, +1) (2= Ry).
(3.22

065009-3
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For s<p the contribution of this to the, term in Eq.(3.20
is

p

sarzl(m—25)2—1](—1)P~s2¢°P SRR

p1<<pp
(3.23

(the binomial coefficient?] appears because it is the number

of ways to picks distinct elements from a set pfelements
It follows that

p
ty= =t 2[(m—2s)2—11m(—1)”. (3.24

From this we finday=1/2(m*-1), a;=—(m—1), and
a;=1 as claimed in Eq(3.2]). In the p=3 case we calcu-
late

p

p -
ap= Zp 4ms+m2—1)[s}(—1)p s

p—-2 —9
<4p<p 1)2[ }(—1>P-2—S+4<m—1>p

p— 1-s 4 p -s
><Z (PP mMP =1 X | ([(-1)°
s=0 s=0

=0

(3.29

(each sum vanishes sinc&P_2[P 2] (—1)P 2 5=(1
—1)P~2, etc). This completes the derivation of E(B.21),
thereby establishing Eq3.18).

We now show how Eqs(3.18), (3.19 lead to a decom-
position y(k) = P(k) + E(k) of the form(3.15. The operator
productR!®- .-

Setting

VO=2+V,=T,,+1 andV’=V,=T,, -1,

(3.26

then||V§Lq)||$2 for q=0, 1 and, by Eqs(3.7) and(3.17),

1
R’(:I):z(vf:l))*v(m (3_27)

Using this and the commutator relatiof$,0q---Op]
=38 107 --04_4[0,04]0s. " --O, we obtain

R(lql) R(Qd) p(a1.---8g) + g(a1

with

1
[=ICHI qd):Z_d(véqd)...V(l%))*vqu)...v(llh), (3.29

Réqd) in Eq. (3.19 decomposes into a posi-
tive piece and a piece involving commutators as follows.

PHYSICAL REVIEW D 68, 065009 (2003

d-1

= 2 p(v(qp

d

(ap) (Gp). . .plas—1)
Vi )*(SEp Rp PR

(@p) pAs)1p(AstL) | »(Ad) | w(dp-1), . gd)
X[V RIIR - R )Vppl v,

(3.30

Clearly, P(1-99=0. Furthermore, the bounds
[V |R <2 and, by Eq(3.2, [V, Ri™]|<e, to-
gether with triangle inequalities, lead to the bound

(3.3

where

d-1

d
=p§l ;p 207P12p~1=2073(d—1)(d+2).
(3.32

The reversed produﬁqu)mR(lql) has an analogous decom-

position PES\} """ da) 1 Eﬁg\} """ %) with identical bounds. Con-
sequently, by Eqg3.18), (3.19 we get the decomposition

(3.33

where P(m) and E(m) are given by EQ.(3.19 with
R(lql)---qud) replaced by P9+ Pﬁg\} """ 9 and
E(1..0) + Efg\ﬁ """ %) respectively. The coefficient in the
summand in Eq(3.19 is =0 whenm is an odd integer;
henceP(k)=0 for oddk and in particular fok=1,3,...,2

—1 as required in Eq.3.15. Furthermore, from Eq$3.31),
(3.32, we get the bound

x(m)=P(m)+E(m),

[E(K)[|<cke (3.3
with
1
C'k’=20(§;q Zinl[(k_Z(Q1+"'+Qd)]2_1)
AREERE) d= VY
d
_x m k—2p)?—1]
“ p|l(k=2p
=2973(d—1)(d+2)[(k—d)?—1+d] (d=2).
(3.35

Thus we have established the existence of a decomposition
and bound(3.15 for x(k) for generalk=1,3,...,a—1. By
our previous discussion this implies the existence of the de-
sired boundg2.2). We remark that Eq(3.35 is invariant
underk—2d—k. This is as expected in light of the well-
known fact that a lower bound ofiH(m)| is also a lower
bound on|H(2d—m)| (see the Appendjx

