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PHYSICAL REVIEW D 68, 065009 ~2003!
General bounds on the Wilson-Dirac operator

David H. Adams*
Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden, The Netherlands

~Received 9 May 2003; published 11 September 2003!

Lower bounds on the magnitude of the spectrum of the Hermitian Wilson-Dirac operatorH(m) have
previously been derived for 0,m,2 when the lattice gauge field satisfies a certain smoothness condition. In
this paper lower bounds are derived for 2p22,m,2p for generalp51,2,...,d where d is the spacetime
dimension. The bounds can alternatively be viewed as localization bounds on the real spectrum of the usual
Wilson-Dirac operator. They are needed for the rigorous evaluation of the classical continuum limit of the axial
anomaly and the index of the overlap Dirac operator at general values ofm, and provide information on the
topological phase structure of overlap fermions. They are also useful for understanding the instanton size
dependence of the real spectrum of the Wilson-Dirac operator in an instanton background.

DOI: 10.1103/PhysRevD.68.065009 PACS number~s!: 11.15.Ha
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I. INTRODUCTION

It is well known from numerical studies~see, e.g.,@1,2#!
that in smooth gauge backgrounds ind dimensions the rea
eigenvalues of the Wilson-Dirac operator are localiz
around the values 0,2,4,...,2d ~in units of the inverse lattice
spacing, and with Wilson parameterr 51). In this paper we
give an analytic derivation of this numerical observatio
Our smoothness condition is the ‘‘admissibility condition’’ o
@3,4#:

i12U~p!i<e ; plaquette p. ~1.1!

Since the plaquette variable has the expansionU(p)51
2a2Fmn(x)1O(a3) in powers of the lattice spacinga, Eq.
~1.1! can be regarded as an approximate smoothness req
ment on the curvature of the lattice gauge field. IfU is the
lattice transcript of a smooth continuum gauge field then
~1.1! is automatically satisfied for anye.0 when the lattice
is sufficiently fine.

In fermionic definitions of the topological charge of la
tice gauge fields the low-lying real eigenmodes of t
Wilson-Dirac operatorDw are interpreted as would-be ze
modes, while the other real eigenmodes are interprete
would-be doubler modes. This interpretation relies on
real eigenvalues being localized as described above, whi
not the case in general for arbitrary rough gauge fields.
localization result for the real spectrum ofDw derived in this
paper provides a specific analytic criterion under which
localization is guaranteed. It is also of interest in connect
with the overlap fermion formulation on the lattice@5,6#.
This is because a real eigenmode for the Wilson-Dirac
erator is equivalent to a zero mode for the Hermitian Wilso
Dirac operator with negative mass parameter:

Dwc5
m

a
c⇔H~m!c[g5~aDw2m!c50. ~1.2!
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0556-2821/2003/68~6!/065009~10!/$20.00 68 0650
d

.

ire-

.

as
e
is
e

e
n

-
-

Localization of the real eigenvalues ofDw around 0,2,...,2d
~in units of 1/a) is therefore equivalent to the absence of ze
modes forH(m), i.e., to the existence of nonzero lowe
bounds onuH(m)u, whenm is away from these values. Thi
implies a topological phase structure for the overlap Di
operator@6# Dov5(1/a)@11g5H(m)/uH(m)u#, since the in-
dex of Dov ~a well-defined integer! is locally independent of
m but can jump at the values for whichH(m) has zero
mode~s!. The topological phase structure ofDov has previ-
ously been studied in Refs.@7,8#. The bounds derived in this
paper lead to analytic information on the topological pha
which complements the numerical results of those paper

Furthermore, a nonzero lower bound onuH(m)u allows
the locality of the overlap Dirac operator and its smoo
dependence gauge field to be analytically established@3# ~see
also@9#!. The general bounds derived in this paper allow t
unnatural restriction 0,m,2 on the results of@3# to be
removed. These bounds are also required for the rigor
evaluation of the classical continuum limits of the ax
anomaly and index of the overlap Dirac operator@10,11#.1 As
a final application we will discuss qualitative implications
the bounds for the instanton size dependence of the real s
trum of the Wilson-Dirac operator in an instanton bac
ground.

The paper is organized as follows. In Sec. II the pre
ously derived lower bounds onuH(m)u are summarized and
the new general bounds are formulated. The new bounds
derived in Sec. III. The derivation is rather technical and n
very illuminating, so in Sec. IV we supplement it with
heuristic argument which provides a clearer intuitive und
standing of why the bounds exist. The heuristic consid
ations are further developed to give an analytic explana
of properties of the spectral flow ofH(m) previously ob-
served in numerical studies. In Sec. V the above-mentio
applications of the bounds are discussed, and the resul
the paper are summarized in Sec. VI. A generalization of

1Other evaluations of the classical continuum limit of the ax
anomaly@less rigorous, and not using a lower bound onuH(m)u]
have been given in@12–15#.
©2003 The American Physical Society09-1
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FIG. 1. Illustration of the intervals~2.3! ~with dk[A12cke) in the dimensiond54 case. The bounds~2.2! imply that the real
eigenvalues ofDw lie in these intervals.
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bounds from the standard case of Wilson parameterr 51 to
general valuesr .0 is given in the Appendix.

II. SUMMARY OF PREVIOUS BOUNDS AND
FORMULATION OF THE NEW BOUNDS

For m<0 andm>2d (d5spacetime dimension! it is well
known thatuH(m)u>umu anduH(m)u>m22d, respectively;
see, e.g.,@5,17,2#. ~We review these bounds and general
them to arbitrary values of the Wilson parameterr in the
Appendix.! By Eq. ~1.2! this implies that the real eigenvalue
of Dw ~in units of 1/a) must lie in the interval@0,2d#.

