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In ideal magnetohydrodynamics (MHD), the Richtmyer—Meshkov instability can be suppressed by
the presence of a magnetic field. The interface still undergoes some growth, but this is bounded for
a finite magnetic field. A model for this flow has been developed by considering the stability of an
impulsively accelerated, sinusoidally perturbed density interface in the presence of a magnetic field
that is parallel to the acceleration. This was accomplished by analytically solving the linearized
initial value problem in the framework of ideal incompressible MHD. To assess the performance of
the model, its predictions are compared to results obtained from numerical simulation of impulse
driven linearized, shock driven linearized, and nonlinear compressible MHD for a variety of cases.
It is shown that the analytical linear model collapses the data from the simulations well. The
predicted interface behavior well approximates that seen in compressible linearized simulations
when the shock strength, magnetic field strength, and perturbation amplitude are small. For such
cases, the agreement with interface behavior that occurs in nonlinear simulations is also reasonable.
The effects of increasing shock strength, magnetic field strength, and perturbation amplitude on both
the flow and the performance of the model are investigated. This results in a detailed exposition of
the features and behavior of the MHD Richtmyer—Meshkov flow. For strong shocks, large initial
perturbation amplitudes, and strong magnetic fields, the linear model may give a rough estimate of
the interface behavior, but it is not quantitatively accurate. In all cases examined the accuracy of the
model is quantified and the flow physics underlying any discrepancies is examined. © 2009
American Institute of Physics. [DOI: 10.1063/1.3194303]

I. INTRODUCTION netic field and p, is the initial pressure in the unshocked
regions of the flow. To demonstrate the suppression of the
instability in this geometry, the flow was simulated both in
the presence and absence of a magnetic field. For both simu-
lations, M =2, p,/p;=3, 13/ A\=0.1, and y=5/3. In the simu-
lation in which a magnetic field is present, S~'=1. The nu-
merical method used is described in Sec. IIID. Time
sequences of density and vorticity fields from the simulations
without, (i), and with, (ii), an initial magnetic field are shown
in Fig. 2. In (i), the transmitted and reflected shocks are
clearly visible in the density fields. Note the presence of the
transverse waves that are generated downstream of the lead-
ing transmitted and reflected shocks in each simulation. It
can be seen from Fig. 2(i) that the vorticity generated by the
shock refraction process remains at the interface. This causes
the interface to roll up into the mushroom shape characteris-
tic of the hydrodynamic RMI. In (ii), the transmitted and
reflected fast shocks that are produced by the interaction are
clearly visible in the density fields. The tangential velocity

The Richtmyer—Meshkov instability (RMI) is important
in a wide variety of applications1 including inertial confine-
ment fusion? and astrophysical phenomena.3 In these appli-
cations, the fluids involved may be ionized and hence be
affected by magnetic fields. Samtaney4 demonstrated, via nu-
merical simulations, that the growth of the RMI is sup-
pressed in the presence of a magnetic field. The particular
flow studied was that of a shock interacting with an oblique
planar contact discontinuity (CD) separating conducting flu-
ids of different densities within the framework of planar
ideal magnetohydrodynamics (MHD). It was shown that the
suppression of the instability is caused by changes in the
shock refraction process at the CD with the application of a
magnetic field.” These changes prevent the deposition of cir-
culation on the CD.

A more widely studied flow results from a shock wave
accelerating a density interface with a single-mode sinu-
soidal perturbation in amplitude. Our goal is to understand

the effect of a magnetic field on this flow when conducting
fluids are involved. The magnetic field is again aligned with
the motion of the shock. The initial condition for this flow is
illustrated in Fig. 1(a). It is characterized by the incident
shock sonic Mach number M, the density ratio across the
CD, p,/py, the ratio of the CDs initial amplitude to its wave-
length, 7,/\, the ratio of specific heats, 7, and the non-
dimensional strength of the applied magnetic field,
B '=B%/(2p,). Here B is the magnitude of the applied mag-
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jumps across these shocks are considerably smaller than
those across the slow shocks; thus they are not as visible in
the vorticity fields. The transmitted and reflected slow shocks
have small density jumps across them and therefore do not
feature prominently in the density fields. It can be seen from
the vorticity fields, however, that the majority of the vorticity
generated during the shock refraction process is transported
away from the interface via the tangential velocity jumps
across the slow shocks. In the ideal case, this leaves the
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FIG. 1. (a) Initial condition geometry for compressible RMI. (b) Geometry
for incompressible model problem.

interface with zero circulation per unit length, which drasti-
cally alters its evolution. This is evident from a comparison
of Fig. 2(c)(i) and Fig. 2(c)(ii), where the interface from the
simulation with a magnetic field present exhibits none of the
roll-up seen in the hydrodynamic case.

A second case of interest occurs when the initial mag-
netic field is parallel to the interface. In this case a jump in
tangential velocity across the interface is permitted, allowing
the majority of the vorticity generated by the shock refrac-
tion process to remain on the interface. Thus the instability
may not be suppressed by transport of vorticity. An incom-
pressible model for this case was formulated by Cao et al.’
They determined that when the magnetic field is parallel to
the interface and there is no mean shear, the instability is
suppressed by a Lorentz force that opposes the perturbation
of the interface and no discontinuous waves are generated.
As the characteristics of the flow in this case differ substan-
tially from that shown in Fig. 2, we do not consider it any
further here.

As a model for this flow in the case where a magnetic
field aligned with the shock motion is present, we examined
the growth of a sinusoidally perturbed interface separating
incompressible conducting fluids that is impulsively acceler-
ated at t=0.” The setup for the model problem is illustrated
in Fig. 1(b). This problem is characterized by p,/p*, p,/p",
no/N\, B, and the normalized magnitude of the impulse,
V\p*/po. Appropriate values of V and p* are computed from
the corresponding shock driven flow; V is the change in
mean interface velocity produced by the shock interaction
process, while p* is selected to be the post-interaction value
of p;. We shall subsequently refer to this as the incompress-
ible linear theory (ILT). The ILT differs from the full MHD
RMI in that it is incompressible, linear, and driven by an
impulse rather than by the impact of a shock wave. Here, the
performance of the model is assessed for a variety of cases
by comparing it to the results of compressible numerical
simulations. In each case, an impulse driven linearized (IDL)
simulation, a shock driven linearized (SDL) simulation, and
a nonlinear (NL) simulation were carried out. This allows the
effects on the flow of compressibility, shock acceleration,
and nonlinearity to be assessed systematically: differences
between the ILT and an IDL simulation are mainly due to the
effects of compressibility, differences between IDL and SDL
simulations are due to the effects of shock rather than impul-
sive acceleration, and differences between SDL and NL
simulations are due to NL effects.