The bound(3.34), (3.35 is rather weak. For example, in
thed=4 case it is

065009-4
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cr(d=4)=36(k—4)?—1]+ 144, (3.36

giving in thek=1 casec] =432, which is much larger than
the valuesc] =12 andc] =6 obtained if 3] and[4], respec-

PHYSICAL REVIEW B8, 065009 (2003

a bound with even smallery can be derived, e.g., by an
extension of the arguments [ef], but we will not pursue this
here. Finally, in thek=5 case analogous arguments léas
expecteglto a bound withcg = c5=42 (we omit the details

tively. Note, however, that for the applications discussed in

this paper it suffices simply to show the existence of bounds
of the form(2.2) without necessarily finding sharp ones. The
largeness oy, in the above bound is due to the large number

of terms in the expressiof8.19 for y(m). In practice, it is

IV. HEURISTIC CONSIDERATIONS

In this section we present a heuristic argument which pro-
vides a clearer intuitive understanding of why bounds of the

often possible to simplify this expression such that a sharpeierm derived in the previous section should hold. We go on
bound(i.e., smallerc}) can be derived. We discuss this in the © heuristically derive certain properties of the spectral flow

d=4 case in the following.

of H(m) previously observed in numerical studi¢s.g.,

In the remainder of this section we specialize to dimen{1.17).

sion d=4 and considery(k) for k=1,3,5,7. We wish to
simplify the expressiof3.18), (3.19 for x(k) in order to get

bounds with smallecy . In order to have the decomposition
x(K)=P(k)+E(k), the simplified expression must continue

to be a sum of monomials in the positive operatBys, (2

—R,) with positive coefficients. In thk=1 case Eq(3.18

simplifies to x(1)=%,.,R,R, [recall Eq. (3.16] from

which the previously discussed bounds with=12 [3] and
c1=6 [4] can be derived. In the=7 casey(7) reduces to
2,<(2—-R)(2—-R,), leading to

x(7)=2 (2-R,)(2-R,). (3.37

nFEV

Arguments analogous to the ones [i8] and [4] lead to
bounds withc=c]=12 andc}=c]=6, respectively. Turn-
ing now to thek=3 case, Eq(3.19 gives

3
X(3)=7(2=R1)(2-Rp)(2-R3)(2—-Ry) + 7 R1R:R3Ry

N

1
+ Z[(Z_ R1)RR3R,+R1(2—Ry)R3R,

+R1R2(2_R3)R4+ R1R2R3(2_R4)] (338

Consider a “near zero mode” fad (m):
H(m)2y~0. (4.2

If €in the smoothness conditid.1) is small thenE’~0 in
Eqg. (3.10, and Eq.(4.1) becomegrecallC,=1-R))

$~0. (4.2

2
-m+> (1—Cﬂ)>
M

%: S2+

Sincesizo it follows thatS,¢~0 for u=1,...,4 and con-
sequently, by Eq(3.5), C2¢=(1-S.) y~y, which implies
thatC,¢~(—1)'»y for j ,=0 or 1. Then Eq(4.2) reduces
to

2
O=~(—m+z (1—0#))

4.3

2
—m+2> [1—(—1)”]) ¥,
o
which implies that

m~% [1—(—1)lx]. (4.4

In this case there does not appear to be a major simplification

with the required properties. In fact, it is quite easy to show,
that x(3) cannot be written as a sum of monomials of order

<3inR,, (2—R,) with positive coefficientswe leave this
as an exercise for the reagleklinor simplifications are pos-
sible though, for example,

1
X(3)= 7[(2=Ry)(2=Rp)(2=R3)(2—Ry) + R1R;Rs

1
X (2_ R4)] + E(R1R2R4+ R1R3R4+ R2R3R4) .

(3.39

X(3)ey Simplifies analogously. Estimates of the kind used to
derive Egs.(3.3)), (3.32 show that the decomposition

P(3)+E(3) of the resulting expression foy(3) satisfies

|E(3)||<c%e with c5=42. This is considerably smaller than

the valuecs= 144 provided by Eq(3.36). It is plausible that

hus we see heuristically that wheris small the only val-
ues ofm for which H(m) can have “near zero modes” are
m=0,2,4,...,2l. This makes plausible the result of the previ-
ous section, namely, that whemis away from these values
a nonzero lower bound ofid(m)| should exist.