In @3,4# lower bounds of the form

uH~m!u>A12c1e2u12mu ~2.1!

were derived when the lattice gauge field satisfies
smoothness condition~1.1!. The currently sharpest boun
hasc156(21&)'20.5 in four dimensions@4# and gener-
alizes toc15(21&)d(d21)/2 in d dimensions. Clearly,
Eq. ~2.1! can be a nontrivial lower bound only ife,1/c1 and
u12mu,A12c1e. The latter implies 0,m,2. Lower
bounds onuH(m)u in the ‘‘doubler regions’’ 2,m,4, 4
,m,6,...,2d22,m,2d have so far been missing.

Note that by Eq.~1.2!, the existence of a nontrivial lowe
bound onuH(m)u for u12mu,A12c1e is equivalent to the
Wilson-Dirac operatorDw , having no real eigenvalues in th
open interval ]12A12c1e,11A12c1e@ . To extend this to
a general localization result for the real eigenvalues ofDw
existence of lower bounds onuH(m)u for k21,m,k11,
k51,3,...,2d21, needs to be established.

Our aim in this paper is to generalize Eq.~2.1! to bounds
of the following form:

uH~m!u>A12cke2uk2mu, k51,3,5,...,2d21.
~2.2!

For given mP]k21,k11@ , this lower bound is nontrivial
whene in the smoothness condition~1.1! is chosen such tha
e,@12(k2m)2#/ck . On the other hand, if we require onl
e,1/ck for all k then the bound is nontrivial for all values o
m except those lying in one of the following intervals:

@0,12A12c1e#,

@k1A12cke,k122A12ck12e#, k51,3,...,2d21,

@2d211A12c2d21e,2d# ~2.3!

illustrated in Fig. 1. In this case the real eigenvalues ofDw
~in units of 1/a) must lie in these intervals. Clearly, whene is
small these intervals are localized around the val
0,2,4,...,2d. More specifically, we see that the real eigenv
ues ofDw are guaranteed to lie in the intervals@0, d#, @2p
2d,2p1d# (p51,2,...,d21), @2d2d,2d# when e,@1
06500
e

s
-

2(12d)2#/ck for all k51,3,...,2d21. This is the advertised
localization result for the real spectrum ofDw . Explicit val-
ues for theck’s will be determined in the next section.

III. DERIVATION OF THE BOUNDS

The Wilson-Dirac operatorDw with general Wilson pa-
rameterr is given by

aDw~r !5(
m

gm
1

2
~T1m2T2m!1r S 12

1

2
~T1m1T2m! D ,

~3.1!

where T6m are the forward/backward parallel transporte
@(T1m)xy5Um(x)dx,y2m̂ ,(T6m)* 5(T6m)215T7m#. Dw is
an operator on the lattice spinor fields living on a hypercu
lattice on an evend-dimensional Euclidean spacetime an
taking values in some unitary representation of the~unspeci-
fied! gauge group. The spacetime may be either the infin
volumeRd or a finite volumed-torusTd. In the former case
the ~completion of the! space of spinor fields is an infinite
dimensional Hilbert space, while in the latter case it is si
ply a finite-dimensional complex vector space with inn
product. In the following,i•i denotes the operator norm
Clearly,iT6mi51, soDw is bounded. A well-known, impor-
tant consequence of Eq.~1.1! is

i@T6m ,T6n#i<e, i@T6m ,T7n#i<e. ~3.2!

It is useful to define the Hermitian operators

Sm5
1

2i
~T1m2T2m!, Cm5

1

2
~T1m1T2m!,

Rm512Cm . ~3.3!

These have bounds21<Sm<1, 21<Cm<1, 0<Rm<2
and satisfy~in any gauge background! the following identi-
ties:

@Sm ,Cm#50, @Sm ,Rm#50, ~3.4!

Sm
2 1Cm

2 51, Sm
2 5Rm~22Rm!. ~3.5!

The Wilson-Dirac operator can then be written as

Dw~r !5
1

a (
m

igmSm1rRm . ~3.6!

For later use we also note the relations

Rm5
1

2
¹m* ¹m , 22Rm5

1

2
~21¹m!* ~21¹m!, ~3.7!

where¹m5T1m21.
9-2
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The Hermitian Wilson-Dirac operator~normalized by
1/a) is given by

H~m,r !5g5@aDw~r !2rm#. ~3.8!

uH(m,r )u5AH(m,r )2 is defined via spectral theory. In th
following we set r 51 and considerH(m)5H(m,1); the
case of generalr is dealt with in the Appendix.

To derive the desired bounds~2.2! it suffices to show the
following:

H~k!2>12cke, k51,3,...,2d21. ~3.9!

Indeed, the eigenvaluesl(m) of H(m) satisfy udl/dmu<1
@16,4#, implying uH(m8)u>uH(m)u2um2m8u ~an alterna-
tive derivation of this was also given in the first paper of@3#!,
and this together with Eq.~3.9! implies the bounds~2.2!.

To derive bounds of the form~3.9! we use Eqs.~3.5!–
~3.7! to expressH(m)2 as follows:

H~m!25~aDw* 2m!~aDw2m!

511x~m!1E8, ~3.10!

where

x~m!5(
m

Sm
2 1S 2m1(

m
RmD 2

21 ~3.11!

5 (
mÞn

RmRn22~m21!(
m

Rm1m221

~3.12!

and

E85 (
mÞn

gmgn
1

2
@Sm ,Sn#1 igm@Sm ,Cn#. ~3.13!

Using Eq.~3.2! and triangle inequalities a bound onE8 of
the form

iE8i<c8e ~3.14!

can be obtained. The value forc8 obtained in@4# in the
four-dimensional case isc856(11&)'14.5 and general-
izes toc85(11&)d(d21)/2 in d dimensions.

To complete the derivation of Eq.~3.9! we need to show
that x(k) can be written in the form

x~k!5P~k!1E~k!, P~k!>0, iE~k!i<ck9e for k

51,3,...,2d21. ~3.15!

It then follows from Eq.~3.10! that Eq.~3.9! is satisfied with
ck5ck91c8.