It is expected that, for fixed 7, the effects of compress-
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FIG. 2. (Color online) Negative vorticity and density fields from compress-
ible simulations with M=2, p,/p,=3, 7,/A=0.1, y=5/3, and (i) B=0 or (ii)
B=1at (a) t/1'=0.2, (b) t/r*=0.8, and (c) ¢/1*=3.4. The top half of each plot
shows vorticity while the bottom half shows density. At the time of these
images, the incident shock has interacted with the interface.

ibility increase with shock Mach number M, while NL ef-
fects increase with the initial amplitude of the interface 7.
From the ILT, the propagation speeds of the fronts that carry
circulation away from the interface scale like the Alfvén
speed, C4,=B/Vp. This must be small compared to the sound
speed, which corresponds to B=2a4>/ yCi being large, if
these fronts are not to interact with the shocks present in the
compressible case. Thus it is anticipated that the ILT will be
most accurate for a flow characterized by small M, small 7,
and large B. The performance of the model for such a set of
parameters is analyzed as baseline case. We then examine
how the performance of the model is affected as M, 7,, and
B! are increased.

In the sequel, we first present the incompressible model
for the MHD Richtmyer-Meshkov flow, including features
not previously discussed. The numerical methods and simu-
lation setups utilized are described next. Following this, we
analyze the results of all methods for a baseline case from
which we began our investigations. In this section, we
present many finer details of the MHD Richtmyer—Meshkov
flow that were not discussed in previous works. The effects
of increasing shock strength, magnetic field strength, and
perturbation amplitude are then investigated sequentially. Af-
ter examining the performance of the model for a case where
all of these parameters are large, we present the conclusions
that have arisen from this investigation.
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Il. INCOMPRESSIBLE MODEL

The derivation of the incompressible model for the
MHD Richtmyer—Meshkov flow was presented in Wheatley
et al.” To derive the model, the linearized equations of ideal,
incompressible MHD are solved in a noninertial reference
frame that has acceleration V&(¢) in the z-direction. Here,
8(1) is the Dirac delta function and V<<c¢. The equations are
linearized about a base flow that results from the impulsive
acceleration of an unperturbed interface. Our choice of ref-
erence frame results in the horizontal velocity (w) of the base
flow being zero for all time. The resulting linearized equa-
tions are subject to an impulsive forcing that is nonzero only
in a small region between z=0 and the perturbed interface
location z=h(x,t)=n(t)e™(h<\). All perturbations are as-
sumed to have the form ¢'(x,z,t)=4(z.t)e’™. Subject to
boundary and initial conditions, the linearized equations can
be solved to yield the following solutions for w in each fluid
(see Ref. 7 for details):

wy =[a,; (e’ + H(t + 2/ Cyy) ey (1 + 2/Cay) 1™, (1)

wo=[by(e™ + H(t — 2/Cp)dy(t — 2/ Cpy) Je™, (2

where H(z) is the Heaviside function. In the above expres-
sions,

(=K {—Za%ealt
G =54 (a;-0)*+ 7
i)‘i( (o+ i’f)(m +.o+ iT)e((’+iT)t):| | &)
iTlo+it— a;)
2a5e®
by(t)=Ky| — 55—
2() A|:(a2_0_)2+7_2
+m< (O’+i7.')(af2 +'0'+i7')e(‘f+i7)t>}’ @
io+iT— ay)
(a; + ap)e™’ ( (y+0o+ iT)e("”T)’)]
1)=K + ,
i) C[(al—o)2+7'2 iflo+it— )
(5)
(a; + ay)e™? ((al + 0+ iT)e("”")’)]
d,(t) =K +R R
(1) D{(a2—0)2+72 ilo+itT— ay)
(6)
where
Bk Bk Bk(Vp; + o)
a ==, wm=—7—, o=———, (7)
Vpi P2 P+ p2
[B*k*(p1 + py = 2\pipy)]"?
r= , )

p1+p2

and
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FIG. 3. Profiles of Ww(z,)Vp*/p, at t/t*=0, t/t*=1, and t/t*=4 for p,/p*
=1.483 72, p,/ p*=4.431 59, V\p*/ pg=0.319 125, 7,/A=0.007 992 76, and
B=16. Here *=\\p*/p,. The maxima of #(z,7) coincide with the Alfvén
fronts.
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The Atwood number A= (p,—p;)/(p,+p;). The above ex-
pressions are not valid if 7=0, but this requires that either
B=0, k=0, or p;=p,, which corresponds to cases that are not
of interest here.

A. Initial solution and growth rate

Profiles of w(z,7) at various times are shown in Fig. 3
for one set of parameters. The initial (r=0%) velocity
distribution,

W(X,Z,O+) - ﬂOkVAe_k|Z|+ikx, (9)

is identical to the steady velocity distribution that arises from
the hydrodynamic (B=0) case. This implies that the initial
growth rate of the interface, which to leading order is given
by w;(0,0), is unaffected by the presence of a magnetic field.
Indeed, from Eq. (1) or Eq. (2) it can be shown that this
initial growth rate is

91 = nokVA, (10)
It | =0

as in the hydrodynamic case.” This is consistent with the fact
that the baroclinic generation of vorticity w is unaffected by
the presence of the magnetic field.

B. Circulation distribution

On any interface with unit tangent f, the circulation per
unit length Au is given by

Au=[u-f].

For the interfaces in our problem, u-f=u to leading order.
Using the fact that u=iDw/k, where D denotes a derivative
with respect to z,
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FIG. 4. (Color online) Negative vorticity field at ¢/t*=4 for p,/p*=1.483 72, p,/p*=4.431 59, VNp*/py=0.319 125, 7,/A=0.007 992 76, and B=16. Here

*=\Vp*/ p,.