In fact the above heuristic approach can be further devel-
oped to get an alternative rigorous derivation of the bounds
(2.2) [18]. However, the argument is technically more com-
plicated than the one in Sec. Il and does not lead to sharper
bounds, so we do not present it here.

We now proceed to study the spectral flowrdfm). For
this it is useful to introduce the operatdfg defined by

(T)xy=vs¥*(—=1)dyy (n,=X,laeZ). (4.5

’These have proved useful in previous lattice fermion contexts;
see, e.g.[13] and the references therein.

065009-5
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e
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T T T

FIG. 2. lllustration of the spectral flow associated with a typical eigenvector familid (@f) of the kind discussed in the text in
dimensiond=4: A crossing neam=0 with + sign is associated with four crossings nea+ 2 with — sign, six crossings nean=4 with
+ sign, four crossings nean=6 with — sign, and one crossing near=8 with + sign.

These have the following propertiesflff—l, 7,7,
=-1,7, for w#v, [7,,9'S,]=0, C#TH=—TMCM,
[7,.C,]=0 for u#v, and7,ys=—ys7, . Using these we
find

H(m7,=—-7,[H(m)+2ysC,] (no sum overu).

(4.6

mately orthogonal since they are approximate eigenvectors
for the C,'s with different eigenvaluesiii) szlmMp(m) is

unchanged up to a sign under a change of ordering of the
uj's (since7?,7,=—17,7, for u#v). Hence we can assume
that theu;’s are ordered so thai,;<---<u. (iii) If (m)

is an eigenvector foH(m) whose eigenvalua(m) crosses
zero at some valuen, then by Eq. (4.4 my~X [1—

By Eq. (3.2 [H(m),C,]~0 whene is small, so the eigens- (—1)/x] whereC,,y(m)~(—1)Ixy(m) for j =0 or 1. Any
paces oH(m) can be decomposed into approximate eigenssuch eigenvector arises in the way described above, i.e.,

paces for theC ,’s. That is, for eigenvectorg(m) of H(m)
with H(m)#=A(m)¢(m) we can assume tha€,i(m)
~c,y(m). The eigenvalues, are independent crh since

Zb(m)=z//l,ul,_“p(m)=7; 7,,4(m=2p). Indeed, we set

Y(m)=(-1)°7, T, ~z,//(m+2p) with the u;’s being the

C, is independent ofn and has a discrete spectrum. Then, &S for Wh|ChJﬂ—1 Then by Eq(4.8) #(m) is an approxi-

by Eq.(4.6),
H(m)Z,,y(m)
=—-T,H(m—2c,)#(m)(no sum overu)
(4.7)

Set s, (m):=T,(m—2c,). It follows from Eq. (4.7) that
#,(m) is an approximate eigenvector fbk(m) with eigen-

value~—\(m—2c,). Similarly, we find
HM) . (M)
~(—1)p)\[m—2(cﬂl+...cﬂp)]wmmﬂp(m),
(4.8
where le(m) 12%1'"%pl/l[m—Z(Cﬂl'F..."-Clup)],

when they;’s are all mutually distinct.