It is easy to derive a decomposition and bound~3.15! in
the k51 case@3,4#. In this case Eq.~3.12! reduces to

x~1!5 (
mÞn

RmRn . ~3.16!
06500
Using Eq.~3.7! one findsRmRn51/2¹m* ¹mRn51/2¹m* Rn¹m

11/2¹m* @¹m ,Rn#5Pmn1Emn where Pmn51/2¹m* Rn¹m>0
and iEmni<e, leading to x(1)5P(1)1E(1) with P(1)
>0 and iE(1)i<d(d21)e in d dimensions@3#. A more
subtle decompositionx(1)5P(1)1E(1) was derived in@4#
for which iE(1)i<1/2d(d21)e. In this way the k51
bound ~2.1! was obtained withc15c191c85616(11&)
'20.5 in four dimensions@4#.

Our goal now is to derive a decomposition and bou
~3.15! for x(k) in the case of generalk51,3,...,2d21. Set-
ting

Rm
~0!522Rm and Rm

~1!5Rm , ~3.17!

we begin by noting the identity

x~m!5x̃~m!1x̃~m!rev, ~3.18!

where

x̃~m!5
1

2d11 (
q1 ,...,qd50,1

$@m22~q11¯1qd!#221%

3R1
~q1!R2

~q2!
¯Rd

~qd! . ~3.19!

x̃(m)rev is defined by replacingR1
(q1)R2

(q2)
¯Rd

(qd) by

Rd
(qd)

¯R2
(q2)R1

(q1) in Eq. ~3.19!. The key feature of this ex-
pression is that, unlike the original expression~3.12!, it is a
sum of monomials in the positive operatorsRm and 22Rn

~recall that 0<Rm<2) with positive coefficientswhen m is
an odd integer~in particular whenm5k51,3,...,2d21). As
we will see shortly, this provides for a decompositionx(k)
5P(k)1E(k) of the form required in Eq.~3.15!.

To derive Eq.~3.18!, consider the expansion ofx̃(m) in
powers of theRm’s:

x̃5a01a1(
m

Rm1¯1ap (
m1,¯,mp

Rm1
¯Rmp

1¯

1adR1R2¯Rd . ~3.20!

The expansion ofx̃(m)rev is identical except that the order
ing of theRm’s is reversed. In light of Eq.~3.12!, to derive
Eq. ~3.18! it suffices to show that

a05
1

2
~m221!, a152~m21!, a251,

and ap50 for p>3. ~3.21!

Let us focus on the term of orderp in Eq. ~3.20!. It gets
contributions from the terms in Eq.~3.19! with q11¯1qd
<p. The terms withq11¯1qd5s are

1

2d11 @~m22s!221# (
n1,¯,ns

~22R1!¯~22Rn121!Rn1

3~22Rn111!¯~22Rns21!Rns
~22Rns11!¯~22Rd!.

~3.22!
9-3
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For s<p the contribution of this to theap term in Eq.~3.20!
is

1

2d11 @~m22s!221#~21!p2s2d2pFp
sG (

m1,¯,mp

Rm1
¯Rmp

~3.23!

~the binomial coefficient@s
p# appears because it is the numb

of ways to picks distinct elements from a set ofp elements!.
It follows that

ap5
1

2p11 (
s50

p

@~m22s!221#Fp
sG~21!p2s. ~3.24!

From this we finda051/2(m221), a152(m21), and
a251 as claimed in Eq.~3.21!. In the p>3 case we calcu-
late

ap5
1

2p11 (
s50

p

~4s224ms1m221!Fp
sG~21!p2s

5
1

2p11 S 4p~p21! (
s50

p22 Fp22
s G~21!p222s14~m21!p

3 (
s50

p21 Fp21
s G~21!p212s1~m221!(

s50

p Fp
sG~21!p2sD

50 ~3.25!

~each sum vanishes since(s50
p22@s

p22# (21)p222s5(1
21)p22, etc.!. This completes the derivation of Eq.~3.21!,
thereby establishing Eq.~3.18!.

We now show how Eqs.~3.18!, ~3.19! lead to a decom-
positionx(k)5P(k)1E(k) of the form~3.15!. The operator
productR1

(q1)
¯Rd

(qd) in Eq. ~3.19! decomposes into a pos
tive piece and a piece involving commutators as follow
Setting

¹m
~0!521¹m5T1m11 and ¹m

~1!5¹m5T1m21,
~3.26!

then i¹m
(q)i<2 for q50, 1 and, by Eqs.~3.7! and ~3.17!,

Rm
~q!5

1

2
~¹m

~q!!* ¹m
~q! . ~3.27!

Using this and the commutator relations@O,O1¯Op#
5(s51

p O1¯Os21@O,Os#Os11¯Op we obtain

R1
~q1!

¯Rd
~qd!

5P~q1 ,...,qd!1E~q1 ,...,qd! ~3.28!

with

P~q1 ,...,qd!5
1

2d ~¹d
~qd!

¯¹1
~q1!

!* ¹d
~qd!

¯¹1
~q1! , ~3.29!
06500
r

.

E~q1 ,...,qd!

5 (
p51

d21
1

2p ~¹p
~qp!

¯¹1
~q1!

!* S (
s5p

d

Rp
~qp!

¯Rs21
~qs21!

3@¹p
~qp! ,Rs

~qs!
#Rs11

~qs11!
¯Rd

~qd!D¹p21
~qp21!

¯¹1
~q1! .

~3.30!

Clearly, P(q1 ,...,qd)>0. Furthermore, the bound
i¹m

(qm)i ,iRm
(qm)i<2 and, by Eq.~3.2!, i@¹m

(qm),Rn
(qn)

#i<e, to-
gether with triangle inequalities, lead to the bound

iE~q1 ,...,qd!i<ce, ~3.31!

where

c5 (
p51

d21

(
s5p

d

2d2p212p2152d23~d21!~d12!.

~3.32!