Au=[u]= é[DW] = é[DvT}]eik".

Thus the gradient discontinuities in W seen in Fig. 3 indicate
the presence of interfaces that carry circulation on a half-
period. At r=0*, Fig. 3 shows that circulation is present on
the density interface at z=0. This was baroclinically gener-
ated during the impulsive acceleration of the interface. Away
from the interface the flow is irrotational at r=0%; thus the
total circulation in a half-period of the domain must be equal
to

Ty= é[m]zﬂ), =0 fom e®dx=4nVA. (11)
In MHD, the incompressible vorticity equation
a—w+(u-V)w:(w-V)u+M
ot p
+V><[(V><B)><B] (12)

p

has an additional term involving the magnetic field. The ad-
ditional term implies that, even in the absence of baroclinic
generation, vortex lines are not necessarily material lines as
they are in hydrodynamics. For > 0%, w is smooth around
z=0, indicating that the circulation has been removed from
the density interface. Instead, circulation is carried by two
fronts that propagate at the local Alfvén speed in each fluid.
These fronts correspond to the locations where the Heaviside
functions change magnitude.

In the smooth regions of the flow, the vorticity is given
by

du oJow i
w=—-—=—(D*w—-Kw).
dz  dx k

(13)
By substituting our solution for w into the above equation,
we find that the flow is irrotational upstream of the Alfvén
fronts in each fluid. Downstream of the Alfvén fronts, how-
ever, we find that the vorticity is nonzero. This is illustrated
in Fig. 4, which shows the vorticity field for one particular
case. Note that the vorticity decays exponentially down-
stream of each Alfvén front.

C. Interface behavior

The value of w(z,r) at z=0 is the growth rate of the
interface. From Fig. 3, it can be seen that as ¢ increases and
the Alfvén fronts propagate away from the interface, carrying
away the majority of the vorticity produced by the impulsive
acceleration, the growth rate of the interface decays to zero.
Thus the instability of the interface is suppressed and its
amplitude asymptotes to a constant value. For — o, the in-
terface amplitude tends to

” A V !/_ !/_
Moo = 770+f Ww(0,1)dt = 770[1 + E(\"Pz— \'pl)]. (14)
0

This shows that the change in interface amplitude is in-
versely proportional to B. Thus for B— 0, 7,,— %, which is
in agreement with the result from hydrodynamic linear sta-
bility analysis.8 Interestingly, 7., is independent of wave-
number. For finite times the interface amplitude is given by

t
7(t) = 1y + J w(0,7)dT = 1., — (1., — mp)e”" cos t,
0

(15)

where o and 7 are as defined in Egs. (7) and (8), respectively.

I1l. SIMULATION TECHNIQUES
A. Numerical method for linearized simulations

The linearized simulations presented here were carried
out using a method developed by Samtaney9 for obtaining
numerical solutions to the linearized ideal MHD equations
when the base flow is temporally evolving. In this method,
the equations of compressible ideal MHD are specialized to
two dimensions, x and z. The solution is then assumed to
have the form

U(x,z,1) = U%(z,1) + €U(z,1)exp(ikx),

where e<1, U°(z,1) is an unsteady one-dimensional base

flow, and el}(z ,Hexp(ikx) is the perturbation to the base
flow. A finite volume upwind approach is adopted to solve
for both the base flow and the perturbations. The equations
are integrated in time using a third order Total Variation Di-
minishing Runge—Kutta scheme and the fluxes are evaluated
using Roe’s method.
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FIG. 5. Illustration of the base flow for SDL simulations in the z-¢ plane.
The lines shown are the paths of the discontinuities in the flow. 7, T, and R
designate the incident, transmitted, and reflected shocks, respectively, while
CD designates the contact discontinuity.

B. Setup for shock driven linearized simulations

Let us first consider the initial conditions for the base
flow of a SDL simulation. Prior to the interaction of the
incident shock with the density interface, which is unper-
turbed in the base flow, we designate the quiescent condi-
tions to the left (z<<zj;) and right (z>z;;) of the interface as
states 1 and 2, respectively. The conditions downstream of
the incident shock are referred to as state 3. For given values
of v and the incident shock Mach number M, state 3 is
obtained from the normal shock relations for an ideal gas.
For the range of parameters considered herein, the interac-
tion of the incident shock with the interface generates a re-
flected shock and a transmitted shock. The conditions down-
stream of the reflected and transmitted shocks are referred to
as states 4 and 5, respectively. These states are shown in Fig.
5, which shows the paths of the discontinuities in the base
flow in the z-f plane.

In the initial condition for the base flow, the incident
shock is represented by a sharp discontinuity located at
Zehock=Zir—N/5. The flow is initialized to state 3 for
Z<Zghoek and state 1 for z> 7y, FOr 2> 240k, the base flow
density is set to

p°(x,0) = 5{(py + py) + (py — py)tanh[a(z — zip) |}

to represent the density interface. With this initial condition,
the base flow for a SDL simulation is the numerical solution
to the Riemann problem that arises from the interaction of a
shock with an unperturbed density interface. The only non-
zero perturbation at =0 is that in density, which approxi-
mates a delta function as follows:

exp[2a(z - z;) ]
{1 +exp[2a(z - zp) ]}

Here, « is a parameter that regularizes the sharp density in-
terface. It should be chosen judiciously such that the density
interface remains relatively sharp with its thickness generally
comparable to the numerical smearing of the shock front. As

p(z,0) == 2a(pg - pr) (16)

Phys. Fluids 21, 082102 (2009)

long as this condition is met, the results do not change sig-
nificantly when « is varied. For our simulations, a=80
worked satisfactorily. Note that the initial perturbation am-
plitude of the interface, 7,, has been scaled out of the prob-
lem. For comparison with the results of NL simulations and
the ILT, the scaled perturbations from the linearized simula-
tions must be multiplied by 7.