Now, if N(m) crosses zero nean=0 then by our previ-
ous argumenfrecall Eq.(4.4)] c,~(— 1)ix with (11—
(—1)w)=0, i.e. c,~1 for all u, and Eq.(4.8) becomes

H(M) Y, (M)~ (= DPN(M=2D) ., (M),
4.9

ie., ¢u1...up(m) is an approximate eigenvector fof(m)
whose approximate eigenvalug(—1)PA(m—2p) crosses

zero nearm=2p. Furthermore, the sign of the crossing is

(—1)P relative to the sign of the crossing of zero hym)
near m=0. We note the following.(i) If {wmq,....,up}
#{v1,...,vp} then 4/;M1___Mp(m) and 1,//,,1.__Vp(m) are approxi-

mate eigenvector fad (m) whose eigenvalug(m) is ~0 at
some value ofm near zero.(To see this, recaHZ’i -1)
Thus we have heuristically established the following. The
eigenvectors oH(m) whose eigenvalues cross zero at some
value ofm can be naturally grouped into sets df@ements.
One of the eigenvectorg/(m) has an eigenvalue (m)
crossing zero nean=0 with crossing signt. There ared
eigenvectorsfy(m) with eigenvalues crossing zero near
=2 with sign¥, and more generallg!/[ p!(d—p)!] eigen-
vectors:,lfﬂl_._#p(m), m1<---<m,, With eigenvalues cross-
ing zero nearm=2p with crossing sign¥(—1)P for p
=1,2,..d. This is precisely the spectral flow property of
H(m) found in numerical studies in two and four dimensions
[1,27]. An illustration of the spectral flow associated with
one such family in thed=4 case is given in Fig. 2. The
Hermitian Wilson-Dirac operator in any gauge background
has the well-known propertid(U,m)=—-H(—U,2d—m),
so thatH(m)=0H(U,2d—m)O 1 for a certain unitary op-
eratorO (see, e.9.[2,17]).2 Hence ifA(m) is an eigenvalue
for H(m) then—\(m) is an eigenvalue foH (2d—m). This
property must be manifested in the eigenvalues of the family
of eigenvectors oH(m) discussed above, and is also illus-
trated in Fig. 2. Combining this spectral property kb{m)
with the fact that the index of the overlap Dirac operator
equals—1/2 times the spectral asymmetrytld{m) [5,6], an
immediate consequence is the relation ifdzyx(m)]
—indeX D,,(2d—m)] which was emphasized ir].

SFor O to exist the number of lattice sites along each edg&%f
must be even.
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V. APPLICATIONS OF THE BOUNDS locally constant inm but may jump at the values at which

We have already seen in Sec. Il how the general bound'§|(m) has zero modg). ThusD,, has different topoI(_)gi_caI
(2.2) lead to a localization result on the real spectrum of thePhases and the value ofshould be chosen so tha, is in-
Wilson-Dirac operator, thus providing an analytic under-the “correct” phase. This issue has previously been studied
standing of the numerical results for the real spectrum irboth analytically and numerically ifiv] and numerically in
“smooth” gauge backgrounds. In this section we discuss apf8]. However, the analytic arguments [id] are problematic
plications of the bounds to overlap fermidr. The general since they involve treating topologically nontrivial fields as
bounds allow analytic results on the overlap Dirac operatoperturbations of the trivial gauge field=1. On the other
Doy which were previously derived for the<Om<2 to be  hand, the bound€.2) provide rigorous nonperturbative in-
extended to the generai case (n+#0,2,4,...,d). Although  gight into the topological phase structure when the lattice
0<m<2 is the physically relevant cagee., the case where 5 g6 fields are required to satisfy the smoothness condition

Do, is free from spurious fermion speciethis restriction .1 with e<1/c, for all k=1,3,...,a—1: they imply that
appears quite unnatural and it is of some theoretical intere

to know the properties oD, in the regions p<m<2p
+2, p=1,2,.d, where the extra fermion species are

ere are distinct topological phases fbr,,, with each
phase characterized by being in one of the open intervals

present. Jk— V1—cye,k+ J1—cye[. The result of 11] states that for
SU(N) gauge fields on the-torus d=2n,n>1), or U1)
A. Locality and smooth gauge field dependence gauge fields on the two-torus, indéx{,) coincides with the
of the overlap Dirac operator index of the continuum Dirac operator in the classical con-

