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Abstract

Initializing a background model requires robust
statistical methods as the task should be robust against
random occurrences offoreground objects, as well as
against general image noise. The Median has been
employedfor the problem ofbackground initialization.
However, the Median has only a breakdown point of
50%. In this paper, we propose a new robust method
which can tolerate more than 50% of noise and
foreground pixels in the background initialization
process. We compare our new method with five others
and give quantitative evaluations on background
initialization. Experiments show that the proposed
method achieves very promising results in background
initialization.

1. Introduction

There are many practical applications of
tracking/surveillance: including monitoring freeways
[1], recognizing human action [2, 3], motion
segmentation [4, 5], etc. Effectively detecting and
extracting moving foreground objects is a crucial step
in these applications. To extract foreground objects,
one usually needs to model the background scene
using a short training video sequence. A number of
background modeling methods have been proposed in
recent years, e.g., [2, 3, 5, 6, 7, 8, 9]. However, most of
these methods build up the background models,
assuming that the training sequence is free of
foreground objects. In many practical tasks, for
example, in a busy road or in a public area, we must
initialize the background model in a way that robust to
the presence of foreground objects in the background
training data. This problem, called bootstrapping [7],
has received relatively little attention.

In this paper, we propose a new robust method for
background initialization. The major advantage is that
the proposed method can tolerate over 500o of noise in
the data (including foreground pixels), in contrast with
methods using the Median statistic which will break
down totally when background constitutes less than

5000 of the training data. A number of experiments are
presented to show the advantages of the proposed
method over other methods.

This paper is organized as follows: in section 2, we
provide a short review of background modeling. We
develop a robust method for background initialization
in section 3. In section 4, experiments showing the
advantages of our method are provided. We conclude
in section 5.

2. Related work

Background modeling is mainly composed of three
parts: model representation, model initialization, and
model maintenance [4]. Much effort has concentrated
on model representation and model maintenance. Early
studies represent a background feature by an average
of either grey-level or color samples at each pixel over
a training time. To tolerate the influence of image
noise, some statistical models are employed. One
prominent example is Pfinder [3]. Pfinder assumes that
the pixels, over a time window at a particular image
location, are Gaussian distributed. After the
background value of the pixel is obtained, exponential
smoothing is employed to update for slow or gradual
change in the background scene. Such approaches do
not address scenes with dynamic backgrounds or
where foreground objects are present in the training
stage.

Many methods have been proposed for modeling
dynamic background scenes. For example, Mixture of
Gaussians (MOG) [6, 9, 10]. In MOG, the background
features are characterized by a mixture of several
Gaussians. Each Gaussian represents a distribution per
pixel. Thus, MOG can efficiently model dynamic
background scenes. However, when the background
involves a wide distribution in color/intensity,
modeling the background with a mixture of a small
number of Gaussian distributions is not efficient.
When foreground objects are included in the training
frames, MOG will misclassify [7].

To improve MOG, a non-parametric method for
background modeling was proposed [5]. However,
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several pre-calculated lookup tables for the kernel
function values are required to reduce the burden of
computation of this approach. Also, this method can
not resist the influence of foreground objects in the
training stage.

In contrast to background model representation and
model maintenance, only a few studies of background
model initialization have been made (e.g., [1, 4, 11,
12]). In [12], a Smoothness Detector (SD) Method was
proposed. They assumed that a background value
always has the longest stable value. At each pixel, a
moving window along time is employed to search for
the stable intervals. However, we find one problem of
the method is that when the data include multi-modal
distributions (i.e., some modes from foreground
objects and some modes from background as shown in
Figure 2 and Figure 3), and when the modes from
foreground objects tend to be relatively stable, this
method can not differentiate these modes from those
from the background.

In order to decide the window length L and the
intensity flicker of the window Tf for each pixel, [12]
proposed an Adaptive Smoothness Detector (ASD)
method. Because the ASD method tries different L and
Tf at each iteration until the solution is found, the
computational cost of the ASD method is high.

Motivated by [12], a Local Image Flow (LIF)
algorithm [11] was proposed. Two steps are used: in
the first step, all stable sub-intervals in a training
sequence are located for each pixel. In the second step,
the method locates the sub-interval with the greatest
average likelihood using local motion information, and
produces a background value by computing the mean
value over the chosen sub-interval. Optical flow is
computed for each consecutive pair of images and used
to estimate the likelihood. While this potentially adds
valuable information, most optical flow computation
methods themselves are computationally complex and
very sensitive to noise.