C. Setup for impulse driven linearized simulations

For IDL simulations, the base flow is initialized to state
4 for z<z; and state 5 for z>z;. These are the postshock
states from the Riemann problem described in Sec. III B. The
sharp interface between these two uniform states is approxi-
mated by hyperbolic tangent profile, with all quantities hav-
ing the form

q(z,0) = 3{q, + qr + (g — g)tanh[a(z - z;p) I},

where the subscripts L and R indicate values to the left and
right of the interface, respectively. The perturbations are ini-
tialized as described in Sec. III B. When scaling the pertur-
bations from IDL simulations for comparison with other re-
sults, the initial perturbation amplitude of the interface is
taken from the corresponding NL simulation immediately af-
ter the interface has been compressed by the passage of the
shock wave. These same postshock initial conditions are
used in the ILT.

D. Setup for nonlinear simulations

The NL simulations were carried out with a NL com-
pressible MHD solver developed by Samtaney. It uses the
eight-wave upwinding formulation of Powell'” within an un-
split upwinding method."" The solenoidal property of the
magnetic field is enforced at each time step using a projec-
tion method. A constrained transport step is then used to
remove divergence modes with a centered finite difference
representation. This uses the formulation prescribed by
Toth."? The setup for the NL simulations is as described in
Sec. I, except with different parameter values.

E. Characterization of interface behavior

In the linearized simulations, the interface corresponds
to the location where the density perturbation is maximum.
The interfacial growth rate 7 is approximated by the magni-
tude of the z-velocity perturbation at this location. The inter-
face amplitude 7, is then computed by numerically integrat-
ing 7. At time step N, 7, 1S given by

n=N
Min= Mo+ E ﬁnAtn’

n=1

where the subscript n denotes a quantity is evaluated at the
nth time step. For simulations where the interface is shock
accelerated, the time origin of the interface amplitude histo-
ries is shifted to the point where the amplitude is minimum.
This is done to allow direct comparison to the results arising
from an impulsive acceleration at t=0. The interface ampli-
tude histories obtained from the simulations must be quanti-
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tatively compared to the behavior from the ILT, which is
given by Eq. (15),

7(t) = oo — (90 — 139)€”" COS T1.

Here, 7. is the saturation value of the interface amplitude,
while o governs the saturation timescale. As |7/ <|o]| for p,
# p,, the oscillations due to the sinusoidal factor are not
highly visible. For the simulations, values of these param-
eters can be estimated by fitting the following function to the
amplitude histories:

M) = 70— (70 = 1)) cos (1 - 1). (17)

This is done using a NL least-squares fitting routine that
determines the values of 7., o, and ¢, that minimize the L,
norm of the residuals between the data from the simulations
and the fitted function. 7 is set to the appropriate value from
the ILT. If we attempt to determine 7 via the fitting routine,
values of o and 7 are determined such that the fitted function
captures the first of the long period oscillations that occur in
interface amplitude history from the NL simulation (7). It
is shown in Sec. IV, however, that these oscillations are due
to the pressure field induced by the interaction of transverse
waves downstream of the transmitted and reflected shocks or
the reflection of outgoing waves from the shocks. These
shocks are not present in the ILT; hence the oscillations
should not appear in a fitted function that has the same form
as the model # history.

IV. RESULTS
A. Results for a baseline case

As a baseline case, we will study a shock accelerated
interface with M=1.1, B=16, p,/p;=3, 71,/\=0.01, and
y=5/3. In Secs. IV B-IV D, we will investigate the effects
of M, B, and 7y/\ on the performance of the ILT by indi-
vidually varying them from their baseline values and com-
paring the results to those presented in this section. Note that
in all cases presented here, the reflected wave in the base
flow is a shock. We have also compared the ILT to simula-
tion results for cases where the reflected wave is a rarefac-
tion. The accuracy of the ILT for these cases was found to be
similar to that for the reflected shock cases. The linearized
simulations of the baseline case were carried out in the do-
main —10A=z= 10\, which was discretized into N,=3200
control volumes in the z-direction. The simulations were run
for N,=6000 time steps with a Courant—Friedrichs—Lewy
(CFL) number of A, At/Ax=0.5, where \,,,, is the maxi-
mum eigenvalue of the system, At is the time step, and Ax is
the side length of each control volume. All linearized simu-
lations discussed herein were carried out with the same do-
main, discretization, and CFL number, unless otherwise
noted. For the NL simulation of the baseline case, L,=12A\,
zi¢=7.06\, N, =128, and N,=3072, where L; is the length of
the domain in the i-direction. The simulation was run with a
CFL number of 0.7 for the duration T,/t*=5.6, which is
approximately double the time the ILT predicts for the inter-
face to reach 99% of its final amplitude, #99. All NL simula-
tions discussed here were run with L, =N/2 and this CFL
number for a duration that is approximately 299, unless oth-
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FIG. 6. Interface amplitude histories from the ILT and an IDL simulation,
both with p,/p*=1.19223, p,/p*=3.57529, V\p*/py=0.135324, 5y/\
=0.009 047 08, and B=16, and both SDL and NL compressible simulations
of a shock accelerated interface with M=1.1, B=16, p,/p;=3, 1,/A=0.01,
and y=5/3.

erwise noted. A NL simulation was also run with half the
resolution in each direction to establish the insensitivity of
the 7 history to the grid. It is important to note that as we are
solving a set of equations with no physical dissipation
mechanism to set a minimum length scale, we do not expect
uniform pointwise convergence toward the weak solution
with increasing resolution. Note that the 7 histories from the
NL simulations are filtered to remove spurious, time-step
scale oscillations before plotting.

1. Interface evolution

Figure 6 shows the # histories from the ILT and the three
simulations for the baseline case. The model % history is
given by Eq. (15). The values of 7., and o computed from
these are shown in Table I. The histories from the linearized
simulations deviate from both the ILT and the NL simulation
for a brief period just after the interface is accelerated. This
may be due to the approximate initial density perturbation
used in the linearized simulations, which is given by Eq.
(16). There is close agreement between the behavior of the
interface predicted by the ILT and the IDL simulation, with
the final interface amplitudes being within approximately
0.2% of each other. The values of o, which governs the time
to saturation, agree to within 7.2%. The main difference be-
tween the two histories is the presence of small amplitude
oscillations in the simulation result, the source of which will
be discussed in Sec. IV A 2. The amplitude of these oscilla-
tions appears to decay with time and they are also seen in the
histories from the SDL and NL simulations. Comparing the
histories from the IDL and SDL simulations gives an indica-

TABLE 1. Interface perturbation parameters from the ILT and simulations
corresponding to a shock accelerated interface with M=1.1, B=16,
po/p=3, 1y/A=0.01, and y=5/3.