With the bounds(2.2) the arguments of Ref3] for the tinuum limit provided 0<m<22° This indicates that the
locality of D,, and its smooth dependence on the lattice Proper” topological phase foD,, is the one wherenis in
gauge field carry over unchanged from the @<2 case to the interval ]i-y1-cie,1+1-cie[. We denote
the k—1<m<k+1 case k=1,3,....21—1) after choosing index(Dy) by Q when D, is in this phase. A complete
e<[1—(k—m)?]/c, so that the lower bound ofH(m)| is  description of the topological phases f&, when the
greater than zero. The size of the exponential decay constagmoothness conditiofi.1) is imposed is now as follows. For
in the locality bound foD,, depends on the size ef, but  m=<0, Dy, is in a topologically trivial phaseli.e.,
for the existence of the locality bound it is enough to knowindex(Dy,)=0 in any gauge backgrouhd5]. For 0<m
that Eq.(2.2) holds for a specific value of,, which is in- <1—+1-ce, Dy, is not in a distinct topological phase:

dependent of the lattice gauge field. index(D,,) can be any value from 0 tQ depending on the
background gauge field. In a given gauge backgrounan as

B. Evaluation of the classical continuum limit of the axial is increased from O to4 \/1—ce, the total spectral flow of
anomaly and index of the overlap Dirac operator H(m) is Q. This is due to the well-known fact that at each

. . . . .. crossing of zero by an eigenvaluetd{m) the index ofD,,
The rigorous evaluation of the classical continuum “m'tchan es bvr1 depending on the sian of the crossing. For
of the axial anomaly and the index of the overlap Dirac 9 b P 9 9 9-

operator at general values of requires the existence of a 1= Vl,_cle< m=1+ Vl_,cle’ Doy IS in the “proper” to-
nontrivial lower bound ofH(m)| when the lattice is suffi- PClogical phase where indeR(,)=Q. For 1+y1-cse
ciently fine[10,11). We claimed in[10,1]] that such bounds <m<3-y1-cse Do,isnolongerina Q'St'nCt topological
exist and promised to provide them in a forthcoming paperPhase and the spectral flow Hf(m) asm increases through
The present paper delivers on that promise. Again, the actuflis region is —dQ. For 3—J1—cse<m<3+J1-cCge,
values of thec,’s do not matter: The lattice transcript of a Doy iS inanother distinct topological phase with
smooth continuum gauge field automatically satisfies théndex(Do,)=(1—d)Q. The pattern continues am in-
smoothness conditiofL.1) for any e>0 when the lattice is creases: Fok—y1—ce<m<k+1—cye, Dy, is in a dis-
sufficiently fine(see[11] for the rigorous justification of this tinct topological phase with indeR(,)=(2{<""
point), so all that matters for the classical continuum limit (—1)P[9])Q. Then, asm increases fromk+1—cye to k
calculations is that the bounds hold for some choicedf  +2—1—c,,,e, Dy, is no longer in a distinct topological
which are independent of the gauge field and lattice spacinghase, and the spectral flow Bf(m) through this region is
(—1)** A8, 1),1Q. Finally, afterm has increased toc
C. Topological phase structure of the overlap Dirac operator we have indexD,,)= (Egzo(— 1)P[g])Q= (1—- 1)dQ: 0