The reversed productRd
(qd)

¯R1
(q1) has an analogous decom

position Prev
(q1 ,...,qd)

1Erev
(q1 ,...,qd) with identical bounds. Con-

sequently, by Eqs.~3.18!, ~3.19! we get the decomposition

x~m!5P~m!1E~m!, ~3.33!

where P(m) and E(m) are given by Eq.~3.19! with
R1

(q1)
¯Rd

(qd) replaced by P(q1 ,...,qd)1Prev
(q1 ,...,qd) and

E(q1,...,qd
)1Erev

(q1 ,...,qd) , respectively. The coefficient in th
summand in Eq.~3.19! is >0 when m is an odd integer;
henceP(k)>0 for oddk and in particular fork51,3,...,2d
21 as required in Eq.~3.15!. Furthermore, from Eqs.~3.31!,
~3.32!, we get the bound

iE~k!i<ck9e ~3.34!

with

ck952cS 1

2d (
q1 ,...,qd50,1

@~k22~q11¯1qd!#221! D
5

2c

2d (
p50

d FdpG@~k22p!221#

52d23~d21!~d12!@~k2d!2211d# ~d>2!.

~3.35!

Thus we have established the existence of a decompos
and bound~3.15! for x(k) for generalk51,3,...,2d21. By
our previous discussion this implies the existence of the
sired bounds~2.2!. We remark that Eq.~3.35! is invariant
under k→2d2k. This is as expected in light of the well
known fact that a lower bound onuH(m)u is also a lower
bound onuH(2d2m)u ~see the Appendix!.

The bound~3.34!, ~3.35! is rather weak. For example, i
the d54 case it is
9-4
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ck9~d54!536@~k24!221#1144, ~3.36!

giving in thek51 casec195432, which is much larger than
the valuesc19512 andc1956 obtained in@3# and@4#, respec-
tively. Note, however, that for the applications discussed
this paper it suffices simply to show the existence of bou
of the form~2.2! without necessarily finding sharp ones. T
largeness ofck9 in the above bound is due to the large numb
of terms in the expression~3.19! for x̃(m). In practice, it is
often possible to simplify this expression such that a sha
bound~i.e., smallerck9) can be derived. We discuss this in th
d54 case in the following.

In the remainder of this section we specialize to dime
sion d54 and considerx(k) for k51,3,5,7. We wish to
simplify the expression~3.18!, ~3.19! for x(k) in order to get
bounds with smallerck9 . In order to have the decompositio
x(k)5P(k)1E(k), the simplified expression must continu
to be a sum of monomials in the positive operatorsRm , (2
2Rn) with positive coefficients. In thek51 case Eq.~3.18!
simplifies to x(1)5(mÞnRmRn @recall Eq. ~3.16!# from
which the previously discussed bounds withc19512 @3# and
c1956 @4# can be derived. In thek57 casex̃(7) reduces to
(m,n(22Rm)(22Rn), leading to

x~7!5 (
mÞn

~22Rm!~22Rn!. ~3.37!

Arguments analogous to the ones in@3# and @4# lead to
bounds withc795c19512 andc795c1956, respectively. Turn-
ing now to thek53 case, Eq.~3.19! gives

x̃~3!5
1

4
~22R1!~22R2!~22R3!~22R4!1

3

4
R1R2R3R4

1
1

4
@~22R1!R2R3R41R1~22R2!R3R4

1R1R2~22R3!R41R1R2R3~22R4!#. ~3.38!

In this case there does not appear to be a major simplifica
with the required properties. In fact, it is quite easy to sh
that x~3! cannot be written as a sum of monomials of ord
<3 in Rm , (22Rn) with positive coefficients~we leave this
as an exercise for the reader!. Minor simplifications are pos-
sible though, for example,

x̃~3!5
1

4
@~22R1!~22R2!~22R3!~22R4!1R1R2R3

3~22R4!#1
1

2
~R1R2R41R1R3R41R2R3R4!.

~3.39!

x̃(3)rev simplifies analogously. Estimates of the kind used
derive Eqs. ~3.31!, ~3.32! show that the decompositio
P(3)1E(3) of the resulting expression forx~3! satisfies
iE(3)i<c39e with c39542. This is considerably smaller tha
the valuec395144 provided by Eq.~3.36!. It is plausible that
06500
n
s
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o

a bound with even smallerc39 can be derived, e.g., by a
extension of the arguments of@4#, but we will not pursue this
here. Finally, in thek55 case analogous arguments lead~as
expected! to a bound withc595c39542 ~we omit the details!.

IV. HEURISTIC CONSIDERATIONS

In this section we present a heuristic argument which p
vides a clearer intuitive understanding of why bounds of
form derived in the previous section should hold. We go
to heuristically derive certain properties of the spectral fl
of H(m) previously observed in numerical studies~e.g.,
@1,17#!.

Consider a ‘‘near zero mode’’ forH(m):

H~m!2c'0. ~4.1!

If e in the smoothness condition~1.1! is small thenE8'0 in
Eq. ~3.10!, and Eq.~4.1! becomes~recall Cm512Rm)

F(
m

Sm
2 1S 2m1(

m
~12Cm! D 2Gc'0. ~4.2!

SinceSm
2 >0 it follows thatSmc'0 for m51,...,2d and con-

sequently, by Eq.~3.5!, Cm
2 c5(12Sm

2 )c'c, which implies
that Cmc'(21) j mc for j m50 or 1. Then Eq.~4.2! reduces
to

05'S 2m1(
m

~12Cm! D 2

'S 2m1(
m

@12~21! j m# D 2

c, ~4.3!

which implies that

m'(
m

@12~21! j m#. ~4.4!

Thus we see heuristically that whene is small the only val-
ues ofm for which H(m) can have ‘‘near zero modes’’ ar
m50,2,4,...,2d. This makes plausible the result of the prev
ous section, namely, that whenm is away from these value
a nonzero lower bound onuH(m)u should exist.

In fact the above heuristic approach can be further de
oped to get an alternative rigorous derivation of the bou
~2.2! @18#. However, the argument is technically more com
plicated than the one in Sec. III and does not lead to sha
bounds, so we do not present it here.