In [1], the authors used the median intensity value
over observations at each pixel, to initialize the
background for a traffic monitoring system. The
underlying assumption is that the background at each
pixel can be seen for more than 50 percent of time in
the training sequence. However, the requirement that
background appear more than 5000 of time in a video
sequence may not be always satisfied. Figure 1
illustrates two such examples. In Figure 1, we can see
that the background value at the marked pixel (with
red star) is visible less than 50 percent of the training
time. The noise is either from the moving foreground
objects or the shadows of the foreground objects.
A robust method which can tolerate more than 500O

of noise is possible [13]. Examples include RANdom

Sample Consensus (RANSAC) [14], Adaptive-Scale
Sample Consensus (ASSC) [15], etc. To overcome the
problems inherent in methods based on the Median, we
introduce a consensus-based robust method of
background initialization. The details of the proposed
method will be introduced in the next section.
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Figure 1: Two examples that background is visible less
than 50 percent of the training time: (al) and (bl)
show one frame of each training sequence; (a2) and
(b2) show the intensity distributions over time at one
pixel (marked by red star) of the sequence.

3. The proposed method for background
initialization

3.1 Assumptions

Our assumptions are similar to those in [I1, 12]:
1. The background at each pixel should be revealed
at leastfor a short interval during the trainingperiod.
2. A background value tends to be relatively stable
and constant.
3. A foreground object can remain stationary for a
short interval in the training sequence. However, the
interval should be no longer than the intervalfrom the
revealed static background (in assumption 1).
4. The background scene remains relatively stable.

Stability is one characteristic of essentially
stationary backgrounds. The foreground value at a
pixel is assumed to have no less variance in grey-level
intensity than a background value.

When the background involves dynamic scene
(such as waving trees, rain, etc) the second and the
third assumptions are invalid. To the best of our
knowledge, all the proposed background initialization
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methods have concentrated on handling stationary
backgrounds.

3.2 The Proposed method

Our method employs a two-step framework: (1)
locate all non-overlapping stable subsequences of pixel
values; (2) choose the most reliable subsequence, and
use the mean value of either the grey-level intensities
or the color intensities over that subsequence as the
model background value.

In the first step, we use a sliding window with a
minimum length Lw, similar to the work in [11, 12], to
locate all stable sub-intervals {lk}. For a test sequence
of N frames, we have N observations at each

pixel{x, i =1,...,N} . Let X, (t) be a pixel value of the

kth subsequence Ik at time t. The kth stable
subsequence candidate should satisfy the following
equation:

I ~ ~ ~V(t l1 ) c ;k
xIk(t) 'xk(t-1) <

f

Xlk (t) X,k (t-1) f

most stable interval from the non-overlapping sub-
intervals {lk} by:

Ik = arg max(n, ISIk) (2)

where nk and Sl are respectively the number of

values (length of) and the standard variance of the
observations in the kth subsequence Ik.

(a) (b)

(1)

where xl, (t1) is the mean value over an interval

from the beginning of the subsequence Ik to time t- 1.
If we can not find any subsequence candidate with a

minimum length Lw along time, we use the longest
stable subsequence from the candidates. In our
experiments, we experimentally set Lw to 5 and Tf to
10, for all test sequences. The chosen subsequences
can contain pixels from foreground, background,
shadows, highlights, etc. (e.g., see Figure 1 b). We
need to further process these subsequences in the next
step.

The second step is a crucial step, because in this
step, a reliable subsequence which is most likely to
arise from the background will be chosen. The authors
in [11] used local motion information (optical flow) for
choosing the reliable subsequence. However, optical
flow methods are computationally expensive and they
suffer many problems: such as aperture, sensitivity to
noise (e.g., shadows, illumination changes), etc.

Our definition of reliability is motivated by
RANSAC [14] and other robust methods. We build in
to our objective function the notions of consensus and
of scale estimation. We consider both the number (n)
of data points "agreeing" with a model (contained in
the candidate interval), and the distribution of these
data (e.g. standard variance S), in our objective
function: n should be large, and S should be small. We
therefore define our objective function as finding the

Percentage of noise

(c)
Figure 2: Estimating background value from noisy
data: (a) and (b) illustrate two cases of the distributions
of the simulated data; (c) the results obtained by the
three methods.