= (1/a)[ 1+ ysH(m)/|H(m)|] is a well-defined integer; it is émains for allm=2d. ,
The above description of the topological phase structure

of D,, is compatible with the results of previous numerical
41t may sound contradictory to speak of the “classical” continuum Studies in two and four dimensiof,8]. To put the above
limit of a purely quantum quantity such as the axial anomaly, so le@nalytical argument on a completely rigorous footing, a
us explain the meaning: “Classical” refers to the fact that one con-
siders thea—0 limit of the axial anomaly with the lattice gauge
field given by the lattice transcript of smooth continuum gauge  °This was shown ir{11] in the case of the four-torus, but the
field. See[10,1]] for the details. argument generalizes straightforwardly to the geneéraln-torus.
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rigorous derivation of the heuristic result of Sec. IV for the spectral flow @) is required. This remains as a problem for
future work. We note, however, that further evidence for the validity of this description comes from the rd4dl; efhich
states thain the classical continuum limit

(k—1)/2

index(D.,) ( ZO (—D‘{SDQ for k—1<m<k+1 (k=1,3,..,2d-1),
ov) = p=

0 for m=s0 and m=2d,

whereQ is the index of the continuum Dirac operator. [22,17. |F,.(x)| is not affected by this though, since it is
A generalization of the overlap Dirac operator has beergauge invariant. From Eq5.2) we see thaf|F,,(x)| di-

presented if19] and it would also be of interest to establish verges ak(®) in the limit of small instanton sizg. Hence for

the topological phase structure of this operator. For thissmall p the lattice transcripted field generally violates the

bounds on the generalized Hermitian Wilson-Dirac operatosmoothness conditiori1.1) since ||1—U(p)|=|a®F ,,(x)

for generalm are needed. A bound has already been derived- O(a®)| becomes large for plaquettpslose tox(?). [This

in [20] for 0<m<2 by a generalization of the argument of js assuming there is no special cancellation between

[4]. Itis plausible that bounds for generalcan be derived a?F , (x) and theO(a®) term; generically there is no reason

by a generalization of the argument in the present paper. W expect such a cancellation to occur, and in particular when

leave this as a potential topic for future work. the lattice spacing is smaﬂizFW(x) will dominate the
O(a®) term] Then the localization result of Sec. Il for the
D. Instanton size dependence of the real spectrum of the real spectrum oD, breaks dowr.
Wilson-Dirac operator in an instanton background On the other hand, from E@5.2) we get a bound
Approximate instantons on the lattice can be obtained ei- 4| 77|
, . Mo
ther through a cooling proceduf21] or by taking an appro- IF (X< —=— (5.3
priate lattice transcript of a continuum instanton field P

[22,17. We will focus on the latter case. In this case numeri-
cal studies have shown that the real eigenvalueB pfare
well localized around 0,2,...¢2[or, equivalently, the cross-
ings of zero by eigenvalues ¢i(m) occur close to these
valued when the instanton is large at the scale of the lattic
spacing, but become delocalized as the instanton size is d
creased17]. The standard explanation of this is that instan-
tons which are small at the scale of the lattice spacing are ng
slowly varying at this scale in the region in which they are
localized, so their lattice transcripts are “rough” in this re-
gion. On the other hand, large instant@ms slowly varying,

so their lattice transcripts are “smooth.” The boun@?2) 1
can be used to give a more precise version of this intuitive Qlump:_zf d%x €vaptlF () F g p(X)~ £ 1.
explanation as follows. A continuum instanton field centered 327 Jiump per ’

atx(®) has the forn{23] (5.9

showing that|[F ,,(x)| vanishes uniformly in the limit of
large p. Consequently, for large the smoothness condition
(1.1 will be satisfied generically on sufficiently fine lattices,
ethereby guaranteeing localization of the real spectrur pf
gccording to the result of Sec. II.