We now proceed to study the spectral flow ofH(m). For
this it is useful to introduce the operatorsTm defined by2

~Tm!xy5g5gm~21!nmdxy ~nm5xm /aPZ!. ~4.5!

2These have proved useful in previous lattice fermion conte
see, e.g.,@13# and the references therein.
9-5
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m
0 1 2 3 4 76

FIG. 2. Illustration of the spectral flow associated with a typical eigenvector family ofH(m) of the kind discussed in the text in
dimensiond54: A crossing nearm50 with 1 sign is associated with four crossings nearm52 with 2 sign, six crossings nearm54 with
1 sign, four crossings nearm56 with 2 sign, and one crossing nearm58 with 1 sign.
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These have the following properties:Tm
2 521, TmTn

52TnTm for mÞn, @Tm ,gnSn#50, CmTm52TmCm ,
@Tm ,Cm#50 for mÞn, andTmg552g5Tm . Using these we
find

H~m!Tm52Tm@H~m!12g5Cm# ~no sum overm!.
~4.6!

By Eq. ~3.2! @H(m),Cm#'0 whene is small, so the eigens
paces ofH(m) can be decomposed into approximate eige
paces for theCm’s. That is, for eigenvectorsc(m) of H(m)
with H(m)c5l(m)c(m) we can assume thatCmc(m)
'cmc(m). The eigenvaluescm are independent ofm since
Cm is independent ofm and has a discrete spectrum. The
by Eq. ~4.6!,

H~m!Tmc~m!

52TmH~m22cm!c~m!~no sum overm!

~4.7!

Set cm(m)ªTmc(m22cm). It follows from Eq. ~4.7! that
cm(m) is an approximate eigenvector forH(m) with eigen-
value'2l(m22cm). Similarly, we find

H~m!cm1 ...mp
~m!

'~21!pl@m22~cm1
1...cmp

!#cm1 ...mp
~m!,

~4.8!

where cm1 ...mp
(m)ªTm1

¯Tmp
c@m22(cm1

1...1cmp
)#,

when them j ’s are all mutually distinct.
Now, if l(m) crosses zero nearm50 then by our previ-

ous argument@recall Eq. ~4.4!# cm'(21) j m with (m(12
(21) j m

…'0, i.e.cm'1 for all m, and Eq.~4.8! becomes

H~m!cm1 ...mp
~m!'~21!pl~m22p!cm1 ...mp

~m!,
~4.9!

i.e., cm1 ...mp
(m) is an approximate eigenvector forH(m)

whose approximate eigenvaluel(21)pl(m22p) crosses
zero nearm52p. Furthermore, the sign of the crossing
(21)p relative to the sign of the crossing of zero byl(m)
near m50. We note the following.~i! If $m1 ,...,mp%
Þ$n1 ,...,np% thencm1 ...mp

(m) andcn1 ...np
(m) are approxi-
06500
-

,

mately orthogonal since they are approximate eigenvec
for the Cm’s with different eigenvalues.~ii ! cm1 ...mp

(m) is
unchanged up to a sign under a change of ordering of
m j ’s ~sinceTmTn52TnTm for mÞn). Hence we can assum
that them j ’s are ordered so thatm1,¯,mp . ~iii ! If c̃(m)
is an eigenvector forH(m) whose eigenvaluel̃(m) crosses
zero at some valuem0 then by Eq. ~4.4! m0'(m@12

(21) j m# whereCmc̃(m)'(21) j mc̃(m) for j m50 or 1. Any
such eigenvector arises in the way described above,
c̃(m)5cm1 ...mp

(m)5Tm1
¯Tmp

c(m22p). Indeed, we set

c(m)5(21)pTm1
¯Tmp

c̃(m12p) with the m j ’s being the

m’s for which j m51. Then by Eq.~4.8! c(m) is an approxi-
mate eigenvector forH(m) whose eigenvaluel(m) is '0 at
some value ofm near zero.~To see this, recallT m

2 521.)
Thus we have heuristically established the following. T
eigenvectors ofH(m) whose eigenvalues cross zero at so
value ofm can be naturally grouped into sets of 2d elements.
One of the eigenvectorsc(m) has an eigenvaluel(m)
crossing zero nearm50 with crossing sign6. There ared
eigenvectorscd(m) with eigenvalues crossing zero nearm
52 with sign7, and more generallyd!/ @p!(d2p)! # eigen-
vectorscm1 ...mp

(m), m1,¯,mp , with eigenvalues cross

ing zero nearm52p with crossing sign7(21)p for p
51,2,...,d. This is precisely the spectral flow property o
H(m) found in numerical studies in two and four dimensio
@1,17#. An illustration of the spectral flow associated wi
one such family in thed54 case is given in Fig. 2. The
Hermitian Wilson-Dirac operator in any gauge backgroundU
has the well-known propertyH(U,m)52H(2U,2d2m),
so thatH(m)5OH(U,2d2m)O21 for a certain unitary op-
eratorO ~see, e.g.,@2,17#!.3 Hence ifl(m) is an eigenvalue
for H(m) then2l(m) is an eigenvalue forH(2d2m). This
property must be manifested in the eigenvalues of the fam
of eigenvectors ofH(m) discussed above, and is also illu
trated in Fig. 2. Combining this spectral property ofH(m)
with the fact that the index of the overlap Dirac opera
equals21/2 times the spectral asymmetry ofH(m) @5,6#, an
immediate consequence is the relation index@Dov(m)#
52 index@Dov(2d2m)# which was emphasized in@7#.

3For O to exist the number of lattice sites along each edge ofTd

must be even.
9-6
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V. APPLICATIONS OF THE BOUNDS

We have already seen in Sec. II how the general bou
~2.2! lead to a localization result on the real spectrum of
Wilson-Dirac operator, thus providing an analytic und
standing of the numerical results for the real spectrum
‘‘smooth’’ gauge backgrounds. In this section we discuss
plications of the bounds to overlap fermions@6#. The general
bounds allow analytic results on the overlap Dirac opera
Dov which were previously derived for the 0,m,2 to be
extended to the generalm case (mÞ0,2,4,...,2d). Although
0,m,2 is the physically relevant case~i.e., the case where
Dov is free from spurious fermion species! this restriction
appears quite unnatural and it is of some theoretical inte
to know the properties ofDov in the regions 2p,m,2p
12, p51,2,...,d, where the extra fermion species a
present.