To illustrate the robustness of the proposed method
we generate synthetic data to simulate the observations
over time at a pixel. One hundred data values (i.e., 100
frames) were generated. The first fifteen data values
(i.e., a relatively stationary foreground object pixel)
have intensity value of 200 and standard variance of 2.
From the sixteenth to the ith data, we simulate random
noise (such as foreground objects in transit at that
pixel) with intensity values ranging from 50 to 250.
We simulate a background value in the sub-interval
from the (i+1)'th data to the 100th data, with unit
variance. We increase i from 16 to 90 with step 1 each
time. We repeat the experiment ten times and output
the average value as results.
Two simulated data distributions with i=16 and

i=90, are shown in Figure 2 (a) and (b). Figure 2 (c)
shows the results by three statistics: Mean, Median,
and the proposed method. From the results, the Mean
is not robust to noise at all. The error by the mean is
largely affected by the percentage of noise in the data
and the distributions of the noise. Although the Median
can tolerate the influence of noise, when the noise
occupies less than 50 percent of the data, the Median
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method breaks down. In contrast, the proposed method
is much more robust to the influence of noise than the
Median method.

Although the proposed method can achieve accurate
results in most cases, we note that equation (2) might
be erroneous when S, is very small or zero. This can

happen when some pixels of a short subinterval have
saturated colors. The saturated pixel values are clipped
within the range from 0 to 255 and sequences
containing these saturated pixels have a very small (or
zero) standard variance [16]. For this case, the
assumption (2) in subsection 3.1 is violated. When we
detect such a case happens, we use the following
equation instead of equation (2).:

k = arg max(n1) (3)

(a)

(b) (c)
Figure 3: One example showing that the intensities of
the saturated pixels are clipped: (a) shows one frame of
the video sequence (the pixel marked by a red star is
investigated); (b) shows the intensity distributions over
tine at that pixel; (c) the possible sub-interval candidates.

Figure 3 shows an example where the intensities of
some saturated pixels are clipped. Figure 3 (a) shows
one frame of the test sequence. We investigate the
grey-level intensity distribution of the observations at
one pixel which was marked with a red colored star. In
Figure 3 (b), we can see that there are some saturated
pixels corresponding to white colored cars passing by.
The sub-interval candidates obtained in the first step
are shown in Figure 3 (c). The two candidates
corresponding to saturated pixels have a standard
variance of zero. In such case, we should use equation
(3) instead of equation (2).

4. Experiments

The test sequences are recorded by a Canon
MV750i digital video camera. We stored the sequences
at a resolution of 160x120, and a sample rate of five
frames per second. We have deliberately chosen
different background including both indoors and
outdoors scenes, including foreground objects,
shadows, highlights, and illumination changes to
simulate true situations that a visual surveillance
system may meet in practice.

Roadl (RI): Heavy traffic in daytime (some
shadows on the road).

Road2 (R2): Vehicles passed by a crossing road in
the evening. Some parts of the road were highlighted
when vehicles (with lights on) got close to those parts.

Train Station (TS): A gate of a train station. Many
people exited or entered the station through that gate.

Sport Center (SC): In an indoor sport center,
people walked through a corridor. Shadows of people
were cast on the glass wall and the floor of the
corridor. Also some illumination changes happened
when people exited the back door and covered the light
outside.

Pharmore Shop (PS): A pharmacy shop, which is
located inside a big shopping center. People walked in
front of the shop. The illumination of the background
scene sometimes changed because of the reflected
sunlight outside the shopping center.
We compare the proposed method with five other

methods. All of the methods perform at pixel-level for
background initialization (methods based on area can
be expected to achieve better results at great cost). To
test each method, we choose two sub-sequences (S1
and S2) which include a number of frames ranging
from 30 to 100 in each sub-sequence, from each test
sequence. To evaluate the performance of each
method, we employ three criteria, similar to those used
in [11]: a) the Average gray-level Error (AE); b) the
Number of Error pixels (NE); and c) the Number of
Clustered error pixels (NC). We use the Mean value of
Total error (MT) of the ten sub-sequences over each
criterion as the overall measurement for each method.
We generate a Reference Frame (RF) for each test

sequence by using the mean value of selected frames
that are free of foreground objects. An error pixel is
one whose grey-level value differs from the value of
the reference pixel by a threshold 20. We define a
clustered error pixel when the 4-connected neighbors
of that error pixel consist of more than 4 error pixels.