These considerations can be extended to more general
auge fields describing a collection of topologically charged
umps” (e.g., instanton—anti-instanton configurations,
multi-instantons, instanton gage$he topological charge of
a lump is given by

x,— X9 If the lump size is small thefiF ,,(x)|| must be large in the
AM(x)zzng”mt“, (5.)  lump region in order that the magnitude of the integral in
p Eqg. (5.4) can be~1. The smaller the lump is, the larger
IF ..,(x)[| must be in the lump region. This generically leads
to violation of the smoothness conditioh.1), as before. On
the other hand, if the lump size is larggF ,,(x)| is not

where »%" is the 't Hooft symbol,t* are generators of the
SU(2) subgroup, and the paramejespecifies the size of the
instanton. Its curvature is
2
Fun(X)= _4’7@:]}%“ (5.2 5More precisely, the assumptions under which the localization was
([x=x®|+p%) derived break down. This does not necessarily imply that the local-
) ) ) ] __ ization result itself must break down, although it is not surprising
When putting the instanton on the lattice with periodic that it should do so. We can turn things around and interpret the

boundary conditions it is important to transforf®.1) to @  numerical results for the delocalization of the real spectrum in small
singular gauge before taking the lattice transcfgmd the instanton backgrounds as indicating that, in general, a smoothness
lattice volume must also be sufficiently large that the singu+equirement of the forni1.1) is not only sufficient but also a nec-

lar gauge instanton is close to vanishing at the boundaryessary requirement for the real spectrunDgf to be localized.
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forced to be large in any particular region. Generically, wetopological phase structure was obtained by combining the
can expecflF ,,(x)|| to decrease with increasing lump size, bounds with the heuristic result of Sec. IV on the spectral
and to vanish in the large lump limit. Then, by the sameflow properties ofH(m).
argument as before, localization of the real spectrur® pf Finally, we pointed out how the bounds can be used to get
will generically hold in gauge backgrounds describing topo-a more precise understanding of why the real spectrum of the
logical lumps when all the lumps are sufficiently large andWilson-Dirac operator in an instanton background is gener-
the lattice is sufficiently fine. ally localized around 0,2,...2 when the instanton size is
large but becomes delocalized when the instanton is small at
the scale of the lattice spacin@.he argument also applies to
more general gauge fields describing a collection of “topo-
We have derived general lower bounds on the magnitudéogical lumps.”) Our argument for delocalization of the real
of the spectrum of the Hermitian Wilson-Dirac operator: ~ spectrum in small instanton backgrounds involved an as-
sumption, namely, that, generically, the smoothness condi-
IH(m)|=V1—cee—|k—m| for k=1,3,... 21, tion (1.1) is not only sufficient but also aecessargondition
for localization of the spectrum. Numerical studiésg.,
r{_17]) seem to indicate that this is the case, but it would be
Interesting if it could be proved analytically. This is relevant
for the issue of chiral symmetry breaking in lattice gauge
I,theory since it means that the contribution to the density of
near-zero eigenvalues of the Dirac operator from gauge fields
describing small topological lumps is reduced on the lattice.
Is this reduction an unwanted lattice artifact, or is it a genu-
inely physical feature revealed by lattice regularization

VI. SUMMARY

wheree is the constraining parameter in the smoothness co
dition (1.1) (and the Wilson parameter is=1; the generali-
zation to arbitraryr >0 is given in the Appendix Thus we
have supplemented the previous bounds for the “physica
casek=1 [3,4] with bounds for the “doubler” casek
=3,5,...,4—1. The bounds were shown to hold with

ck=c'+ck, the same way that lattice and other regularizations reveal the
presence of anomalies that one would not have expected

¢'=(1+v2)d(d—1)/2, from formal continuum consideratioy¥s

cp=29"3(d-1)(d+2)[(k—d)2—1+d]. ACKNOWLEDGMENTS
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As discussed in Sec. Il, the lower bounds|ét{m)| im-
ply a localization result for the real eigenvalues of the usual ~APPENDIX: BOUNDS IN THE CASE OF GENERAL
Wilson-Dirac operator: the eigenvalues Bf, (in units of WILSON PARAMETER r>0
1/a) are localized around the values 0,2,4,d.)®hen € is Using Eqs.(3.6—(3.9), a simple calculation giveis]
sufficiently small.(A precise formulation of this statement
was given in Sec. IJ.