Model IDL simulation SDL simulation NL simulation
Moo/ N 0.011 7237 0.011 746 5 0.011 6413 0.011 464 4
at* —1.389 82 —1.289 69 —1.42071 —1.314 02
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082102-7 The Richtmyer—Meshkov instability in MHD

tion of the effect of the interface being shock accelerated
rather than impulsively accelerated. The qualitative behavior
of the interface is similar in both cases, but the shock accel-
eration appears to result in a slight reduction in the growth of
the interface amplitude, with 7., being reduced by approxi-
mately 0.9%. In addition, the amplitudes from both the shock
driven simulations is decreasing slightly near the end of the
simulations. This is part of a long period oscillation. In the
hydrodynamic case, oscillations in growth rate are known to
be caused by the pressure field induced by the interactions of
transverse waves downstream of the transmitted and re-
flected shocks.! In addition, the oscillations may also be due
to the reflection of outgoing waves from the shocks, which
will be discussed in Sec. IV A 2. Comparing the histories
from the SDL and NL simulations indicates that the main
effect of nonlinearity on the evolution of the interface is a
significant decrease in its growth, with 7, being approxi-
mately 1.5% less in the NL simulation. The cause of the
lower interface amplitudes in the NL simulation appears to
be the low growth rates that occur immediately after the
acceleration of the interface, which are significantly lower
than those predicted by the ILT. Low growth rates at early
times also occur in the absence of a magnetic field." It was
observed that the growth rate is initially mitigated, then in-
creases close to the constant value predicted by the hydrody-
namic impulse model of Richtmyer.8 The results of com-
pressible linear models indicate that this behavior is typical
of the RMI' and is expected as the impulse model predicts
the asymptotic growth rate after the shocks are sufficiently
far from the interface.® The low growth rates at early times
do not significantly affect the extent to which the interface
develops in the hydrodynamic case as the growth rate is
then approximately constant until the interface enters the
NL phase of its development. When a magnetic field is
present, however, mitigation of the growth rate at early times
significantly reduces the final amplitude of the interface
as this is when the growth rate is predicted to be at its
maximum.

2. Velocity profiles

Profiles of u’ and w’ from the ILT and the IDL simula-
tion of the baseline case are shown in Fig. 7 for ¢/t*=4. The
model u' profiles are computed from the w' profiles using
the linearized continuity equation and the form of the pertur-
bations as follows:

1 ow’

ik 9z

!

The profiles of u’ and w' are plotted at locations where the
perturbation amplitudes are maximum, at x=\/4 and x=0,
respectively. Additional waves can clearly be seen in the pro-
files from the IDL simulation. The leading edges of these
waves propagate outward from the interface at the fast char-
acteristic speed in each fluid. In this case, where the waves
are propagating parallel to the base flow magnetic field, the
fast characteristic speed corresponds to the sound speed
a;=\ypo/ p;> while both the slow and intermediate cgaxacter—
istic speeds are equal to the Alfvén speed C,;=B/p;. It can
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FIG. 7. Profiles of (a) w’ at x=0 and (b) u’ at x=\/4 at t/t*=4 from the ILT
and the IDL simulation corresponding to a shock accelerated interface with
M=1.1, =16, p,/p,=3, 1,/A=0.01, and y=5/3.

be seen from Fig. 8(a) that the additional waves are com-
pressible as the density perturbations associated with them
are nonzero; hence they cannot be represented in the incom-
pressible linear model. The amplitudes of the velocity per-
turbations associated with the compressible waves are com-
parable to those associated with the model. Despite this, Fig.
6 shows that the ILT is able to predict the evolution of the
interface in the IDL simulation quite accurately. The reason
for this is that the behavior of the interface is governed by
the vorticity distribution and the compressible waves do not
have any vorticity associated with them, as can be seen from
Fig. 8(b). The vorticity field from the simulation is domi-
nated by the two peaks that approximately coincide with the
locations of the Alfvén fronts in the ILT. Figure 7 shows that
the flow in this region and around the interface, particularly
w’, is well represented by the Alfvén fronts and the incom-
pressible flow field from the ILT, although it does not capture
the small amplitude waves that appear near the interface.
Since the perturbations have a sinusoidal variation in x,
then the value of w’ at z=0 in the plotted profiles corre-
sponds to the growth rate of the interface. Thus, when a
wave with a w perturbation associated with it crosses the
interface, it will cause a small oscillation in the interface
amplitude. This is the cause of the oscillations that were
noted earlier in the 7 histories from the compressible simu-
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simulation corresponding to a shock accelerated interface with M=1.1,
B=16, p,/p1=3, 179/ A=0.01, and y=5/3.

lations. In the IDL simulation, these oscillations decay with
time as the high amplitude compressible waves propagate
away from the interface at the beginning of the simulation
and do not return.

Profiles of w’ from the ILT and the SDL simulation of
the baseline case are shown in Fig. 9(a) at ¢/t*=4 in the
simulation. The profiles from the ILT are shown at ¢/f*=4
—(Zif= Zshoet) | (M \@), the approximate time after the accel-
eration of the interface in the simulation, because the accel-
eration occurs at =0 in the model. This adjustment is made
whenever the ILT is compared to the results of a shock
driven simulation. In the SDL simulation, the perturbations
are restricted to the region between the two shocks in the
base flow. The base flow downstream of the shocks is sub-
sonic with respect to the fast characteristic speed; thus the
compressible waves in the solution can catch up to the
shocks and interact with them. This process can be seen oc-
curring on the right side of Fig. 9(a). The interaction of the
waves with the shock can only produce reflected waves. The
flow upstream of the shocks is supersonic with regard to the
fast characteristic speed. Figure 9 shows that the ILT repro-
duces the flow field around the interface from the SDL simu-
lation with approximately the same accuracy as for the IDL
simulation.