Figure 4 shows one frame of each test subsequences
and the resulting error pixels (corresponding to the
white color pixels), obtained by the five other methods
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Figure 4: Ten video sub-sequences of five test videos. The third column shows one frame of each training
subsequence; the remaining columns show the difference between the background and the background estimate
obtained by the competing methods. The results obtained by the proposed method are shown in the last column.

RI R2 TS SC PS

RF _ jjj

SiI

S2

Figure 5: The reference background and the initialized background images by the proposed method.
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RI R2 TS SC PS
MT

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

AE 9.61 10.27 5.79 9.10 5.81 14.12 11.69 8.75 26.48 25.12 12.67
Mean NE 2994 2369 1630 1320 1323 4992 3537 3102 10253 9799 4132

NC 2965 2273 1571 1231 1211 4811 3436 3023 10031 9677 4023
AE 9.14 9.17 6.25 6.01 5.50 20.89 10.08 9.92 12.99 38.82 12.88

Pfinder NE 2790 2127 1917 411 1125 7805 3402 1822 3969 12690 3806
NC 2752 2016 1866 312 1042 7605 3347 1699 3746 12573 3696
AE 5.14 4.58 2.69 3.45 2.89 4.15 6.63 3.14 9.51 8.49 5.07

Median NE 352 159 276 142 40 353 1349 271 2559 2092 759
NC 282 127 239 114 28 296 1301 247 2347 1947 693
AE 7.99 5.94 2.83 5.58 2.96 3.50 6.10 2.77 7.85 5.43 5.10

SD NE 2097 976 515 872 226 399 1304 217 1400 921 893
NC 2018 840 487 741 153 228 1195 181 961 603 741
AE 5.59 6.01 2.43 3.58 2.66 2.81 7.62 2.94 6.47 4.64 4.48

ASD NE 588 252 114 55 44 56 892 123 598 559 328
NC 443 152 82 11 22 0 819 15 420 306 227

The AE 4.33 4.32 2.05 3.00 2.54 2.77 2.81 2.46 6.27 4.36 3.49
proposed NE 70 10 57 37 21 63 76 51 541 484 141
method NC 23 0 23 4 7 5 28 15 296 238 64

Table 1: Experimental results by different methods on test sequences.

and the proposed method. A quantitative comparison is
given in Table 1. From these results, we can see that
the Mean and the Pfinder methods are the most
inaccurate in background initialization. The Mean
takes all observations at each pixel in the test
subsequence into account. The Pfinder, using a
temporal smoothing technique, gives larger weight
value to recent observations. When the observations
contain pixels from other than background, these two
methods break down.

Compared with the Mean and the Pfinder, the
Median method achieves a much better result because
of its robustness to noise (from foreground objects,
shadows, etc.). However, when the test subsequence
includes too many foreground objects, or if the
background value is visible for less than 50 percent of
the test subsequence (more noticeable, in the S1 of
Sport Center sequence, and in the S1 and S2 of the
Pharmore Shop sequence), the Median method fails to
estimate the background.

SD obtained more accurate results than the Median
in the SC and PS sequences, but less accurate results in
the RI, R2, and TS sequences. ASD achieves better
results than the SD method in all test sequences
because it uses different window length L and Tf at
each pixel location. However, the cost is about 30-50
times slower than SD in computational time.

Among the six methods, the proposed method
achieves the most accurate results and it also is about

three times faster than SD, and about 100 times faster
than ASD.
We show the initialized backgrounds for the test

sequences in Figure 5. We use the mean values of the
RGB colors of the chosen sub-interval as the initialized
background. The reference images of the test video
sequences are shown in the second row. The initialized
background scenes by using two subsequences (S1 and
S2) of each test video are respectively shown in the
third and the fourth rows. The proposed method
obtains good results in background initialization for
most of the test sequences. However, for the PS
sequence, the results include relatively more error
pixels. Most of the error pixels are caused by the
illumination changes.

5. Conclusion

In this paper, we develop a new robust method for
background initialization. The proposed method can be
used in many places where foreground objects can not
be avoided. The main strength of the proposed method
is in that its high robustness to noise in data and the
method is a great improvement over the traditional
Median method.
We have evaluated our method with several other

methods on various outdoor and indoor video
sequences. Experimental results on background
initialization have shown that our method outperforms
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other methods and can achieve very promising results
even when background is revealed much less than half
of time in the training sequences.
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