The bounds allow previous results on the overlap Dirac H(mr)?=H(0r)2-2mr2Y, R,+r2m?. (A1)
operator to be extended from the<h<<2 case to general a
values ofm (m#0,2,...,d). This includes evaluation of the ; fo10ws that
classical continuum limit of the axial anomaly and index
[10,11], and the results df3] on locality of the overlap Dirac IH(m,r)|=rm when m=0. (A2)
operator and its smooth dependence of the gauge field. The
bounds were also seen to imply the existence of topologicat is well known that a lower bound ofH(m)| is also a

phases for the overlap Dirac operator when attention is retower bound orfH(2d—m)|; hence Eq(A2) implies
stricted to the space of lattice gauge fields satisfying Eq.

(1.D with e<1/c, for all k. A complete description of the |[H(2d+m,r)|=rm when m=0. (A3)
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To see this explicitly, writeH(m,r) out according to the
definitions(3.1) and(3.8):

1
H(m,rU)=ys| rd=rm+ 2 S [y*(T.,=T-,)
y2

—r(T+#+TM)]) . (A4)
It follows that

H(2d— m,r,U)——yS(rd—rm+2—{y[ -T,,)

(=T DI=rI(=Te )+ (=T 1.

(A5)
Since (4, )xy=U.(X)0y-; and (T_,)xy=U,(X
—p)" s wy+p the replacemenT+ﬂ—> T.,is equwalent
to U— —U. Hence Eq(A5) can be written as

H(2d—m,r,U)=—H(m,r—U). (AB)
The operatoR ,(U)=1—-1/2(T, ,+T_,) remains positive
underU— — U, so the argument leading to E@\2) remains
valid under this replacement and we det(2d+m,r,U)|
=|H(—m,r,—U)|=rm for m=0 as claimed in Eq(A3).

It remains to derive the generalization of the bouf®i®)
in the generat case. In this case the relatio(&10—(3.13
become

m+2 R,

where E'(r)=2 . (v*y"12S,,S,]+iry*[S,,C,]) has
a bound||E’(r)|=<c’(r)e. A simple generalization of the

H(m,r)?=2, Si+r2 +E (r), (A7)
M

argument in[4] shows that this bound is satisfied with

PHYSICAL REVIEW D 68, 065009 (2003

c'(r)=(1+rv2)d(d—1)/2. Following[16,4] we also note
that for an eigenvalue.(m,r)=(¥(m,r),H(m,r)¢(m,r))
we have @/dm)\(m,r)=—r{y(m,r),ys¢(m,r)) and con-
sequently |(d/dm)\(m,r)|<r, which implies |H(m,r)|
=|H(m’,r)|—r|m’—m|.

We consider the casass<1l andr=1 separately. In the
former case Eq(A7) together with Eq(3.10 gives

2
% S, + —m+§ R, rz)% s,

+E'(r)=r?[1+ x(m)]—c'(r)e. (A8)

H(m,r)2=r? +(1—

This together with Eq.(3.19 gives H(k,r)?>=r?{1—[c}
+c’(r)/r?]e}, and consequently, settingc,(r)=cj
+c'(r)/r?,

[H(m,r)=ry1—c(r)e—rlk—m|,

k=13,...d-1.
(A9)

In ther=1 case we rewrite EqA7) as

2
Hmr)?=2 Si+(-m+> R”>
2 m
2
+(r2—1)(—m+2 R,| +E'(r)
o
=1+ yx(m)—c'(r)e, (A10)
and it follows from Eq.(3.15 that
[H(m,r)|=+1-C(r)e—rlk—m|, k=1,3,..,d-1,
(A11)

with T (r)=cy+c'(r).

Note that the bound@\9) for ther <1 case andA11) for
ther>1 case are both weaker than the boy2®) for the
r=1 case.
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