Profiles of w in the reference frame of the interface from
the ILT and the NL simulation of the baseline case are shown

Phys. Fluids 21, 082102 (2009)
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FIG. 9. Velocity profiles at x=0 and #/7*=4 from the ILT and shock driven
simulations of a shock accelerated interface with M=1.1, B=16, p,/p,=3,
7/ A=0.01, and y=5/3. In (a) w’ from the SDL simulation is shown while
(b) shows w from the NL simulation.

in Fig. 9(b) for #/1*=4. Because the full z-velocity is plotted,
the transmitted and reflected fast shocks are visible in the
profile from the NL simulation. By comparing Fig. 9(b) with
Figs. 7 and 9(a), it can be seen that the flow around Alfvén
fronts from the ILT does not predict the flow in that region
from the NL simulation as accurately as it did for the linear-
ized simulations. This is most likely because in the NL simu-
lation the discontinuities downstream of the fast shocks are
not Alfvén fronts but include NL discontinuous waves. These
may be slow or intermediate shocks, 180° rotational discon-
tinuities, slow-mode expansion fans, compound waves, or
combinations of these.’ The performance of ILT depends on
how well the Alfvén fronts approximate the NL discontinu-
ous waves that are present in the NL simulation. However,
the type of waves present varies with position along the in-
terface, as the shock refraction process varies with the inci-
dence angle and with time as they propagate outward and
evolve, making it difficult to assess the performance of the
ILT in this fashion. For this reason we assess the perfor-
mance of the ILT based on how well it predicts the overall
evolution of the interface, as shown in Fig. 6.
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FIG. 10. Interface amplitude histories from the ILT, IDL, SDL, and NL
compressible simulations corresponding to a shock accelerated interface
with B=16, p,/p;=3, 7y/A=0.01, y=5/3, and (a) M=1.25 or (b) M=2.

B. Effect of increased shock strength

In this section the effect of increasing the incident shock
Mach number M is examined. This is done by studying two
additional cases with M=1.25 and M=2. The other param-
eters are the same as in the baseline case. Figure 10 shows
the # histories from the ILT and the three simulations for the
M=1.25 and M =2 cases (refer to Fig. 6 for the M=1.1 case).
The values of 7., and o computed from these are shown in
Table II along with the simulation parameters.

From Fig. 10, it can be seen that the agreement between
the # histories from ILT and the IDL simulation does not
degrade as the magnitude of the impulse, V, is increased with
M. Thus the linear dependence of 7.,,— 7, on V predicted by
the ILT also appears to hold in the compressible case. The »
histories from the IDL and SDL simulations diverge as M
increases, indicating that approximating the result of the
shock interaction process as an impulsive acceleration be-
comes less accurate as the shock strength increases. The #
histories from the SDL and NL simulations also diverge as M
increases, indicating that nonlinearities become more domi-
nant as the shock strength increases. It is apparent from Fig.
10 that in the shock driven # histories, the amplitude of the
long period oscillations, relative to 7,.— 7y, increases with
M. As discussed earlier, these oscillations appear to be due to
disturbances caused by the interaction of transverse waves
downstream of the reflected and transmitted shocks or out-
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TABLE II. Interface perturbation parameters from the ILT and simulations
corresponding to a shock accelerated interface with varying M and 8=16,
p2/ p1=3, 1y/N=0.01, and y=5/3. For the linearized simulations N,=4000.
For the NL simulation of the M=1.25 case, L,=13\, z;=6.8\, N, =128,
N.=3328, and Ty, /r*=6.5, while for the M=2 case, L,=N\/2, L.=20.5\,
zi¢=5.75\, N, =128, N.=5248, and T, /1"=8.5.

M Model IDL simulation SDL simulation NL simulation

Mol N

1.1 0.011 7237 0.011 746 5 0.011 6413 0.011 464 4

1.25 0.014 4258 0.014 514 2 0.0133635 0.013 5617

2.0 0.026 500 9 0.025 733 1 0.015436 1 0.020 605 1
at*

1.1 —1.389 82 —1.289 69 —1.42071 —1.314 02

1.25 —1.248 —1.170 46 —1.449 87 —1.465 07

2.0 —0.938511 —0.907 09 —1.763 15 —1.739 81

going waves that have been reflected from the shocks. An
example of such a disturbance crossing the interface can be
seen in Fig. 11, which shows profiles of w from the
M=2 NL simulation at three different times. At #/7"=6.4,
the disturbance appears as the small peak in w between the
two large peaks that bracket the interface, which is located at
z=0. The disturbance approaches z=0 from the right and
increases the growth rate of the interface as it crosses it. This
event corresponds to the change from negative to positive
growth seen in the % history near #/1*=~6.2. The increase in
amplitude of the oscillations in 7 with M therefore indicates
an increase in the effect of transverse and/or reflected waves,
which is consistent with compressibility effects becoming
more dominant.

Figure 12 shows profiles of w in the reference frame of
the interface from the ILT and the NL simulations of the
M=1.25 and M =2 cases. These show that as M is increased,
ILT is less able to accurately represent the primary features
of the flow, resulting in the increasing disagreement between
the interface statistics from the model and the shock driven
simulations seen in Table II. For M=1.25, ILT overpredicts

normalized z-velocity, wt/A
o o

5
-10 -5 0 5
distance from interface, z/A

FIG. 11. Profiles of w at x=0 in the reference frame of the interface from the
NL simulation of a shock accelerated interface with M=2, B=16,
pa/py=3, 1o/ A=0.01, and y=5/3.
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FIG. 12. Profiles of w at x=0 in the reference frame of the interface at
t/1*=4 from the ILT and NL simulations corresponding to shock accelerated
interfaces with B=16, p,/p,=3, 7,/A=0.01, y=5/3, and (a) M=1.25 or (b)
M=2.

7., from the IDL, SDL, and NL simulations by —0.61%,
0.74%, and 0.60%, respectively, while o is underestimated
by —6.2%, 16.2%, and 17.4%, respectively. For M =2, ILT
overpredicts 7., from the IDL, SDL, and NL simulations by
2.9%, 41.8%, and 22.2%, respectively, while o is underesti-
mated by —3.3%, 87.9%, and 85.4%, respectively. Taking 7,
values from the NL simulations to be the desired output of
the model, the error in the ILT exceeds 20% for M >1.71 for
the cases studied here.