A. Locality and smooth gauge field dependence
of the overlap Dirac operator

With the bounds~2.2! the arguments of Ref.@3# for the
locality of Dov and its smooth dependence on the latt
gauge field carry over unchanged from the 0,m,2 case to
the k21,m,k11 case (k51,3,...,2d21) after choosing
e,@12(k2m)2#/ck so that the lower bound onuH(m)u is
greater than zero. The size of the exponential decay cons
in the locality bound forDov depends on the size ofck , but
for the existence of the locality bound it is enough to kno
that Eq.~2.2! holds for a specific value ofck , which is in-
dependent of the lattice gauge field.

B. Evaluation of the classical continuum limit of the axial
anomaly and index of the overlap Dirac operator

The rigorous evaluation of the classical continuum lim
of the axial anomaly4 and the index of the overlap Dira
operator at general values ofm requires the existence of
nontrivial lower bound onuH(m)u when the lattice is suffi-
ciently fine@10,11#. We claimed in@10,11# that such bounds
exist and promised to provide them in a forthcoming pap
The present paper delivers on that promise. Again, the ac
values of theck’s do not matter: The lattice transcript of
smooth continuum gauge field automatically satisfies
smoothness condition~1.1! for any e.0 when the lattice is
sufficiently fine~see@11# for the rigorous justification of this
point!, so all that matters for the classical continuum lim
calculations is that the bounds hold for some choice ofck’s
which are independent of the gauge field and lattice spac

C. Topological phase structure of the overlap Dirac operator

In the finite volume d-torus case the index ofDov
5(1/a)@11g5H(m)/uH(m)u# is a well-defined integer; it is

4It may sound contradictory to speak of the ‘‘classical’’ continuu
limit of a purely quantum quantity such as the axial anomaly, so
us explain the meaning: ‘‘Classical’’ refers to the fact that one c
siders thea→0 limit of the axial anomaly with the lattice gaug
field given by the lattice transcript of asmooth continuum gaug
field. See@10,11# for the details.
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locally constant inm but may jump at the values at whic
H(m) has zero mode~s!. ThusDov has different topological
phases and the value ofm should be chosen so thatDov is in
the ‘‘correct’’ phase. This issue has previously been stud
both analytically and numerically in@7# and numerically in
@8#. However, the analytic arguments in@7# are problematic
since they involve treating topologically nontrivial fields a
perturbations of the trivial gauge fieldU51. On the other
hand, the bounds~2.2! provide rigorous nonperturbative in
sight into the topological phase structure when the latt
gauge fields are required to satisfy the smoothness cond
~1.1! with e,1/ck for all k51,3,...,2d21: they imply that
there are distinct topological phases forDov , with each
phase characterized bym being in one of the open interval
]k2A12cke,k1A12cke@ . The result of@11# states that for
SU(N) gauge fields on thed-torus (d52n,n.1), or U~1!
gauge fields on the two-torus, index(Dov) coincides with the
index of the continuum Dirac operator in the classical co
tinuum limit provided 0,m,2.5 This indicates that the
‘‘proper’’ topological phase forDov is the one wherem is in
the interval ]12A12c1e,11A12c1e@ . We denote
index(Dov) by Q when Dov is in this phase. A complete
description of the topological phases forDov when the
smoothness condition~1.1! is imposed is now as follows. Fo
m<0, Dov is in a topologically trivial phase@i.e.,
index(Dov)50 in any gauge background# @5#. For 0,m
<12A12c1e, Dov is not in a distinct topological phase
index(Dov) can be any value from 0 toQ depending on the
background gauge field. In a given gauge background, am
is increased from 0 to 12A12c1e, the total spectral flow of
H(m) is Q. This is due to the well-known fact that at eac
crossing of zero by an eigenvalue ofH(m) the index ofDov
changes by71 depending on the sign of the crossing. F
12A12c1e,m,11A12c1e, Dov is in the ‘‘proper’’ to-
pological phase where index(Dov)5Q. For 11A12c1e
<m<32A12c3e, Dov is no longer in a distinct topologica
phase and the spectral flow ofH(m) asm increases through
this region is 2dQ. For 32A12c3e,m,31A12c3e,
Dov is in another distinct topological phase wit
index(Dov)5(12d)Q. The pattern continues asm in-
creases: Fork2A12cke,m,k1A12cke, Dov is in a dis-
tinct topological phase with index(Dov)5((p50

(k21)/2

(21)p@p
d#)Q. Then, asm increases fromk1A12cke to k

122A12ck12e, Dov is no longer in a distinct topologica
phase, and the spectral flow ofH(m) through this region is
(21)(k11)/2@ (k11)/2

d #Q. Finally, afterm has increased to 2d
we have index(Dov)5((p50

d (21)p@p
d#)Q5(121)dQ50

andDov is back in a topologically trivial phase, in which
remains for allm>2d.

The above description of the topological phase struct
of Dov is compatible with the results of previous numeric
studies in two and four dimensions@7,8#. To put the above
analytical argument on a completely rigorous footing,t
-

5This was shown in@11# in the case of the four-torus, but th
argument generalizes straightforwardly to the generald52n-torus.
9-7
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rigorous derivation of the heuristic result of Sec. IV for the spectral flow ofH(m) is required. This remains as a problem f
future work. We note, however, that further evidence for the validity of this description comes from the result of@11#, which
states thatin the classical continuum limit

index~Dov!5H S (
p50

~k21!/2

~21!pFp
dG D Q for k21,m,k11 ~k51,3,...,2d21!,

0 for m<0 and m>2d,
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whereQ is the index of the continuum Dirac operator.
A generalization of the overlap Dirac operator has be

presented in@19# and it would also be of interest to establis
the topological phase structure of this operator. For t
bounds on the generalized Hermitian Wilson-Dirac opera
for generalm are needed. A bound has already been deri
in @20# for 0,m,2 by a generalization of the argument
@4#. It is plausible that bounds for generalm can be derived
by a generalization of the argument in the present paper.
leave this as a potential topic for future work.