C. Effect of increased magnetic field

In this section the effect of increasing the magnetic field
magnitude B is examined. This is done by studying two ad-
ditional cases with 8=4 and B=1. The other parameters are
the same as in the baseline case. Figure 13 shows the #
histories from ILT and the three simulations for the 8=4 and
B=1 cases. The values of 7., and o computed from these are
shown in Table III.

For =4, the agreement between ILT and the linearized
simulations remains reasonable, with 7, deviating from the
predicted value by 0.56% and 0.40% in the IDL and SDL
simulations, respectively. The deviations in o are 14.5% and
17.9%, respectively. The differences between ILT and the NL
simulation increase more substantially, with 7., and o devi-
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FIG. 13. Interface amplitude histories from ILT, IDL, SDL, and NL com-
pressible simulations corresponding a shock accelerated interface with
M=1.1, py/p,=3, 1,/A=0.01, y=5/3, and (a) B=4 or (b) B=1.

ating by 3.6% and 25.4% from their predicted values,
respectively. As B=2p,/B>=2(a/C,)*/y is decreased fur-
ther, the Alfvén speed C, in the undisturbed flow approaches
the acoustic sound speed a and they become equal at
B=2/y=6/5. Thus for the B=1 case, in the undisturbed flow
C, is greater than a and is therefore the fast and intermediate
characteristic speed, while a is the slow characteristic speed.

TABLE III. Interface perturbation parameters from ILT and simulations
corresponding to a shock accelerated interface with varying 8 and M=1.1,
po/ p1=3, 19/ N=0.01, and y=5/3. For the NL simulation of the 8=4 case,
L.=6\, z;3=3.53\, N,=256, N.=3072, and T, /t"=3. For the B=1 case,
L.=N/2, L.=9.5\, z3=5.59\, N,=128, N =2432, and Tj,/t"=4.8. This
simulation was run for longer than 279y~ 1.4 because the value of 7., was
not apparent at that time.

B Model IDL simulation SDL simulation ~NL simulation
Nl N

16 0.011 723 7 0.011 746 5 0.0116413 0.011 464 4

4 0.010397 5 0.010456 1 0.0103559 0.010 0219

0.009 750 63 0.009 943 64 0.010202 1 0.009 491 06

at”

16 —1.38982 —1.289 69 —1.42071 —1.314 02

4 —=277963 —2.3755 —2.281 34 —2.073 66

1 —=5.55927 —2.894 82 —2.849 95 —2.401 85
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FIG. 14. Profiles of w at x=0 in the reference frame of the interface at
t/1*=2 from the ILT and (a) IDL and (b) SDL simulations corresponding to
a shock accelerated interface with M=1.1, p,/p,;=3, 7,/A=0.01, y=5/3,
and B=1.

This situation is different from all the cases examined so far
and has serious consequences for the performance of ILT.
Figure 14 shows profiles of w or w', as appropriate, in the
reference frame of the interface from ILT and the linearized
simulations of the B=1 case. The initial pressure in the IDL
simulation is set to the postshock interaction pressure p,, as
stated in Sec. III C. At this pressure S=1.341 43>6/5; thus
a is still slightly greater than C,. They are sufficiently close,
however, that during the period when the interface is grow-
ing, information cannot propagate far enough upstream of
the locations of the Alfvén fronts for a structure similar to
that seen in ILT to form upstream of the front locations. This
in turn significantly alters the downstream flow, as is evident
in Fig. 14(a). In the shock driven simulations, the propaga-
tion speed of the outermost shocks is approximately the same
as that of the Alfvén fronts in ILT. This results in constant
interaction between the outermost shocks and the flow fea-
tures that govern the overall evolution of the interface (which
were reasonably well represented by ILT in the other cases)
rather than the separation that was present in the cases ex-
amined previously. In both simulations, it can be seen from
Fig. 14 that these factors cause the flow in the vicinity of the
interface to deviate significantly from the ILT. Fitted values
of 7, and o from the B8=1 simulations are shown in Table
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FIG. 15. Interface amplitude histories from the ILT, IDL, SDL, and NL
compressible simulations corresponding a shock accelerated interface with
M=1.1, B=16, p,/p;=3, y=5/3, and (a) 7,/X\=0.025 or (b) 7,/A=0.1.

III, but in the shock driven cases the estimates are highly
unreliable as 7 is still increasing at the end of the simula-
tions. In summary, the performance of ILT is reasonable for
weak magnetic fields but is compromised once the magnetic
field becomes sufficiently strong that the Alfvén speed ap-
proaches the acoustic sound speed. Consequently, the ILT
should not be used to estimate the behavior of the MHD RMI
for cases where C,=a.

D. Effect of increased perturbation amplitude

In this section the effect of increasing the initial pertur-
bation amplitude 7, is examined. This is done by studying
two additional cases with 7,/A=0.025 and 7,/\=0.1. The
other parameters are the same as in the baseline case. Addi-
tional linearized simulations are not required for these cases
as 7, is scaled out of the linear problem. 7/ 7, histories for
these cases are identical to the baseline case. Figure 15
shows the # histories from ILT and the three simulations for
the 7,/A=0.025 and 7,/A=0.1 cases (refer to Fig. 6 for the
70/ A=0.01 case). The values of 7., and o computed from
these are shown in Table IV. From Fig. 15, it can be seen that
the primary effect of increasing 7, is to increase the percent-
age by which the impulsive ILT overpredicts the growth rate
of the interface in the NL simulation. This effect has also
been documented by Cook et al."* for the hydrodynamic
Rayleigh—Taylor instability. The increasing overprediction of
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TABLE IV. Interface perturbation parameters from the ILT and simulations
corresponding to a shock accelerated interface with varying #,/\ and
M=1.1, B=16, p,/p;=3, and y=5/3. For the NL simulations, L,=20X\,
zi=11.76\, N,=64, N_.=2560, and Ty, /1"=5.6.

Mo/ N Model IDL simulation SDL simulation NL simulation
Mol N

0.01 0.011 7237 0.011 746 5 0.011 641 3 0.011 464 4
0.025 0.029 321 4 0.029378 4 0.029 115 4 0.028 465 3
0.1 0.119314 0.119 546 0.118 476 0.115273
ot*

0.01 —1.389 82 —1.289 69 —1.42071 —1.314 02
0.025 —1.389 82 —1.289 69 —1.42071 —1.31294
0.1 —1.389 82 —1.289 69 —1.42071 —1.203 38

the growth rate by ILT results in the overprediction of the
value of 7., observed in the NL simulation increasing from
2.2% to 2.9% to 3.4% as my/\ is increased from 0.01 to
0.025 to 0.1. The overprediction of o, however, does not
increase monotonically; it changes from 7.8% to 5.5% then
13.4% as 7, is increased. Overall, the performance of the
model slowly degrades as the initial perturbation amplitude
is increased, as is expected for a linear model. Comparing the
results presented in this section to those in Secs. IV B and
IV C, it appears that the performance of ILT is less sensitive
to increases in 7, than it is to increases in either M or B; the
error in 7, increases by only 1.2% as 7, is increased by an
order of magnitude.

E. Combined case

In this section, the performance of the ILT is assessed for
the case where M=2, B=1, ny/\=0.1, p,/p;=3, and
y=5/3. This case represents what would appear to be the
worst combination of the parameter values investigated in
Secs. IV B-IV D from the perspective of model accuracy.
The linearized simulations of this case were carried out in the
domain —-20A=z=20\N, which was discretized into
N,=6400 control volumes. The simulations were run for
N,=8000 time steps with a CFL number of 0.5. These simu-
lations were run for a longer duration than for the other cases
in order to examine the long period oscillations for more
than 1 cycle. For the NL simulation of this case, L,=\/2,
L.=12N\, ziy=3.4\, N,=128, and N,=3072. The simulation
was run for the duration T,,/7*=5, which is approximately
Stg9. Figure 16 shows the 7 histories from ILT and the three
simulations for the current case. The values of 7, and o
computed from these are shown in Table V.

Comparing Figs. 16 and 13(b), it appears that there is
better agreement between the ILT and the simulations of the
present case than for the M=1.1, 7,/A=0.01, and B=1 case.
This is confirmed by the smaller fractional deviations in o
from the predicted value in the simulations of the present
case. The improved agreement is due to the higher incident
shock Mach number in the present case. In the IDL simula-
tion, this increases the initial pressure so that a is signifi-
cantly greater than C,, allowing information to propagate
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FIG. 16. Interface amplitude histories from the ILT and simulations corre-
sponding to a shock accelerated interface with M=2, B=1, p,/p;=3,
7o/ A=0.1, and y=5/3.

further upstream of the Alfvén front locations. In the shock
driven simulations, stronger outermost transmitted and re-
flected shocks are generated, which propagate significantly
faster than the Alfvén fronts in the ILT, reducing the interac-
tion that limited the accuracy of ILT in the M =1.1 case. This
allows ILT to better predict the flow in the vicinity of the
interface. The results for this case indicate that for strong
shocks, large initial perturbations, and strong magnetic fields,
the ILT may still give a rough estimate of the interface be-
havior, but it is not quantitatively accurate.

V. CONCLUSIONS

In order to assess the performance of the ILT of the
MHD RMI developed by Wheatley et al. J predictions from
the ILT were compared to the results of IDL, SDL, and NL
compressible MHD simulations for a variety of cases. The
performance of ILT was first assessed for a baseline case
with M=1.1, 5y/A=0.01, =16, p,/p;=3, and y=5/3. For
this case, the agreement between ILT and the interface be-
havior from the IDL simulation is excellent, with the model
predicting the final amplitude of the interface to within 0.2%.
Compressible waves present in the simulation caused small
amplitude, short period oscillations in the amplitude of the
interface that are not present in the ILT. These waves do not
affect the overall evolution of the interface as they have no
vorticity associated with them. The agreement between ILT
and the SDL simulation is also excellent, while the final in-
terface amplitude from the NL simulation is overpredicted by
2.2%. For all simulations of this case, ILT represents the flow
structures that dominate the evolution of the interface with
reasonable accuracy. In the shock driven simulations, the in-

TABLE V. Interface perturbation parameters from the ILT and simulations
corresponding to a shock accelerated interface with M=2, =1, p,/p;=3,
17o/A=0.1, and y=5/3.

Model IDL simulation SDL simulation ~NL simulation
Moo/ N 0.109 167 0.11532 0.092 858 7 0.086 842 8
at* —3.754 05 —2.869 94 —4.1807 —5.06429
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FIG. 17. Interface perturbation parameters 7., and o from all NL, SDL, and
IDL simulations vs the values predicted by the ILT.

terface amplitude also exhibits a long period oscillation
caused by the interaction of transverse waves behind the
shocks or outgoing waves reflected from the shocks. When
the incident shock Mach number M is increased, the ILT still
accurately predicts the behavior of the interface in the IDL
simulation, but it increasingly overestimates the amplitude of
the interface # in the shock driven cases. The amplitude of
the long period oscillations in the shock driven simulations
increases with M. As the nondimensional strength of the
magnetic field 87! is increased, ILT less accurately predicts
the results of all simulations. The accuracy of ILT was found
to be compromised once the magnetic field is sufficiently
strong that the Alfvén wave speed approaches the acoustic
sound speed, particularly if the incident shock is weak. When
this occurs, the features of the flow that dominate the evolu-
tion of the interface deviate significantly from ILT. One such
case with B=1 and M=1.1 was investigated. When initial
perturbation amplitude of the interface 7, is increased, the
agreement between ILT and the linearized simulations is un-
changed. The degree to which the ILT overpredicts 7 from
NL simulations gradually increases with 77,.
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The performance of ILT for all cases investigated, other
than the case with B=1 and M=1.1 where reliable statistics
could not be calculated, is summarized in Fig. 17. This
shows the values of the final interface amplitude 7., and the
time constant for the saturation of the interface o that were
calculated from the simulations plotted against the values
predicted by ILT. It can be seen that the ILT collapses the
data from the simulations well. In conclusion, the interface
behavior given by the ILT well approximates that seen in
compressible linearized simulations when M -1, 7/\, and
B I are small. For such cases, the agreement with interface
behavior that occurs in NL simulations is also reasonable.
When M—1, ny/\, and 3~ ! are increased, the ILT becomes
less accurate. For strong shocks, large initial perturbation
amplitudes, and strong magnetic fields, ILT may give a use-
ful estimate of the interface behavior, but it is not quantita-
tively accurate.
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