D. Instanton size dependence of the real spectrum of the
Wilson-Dirac operator in an instanton background

Approximate instantons on the lattice can be obtained
ther through a cooling procedure@21# or by taking an appro-
priate lattice transcript of a continuum instanton fie
@22,17#. We will focus on the latter case. In this case nume
cal studies have shown that the real eigenvalues ofDw are
well localized around 0,2,...,2d @or, equivalently, the cross
ings of zero by eigenvalues ofH(m) occur close to these
values# when the instanton is large at the scale of the latt
spacing, but become delocalized as the instanton size is
creased@17#. The standard explanation of this is that insta
tons which are small at the scale of the lattice spacing are
slowly varying at this scale in the region in which they a
localized, so their lattice transcripts are ‘‘rough’’ in this r
gion. On the other hand, large instantonsare slowly varying,
so their lattice transcripts are ‘‘smooth.’’ The bounds~2.2!
can be used to give a more precise version of this intui
explanation as follows. A continuum instanton field cente
at x(0) has the form@23#

Am~x!52ha
mn

xn2xn
~0!

ux2x~0!u21r2 ta, ~5.1!

whereha
mn is the ’t Hooft symbol,ta are generators of the

SU~2! subgroup, and the parameterr specifies the size of the
instanton. Its curvature is

Fmn~x!524ha
mn

r2

~ ux2x~0!u21r2!2 ta. ~5.2!

When putting the instanton on the lattice with period
boundary conditions it is important to transform~5.1! to a
singular gauge before taking the lattice transcript~and the
lattice volume must also be sufficiently large that the sin
lar gauge instanton is close to vanishing at the bound!
06500
n
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r
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e
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e
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@22,17#. iFmn(x)i is not affected by this though, since it i
gauge invariant. From Eq.~5.2! we see thatiFmn(x)i di-
verges atx(0) in the limit of small instanton sizer. Hence for
small r the lattice transcripted field generally violates t
smoothness condition~1.1! since i12U(p)i5ia2Fmn(x)
1O(a3)i becomes large for plaquettesp close tox(0). @This
is assuming there is no special cancellation betw
a2Fmn(x) and theO(a3) term; generically there is no reaso
to expect such a cancellation to occur, and in particular w
the lattice spacing is smalla2Fmn(x) will dominate the
O(a3) term.# Then the localization result of Sec. II for th
real spectrum ofDw breaks down.6

On the other hand, from Eq.~5.2! we get a bound

iFmn~x!i<
4iha

mntai
r2 ~5.3!

showing thatiFmn(x)i vanishes uniformly in the limit of
larger. Consequently, for larger the smoothness conditio
~1.1! will be satisfied generically on sufficiently fine lattice
thereby guaranteeing localization of the real spectrum ofDw
according to the result of Sec. II.

These considerations can be extended to more gen
gauge fields describing a collection of topologically charg
‘‘lumps’’ ~e.g., instanton–anti-instanton configuration
multi-instantons, instanton gases!. The topological charge o
a lump is given by

Qlump5
1

32p2 E
lump

d4x emnsrtrFmn~x!Fsr~x!'61.

~5.4!

If the lump size is small theniFmn(x)i must be large in the
lump region in order that the magnitude of the integral
Eq. ~5.4! can be'1. The smaller the lump is, the large
iFmn(x)i must be in the lump region. This generically lea
to violation of the smoothness condition~1.1!, as before. On
the other hand, if the lump size is large,iFmn(x)i is not

6More precisely, the assumptions under which the localization w
derived break down. This does not necessarily imply that the lo
ization result itself must break down, although it is not surprisi
that it should do so. We can turn things around and interpret
numerical results for the delocalization of the real spectrum in sm
instanton backgrounds as indicating that, in general, a smooth
requirement of the form~1.1! is not only sufficient but also a nec
essary requirement for the real spectrum ofDw to be localized.
9-8
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GENERAL BOUNDS ON THE WILSON-DIRAC OPERATOR PHYSICAL REVIEW D68, 065009 ~2003!
forced to be large in any particular region. Generically,
can expectiFmn(x)i to decrease with increasing lump siz
and to vanish in the large lump limit. Then, by the sam
argument as before, localization of the real spectrum ofDw
will generically hold in gauge backgrounds describing top
logical lumps when all the lumps are sufficiently large a
the lattice is sufficiently fine.

VI. SUMMARY

We have derived general lower bounds on the magnit
of the spectrum of the Hermitian Wilson-Dirac operator:

uH~m!u>A12cke2uk2mu for k51,3,...,2d21,

wheree is the constraining parameter in the smoothness c
dition ~1.1! ~and the Wilson parameter isr 51; the generali-
zation to arbitraryr .0 is given in the Appendix!. Thus we
have supplemented the previous bounds for the ‘‘physic
case k51 @3,4# with bounds for the ‘‘doubler’’ casesk
53,5,...,2d21. The bounds were shown to hold with

ck5c81ck9 ,

c85~11& !d~d21!/2,

ck952d23~d21!~d12!@~k2d!2211d#.

The bounds are rather weak due to the large size ofck9 ,
which is due to the large number of terms in the express
~3.19! for x̃(k). In practice, it is often possible to get sharp
bounds~i.e., smallerck9) by considering simplified expres
sions forx̃(k). For example, in dimensiond54 we saw how
such simplifications lead to bounds withc195c79512 andc39
5c59542. In the k51 case this is the same as the val
obtained in@3#. It is plausible that bounds with even small
ck9 can be derived by an extension of the arguments of@4#
~which gavec1956) but we did not pursue this. For the a
plications considered in this paper it suffices simply to sh
that bounds of the above form exist, without necessa
finding sharp ones.

As discussed in Sec. II, the lower bounds onuH(m)u im-
ply a localization result for the real eigenvalues of the us
Wilson-Dirac operator: the eigenvalues ofDw ~in units of
1/a) are localized around the values 0,2,4,...,2d when e is
sufficiently small.~A precise formulation of this statemen
was given in Sec. II.!

The bounds allow previous results on the overlap Di
operator to be extended from the 0,m,2 case to genera
values ofm (mÞ0,2,...,2d). This includes evaluation of the
classical continuum limit of the axial anomaly and ind
@10,11#, and the results of@3# on locality of the overlap Dirac
operator and its smooth dependence of the gauge field.
bounds were also seen to imply the existence of topolog
phases for the overlap Dirac operator when attention is
stricted to the space of lattice gauge fields satisfying
~1.1! with e,1/ck for all k. A complete description of the
06500
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e
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l’’

n

y

l

c

he
al
e-
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topological phase structure was obtained by combining
bounds with the heuristic result of Sec. IV on the spect
flow properties ofH(m).

Finally, we pointed out how the bounds can be used to
a more precise understanding of why the real spectrum of
Wilson-Dirac operator in an instanton background is gen
ally localized around 0,2,...,2d when the instanton size i
large but becomes delocalized when the instanton is sma
the scale of the lattice spacing.~The argument also applies t
more general gauge fields describing a collection of ‘‘top
logical lumps.’’! Our argument for delocalization of the re
spectrum in small instanton backgrounds involved an
sumption, namely, that, generically, the smoothness co
tion ~1.1! is not only sufficient but also anecessarycondition
for localization of the spectrum. Numerical studies~e.g.,
@17#! seem to indicate that this is the case, but it would
interesting if it could be proved analytically. This is releva
for the issue of chiral symmetry breaking in lattice gau
theory since it means that the contribution to the density
near-zero eigenvalues of the Dirac operator from gauge fi
describing small topological lumps is reduced on the latti
Is this reduction an unwanted lattice artifact, or is it a gen
inely physical feature revealed by lattice regularization~in
the same way that lattice and other regularizations revea
presence of anomalies that one would not have expe
from formal continuum considerations!?
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APPENDIX: BOUNDS IN THE CASE OF GENERAL
WILSON PARAMETER rÌ0

Using Eqs.~3.6!–~3.8!, a simple calculation gives@5#

H~m,r !25H~0,r !222mr2(
m

Rm1r 2m2. ~A1!

It follows that

uH~m,r !u>rm when m<0. ~A2!

It is well known that a lower bound onuH(m)u is also a
lower bound onuH(2d2m)u; hence Eq.~A2! implies

uH~2d1m,r !u>rm when m>0. ~A3!
9-9
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To see this explicitly, writeH(m,r ) out according to the
definitions~3.1! and ~3.8!:

H~m,r ,U !5g5S rd2rm1(
m

1

2
@gm~T1m2T2m!

2r ~T1m1T2m!# D . ~A4!

It follows that

H~2d2m,r ,U !52g5S rd2rm1(
m

1

2
$gm@~2T1m!

2~2T2m!#2r @~2T1m!1~2T2m!#% D .

~A5!

Since (T1m)xy5Um(x)dx,y2m̂ and (T2m)xy5Um(x
2m̂)21dx,y1m̂ , the replacementT6m→2T6m is equivalent
to U→2U. Hence Eq.~A5! can be written as

H~2d2m,r ,U !52H~m,r 2U !. ~A6!

The operatorRm(U)5121/2(T1m1T2m) remains positive
underU→2U, so the argument leading to Eq.~A2! remains
valid under this replacement and we getuH(2d1m,r ,U)u
5uH(2m,r ,2U)u>rm for m>0 as claimed in Eq.~A3!.

It remains to derive the generalization of the bounds~2.2!
in the generalr case. In this case the relations~3.10!–~3.13!
become

H~m,r !25(
m

Sm
2 1r 2S 2m1(

m
RmD 2

1E8~r !, ~A7!

where E8(r )5(mÞn(gmgn1/2@Sm ,Sn#1 ir gm@Sm ,Cn#) has
a bound iE8(r )i<c8(r )e. A simple generalization of the
argument in @4# shows that this bound is satisfied wi
c

06500
c8(r )5(11r&)d(d21)/2. Following @16,4# we also note
that for an eigenvaluel(m,r )5^c(m,r ),H(m,r )c(m,r )&
we have (d/dm)l(m,r )52r ^c(m,r ),g5c(m,r )& and con-
sequently u(d/dm)l(m,r )u<r , which implies uH(m,r )u
>uH(m8,r )u2r um82mu.

We consider the casesr<1 and r>1 separately. In the
former case Eq.~A7! together with Eq.~3.10! gives

H~m,r !25r 2F(
m

Sm
2 1S 2m1(

m
RmD 2G1~12r 2!(

m
Sm

2

1E8~r !>r 2@11x~m!#2c8~r !e. ~A8!

This together with Eq.~3.15! gives H(k,r )2>r 2$12@ck9
1c8(r )/r 2#e%, and consequently, settingck(r )5ck9
1c8(r )/r 2,

uH~m,r !>rA12ck~r !e2r uk2mu, k51,3,...,2d21.
~A9!

In the r>1 case we rewrite Eq.~A7! as

H~m,r !25(
m

Sm
2 1S 2m1(

m
RmD 2

1~r 221!S 2m1(
m

RmD 2

1E8~r !

>11x~m!2c8~r !e, ~A10!

and it follows from Eq.~3.15! that

uH~m,r !u>A12 c̃k~r !e2r uk2mu, k51,3,...,2d21,
~A11!

with c̃k(r )5ck91c8(r ).
Note that the bounds~A9! for ther ,1 case and~A11! for

the r .1 case are both weaker than the bound~2.2! for the
r 51 case.
ys.

ys.
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